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Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics
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We study the interplay between charge transport and light-matter interactions in a confined geometry by
considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode
close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of
nonequilibrium Green’s functions and numerical simulations of the quantum master equation, and derive both
analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is
the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with
the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the
cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing
bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are
transferred to the lower one, giving rise to a delocalized state along the chain. Conversely, in the dissipative regime
with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations
from the upper to the lower band.
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I. INTRODUCTION

A. Context

Investigating how the transport of excitations can be mod-
ified by the coupling to light is a topic of considerable
fundamental and practical interest [1–4]. Recent studies have
predicted drastic modifications of the transport of electron-hole
pairs called excitons when interacting with photons in confined
geometries such as cavities [5] or plasmonic resonators [6].
The modification of exciton transport in a cavity can be
understood using the Tavis-Cummings model [7] (TC), which
describes the collective behavior of N dipoles (two-level
systems) resonantly coupled to a single bosonic mode. As
localized excitons hop toward their nearest-neighboring sites,
the exciton propagation from one side of the cavity to the other
can be bypassed by exchanging energy with polariton modes
delocalized over the entire cavity mode volume. This energy
transfer can be interpreted as a long-range dipole-dipole–type
interaction mediated by the cavity [8].

Studies of charge transport modifications induced by the
coupling to bosonic fields in condensed matter systems have
traditionally focused on electron-phonon interactions [9]. In
polar semiconductors, the latter provide a screening of the
electron motion by the lattice polarization [10–12] (polaron),
which is responsible for increasing the electron effective mass
and reducing the mobility [9]. Electron-phonon coupling in
metals is known to lead to different instabilities at sufficiently
low temperature, such as BCS electron pairing leading to super-
conductivity [13–15] and Peierls-type instabilities responsible
for a metal-insulator phase transition in one-dimensional sys-
tems [16,17]. The crucial difference between electron-photon
and electron-phonon coupling stems from the possibility of
low-energy electron scattering with both vanishing and large
momenta (of the order of the Fermi wave vector kF ) in the

latter case. In particular, the aforementioned instabilities occur
due to large-momentum (∼2kF ) scattering across the Fermi
surface, within a narrow energy band of the order of the
Debye frequency. Conversely, light-matter coupling typically
involves quasivertical electronic excitations across a band
gap, resulting in the absence of both low-energy and large-
momentum excitations. In the macroscopic limit, this usually
provides a decoupling between low-energy charge transport
and light-matter coupling occurring at finite frequencies [18].

An emerging topic of interest is the modification of material
properties using an external electromagnetic radiation [19], and
in particular the possibility of light-induced superconductivity
in the ultraviolet [20] and terahertz portions of the spectrum
[21–27], as well as the emergence of zero-resistance states
in quantum Hall systems subjected to microwave radiation
[28–31]. On the other hand, the study of light-matter interac-
tions in confined geometries is attracting increasing attention
in various fields, such as in quantum optics [32–40], quantum
chemistry [41–45], and condensed matter [46–53], opening
the way to investigate the rich interplay between many-body
physics and strong light-matter interactions [54–56]. In the
case of charge transport, large conductivity enhancements (∼
one order of magnitude) have been recently reported consid-
ering organic molecular semiconductors strongly coupled to a
surface plasmon resonator [57]. Inspired by these experiments,
we have introduced a fermionic version of the TC model
[58], showing that the cavity coupling can lead to very large
current enhancements in the asymmetric situation where the
bandwidth associated with tightly bound valence electrons is
much smaller than the bandwidth of delocalized electrons in
the conduction band.

In this paper, we further investigate how the coupling to
a cavity mode can lead to an enhancement of the steady-
state current through a chain of N sites with two orbitals,
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providing complementary methods to investigate this system.
These include the nonequilibrium Green’s function (NGF) and
quantum master equation (QME) methods of reference [58],
together with an effective QME where photonic degrees of
freedom are integrated out. A detailed comparative analysis of
these methods is carried out, leading to new physical results.
In particular, we use a rate-equation approach to derive an
analytical formula for the current enhancement valid for small
coupling strengths, and characterize an efficient regime of
transmission governed by a purely dissipative and nonlocal
dynamics for large coupling strengths. In addition, our results
suggest the existence of quantum states delocalized across the
whole chain in the coherent regime, where the transport is
sustained by cyclic absorption and emission of cavity photons.
Our model might find direct applications in several fields,
such as transport in organic semiconductors [57], quantum dot
arrays [59–65], and nanowires [66–68], as well as for quantum
simulations using ultracold atoms [69,70] or superconducting
qubits [71–73] in the microwave domain.

B. Model

We consider a one-dimensional (1D) chain of N sites with
two electronic orbitals of energy ωα (h̄ = 1), where α = 1,2
stands for lower and upper orbitals, respectively [see Fig. 1(a)].
Each orbital α on site j is coupled to its nearest neighbors
j ± 1 with hopping rate tα , resulting in two bands in a tight-
binding picture. In the following, we will always consider
the situation where the upper band is much broader than the
lower one (t2 � t1). Depending on N , the upper electronic
bandwidth varies between 2t2 (N = 2) and 4t2 (N → ∞), and
will be denoted as W2 (respectively W1 for the lower band).
Electrons are considered as spinless. The edges of the chain
are connected to a source and a drain (leads) with a large bias
voltage across, such that the Fermi level of the source (the
drain) is higher (lower) than any other energy scale in the
system. This allows for injection/extraction in both orbitals
at a rate �α . Although different injection/extraction rates are
kept for the sake of generality, we will only discuss the results
obtained for �1 = �2 ≡ �. All energies are in units of ω21

(set to 1), which is assumed to be the largest parameter. The
onsite transition between lower and upper orbitals with energy
ω21 = ω2 − ω1 is resonantly coupled (with a coupling strength
g) to a single cavity mode with decay rate κ . Letting the
contributions from the leads and the extra-cavity photonic
environment aside for now, the 1D chain Hamiltonian can be
written as HS = He + Hc + Ht + HI , where

He =
∑

α

N∑
j=1

ωαc
†
α,j cα,j , Hc = ωca

†a

describe the free orbitals and free cavity mode contributions,
respectively. The fermionic operators cα,j and c

†
α,j , respec-

tively, annihilate and create an electron in the orbital α on
site j , and satisfy the anticommutation relations {cα,i ,c

†
α′,j } =

δα,α′δi,j . On the other hand, a and a† denote the bosonic
annihilation and creation operators of a photon in the cavity
mode with energy ωc, and satisfy the commutation relation
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FIG. 1. (a) Model for 1D charge transport in the presence of
a cavity. (b) TC model: the Hilbert space associated with a given
site is spanned by the two quantum states represented on the left
side, providing a 2N -states basis for the whole chain. Right side: the
hopping HamiltonianHt provides a coupling of these states to two new
states with both orbitals either occupied or empty. The chain is thus
spanned by a 4N -states basis. (c) Sketch showing the different regimes
investigated, together with the applicability domains of the different
methods used in this paper. W2 and δω denote the upper electronic
bandwidth and the typical separation between two adjacent Bloch
states in the upper band, respectively. NGFs stands for nonequilibrium
Green’s functions, and QME for quantum master equation. The full
QME is valid everywhere on the diagram. The dashed line corresponds
to g2/(κ�) = 1 (the left-hand side is the cooperativity), separating
the perturbative regime (above the line) from the nonperturbative
regime (below the line). The horizontal line κ = W2 represents the
separation between the dissipative regime κ � W2 and the coherent
regime κ � W2. Note that since δω → 0 in the macroscopic limit
N → ∞, the coupling is therefore always collective in this case. We
remark that the dashed line is not meant to reproduce the exact validity
domain of the effective QME, but rather indicates that its validity
range extends to larger g as κ is increased [see for instance Eq. (B15)].

[a,a†] = 1. The nearest-neighbor hopping in both orbitals is
described by the contribution

Ht = −
∑

α

tα

⎛
⎝N−1∑

j=1

c
†
α,j+1cα,j +

N∑
j=2

c
†
α,j−1cα,j

⎞
⎠, (1)
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and the light-matter coupling by the term

HI = g

N∑
j=1

(c†2,j c1,j + c
†
1,j c2,j )A, (2)

with A = a + a†. In the absence of Eq. (1), and if one restricts
the orbital occupation to one per site, HS corresponds to the TC
Hamiltonian [7] with counter-rotating terms, where the bosonic
field A is coupled to the collective pseudospin operator:

Sx = 1

2
√

N

N∑
j=1

(c†2,j c1,j + c
†
1,j c2,j ).

In the case of the TC model, the size of the electronic part of
the Hilbert space is 2N [see Fig. 1(b)], and one can use boson
mapping techniques [74] to find the spectrum of HS . The cavity
field thus interacts with a collective mode formed of a coherent
superposition of N single-spin excitations, with an enhanced
coupling strength � = g

√
N called vacuum Rabi frequency

[75]. In particular, the strong coupling regime of cavity QED
[75] is achieved when � > κ , allowing a quasireversible
energy transfer between the collective dipole and the cavity
field, and providing vacuum Rabi oscillations at a frequency
�. Instead of the bare cavity resonance, the cavity spectrum
features two polariton resonances separated by a splitting 2�.

In the presence of Ht , however, charge transport can occur
due to the coupling between the two quantum states associated
with each local pseudospin and the two new states with both or-
bitals either occupied or empty [see Fig. 1(b)]. Our model thus
exhibits a larger Hilbert space (4N ) compared to the TC model,
and features a more complex physics. Introducing the electron
density operator in the orbital α as n̂αj = c

†
α,j cα,j , one realizes

that the total density at a given site j is conserved by the light-
matter coupling Hamiltonian, namely, [HI ,

∑
α n̂αj ] = 0. This

means that in contrast to exciton transport, the cavity-induced
modification of charge transport can only occur through the
interplay between HI and Ht . This generalized TC model
could find direct applications in quantum cascade lasers and
photovoltaic devices based on semiconductor nanostructures
such as multiple quantum wells or dots, which can often be
modeled as 1D chains of N ∼ 10 sites with two orbitals. In
these devices, charge transport can occur provided that the
electronic wave functions in adjacent nanostructures overlap.
Moreover, it is a motivating perspective to investigate how the
current enhancement due to the coupling to the cavity mode
reported here could lead to device performance improvements
in a realistic situation.

C. Main results

The outline and main results of the paper are summarized
in the following:

(1) In Sec. II, we explain how to compute the relevant phys-
ical observables (current, populations, electron, and photon
density of states) using different theoretical methods that are
presented in detail. In particular, in Sec. II A, we introduce
a frequency-domain method based on the self-consistent so-
lutions of NGFs, valid in the perturbative regime where the
cooperativity g2/(κ�) < 1 [above the dashed line on Fig. 1(c)].
The results obtained with this method are benchmarked with a

suitable QME presented in Sec. II B, exact in the rotating-wave
approximation [76] and as long as the Markovian approxima-
tion for the system-baths coupling holds true, but nevertheless
limited to a small number of sites. Although these methods
were already introduced in [58], in this paper we provide a
more detailed and thorough analysis, identifying their validity
domains and pointing out their benefits and limitations. In
addition, we show in Sec. II C that in the dissipative regime
κ/W2 � 1 and for small coupling strengths, an effective QME
can be derived, in which light-matter interactions are entirely
cast into a dissipator ∝g2/κ .

(2) In Sec. III, we propose a thorough analysis of the results
presented in [58], by first discussing the physical properties of
the system in the absence of light-matter coupling (Sec. III A),
and explaining how the electron density of states (DOS)
is broadened by light-matter interactions in the perturbative
regime (Sec. III B). We further explain how polariton modes
arise from the dressing of the photon GF by the electron-hole
polarization. In the asymmetric situation where t2 � t1, we
show that the light-matter coupling is responsible for opening
a new transmission channel in the lower band, which leads to
an enhancement of the steady-state current. In Sec. III C, we
compare the current enhancement predicted by the different
numerical methods, identifying the regimes of interest based
on the ratio between the upper electronic bandwidth W2 ∼ t2
and the cavity photon decay rate κ . In the dissipative regime
κ/W2 � 1 already introduced in [58], we find that the current
enhancement scales with the cooperativity.

(3) In Sec. III D, we further investigate the dissipative
regime [upper part on Fig. 1(c)], providing again a detailed
analysis of the results presented in [58], as well as some
interesting additional results. In particular, we use a rate-
equation method to derive an analytical formula for the current
enhancement valid for small coupling strengths (Sec. III D 1),
and characterize the presence of collective effects by comput-
ing the different observables numerically in Sec. III D 2. We
show that a collective coupling of many Bloch states to the
cavity mode occurs when g > δω, namely, when the coupling
strength is larger than the typical energy separation between
two adjacent Bloch states in the upper band. In this dissipative,
collective “dressing” regime, the current enhancement stems
from a global transfer of populations from the upper to
the lower band, with only marginal propagation through the
lower band. As already shown in [58], for large coupling
strengths (Sec. III D 3), we find that the current enhancement
saturates to about twice its value for g = 0. In this regime, we
further demonstrate that the collective coupling is responsible
for the existence of electronic correlations stemming from
nonlocal terms in the Liouvillian, and that transmission through
the chain is governed by a purely dissipative and nonlocal
dynamics.

(4) The “coherent” regime obtained for κ/W2 � 1 is
studied in Sec. III E. When g < δω, only one given resonant
Bloch state is individually coupled to the cavity mode [left
bottom part on Fig. 1(c)], which is referred to as “individual
dressing regime” [58]. After having characterized the latter by
computing the different observables in Sec. III E 1 (following
an analysis similar to the one presented in [58]), here we show
that a transfer of spectral weight ∼10% occurs from the upper
to the lower band, resulting in a new state with energy ∼ω1
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delocalized across the whole chain (Sec. III E 2). In this case,
the current enhancement can be interpreted as stemming from
coherent dynamics sustained by the absorption and emission of
cavity photons. Ultimately, for N � 1, or when the coupling
strength becomes larger than the upper electronic bandwidth,
we expect to recover a collective coupling of the Bloch states
to the cavity mode [right bottom part on Fig. 1(c)].

(5) Concluding remarks concerning the cavity photons
population and the scaling of the current with the chain length
N are presented in Sec. III F, and perspectives are drawn in
Sec. IV.

II. METHODS

This section is structured as follows. In Sec. II A, we
introduce the steady-state current flowing through the chain
in the presence of light-matter coupling, showing that this
observable can be computed by either formulating the problem
in real time or in the frequency domain. We first focus on
the frequency domain, introducing the total Hamiltonian that
includes the contributions from the environment, and explain
how to compute the steady-state current by solving a set
of self-consistent equations for electron and photon Green’s
functions (GFs). In Sec. II B, we introduce a suitable QME to
compute the current in real time, exact but limited to a small
number of sites. In Sec. II C, we introduce an effective master
equation valid in the dissipative regime where the fast cavity
field evolution can be adiabatically eliminated, resulting in an
effective QME involving only electronic degrees of freedom.

A. Nonequilibrium Green’s functions

In this section, we focus on the NGFs method. In Sec. II A 1,
we introduce the total Hamiltonian including the contributions
from the environment. In Sec. II A 2, we present the derivation
of the steady-state current written in terms of electron GFs, and
explain how to compute this current by solving a set of self-
consistent equations for electron and photon Green’s functions
in Sec. II A 3. The Keldysh formalism has already been used to
describe quantum optical systems in the presence of coupling to
a cavity [77,78], as well as fermionic degrees of freedom [79].
The method presented here is based on a generalization of the
model presented in the Chapter 12 of [80], with a treatment of
light-matter coupling similar to the one presented in [81] for
electron-phonon interactions.

1. Total Hamiltonian

In the framework of the NGFs formalism, the environment
is described by Hamiltonian terms. In total, one can write H =
HS + HL + HP , where the chain Hamiltonian HS is given in
Sec. I B.

The two leads injecting and extracting electrons are de-
scribed by the contribution

HL =
∑

α

∑
η=s,d

∑
q

ωqb
†
α,q,ηbα,q,η

+
∑

α

∑
η=s,d

∑
j,q

λα,j,q,η(cα,j b
†
α,q,η + bα,q,ηc

†
α,j ),

with coupling constants

λα,j,q,s =
{
λα,q for j = 1
0 for j �= 1,

λα,j,q,d =
{
λα,q for j = N

0 for j �= N.

(3)

The operators b
†
α,q,η (bα,q,η) create (annihilate) a fermion in

the state (α,q) with energy ωq in the lead η, and obey fermionic
commutation relations. The photonic bath responsible for
cavity photon losses is described by the Hamiltonian

HP =
∑

p

ωpa
†
pap +

∑
p

μpApA,

where a
†
p and ap denote the extra-cavity photon operators

(obeying bosonic commutation rules) with corresponding en-
ergy ωp, and Ap = ap + a

†
p. The cavity photon-bath coupling

strength is denoted as μp. The continuous variables q and p are
arbitrary quantities respectively associated with the electronic
(leads) and photonic baths.

The chain operators can be expanded in the Bloch states
basis as cα,j = ∑N

k=1 ϕ
j

k c̃α,k , with

ϕ
j

k =
√

2

N + 1
sin

(
πjk

N + 1

)
, (4)

such that the contribution He + Ht takes the diagonal
form

∑
α,k ωα,kc̃

†
α,kc̃α,k with ωα,k = ωα − 2tα cos[πk/(N +

1)]. The Hamiltonian HS can thus be partitioned into a diagonal
part H0 = He + Ht + Hc with known eigenstates, and the
light-matter interaction (2) treated perturbatively.

2. Steady-state current

In the steady state, the charge current Jη flowing through the
lead η is given by the continuity equation Jη = −e∂t 〈Nη〉 =
−ie〈[H,Nη]〉, with Js = −Jd . Here, 〈. . . 〉 denotes the statisti-
cal average with respect to the density operator  of the whole
system (chain+environment), whose evolution is governed by
the total Hamiltonian H . Nη = ∑

α,q b
†
α,q,ηbα,q,η is the number

of electrons in the lead η. As detailed in Appendix A, the
steady-state current can be put in a form reminiscent of the
Landauer formula [82] for equilibrium mesoscopic systems
[80]:

J = Js − Jd

2
=

∑
α

e�α

2

∫
dω

2π
Tα(ω), (5)

where Js (Jd ) is the steady-state current flowing through the
source (drain), ω the frequency, and e the electron charge.
In the high-bias regime, the transmission spectrum Tα(ω) is
expressed in terms of the electron GFs Gr

α and G<
α as

Tα(ω) = Tr
[−2σ 1 ◦ ImGr

α(ω) + (σN − σ 1) ◦ ImG<
α (ω)

]
,

(6)

where underlined quantities denote N × N matrices, ◦ is the
element-wise Hadamard product, Im stands for imaginary part,
and Tr denotes the sum over all matrix elements. The matrix
elements of σ j are given by σ

j

k,k′ = ϕ
j

k ϕ
j

k′ , where ϕ
j

k is defined
in Eq. (4), and the matrix elements of the so-called retarded
and “lesser” electron GFs are, respectively, defined (in the
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frequency domain) as

Gr
α,k,k′(ω) = −i

∫ +∞

0
dτ eiωτ 〈{c̃α,k(τ ),c̃†α,k′ (0)}〉,

G<
α,k,k′(ω) = i

∫ +∞

−∞
dτ eiωτ 〈c̃†α,k′ (0)c̃α,k(τ )〉.

{·,·} denotes the anticommutator. On the other hand, the time-
ordered electron GF is given by the expression

Gα,k,k′ (τ − τ ′) = −i〈T c̃α,k(τ )c̃†α,k′ (τ ′)〉

= −i
〈T c̃α,k(τ )c̃†α,k′ (τ ′)e−i

∫
dτ1H (τ1)〉0

〈e−i
∫
dτ1H (τ1)〉0

, (7)

where T denotes the time-ordered product for fermions, and
〈. . . 〉0 refers to the statistical average with respect to the density
operator  of the whole system (chain+environment), whose
evolution is governed by the free Hamiltonian (H without HI

and the interaction terms entering HL and HP ). In Sec. II A 3,
we explain in detail how the current can be computed by
solving numerically a set of coupled self-consistent equations
for electron GFs.

The first contribution of Eq. (6) involves the trace of
the electron spectral function A(α)(ω) = −2 ImGr

α(ω) in the
band α. Physically, the quantity

∑
k,k′ A

(α)
k,k′(ω) corresponds

to the normalized electron DOS in the band α. The spectral
function normalization

∫
dω A

(α)
k,k′(ω) = 2πδk,k′ implies that

the effect of light-matter interactions on the steady-state current
is entirely determined by the second term in Eq. (6), which is
proportional to the trace of the “lesser” electron GF. The latter
can be used to compute the steady-state electron populations
in real space as [83]

nαj = 〈n̂α,j 〉 =
∑
k,k′

ϕ
j

k ϕ
j

k′

∫
dω

2π
ImG<

α,k,k′ (ω).

Using the spectral function normalization and inverting
the previous equation, the steady-state current Eq. (5) can be
expressed in terms of electron populations at the first and last
site:

J = Js − Jd

2
=

∑
α

e�α

2
(1 − nα1 + nαN ) =

∑
α

e�αnαN,

(8)

and can be directly computed by simulating the time evolution
of the joint density operator for the chain and the cavity field. In
Sec. II B, we explain how this can be done by using a suitable
QME. We also show in Sec. II C that the cavity mode can
be adiabatically eliminated in the dissipative regime (lossy
cavity), resulting in an effective QME involving only electronic
degrees of freedom.

3. Self-consistent equations for electrons and photons

We now explain in detail the procedure to compute the
electron GFs entering the expression of the transmission
function (6). It can be shown (see Appendix A) that retarded
and advanced electron GFs obey a Dyson equation of the form

Gβ
α(ω) = ((

G0β
α (ω)

)−1 − �β
α(ω)

)−1
, (9)

with β = r,a, while “lesser” and “greater” GFs are obtained
from the Keldysh equation

Gγ
α (ω) = Gr

α(ω)�γ (ω)Ga
α(ω), (10)

with γ = <,> for lesser and greater. The matrix elements
of the unperturbed GFs G0

α(ω) (evaluated in the absence of
light-matter coupling and interactions with the leads) are all
proportional to δk,k′ :

G0<
α,k,k′(ω) = −2iπδk,k′δ(ω − ωα,k)n0

α,k,

G0>
α,k,k′(ω) = 2iπδk,k′δ(ω − ωα,k)

(
1 − n0

α,k

)
,

G0a
α,k,k′(ω) = δk,k′

ω − ωα,k − i0+ , (11)

and G0r
α,k,k′ = (G0a

α,k,k′ )∗, where n0
α,k = 〈c̃†α,kc̃α,k〉0 is the pop-

ulation of the Bloch states (α,k) in the initial, noninteracting
ground state.

In the framework of the self-consistent Born approximation
(SCBA), the “lesser” and “greater” electron self-energies (SEs)
can be decomposed as �

≶
α (ω) = �

≶
I,α(ω) + �

≶
L,α , where

�<
I,α(ω) = ig2

∑
α′

(1 − δα,α′ )
∫

dω′

2π
G<

α′(ω + ω′)D>(ω′),

�>
I,α(ω) = ig2

∑
α′

(1 − δα,α′ )
∫

dω′

2π
G>

α′(ω + ω′)D<(ω′)

(12)

represent the electron SE corrections [represented by the dia-
gram in Fig. 2(a)] due to the light-matter coupling, stemming
from the emission/absorption of cavity excitations [poles of
D(ω)] when electrons undergo optical transitions between the
two bands. The contributions

�<
L,α = i�ασ 1, �>

L,α = −i�ασN, (13)

exact as long as the Markovian approximation for the system-
baths coupling holds true, represent the broadening of electron
states due to the coupling between the chain and the leads.
D>(ω) and D<(ω), respectively, denote the “greater” and
“lesser” photon GFs defined in the following.

Importantly, we find that the SCBA is exact in the frame-
work of the rotating-wave approximation [76], i.e., when
one neglects the counter-rotating terms ∝(c†2,j c1,j a

† + H.c.)
in Eq. (2) (H.c. is the hermitian conjugate). Indeed, by
doing so, the property1 〈aa〉0 = 〈a†a†〉0 = 0 implies that the
crossed diagram ∼g4 represented on Fig. 2(b) is absent from
the contribution ∝〈T H 4

I c̃α,k(τ )c̃†α,k(τ ′)〉0 in the perturbative
expansion (7). One can generalize this result to all orders
regarding diagrams where different photon lines cross each
other. Moreover, it is easy to check that vertex corrections,
which are neglected in the SCBA, precisely provide this type
of diagram. Note that the presence of counter-rotating terms in
Eq. (2) is known to lead to squeezing effects associated with
the so-called ultrastrong coupling regime [84]. In this case,

1This property holds true as long as the photonic part of the
noninteracting ground state is not a squeezed state.
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(d)

(a) (c)(b)

FIG. 2. (a) Electron SE diagram ∼g2 corresponding to the SCBA.
(b) Example of vertex corrections diagram ∼g4 where different
photon lines cross each other, that are not taken into account in
the SCBA. (c) Bubble diagram for the photon SE ∼ g2 in the
SCBA. Electron GFs are represented as double straight lines while
photon GFs are represented as double wiggly lines. (d) Self-consistent
algorithm used to compute electron and photon GFs. We proceed by
successive iterations starting from the noninteracting electron GFs
(left box with � = 0) until convergence is reached. γ = <,> stands
for “lesser” and “greater” GFs, respectively.

an additional contribution proportional to the squared cavity
vector potential generally has to be included in the Hamiltonian
[85–96].

The retarded and advanced electron SEs can then be
efficiently calculated using the real-time equality [83]
�r

α(t) = θ (t) (�>
α (t) − �<

α (t)), where θ is the Heaviside
function. Introducing the broadening function χ

α
(ω) =

i(�>
α (ω) − �<

α (ω)), the previous equality can be written in
the frequency domain as

�r
α(ω) = 1

2

( − iχ
α
(ω) + H[χ

α
](ω)

)
, (14)

where

H[χ
α
](ω) = 1

π
p.v.

∫
dω′ χα

(ω′)

ω − ω′

denotes the Hilbert transform, and p.v. the Cauchy principal
value. As a causal function, the real and imaginary parts of
�r

α(ω) are related to each other by Kramers-Kronig relations,
as it can be checked directly from Eq. (14). The advanced SE is
given by �a

α(ω) = (�r
α(ω))†. The function χ

α
(ω) describes the

broadening of Bloch states induced by the coupling to the leads
and to the cavity mode, while the real part of �r

α(ω) provides
a shift of the Bloch state energies ωα,k .

The retarded and “lesser” photon GFs are defined as

Dr (ω) = −i

∫ +∞

0
dt eiωt 〈[A(t),A(0)]〉,

D<(ω) = −i

∫ +∞

−∞
dt eiωt 〈A(t)A(0)〉, (15)

with similar definitions for Da(ω) and D>(ω). As for electrons,
one can show (see Appendix A) that Dr and Da satisfy the
Dyson equation

Dβ(ω) = ((D0β(ω))−1 − �β(ω))−1, (16)

with β = r,a, while D< and D> are obtained from the Keldysh
equation

Dγ (ω) = Dr (ω)�γ (ω)Da(ω), (17)

with γ = <,>. The expressions of the noninteracting (in the
cavity vacuum state) photon GFs D0(ω) are given by

D0<(ω) = −2iπδ(ω + ωc),

D0>(ω) = −2iπδ(ω − ωc),

D0a(ω) = 2ωc

(ω − i0+)2 − ω2
c

, (18)

and D0r = (D0a)∗.
In the SCBA, the “lesser” and “greater” photon SEs can

again be decomposed as �≶(ω) = �
≶
I (ω) + �

≶
P (ω), where

the light-matter contribution

�<
I (ω) = −ig2

∑
α,α′

(1 − δα,α′ )Tr
∫

dω′

2π
G<

α (ω + ω′)G>
α′ (ω′),

�>
I (ω) = −ig2

∑
α,α′

(1 − δα,α′ )Tr
∫

dω′

2π
G>

α (ω + ω′)G<
α′ (ω′)

(19)

can be identified with the polarization function associated with
the transition dipole moments, which provides a dressing of the
bare cavity photon GF D0. The polarization is represented by
the bubble diagram shown on Fig. 2(c). On the other hand,
the coupling between the cavity mode and the photon bath is
described by the “exact” SE contribution

�<
P (ω) = −iκθ (−ω), �>

P (ω) = −iκθ (ω). (20)

Here, we have assumed a vanishing mean population of
extra-cavity photons, namely, 〈a†

pap〉 ≈ 0. Similarly to elec-
trons, the retarded and advanced photon SEs can be computed
from the equation �r (t) = θ (t)[�>(t) − �<(t)], by introduc-
ing a photonic broadening function as in Eq. (14). The retarded
photon GF can be used to define the normalized cavity photon
DOS as

Ac(ω) = −2 ImDr (ω), (21)

which can be directly accessed experimentally by measuring
the cavity excitation spectrum. Note that the photon GF
D<(ω) is related to the mean cavity photon number in the
steady state (up to small squeezing terms) as n̄ ≡ 〈a†a〉 =
− 1

2 [
∫

dω
2π

ImD<(ω) + 1].
Above, we have shown that electron/photon SEs and GFs

are related to each other by a closed set of integrodifferential
equations. The numerical procedure to solve these equations
self-consistently is sketched on Fig. 2(d): one substitutes the
fully interacting electron GFs in Eq. (19) with the noninteract-
ing ones in Eq. (11), to compute the first-order “lesser” and
“greater” photon SEs given by Eqs. (19) and (20). From the
latter, one deduces the retarded and advanced photon SEs and
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then computes the first-order photon GFs using Eqs. (16), (17),
and (18). These photon GFs combined with the noninteracting
electron GFs [Eq. (11)] are then used to compute the first-order
electron SEs from Eqs. (12), (13), and (14), which in turn can
be substituted in the Dyson and Keldysh equations (9) and
(10) to obtain the first-order electron GFs. The whole cycle is
repeated until convergence.

B. Quantum master-equation formalism

In this section, we introduce the full QME relevant to
investigate the system (Sec. II B 1), and show how it can be
used to compute the steady-state current in Sec. II B 2.

1. Full quantum master equation

The time evolution of the joint density operator ρ for the
1D chain and the cavity mode is given by the QME:

∂τρ = −i[HS,ρ] + L1ρ + LNρ + LP ρ. (22)

Here, the commutator −i[HS,ρ] describes the coherent dy-
namics due to the Hamiltonian HS = He + Ht + HI + Hc

introduced in Sec. I B. In the previous section, we have seen
that while counter-rotating terms are formally included in
the coupling Hamiltonian HI , they do not play any role
in the absence of vertex corrections. Here, we directly use
the rotating-wave approximation and consider the coupling
Hamiltonian

HI = g

N∑
j=1

(c†2,j c1,j a + a†c†1,j c2,j ), (23)

instead of Eq. (2). The additional terms in the right-hand side
of Eq. (22) are due to the coupling of the chain to the external
degrees of freedom. The injection of electrons at the first site
is described by the term [97]

L1ρ =
∑

α

�α

2
D[c†α,1]ρ.

Similarly, the extraction of electrons at the last site is given
by

LNρ =
∑

α

�α

2
D[cα,N ]ρ,

while the action of D[A] on ρ is defined by the Lindblad
superoperator [98,99]

D[A]ρ = −{A†A,ρ} + 2AρA†.

Assuming the extra-cavity photon bath close to its vacuum
state, the cavity photon decay is described by the term

LP ρ = κ

2
D[a]ρ.

2. Steady-state current

Since we are interested in the steady-state current flowing
through the chain, we now explain how the latter can be
computed from the QME (22). The time evolution of the
expectation value of a generic observable A is given by the
equation

∂τ 〈A〉 = Tr(A∂τρ), (24)

where the trace Tr denotes the sum over the diagonal elements
in matrix representation. Using Eq. (22), one can show that the
expectation value of the total charge operator QS = e

∑
α,j n̂αj

evolves according to

∂τ 〈QS〉 = Js + Jd, (25)

where the currents flowing through the source and the drain
(leads) are, respectively, expressed as

Js =
∑

α

e�α〈1 − n̂α1〉 =
∑

α

e�α

2
Tr(n̂α1D[c†α,1]ρ),

Jd = −
∑

α

e�α〈n̂αN 〉 =
∑

α

e�α

2
Tr(n̂αND[cα,N ]ρ). (26)

The last equalities in the right-hand side of both lines can
be derived by using the cyclic properties of the trace and
fermionic commutation relations. In the steady state, since
∂τρ = 0, we have ∂τ 〈QS〉 = 0 and from Eq. (25), Js = −Jd .
It is straightforward to check that the steady-state current
calculated from Eq. (26) corresponds to Eq. (8) of Sec. II A.
We numerically solve for the steady state, either by computing
the time evolution of Eq. (22) using the Runge-Kutta method
(fourth order) or by looking for the null eigenvector of the
Liouvillian L (with ∂τρ = Lρ) written in a matrix form [100].
Details on how to implement fermionic operators in matrix
representation can be found in [101].

C. Effective quantum master equation: Pure electron dynamics

In this section, we consider the dissipative regime obtained
when the photon decay rate κ is larger than any other energy
scale except ω21. We show that the fast cavity field evolution
can be adiabatically eliminated in this regime, resulting in an
effective QME involving only electronic degrees of freedom.

It is convenient to introduce the density operator ρ̃ = UρU †

in the rotating frame defined by the unitary operator

U (τ ) = exp[i(He + ω21a
†a)τ ].

The time evolution of the operator ρ̃ is then derived as

∂τ ρ̃ = −i[H̃ ,ρ̃] + L1ρ̃ + LN ρ̃ + LP ρ̃, (27)

with the Hamiltonian

H̃ = Ht + H̃c + HI .

The (rescaled) cavity Hamiltonian H̃c = −�a†a contains
the detuning � = ω21 − ωc between the transition and the
cavity mode frequencies ω21 and ωc. Despite the fact that we
will only discuss results obtained in the resonant case � = 0,
we perform the adiabatic elimination in the general situation for
the sake of completeness. The adiabatic elimination procedure
using projectors [102,103] is detailed in Appendix B and
outlined in the following. We first recast the right-hand side
of Eq. (27) as

∂τ ρ̃ = Leρ̃ + L̃cρ̃ + LI ρ̃,

in terms of the purely electronic part Leρ̃ = −i[Ht,ρ̃] +
L1ρ̃ + LN ρ̃, the photonic part L̃cρ̃ = Lcρ̃ + κaρ̃a†, as well as
the interaction part LI ρ̃ = −i[HI ,ρ̃]. The photonic part L̃cρ̃
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contains the contribution

Lcρ̃ =
(
i� − κ

2

)
a†aρ̃ +

(
−i� − κ

2

)
ρ̃a†a,

which generally gives rise to damped oscillations for the
relaxation of the cavity field. When the cavity decay rate κ

is much larger than the rates governing the electron dynamics
(i.e., tα and �α), one can separate the fast cavity dynamics
from the electronic one occurring on a comparably long
timescale. In the presence of light-matter interactions, such a
separation is still possible whenever the light-matter coupling
strength g is sufficiently weak. In Appendix B, we present a
detailed derivation of the equation of motion for the electronic
dynamics only, in which the cavity field has been adiabatically
eliminated (retardation effects scaling with tα/κ and/or �α/κ

are neglected), and where the light-matter interaction is treated
to second order. Moreover, we restrict our discussion to the case
where the cavity field remains close to its vacuum state, which
is consistent with the large damping rate κ . In this limit, the
time evolution of ρ̂, the full density operator projected onto
the cavity vacuum, is governed by the effective QME:

∂τ ρ̂ = Leρ̂ − i

[
g2�

�2 + (κ/2)2
S+S−,ρ̂

]

− g2κ/2

�2 + (κ/2)2
(S+S−ρ̂ + ρ̂S+S− − 2S−ρ̂S+). (28)

Here, S+ = ∑
j c

†
2,j c1,j [S− = (S+)†] denotes a collective

raising (lowering) operator for the electrons from the lower
(upper) to the upper (lower) band. In the resonant case (ω21 =
ωc), the time evolution of ρ̂ can be simplified:

∂τ ρ̂ = Leρ̂ + L�c
ρ̂, (29)

where light-induced interactions between electrons are entirely
cast into the dissipator:

L�c
ρ̂ = −2�c(S+S−ρ̂ + ρ̂S+S− − 2S−ρ̂S+), (30)

with �c = g2/κ . This shows that in the dissipative regime
where κ is the largest parameter, light-matter interactions
are governed by the parameter �c. We remark that such
a term also appears in the case of pseudospins (e.g., in
a two-level atomic description) coupled to a cavity mode
with strong dissipation [102,104,105]. Introducing the local
raising operators s+

j = c
†
2,j c1,j and the corresponding lowering

operators s−
j = c

†
1,j c2,j , the dissipator (30) can be rewritten as

L�c
ρ̂ = − 2�c

N∑
j=1

(s+
j s−

j ρ̂ + ρ̂s+
j s−

j − 2s−
j ρ̂s+

j )

− 2�c

N∑
i,j

i �= j

(s+
j s−

i ρ̂ + ρ̂s+
j s−

i − 2s−
i ρ̂s+

j ). (31)

Here, both local and nonlocal coupling terms can be identified,
and correspond to the first and second terms in the right-hand
side of Eq. (31), respectively. In spin-cavity setups, nonlocal
terms can induce spin-spin correlations and ultimately lead
to synchronization and superradiance [102,106,107]. In our
situation, they give rise to nonlocal exchange of interband

excitations, which are partly taken into account in the SCBA.
Regarding charge transport, the dissipator (30) induces a global
(collective) population transfer of electrons from the upper to
the lower band. Indeed, denoting the total electron population
in the band α by Nα = ∑

j n̂αj , its time evolution due to
light-matter interactions in the dissipative regime is

∂τ 〈N1〉 = Tr(N1L�c
ρ̂) = 4�c〈S+S−〉,

∂τ 〈N2〉 = Tr(N2L�c
ρ̂) = −4�c〈S+S−〉,

which provides ∂τ 〈N1〉 = −∂τ 〈N2〉, and demonstrates the
population exchange between the two bands. Moreover, the
rate associated with this population transfer can be related
to the mean intracavity photon number, approximated as
〈a†a〉 � (4�c/κ)〈S+S−〉 in the adiabatic limit [102,106]. The
change of the first band population thus takes the simple form
∂τ 〈N1〉 = κ〈a†a〉: The population transfer from the upper to
the lower band is accompanied by the creation of photons
which are then dissipated with the rate κ . In Sec. III D 1, we
derive an analytical estimate for the current enhancement in
the dissipative regime by calculating the time evolution of
expectation values 〈c†α,icα,j 〉 with suitable approximations.

III. RESULTS

In this section, we present both analytical and numerical
results using the QME and NGF methods. In Sec. III A, we
first discuss the situation without light-matter coupling, by
computing the steady-state current, the electron density profile
in both bands, as well as the time evolution of the electron
spectral function. In Sec. III B, we explain how light-matter
interactions lead to a broadening of the electron DOS, and show
that the latter scales with the cooperativity. We further explain
how polariton modes arise from the dressing of the photon GF
by the electron-hole polarization. In Sec. III C, we compare
numerical results for the steady-state current obtained with
the different methods, and distinguish between two regimes
characterized by the ratio between the cavity photon decay
rate κ and the upper electronic bandwidth W2. In Sec. III D,
we investigate the dissipative regime κ/W2 � 1 using both
analytical and numerical calculations, and demonstrate the
existence of a collective coupling to light when g exceeds
the energy spacing between adjacent Bloch states in the upper
band. First, an analytical expression of the steady-state current
valid for small coupling strength is given in Sec. III D 1,
while numerical calculations using both NGFs and QMEs are
presented in Sec. III D 2. In Sec. III D 3, we show that nonlocal
electronic correlations occur for large coupling strengths in
this regime. The “coherent” regime κ/W2 � 1 is investigated
in Sec. III E. In particular, numerical results obtained with the
NGFs method for the transmission spectrum and the cavity
photon DOS are presented in Sec. III E 1. In Sec. III E 2, we
compute the time evolution of the electron spectral function in
the lower orbital states, and show that a coherent dynamics
involving delocalized states takes place when g is smaller
than the energy spacing between adjacent Bloch states in the
upper band. Concluding remarks concerning the cavity photon
population and the chain length are given in Sec. III F.
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A. Absence of light-matter coupling (g = 0)

Here, we discuss the system properties in the absence of
light-matter coupling by computing the steady-state current,
the electron density spatial profile, as well as the time evolution
of the electron spectral function.

In the absence of light-matter coupling (g = 0), the two
bands are independent and the eigenstates of the chain consist
of two identical sets of the N Bloch states defined in Eq. (4).
The only finite SE contribution [Eq. (13)] is due to the coupling
to the leads, and is proportional to the decay rate �α of the
Bloch states in the band α. The transport properties of the
chain are only driven by the ratio between �α and tα , and the
steady-state current does not depend on the chain length N .
Using the spectral function sum rule

∫
dω Aα,k,k′ (ω) = 2πδk,k′

in Eq. (5), the steady-state current J 0
α flowing through the band

α can be written as

J 0
α = e�α

2

(
1 +

∫
dω

2π
Tr[(σN − σ 1) ◦ ImG<

α (ω)]

)
. (32)

One can then use Eqs. (9), (10), (13), and (14) with, e.g.,
N = 2, and obtain the current as

J 0
α = e�α/2

1 +
(

�α

2tα

)2 , (33)

in agreement with the results of [97]. The electron populations
at the edges of the chain follow from Eq. (8):

nαN = 1 − nα1 = 1

2 + �2
α

2t2
α

.

Two different regimes of transport can be distinguished.
When tα � �α , transport is inhibited due to the small lifetime
of Bloch states compared to the typical hopping time. Bloch
states are thus not well resolved and the steady-state current is
given by J 0

α ∼ 2et2
α/�α ≈ 0. In this situation, the first and last

sites are, respectively, fully occupied and completely empty,
i.e., nα1 ≈ 1 and nαN ≈ 0. The opposite regime tα � �α

features single-electron transport through well-resolved Bloch
states. In this regime, the current J 0

α ≈ e�α/2 is only limited
by the rate �α , and the first and last sites are half-filled, namely,
nα1 = nαN = 0.5.

As already mentioned, we only consider the situation
where �1 = �2 ≡ � and t2 � � � t1. The different transport
regimes can be identified in the transmission spectrum T (ω),
which is represented on Fig. 3 for g = 0. In the vicinity of
the upper orbital ω ≈ ω2, the relation t2 � � leads to N well-
resolved peaks (Bloch states) of width ∼�/N , distributed over
the bandwidth W2 [Fig. 3(a)]. Moreover, all sites are half-filled
[Fig. 3(b)], and the partial current obtained by integrating
T (ω) in the vicinity of ω2 is J 0

2 ≈ e�/2. In the vicinity of
the lower orbital ω ≈ ω1, however, the dynamics does not
involve well-resolved Bloch states since t1 � �. This results
in a number of peaks smaller than N within the bandwidth
W1 [Fig. 3(c)], a half-filling of all sites except for the first
and last ones [Fig. 3(d)], and therefore a very small current
J 0

1 /e� ≈ 2(t1/�)2 � 1.
It is interesting to analyze the propagation of excitations in

the steady state by considering the electron spectral function
A

(α)
j0,j

(τ ) defined as the Fourier transform (over both space
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FIG. 3. (a), (c) (Log-scale) Transmission spectrum T (ω) versus
frequency for g = 0, in the vicinity of (a) the upper orbital energy
ω2 = 0.5 (blue line), and (c) the lower orbital energy ω1 = −0.5 (red
line). (b), (d) Spatial profiles of the electron density nαj for g = 0, in
(b) the upper orbitals (blue squares), and (d) the lower orbitals (red
squares). (e), (f) Spectral function A

(α)
j0,j (τ ) for g = 0 as a function of

position and time, obtained after injection of a particle at site j0 = 1
and time τ = 0 in (e) the upper orbital, and (f) the lower orbital.
Time is in units of the hopping rates in the lower and upper bands,
respectively. Parameters are N = 10, t1 = 10−3, � = 10−2, and
t2 = 0.1.

and time variables) of the function A
(α)
k,k′(ω) introduced in

Sec. II A 2:

A
(α)
j0,j

(τ ) = 2Re〈{cα,j (τ ),c†α,j0
(0)}〉.

Physically, this function can be interpreted as follows:
Considering an electron injected in the steady state at site j0 and
time τ = 0 in the level α, its wave function will be decomposed
over the different sites under the time evolution governed by the
total Hamiltonian (including interactions with the leads). The
function A

(α)
j0,j

(τ ) corresponds to the overlap between this wave
function at later time τ > 0 and that of an electron injected at
time τ at an other site j , and provides information on what
the wave function of an electron (or a hole) injected at a given
site at τ = 0 looks like after a certain time τ . This function
is represented on Figs. 3(e) and 3(f), considering excitations
propagating in the upper and the lower orbitals, respectively.
In the former case, the dynamics of a particle injected in the
upper level of site j0 = 1 at τ = 0 involves a decomposition
over the different well-resolved Bloch states of the upper band,
resulting in the propagation of this particle throughout the chain
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[Fig. 3(e)]. On the other hand, since t1 � �, propagation in
the lower band is hampered and most of the spectral weight
stays localized at the injection site before being damped after a
typical time ∼1/� [Fig. 3(f)]. In the following, we investigate
how this physical picture is modified when the coupling to the
cavity mode is turned on.

B. Spectral broadening and polaritons

In this section, we compute the first-order GFs and SEs, and
explain how the electron DOS is broadened by the presence
of light-matter interactions. In particular, we show that this
broadening scales with the cooperativity in the dissipative
regime, and explain how the dressing of the photon GF by the
electron-hole polarization results in the appearance of polariton
states.

When g �= 0, electrons can undergo interband transitions
concurrently with the absorption/emission of cavity photons
with energy ω ∈ [ω21 − 2t2,ω21 + 2t2] (for t1 � t2). This
leads to the hybridization of the two bands, and provides
a modification of the electron DOS and the transmission
spectrum. In Sec. II A, we have seen that the coupling between
the two electronic bands and the cavity field is a self-consistent
problem. The electron dynamics is affected by the electro-
magnetic field through emission/absorption of cavity photons,
and the cavity field is in turn dressed by its interactions with
the electron-hole polarization. The simplest approximation
consists in neglecting the self-consistency2 and calculating the
first-order (∝g2) electron SE induced by the coupling to the
leaky cavity mode [or equivalently the broadening function
entering Eq. (14)]. This self-energy is obtained by substituting
the fully interacting electron and photon GFs in Eq. (12) with
the noninteracting electron GFs in Eq. (11), and the photon
GFs calculated without the interband contribution in Eq. (19):

Dr (ω) = 2ωc

ω2 − ω2
c + iκωcsgn(ω)

, (34)

where sgn denotes the sign function. We point out that
considering only the coupling of cavity photons to the external
electromagnetic environment when calculating the photon SE
is expected to be valid in the dissipative regime, where κ is the
largest energy scale. At resonance ωc = ω21, the first-order
broadening function defined in Sec. II A 3 is calculated as

χα,k,k′ (ω) =
∑
α′

4κg2ω2
21(1 − δα,α′ )δk,k′[

(ω − ωα′,k)2 − ω2
21

]2 + (κω21)2

× ((
1 − n0

α′k
)
θ (ω − ωα′k) + n0

α′kθ (ωα′,k − ω)
)
,

(35)

where n0
αk is the population of the Bloch state (α,k) in the initial

ground state, without any interactions. This broadening func-
tion is diagonal with respect to k. Considering a Bloch state k

2We find that this approximation gives a correct description only for
very small values of the ratio �c/�. If it is not the case, neglecting
the self-consistency leads to spurious limiting behaviors as a result
of the breaking of conservation laws such as the continuity equation
for the current.

in the lower band α = 1, its light-induced broadening depends
on the filling of the state k in the upper band α′ = 2. Setting
n0

2k = 1, the associated electron can undergo a transition from
the upper to the lower band by emitting a photon with energy
ω2,k − ω1,k . For ω = ω1,k , one has ω2,k − ω − ω21 ∼ W2, and
if, in addition, κ/W2 � 1 (dissipative regime), one finds

χ1,k,k(ω = ω1,k) ≈ 4�c, (36)

where �c = g2/κ has been introduced in Sec. II C. In the
absence of light-matter coupling (g = 0), the SE broaden-
ing χ0

1,k,k(ω1,k) is only due to the coupling to the leads,
namely, χ0

1,k,k(ω1,k) ∝ � [see Eq. (13)]. Consequently, the
light-induced relative broadening of the electron DOS in
the dissipative regime is driven by the ratio �c/�, which
plays the role of a cooperativity parameter. Moreover, the
validity domain of the NGFs method is limited to the pertur-
bative, “quasiparticle” regime with �c/� � 1. Interestingly,
the broadening of the Bloch states due to the coupling to the
leads, denoted as �, here plays the role of the linewidth of the
quantum emitters in typical cavity QED setups.

In the regime t2 � t1, when the coupling strengthg becomes
eventually larger than the typical energy spacing between two
adjacent Bloch states in the upper band, a collective coupling
of the different Bloch states to the cavity mode arises, and the
electron-hole polarization given by Eq. (19) can no longer be
neglected. In order to see how this collective coupling is related
to the polarization dressing of the photon GF, one can compute
the first-order retarded photon GF in the absence of cavity
losses. We thus proceed in an opposite way to the one used
previously, by neglecting the contribution due to the coupling
to extra-cavity photons [Eq. (20)], and replacing the fully
interacting electron GFs in Eq. (19) with the noninteracting
ones in Eq. (11). The photon SE is derived as

�r (ω) =
∑

k

2g2
(
n0

1k − n0
2k

)
(ω2,k − ω1)

(ω + i0+)2 − (ω2,k − ω1)2
. (37)

Furthermore, if we also assume t2 � ω21, namely, ne-
glecting the upper bandwidth with respect to the transition
frequency, Eq. (37) takes the form of the usual interband
polarization [108–110] (which enters the definition of the
dielectric permittivity [111]) involving a collective response
of the electron states:

�r (ω) = 2�2
n0

ω21

(ω + i0+)2 − ω2
21

. (38)

At this level of approximation, the collective vacuum Rabi
frequency is defined as �n0 = g

√∑
k n0

1k − n0
2k , and depends

on the initial population imbalance between the two bands.
Replacing Eq. (38) in the Dyson equation (16), the first-order
retarded photon GF can be written as

D̃r (ω) = 2ω21
(
ω2 − ω2

21

)
[(ω + i0+)2 − ω2+][(ω + i0+)2 − ω2−]

(39)

at resonance (ωc = ω21). This function exhibits poles at the
polariton frequenciesω± =

√
ω2

21 ± 2ω21�n0 . Note that taking
the cavity decay rate κ into account would turn the latter
into quasimodes with imaginary frequency. The effect of this
collective dressing of the photon GF on the electron spectral
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FIG. 4. Relative current enhancement �J (see text) versus coupling strength g and photon decay rate κ (log-scale), obtained from (a) the
effective QME (29), (b) the full QME (22), and (c) the NGFs method. The diagonal dashed line g2/κ = cst is a guide to the eye, and the
horizontal solid line corresponds to κ = W2. (d), (e) Relative current enhancement �J versus cooperativity �c/�, for two different values of κ

represented by the horizontal dashed lines in the upper panels. (d) κ = 0.07 (κ/W2 ≈ 5). (e) κ = 8 × 10−4 (κ/W2 ≈ 0.05). The results are shown
for the effective QME (blue triangles), the full QME (black circles), and the NGFs method (magenta squares). The vertical lines correspond to
�c/� = 1. Parameters are N = 3, t1 = 10−4, � = 10−3, t2 = 10−2. For the full QME method, the maximum number of photons in the Hilbert
space is set to 3.

broadening can then be studied by computing the electron
SE [Eq. (12)] together with Eqs. (39) and (11). While the
result depends on the initial populations n0

αk at this level of
approximation, it is not the case when the self-consistency is
taken into account, namely, when using the fully interacting
electron GFs in the photon SE [Eq. (19)]. This will be studied
numerically in Sec. III D 2.

C. Comparison between the different methods

In this section, we benchmark the different methods used to
compute the steady-state current, and show that the light-matter
coupling is responsible for a current enhancement driven by
the cooperativity parameter in the dissipative regime. We also
compute numerically the broadening function introduced in
Sec. II A using self-consistent NGFs.

Introducing J 0 = J 0
1 + J 0

2 , the overall steady-state current
in the absence of light-matter coupling (g = 0) [see Eq. (33)],
we now study numerically the relative current enhancement
�J = (J/J 0) − 1 as a function of the coupling parameters g

and κ . This is shown on Fig. 4, for an example in the regime
t2 � � � t1 with N = 3, t1 = 10−4, � = 10−3, and t2 = 10−2

(W2 ≈ 0.03).
Figures 4(a)–4(c) correspond, respectively, to the results

obtained from the effective QME (29), the full QME (22), and
the NGF method. We observe an enhancement of the steady-
state current with respect to the noninteracting case g = 0,

as the coupling strength is increased for a given decay rate
κ . Furthermore, this enhancement is substantially larger in the
high-finesse cavity regime with small κ . Note that the full QME
result is exact (assuming the Markovian approximation for the
system-lead coupling) as long as counter-rotating terms can
be neglected in the coupling Hamiltonian (2), which is here
assumed in all cases.

As already discussed in Sec. II C, the effective QME result
only depends on the parameter �c = g2/κ , which explains
that the lines with constant current enhancement on Fig. 4(a)
scale linearly with log g and log κ over the whole range of
parameters. Nevertheless, we point out that this result is only
valid in the dissipative regime where κ/W2 � 1. This is shown
on Figs. 4(b) and 4(c), where the full QME and NGF results
feature the same scaling law as the effective QME result
for κ/W2 � 1. However, a different scaling law is observed
for κ/W2 � 1, indicating the emergence of a new regime
with different physical properties than the ones discussed in
Secs. II C and III B. We will show later on that this regime can
be characterized by a coherent dynamics stemming from the
hybridization of only one Bloch state in the upper band with
the states of the lower band.

The relative current enhancement �J is represented on
Figs. 4(d) and 4(e) as a function of the cooperativity �c/�,
for two different values of κ (horizontal dashed lines in the
upper panels). The results obtained with the effective QME, the
full QME, and the NGF method are represented as light-blue
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FIG. 5. Relative broadening of the electron DOS log(χ/χ0) (see
text) versus coupling strength g and photon decay rate κ (log-
scale), obtained from the NGFs method (self-consistent calculation).
The dashed line represents the equation �c/� = 1. Parameters are
identical to those of Fig. 4.

triangles, black circles, and magenta squares, respectively. In
the dissipative regime [Fig. 4(d)], all methods coincide for
�c/� � 1 (perturbative regime). As �c/� becomes larger
than 1, discrepancies between the NGFs and the full QME
results increase, while the effective and full QME results are
still in a surprisingly good agreement, given that the former
is expected to be valid only for small coupling strengths.
In the “coherent” regime with κ/W2 � 1 [Fig. 4(e)], while
the effective QME fails to reproduce the full QME result
even in the perturbative regime, NGFs provide a surprisingly
good approximation of the current even far away from the
perturbative regime �c/� � 1. However, while the current
enhancement obtained from the two master-equation methods
always increases with g, this qualitative trend is not reproduced
by the NGFs method when �c/� � 100.

Furthermore, it is interesting to compare the current en-
hancement represented on Fig. 4(c) with the cavity-induced
broadening of the electron DOS [see Secs. II A 3 and III B]
computed self-consistently with the NGFs method. We denote
by χ ≡ χ1,k0,k0 (ω1,k0 ) the broadening function of the resonant
Bloch states with quasimomentum k0 = (N + 1)/2 (center of
the bands), evaluated at the energy ω = ω1,k0 . This quantity
represents the linewidth of the electron DOS (with a Lorentzian
line shape) in the lower band for g �= 0. For g = 0, the
broadening of the resonant Bloch states is denoted as χ0 ≡
χ0

1,k0,k0
(ω1,k0 ) and is only determined by the retarded SE due

to the coupling to the leads (see Sec. III B). The relative
broadening log(χ/χ0) is shown on Fig. 5, as a function of g

and κ (log-scale). As for the current enhancement, we observe
that the lines with constant relative broadening scale with
the cooperativity �c/� for κ/W2 � 1, consistently with the
results (36) of the previous section. However, the coherent
regimeκ/W2 � 1 features a different scaling law, qualitatively
similar to that of the current enhancement.

D. Dissipative regime κ/W2 � 1

In order to further investigate the physics in the dissipative
regime κ/W2 � 1, we now present numerical calculations
using both NGFs in the frequency domain and QME methods
in the time domain. In Sec. III D 1, we show that an analytical
expression of the current valid for small coupling strengths can
be derived starting from the effective QME, confirming the
scaling of the current enhancement with the cooperativity. In
Sec. III D 2, we present numerical results for the transmission
spectrum and the cavity photon DOS, evidencing the presence
of a collective coupling to light when the coupling strength is
larger than the typical separation between two adjacent Bloch
states. For large coupling strengths, we show that the current
enhancement saturates to about twice its value for g = 0, and
that the system features nonlocal electron-electron correlations
when one goes beyond the perturbative regime �c/� > 1
[Sec. III D 3].

1. Analytical approach with rate equations

In Sec. II A 2, we have seen that the steady-state current
is directly related to the populations of the first/last site in
both orbitals. Hence, the former can be obtained by computing
the expectation values 〈c†α,icα,j 〉, with i = j = 1 or i = j =
N . In the absence of light-matter interactions (g = 0), the
expectation values 〈c†α,icα,j 〉 evolve as

∂τ 〈c†α,icα,j 〉 = itα

N−1∑
�=1

〈c†α,i(δ�+1,j cα,� + δ�,j cα,�+1)〉

− itα

N−1∑
�=1

〈(δ�,ic
†
α,�+1 + δ�+1,ic

†
α,�)cα,j 〉

− �α

2
(δi1 + δj1 + δiN + δjN )〈c†α,icα,j 〉

+ �αδi1δj1, (40)

where we have used ∂τ 〈c†α,icα,j 〉 = Tr(c†α,icα,jLeρ̂) according
to Eq. (24). Equation (40) forms a closed set of linear differen-
tial equations. When solving these equations in the case of un-
coupled bands, and plugging the solution in Eq. (8), one recov-
ers the overall steady-state current which is the sum of the in-
dividual currents [see Eq. (33)] flowing through the two bands.

We now explain how to modify Eq. (40) in the presence
of light-matter interactions in the dissipative regime. In the
resonant case � = 0, we see from Eq. (29) that

∂τ 〈c†α,icα,j 〉 = Tr(c†α,icα,jLeρ̂) + Tr(c†α,icα,jL�c
ρ̂), (41)

where L�c
ρ̂ originates from the light-matter coupling and is

given by Eq. (30). The second term in the right-hand side of
Eq. (41) can be written as

Tr(c†1,ic1,jL�c
ρ̂) = 2�c〈c†2,ic1,j S

− + S+c
†
1,ic2,j 〉,

Tr(c†2,ic2,jL�c
ρ̂) = −2�c〈c†2,ic1,j S

− + S+c
†
1,ic2,j 〉 (42)

for α = 1 and 2, respectively. The differential equation (41)
thus contains four-operator products, in contrast to the nonin-
teracting case with only quadratic operators [see Eq. (40)].
Full computation of the expectation values thus involves
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higher-order correlation functions, and the NGFs method can
be efficiently used in this case (see Sec. II A 3). In order to
get a first estimate of the current enhancement, we discard
nonlocal contributions arising from the second term in the
right-hand side of Eq. (31). We have verified numerically that
the effective QME with and without nonlocal coupling terms
in the dissipator gives comparable results for small g, as we
will discuss in more detail in Sec. III D 3. If, in addition, we
factorize the expectation value of four-operator products as

〈n̂1i n̂2i〉 � 〈n̂1i〉〈n̂2i〉, (43)

Eq. (42) provides

Tr(n̂1iL�c
ρ̂) � 4�c〈n̂2i〉(1 − 〈n̂1i〉),

Tr(n̂2iL�c
ρ̂) � −4�c〈n̂2i〉(1 − 〈n̂1i〉). (44)

We now solve the differential equation (41), neglecting the
second term of the right-hand side when i �= j , and using
Eq. (44) for i = j . At this level of approximation, the cavity
mode induces a local population transfer from the upper to the
lower orbitals at each site. One can check numerically that the
steady-state current is nearly independent of the chain length
N as long as t1 � �. We therefore restrict the calculation to the
case N = 2. For the sake of simplicity, we limit the derivation
to the case t1 = 0 and �1 = �2 ≡ �. The time evolution of
the mean population n11 in the lower band at the first site is
obtained as

∂τ 〈n̂11〉 ≡ ∂τn11 = −�n11 + � + 4�cn21(1 − n11).

In the steady state, ∂τn11 = 0, which provides the solu-
tion n11 = 1. Furthermore, as a solution of the equations
∂τ 〈c†11c12〉 = −�〈c†11c12〉 and ∂τ 〈c†12c11〉 = −�〈c†12c11〉, the
lower orbital coherence 〈c†12c11〉 = 〈c†11c12〉 vanishes in the
steady state. The remaining set of equations can be rewritten
as

∂τn21 = −�n21 − 2t2C + �,

∂τn22 = −�n22 + 2t2C − 4�cn22(1 − n12),

∂τ n12 = −�n12 + 4�cn22(1 − n12),

∂τC = −�C + t2(n21 − n22), (45)

where we have introduced the imaginary part of the upper
orbital coherence C = Im〈c†21c22〉. The latter is related to the
local current in the upper band between the first and the second
site. Setting the left-hand side of Eq. (45) to zero, one can
compute the overall steady-state current J = e�(n21 + n22) as

J = e�t2
2 /2

t2
2 (1 + φ)/2 + �2/4

, (46)

with

φ = 4�cn22 + �

4�c(n22 + 1) + �
.

Since the population n22 > 0, the function φ is positive and
has an upper bound 1. This value is reached, for instance, in
the absence of light-matter coupling �c = 0. In this case, one
can verify that the current coincides with Eq. (33). Further
inspection shows that whenever �c �= 0, φ < 1, resulting in
an enhancement of the steady-state current. Nevertheless, we

expect the result (46) to be a reasonable approximation only
for small �c (small coupling strength), as pointed out before.
It is therefore convenient to expand Eq. (46) to the lowest non-
vanishing order in �c, which provides

J = J 0(1 + �J ) + O
(
�2

c

)
,

where J 0 is the overall steady-state current for g = 0, and the
relative current enhancement �J introduced in Sec. III C is
given by

�J = 2
t2
2

t2
2 + �2/4

(
�c

�

)
. (47)

In this regime, the current enhancement is induced by a
population transfer from the upper to the lower band. Indeed,
the upper band population at the last site

n22 = n0
22

[
1 − 2

t2
2 + �2/2

t2
2 + �2/4

(
�c

�

)]
+ O

(
�2

c

)
is a decreasing function of �c. Here, n0

22 = t2
2 /2

t2
2 +�2/4

denotes
the population in the upper band at the last site for g = 0. As
�c increases, the population in the lower band at the last site
increases as

n12 = 2
t2
2

t2
2 + �2/4

�c

�
,

and vanishes for g = 0 (as long as t1 = 0). Importantly, the
overall population at the last site increases with �c, which ex-
plains the observed current enhancement [58]. In the previous
derivation, we only considered the local terms in the dissipator
(31), which is valid for small coupling strengths, and further
discarded the contributions of these terms to the time evolution
of the intraband coherence ∂C/∂t [i �= j in Eq. (41)]. Taking
them explicitly into account, the last equation of motion in
Eq. (45) is modified as

∂τC = −�C + t2(n21 − n22) − 2�c(2 − n11 − n12)C, (48)

where we have used a factorization procedure similar to
Eq. (43) for the four-operator products entering the last term
in the right-hand side of Eq. (48). This term describes an
additional damping of the intraband coherence due to the light-
matter coupling. Since the intraband coherence is proportional
to the local current, we therefore expect this correction to lead
to a smaller current enhancement. Moreover, we have checked
numerically that it can even lead to a reduction of the overall
current when t2 � �. In this paper, we only focus on the regime
t2 � �, where one can show that the effect of the additional
term in Eq. (48) becomes negligible for the relative current
enhancement. In this case, Eq. (47) simply reduces to

�J = 2�c/�.

Here, we clearly confirm the relevance of the cooperativity
�c/�, as found in Secs. III B and III C. Nevertheless, we point
out that nonlocal contributions entering the dissipator (31)
have not been taken into account in this derivation. Therefore,
this analytical estimation is unable to describe any collective
effects arising from these nonlocal terms, namely, long-range
electronic correlations due to the collective coupling to the
cavity mode [106,107]. As we will see in the next section,
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FIG. 6. (a) Sketch of the energy bands in the dissipative regime
with t2 = 5 × 10−3 and κ = 0.1. (b) (Log-scale) Cavity photon DOS
Ac(ω). (c) (Log-scale) Transmission spectrum T1(ω) in the vicinity
of the lower orbital energy ω1 = −0.5. (d) (Log-scale) Transmission
spectrum T2(ω) in the vicinity of the upper orbital energy ω2 = 0.5.
The black circles correspond to g = 0, while the red, blue, and green
lines correspond to g = 2.2 × 10−3. The chain length is N = 11, and
the other parameters are t1 = 5 × 10−5 and � = 5 × 10−4.

these terms play a crucial role beyond the perturbative regime
�c/� > 1.

2. Transmission spectrum and cavity DOS

In the dissipative regime κ/W2 � 1, all Bloch states are
comprised within the cavity linewidth, which allows a col-
lective coupling to arise when the coupling strength is larger
than the typical separation between two adjacent Bloch states,
namely, g > δω = ω2,k+1 − ω2,k .3 This regime is referred
to as “collective dressing regime” [58]. Frequency domain
calculations using the NGFs method are shown on Fig. 6,
for an example with N = 11, t1 = 5 × 10−5, � = 5 × 10−4,
t2 = 5 × 10−3, κ = 0.1 (κ/W2 ≈ 20), and g = 2.2 × 10−3

(�c/� ≈ 0.1).
In this regime with large photon damping, the interband

transitions with frequencies ω2,k − ω1 between the states of the
quasiflat lower band and the upper band Bloch states [Fig. 6(a)]
are all quasiresonant to the broad bare cavity mode of width κ

[black circles on Fig. 6(b)], resulting in a collective coupling
of the Bloch states to the cavity mode when g > δω (in this
case δω � 2.5 × 10−3). The photon DOS [Eq. (21)] is shown
as a green line on Fig. 6(b) for g = 2.2 × 10−3. The central
region of width W2 ≈ 4t2 and centered at ω21 consists of N − 1

3This feature can be qualitatively understood from the spectrum
of an effective, bosonic TC Hamiltonian (obtained from the TC
model, by considering the leading-order of the Holstein-Primakoff
[116] expansion of spin operators in terms of bosons) HTC =
ωca

†a + ∑N

k=1(ω2,k − ω1)b†
kbk + g

∑N

k=1(b†
ka + bka

†), where bk,b
†
k

are bosonic operators associated with the N interband transitions.

peaks originating from the individual dressing of interband
transitions. As explained in more details in the following, the
finite photon spectral weight present in this region is crucial
to the existence of the current enhancement, as it connects the
two bands through absorption and emission of cavity photons.

Figures 6(c) and 6(d) display the transmission spectrum
given by Eq. (6) for g = 0 (black circles), g = 2.2 × 10−3

(colored lines), in the vicinity of the lower and upper orbital
energies ω1 and ω2, respectively. The key feature is that the
narrow transmission associated with the partial current J1 ∼
2et2

1 /� flowing through the lower band for g = 0 is broadened
by a quantity ∼�c, giving rise to the current enhancement
(�J ≈ 0.1). On the other hand, the transmission in the vicinity
of ω2 is only slightly reduced with respect to the case g = 0.

The cavity photon DOS calculated with the full QME
and the NGFs methods is represented on Figs. 7(a) and
7(b), in the perturbative regime (�c/� = 0.1) and at large
coupling strength (�c/� = 145), respectively. The former
case [Fig. 7(a)] corresponds to Fig. 6(b) for N = 3 instead
of N = 11, but with the same other parameters. Here, the
two methods are in good agreement, showing the validity of
the NGFs method in the perturbative regime �c/� � 1. On
the other hand, when g > δω (δω � 0.03 in this case), the
collective coupling gives rise to two polariton peaks separated
by a splitting which we define as �S > g [Fig. 7(b)].

Importantly, the result obtained with the NGFs method
features a small photon spectral weight in the central region of
width W2, and inaccurately predicts that this photon spectral
weight vanishes in the limit of large coupling strengths. This
explains why the current enhancement computed with NGFs
decreases in this region, as observed in [58]. Indeed, when no
photon weight is present in the range [ω21 − 2t2,ω21 + 2t2],
photon absorption or emission can not take place between the
two bands, resulting in a vanishing current enhancement. In
contrast, as predicted by the full QME, the photonic weight in
the central region saturates to a finite value as g is increased
while the two polariton peaks further split. This is consistent
with the observation of Sec. III C that the (exact) current
enhancement computed with the full QME always increases
with g. The relative current enhancements obtained in the case
of small and large coupling strengths correspond, respectively,
to �J ≈ 0.13 for both methods [Fig. 7(a)], and �J ≈ 0.56 for
NGFs and �J ≈ 0.7 for the full QME [Fig. 7(b)]. Note that
the asymmetry of the polariton peaks computed with NGFs
is inherited from the asymmetry of the first-order photon GF
[Eq. (34)], only valid in the perturbative regime, namely, when
the SE due to the coupling to extra-cavity photons is much
smaller than the bare cavity photon energy κ � ωc.

On Fig. 7(c), we use the NGFs method to compare the
polariton half-splitting �S with the vacuum Rabi frequency
defined as �n = g

√
N1 − N2 (see Sec. III B), where Nα =∑

j nα,j is obtained from the steady-state population imbal-
ance between the two bands for g �= 0 [110]. As already men-
tioned in [58], we observe that these two quantities coincide
in the dissipative regime, thereby connecting to the physics of
the TC model [7] where the relevant coupling strength is not
g but the collective coupling constant �n. Importantly, since
sites with both orbitals occupied (or empty) are not effectively
coupled to light, we always find �n < g

√
N , in contrast to the

TC model (see Sec. I B).
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FIG. 7. (a), (b) (Log-scale) Cavity photon DOS Ac(ω) for N = 3, computed with the full QME method using the quantum regression theorem
(thin black line) and the NGFs method (thick green line). (a) Small coupling strength g = 2.2 × 10−3 (�c/� ≈ 0.1). (b) Large coupling strength
g = 8.5 × 10−2 (�c/� ≈ 145). (c) Polariton half-splitting �S (solid line) and vacuum Rabi frequency �n (dashed line) as a function of g for
N = 11, computed with the NGFs method. Other parameters are the same as in Fig. 6, and the maximum number of photons in the calculation
using the full QME is set to 2.

As a side comment, we have already mentioned that the full
QME method predicts that the total current admits an upper
limit <e� as g → ∞. We find numerically that for t2 � � �
t1, and for the two values κ = 8 × 10−4 (coherent regime) and
κ = 0.07 (dissipative regime) (see Fig. 4), this upper bound
becomes closer to e� (twice the current for g = 0) when
counter-rotating terms are included in the coupling Hamilto-
nian (23). This shows that higher-order correlations such as the
one depicted on Fig. 2(b) are important to determine the full
current enhancement in the limit of large coupling strengths.
These effects will be further investigated in a future work.

3. Nonlocal correlations

As already mentioned in Sec. II C, an interesting point is the
existence of nonlocal electron-electron correlations for large
coupling strengths. This can be seen on Fig. 8, where we have
represented the steady-state current computed with different
approximations as a function of the cooperativity. Figure 8(a)
displays a comparison between the full QME results with
fermions (filled circles) and hard-core bosons (empty circles).
The discrepancy observed for �c/� > 1 points to the existence
of fermionic correlations that can not be reproduced with
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FIG. 8. Steady-state current J/e� as a function of the cooper-
ativity �c/� (log-scale) for N = 3. (a) Calculation using the full
QME with fermions (filled circles) and hard-core bosons (empty
circles). (b) Same quantity computed with the effective QME, using
the full dissipator (31) (filled triangles) or only the local terms (empty
triangles). Other parameters are identical to those of Fig. 6, and the
maximum number of photons in the calculation using the full QME
is set to 2.

hard-core bosons. On Fig. 8(b), we have represented the results
obtained with the effective QME, using either the full dissipator
of Eq. (31) (filled triangles) or only the local terms in the
right-hand side of the same equation (empty triangles). We
remark that these local terms would correspond to a situation
in which each site is individually coupled to its own lossy cavity
(with decay rate κ and coupling strength g).

Moreover, we observe on Fig. 8(b) that nonlocal terms play
an important role as one moves away from the perturbative
regime. This points to the existence of nonlocal electronic
correlations for �c/� > 1, that are obtained only when consid-
ering that all sites are coupled to the same cavity mode. These
correlations can be understood by transforming the light-matter
coupling Hamiltonian (2) in terms of a two-body retarded
interaction between electrons, as in the case of electron-phonon
interactions for BCS superconductivity [112]. This is done by
rearranging the real-time electron GF given by Eq. (7), after
having replaced H by the light-matter coupling Hamiltonian
(2) without counter-rotating terms. The latter is then rewritten
exactly as

HI (τ ) = g2

2

∑
i �=j

∫
dτ ′Dr (τ − τ ′)c†2,i(τ

′)c†1,j (τ )c2,j (τ )c1,i(τ
′)

+ H.c.,

where Dr (τ − τ ′) is the real-time retarded photon GF en-
tering Eq. (15). In this form, the light-matter coupling can
be interpreted as a retarded dipole-dipole interaction, where
an interband excitation is created on site i and destroyed at
later time on site j . This plays the role of a retarded, long-
wavelength interaction mediated by the cavity mode, which
induces long-range correlations ∝g2. Note that the overall
correlations can be described by including the static Coulomb
repulsion, which will not be addressed in this paper.

E. Coherent regime κ/W2 � 1

We now focus on the “coherent” regime where κ/W2 � 1,
and in particular on the “individual dressing regime” occurring
when the coupling strength g is smaller than the typical
separation between two adjacent Bloch states in the upper band
[58]. After having characterized the transmission spectrum and
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FIG. 9. (a) Sketch of the energy bands in the individual dressing
regime with t2 = 0.1 and κ = 10−4. δω denotes the typical energy
spacing between adjacent Bloch states in the upper band. (b) (Log-
scale) Cavity photon DOS Ac(ω). (c) (Log-scale) Transmission
spectrum T1(ω) in the vicinity of the lower orbital energy ω1 = −0.5.
(d) (Log-scale) Transmission spectrum T2(ω) in the vicinity of the
upper orbital energy ω2 = 0.5. The black circles correspond to g = 0,
while the red, blue, and green lines correspond to g = 2.2 × 10−3.
The other parameters are identical to those of Fig. 6 (N = 11,
t1 = 5 × 10−5, and � = 5 × 10−4).

the cavity photon DOS using the NGFs method in Sec. III E 1,
we compare the electron density profiles along the chain
obtained in the dissipative and in the coherent regime in
Sec. III E 2. Furthermore, by computing the time evolution
of the electron spectral function, we show that in contrast
to the dissipative regime where the electronic excitations
stay essentially localized, a small transfer of electron spectral
weight occurs between the two bands in the individual dressing
regime, resulting in the emergence of a delocalized state in the
lower band.

1. Transmission spectrum and cavity DOS

Frequency-domain calculations using the NGFs method
are presented on Fig. 9, for an example with N = 11, t1 =
5 × 10−5, � = 5 × 10−4, t2 = 0.1, κ = 10−4 (κ/W2 ≈ 2.5 ×
10−4), and g = 2.2 × 10−3 (�c/� ≈ 100). In this regime,
δω � 0.05, and each transition between the states of the lower
band (not resolved) and the different Bloch states of the upper
band can therefore be addressed individually by the narrow
cavity mode. As already mentioned, we focus on the situation
where the cavity mode is resonant with the transition between
the flat lower band and the Bloch state lying in the center
of the upper band [k0 = (N + 1)/2 for N odd]. The latter
corresponds to a spatial half-period of two sites with the
maximum Bloch velocity 2t2 [Fig. 9(a)].

The cavity photon DOS given by Eq. (21) is represented on
Fig. 9(b) in this regime. The bare cavity mode centered at ω21

(black circles) is dressed by the resonant interband transition
resulting in a broadened cavity resonance, as well as small
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FIG. 10. Spatial profile of the electron population nαj for g =
2.2 × 10−3 and N = 11. Populations in the lower (α = 1) and upper
(α = 2) orbitals are, respectively, depicted as red and blue squares.
(a) Dissipative regime with t2 = 5 × 10−3 and κ = 0.1. (b) Individual
dressing regime with t2 = 0.1 and κ = 10−4. Other parameters are
identical to those of Fig. 6.

satellite peaks originating from the dressing of the detuned
interband transitions (green line). The transmission spectrum
Tα(ω) is shown on Figs. 9(c) and 9(d), for g = 0 (black circles),
g = 2.2 × 10−3 (colored lines), in the vicinity of ω1 and ω2,
respectively. Similarly as in the dissipative regime, we observe
a broad peak centered at ω1 [Fig. 9(c)], responsible for the
current enhancement (�J ≈ 0.16). In the vicinity of ω2, the
peak corresponding to the resonant Bloch state in the upper
band is reduced compared to the case g = 0 [Fig. 9(d)]. In
this regime, the light-matter coupling is clearly dominated by
this resonant Bloch state (note the log-scale). The other small
peaks are reminiscent of the off-resonant Bloch states that are
only weakly coupled to the cavity field.

2. Coherent dynamics and spectral weight transfer

The particular band hybridization occurring in the individ-
ual dressing regime can be further investigated by computing
the electron populations along the chain (NGFs method), and
compare it to the population profile in the dissipative regime.
This is represented on Fig. 10 for g = 2.2 × 10−3 and N = 11.

First, in the dissipative regime [Fig. 10(a)], the current
enhancement associated with the new transmission channel
in the vicinity of ω1 can be interpreted as a transfer of
population from the upper to the lower band (see Sec. III D 1).
On Fig. 10(a), we observe that the lower orbital populations
strongly increase when g �= 0, while the upper band popula-
tions slightly decrease. In this regime, large photonic losses
are responsible for a global (collective) transfer of populations
down to the lower band. On the other hand, the population
n1N in the lower level of the last site is depopulated due to the
coupling to the drain. Importantly, for g �= 0, nα,N �= 1 − nα,1

(as it was the case for g = 0), and the partial currents J1 and
J2 resulting from the integration of T1(ω) and T2(ω) do not
correspond to the currents e�n1,N and e�n2,N as one could
have naively expected from Eq. (8). This implies that for g �= 0,
J1 and J2 can not be interpreted as two independent currents
respectively flowing through the lower and the upper orbitals,
as a result of band hybridization.

In the individual dressing regime [Fig. 10(b)], however, the
density profiles exhibit small oscillations with a period of two
sites consistent with the resonant coupling of the central Bloch
state [k0 = (N + 1)/2]. Furthermore, the density profile in the
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FIG. 11. (a), (b) Contour plot of the spectral function A
(1)
j0,j (τ ) of the lower band as a function of position and time. An electron is injected

in the lower level at site j0 = 1 and time τ = 0. The chain length is N = 11 and the coupling strength g = 2.2 × 10−3. (a) Dissipative regime
with t2 = 5 × 10−3 and κ = 0.1. (b) Individual dressing regime with t2 = 0.1 and κ = 10−4. A transfer of spectral weight occurs at a time T

represented as a vertical line. (c) The time T is represented as a function of the coupling strength. Other parameters are identical to those of
Fig. 6.

lower band (red line) is reminiscent of the uncoupled case
represented on Fig. 3(d), but with a larger effective hopping t ′1
reducing (increasing) the population of the first (last) site. In
this case, the current enhancement can be associated with a
coherent hopping dynamics, sustained by the absorption and
emission of cavity photons.

To further evidence the existence of a coherent dynamics
in the individual dressing regime, we compare the spectral
function A

(1)
j0,j

(τ ) introduced in Sec. III A in the collective
(dissipative) and the individual dressing regimes. This func-
tion is computed using NGFs, and shown on Fig. 11, with
j0 = 1, g = 2.2 × 10−3, N = 11. In the dissipative regime
[Fig. 11(a)], a particle injected at the first site for g �= 0
stays essentially localized, and no propagation occurs through
the lower band whatsoever, not even with the small hopping
rate t1 as in the case g = 0 [Fig. 3(f)]. In this case, the
dynamics consists of a collective damping of populations
from the upper to the lower band, involving localized states
(superpositions of different Bloch states). Pictorially, the large
photon damping rate constantly projects the system onto its
initial state (similarly to the quantum Zeno effect [113,114]),
thereby preventing the hopping through the chain to occur.

In the individual dressing regime [Fig. 11(b)], however, we
observe a small transfer of spectral weight ≈10% occurring
after a time T with a period of two sites, which shows that
the properties of the resonant upper band Bloch state are
transferred in the lower band. This results in a new state with
energy ∼ω1 delocalized across the whole chain. In this sense,
this corresponds to an effective hopping mechanism restoring
propagation in the quasiblocked lower band. However, one can
not a priori write an Hamiltonian term which reproduces this
single-Bloch-state dynamics, as nearest neighbors hopping in
a 1D chain involve the complete set of the chain Bloch states.
Finally, we find that the spectral weight transfer induced by the
coupling to the cavity mode occurs at a time T ∼ 1/g, which
corresponds to a typical time after which coherences appear in
the lower band [Fig. 11(c)].

Similarly as in the dissipative regime, we find that two
polariton peaks appear in the cavity photon DOS (outside

the upper electronic bandwidth), when g exceeds the typical
energy separation δω between two adjacent Bloch states in the
upper band. In the individual dressing regime, however, �S �=
�n indicating that the dynamics does not involve a collective
response of the Bloch states [58]. Ultimately, for κ � W2 and
g � δω, all Bloch states are coupled to the cavity mode, and we
expect to recover the physics of the collective dressing regime
[see Fig. 1(c)]. We point out, however, that a quantitative study
is difficult as neither the effective QME nor the NGFs method
are valid in this strongly nonperturbative regime. The full QME
is the only suitable method, but identifying collective effects
is hard since this method is in any case limited to small N .

F. Photons and scaling with N

As concluding remarks, we have checked that the mean
cavity photon number in the steady state n̄ = 〈a†a〉 (see end
of Sec. II A) remains small even for large coupling strength
(n̄ � 10−2 in the dissipative regime, and n̄ � 1 in the individual
dressing regime), showing that the cavity operates in the
quantum regime close to the vacuum state. Our methods can be
easily generalized to consider a finite mean photon population
NP in the bath, in which case we find that the current en-
hancement depends on the rescaled coupling strength g

√
NP .

On the other hand, order-of-magnitude current enhancements
can occur when considering different injection/extraction rates
�1 �= �2 for the two bands (e.g., for �1 � �2), as well as a
small photon population NP � 1. In this case, still considering
t1 � �1 and t2 � �2, the small injection/extraction rate in the
upper band provides a strong reduction of the bare current
≈e�2/2 obtained for g = 0, leading to current enhancements
only limited by the ratio �1/�2 when g �= 0 [58].

For given g and κ , we find that the saturation value for
the steady-state current decreases sublinearly when increasing
the chain length N , restricting the scope of our study to
mesoscopic systems. In addition, the current typically exhibits
small oscillations between odd and even values of N , with
slightly larger values for N odd. The existence of a Bloch state
resonant with the cavity mode for N odd leads to a slightly
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larger current enhancement than for N even, where the two
closest states to the upper band centerω2 are only quasiresonant
with the cavity mode. In the limit N � 1, the separation
between adjacent Bloch states close to the upper band center
is ∼2πt2/N . Still considering a cavity mode resonant with
the transition between the lower flat band and the upper band
center, the number of interband transitions within the linewidth
κ is thus ∼Nκ/t2, and one can conclude that the individual
band dressing in the large-N regime is only limited by the
cavity quality factor. Ultimately, when Nκ/t2 � 1, the system
always enters the collective dressing regime.

IV. CONCLUSION

In conclusion, we have studied in detail the interplay
between the transport of fermions through a 1D mesoscopic
chain of two-orbital systems and light-matter coupling to a
single cavity mode close to its vacuum state. We have derived
both analytical and numerical results using complementary
methods based on Keldysh and QME techniques, providing
new perspectives for the investigation of many-body fermionic
systems coupled to confined photons. We have compared the
steady-state current obtained with these different methods, and
shown that light-matter coupling leads to a current enhance-
ment. Depending on the ratio between the cavity photon decay
rate and the upper electronic bandwidth, different regimes
have been identified and discussed. In the dissipative regime,
an analytical formula for the current enhancement valid for
small coupling strengths has been derived, showing that the
current enhancement scales with the cooperativity. We have
characterized the presence of a collective coupling of all the
Bloch states to the cavity mode, when the coupling strength is
larger than the typical energy separation between two adjacent
Bloch states in the upper band. In the dissipative regime, the
current enhancement is shown to stem from a global transfer
of populations from the upper to the lower band, with only
marginal propagation through the latter. In the coherent regime,
however, we have shown that when the coupling strength
is smaller than the typical energy separation between two
adjacent Bloch states in the upper band, only the resonant
Bloch state is “individually” coupled to the cavity mode.
Moreover, a small transfer of spectral weight occurs from
the upper to the lower band, resulting in a new state with
energy ∼ω1 delocalized across the whole chain. In this case,
the current enhancement has been interpreted as stemming
from a coherent hopping dynamics sustained by the absorption
and emission of cavity photons. Ultimately, when the coupling
strength becomes larger than the upper electronic bandwidth,
or when the system size becomes large, we expect to recover
the collective dressing regime.

In a realistic situation, additional random potentials due to
disorder and impurities will affect transport properties through
the chain. In the presence of light-matter coupling at optical
frequencies, orbitals are separated by a large gap ∼1 eV, and
since low-energy valence states are typically less affected
by short-range random potentials than the upper delocalized
orbitals, we expect that the effective transmission channel
provided by the coupling to the cavity should be more robust
to disorder than the standard channel involving the upper
orbitals for g = 0. Possible extensions of this model include

considering a frequency-dependent lead coupling and/or cavity
decay rate to study how non-Markovian (memory) effects
affect our results. Further investigations could be also devoted
to the symmetric case with equal lower and upper electronic
bandwidths for g �= 0. In this situation, charge transport can
be reduced as the system exhibits interference between the
different quantum paths connecting the same orbital at two
distant sites for some specific coupling g. It would thus be
interesting to study how this competes with the time-reversed
loop trajectories leading to Anderson localization in random
lattices [115]. Our model might find direct applications in
several fields, such as transport in organic semiconductors [57]
and quantum dot arrays [59,60,64,65], which have recently
been coupled to surface plasmon resonators [41,42,57] and
microwave cavities [61–63].
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APPENDIX A: KELDYSH FORMALISM

In this Appendix, we propose a detailed derivation of the
results presented in Sec. II A. We first write the steady-state
current in terms of electron GFs, and then show that electron
and photon GFs can be computed by solving a closed set of
equations involving electron and photon SEs. We consider
h̄ = 1, and use the short-hand notations ∂τ ≡ ∂

∂τ
and δf (τ ) ≡

δ
δf (τ ) , for function and functional derivatives, respectively.

Steady-state current. As seen in Sec. II A, the steady-state
current Jη flowing through the lead η is proportional to
the commutator between the total Hamiltonian H and the
number of electrons in the lead η. A direct calculation of this
commutator allows us to express Jη in terms of a GF which
describes the correlations between the leads and the chain:

Jη = −2e
∑
α,k

∑
q

ϕ
jη

k λα,q

∫
dω

2π
Re[G<

α,k,q,η(ω)], (A1)

where Re stands for real part, λα,q is defined in Eq. (3), and
G<

α,k,q,η(ω) denotes the Fourier transform of the “lesser” mixed
system-leads GF G<

α,k,q,η(τ − τ ′), which can be obtained from
the time-ordered GF:

Gα,k,q,η(τ − τ ′) = −i〈T c̃α,k(τ )b†α,q,η(τ ′)〉. (A2)

T denotes the time-ordered product for fermions. Taking
the time derivative ∂τ ′ of Eq. (A2), and computing the different
commutators entering the Heisenberg equation ∂τ ′b

†
α,q,η(τ ′) =

i[H,b
†
α,q,η](τ ′), the equation of motion of Gα,k,q,η(τ − τ ′) is
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derived as

(−i∂τ ′ − ωq)Gα,k,q,η = −λα,q

∑
k′

ϕ
jη

k′ Gα,k,k′ , (A3)

where Gα,k,k′ (τ − τ ′) = −i〈T c̃α,k(τ )c̃†α,k′(τ ′)〉 is the time-
ordered GF of the chain, referred to as the “electron GF.”
Equation (A3) can be formally solved in the frequency domain
as

Gα,k,q,η(ω) = −λα,q

∑
k′

ϕ
jη

k′ Gα,k,k′ (ω)Gq,η(ω), (A4)

where Gα,k,k′ (ω) and Gq,η(ω) denote the Fourier trans-
forms of the electron GF and the lead GF Gq,η(τ − τ ′) =
−i〈T bα,q,η(τ )b†α,q,η(τ ′)〉0, and 〈. . . 〉0 refers to the quantum
average in the ground state of the Hamiltonian H without
the interaction terms HI , HL, and HP . One can then use the
Langreth rules [80] in Eq. (A4) to compute the “lesser” GF:

G<
α,k,q,η(ω) = − λα,q

∑
k′

ϕ
jη

k′ G
r
α,k,k′(ω)G<

q,η(ω)

− λα,q

∑
k′

ϕ
jη

k′ G
<
α,k,k′(ω)Ga

q,η(ω), (A5)

with r anda for retarded and advanced GFs, respectively. Using
the results

G<
q,η(ω) = 2iπδ(ω − ωq)nη(ω),

Ga
q,η(ω) = 1

ω − ωq − i0+ , (A6)

where 0+ denotes an infinitesimal positive quantity and nη(ω)
is the Fermi occupation number of the lead η, we substitute
Eq. (A5) in the expression of the current (A1), and con-
vert the summation over q into a frequency integral

∑
q →∫ ∞

0 dω ρ(ω), where ρ(ω) represents the electron density of
states in the leads. Introducing the tunneling rate between the
chain and the leads as �α = 2πρ(ω)λ2

α(ω) (assumed to be
energy independent), we finally recover Eqs. (5) and (6). Note
that we have assumed ns(ω) = 1 and nd (ω) = 0 ∀ ω (high-bias
regime).

Dyson equation for electron GFs. In order to compute the
transmission spectrum (6), we now need an equation of motion
of the time-ordered electron GFs. As before, we compute the
time derivative ∂τGα,k,k′ (τ − τ ′), use the Heisenberg equation
∂τ c̃α,k(τ ) = i[H,c̃α,k](τ ), and obtain

(i∂τ − ωα,k)Gα,k,k′

= δk,k′δ(τ − τ ′) + g
∑
α′

(1 − δα,α′ )Fα′,k,α,k′

−
∑
q,η

λα,qϕ
jη

k Gq,η,α,k′ , (A7)

where Gq,η,α,k(τ − τ ′) = −i〈T bα,q,η(τ )c̃†α,k(τ ′)〉 is a mixed
system-lead GF similar to the one defined in Eq. (A2),
and Fα′,k,α,k′ (τ − τ ′) = −i〈T c̃α′,k(τ )c̃†α,k′ (τ ′)A(τ )〉 is a higher-
order correlation function mixing the electronic and photonic
degrees of freedom. First, the equation of motion for the Fourier
transform Gq,η,α,k(ω) is derived similarly as before and reads

as

Gq,η,α,k(ω) = −λα,q

∑
k′

ϕ
jη

k′ Gq,η(ω)Gα,k′,k(ω). (A8)

Second, the correlation function Fα′,k,α,k′ (τ − τ ′) can be
written in terms of single-particle GFs by considering a
term H ′ = JA in the Hamiltonian, where J denotes a van-
ishing current source [81]. Taking the functional derivative
δJ (τ )Gα′,k,α,k′ (τ − τ ′), where Gα′,k,α,k′ (τ − τ ′) is given by

Gα′,k,α,k′ (τ − τ ′) = −i
〈T c̃α′,k(τ )c̃†α,k′(τ ′)e−i

∫
dτ1H (τ1)〉0

〈e−i
∫
dτ1H (τ1)〉0

,

(A9)

we obtain

Fα′,k,α,k′ (τ − τ ′) = ig
∑
k1,k2

∫
{dτ }Gα′,k,k1 (τ − τ1)�α′,k1,α,k2

× ({τ })D(τ3 − τ )Gα,k2,k′(τ2 − τ ′),

(A10)

where {τ } ≡ τ1,τ2,τ3,
∫ {dτ } ≡ ∫

dτ1
∫
dτ2

∫
dτ3. The time-

ordered photon GF is defined as

D(τ3 − τ ) = δJ (τ )〈A(τ3)〉 = −i〈T A(τ3)A(τ )〉,
and the so-called vertex function as

�α′,k1,α,k2 (τ1,τ2,τ3) = − 1

g
δ〈A(τ3)〉G−1

α′,k1,α,k2
(τ1 − τ2).

It can be shown that this vertex function satisfies a self-
consistent equation [81]. The SCBA consists in considering
only the leading term (undressed vertex) of this self-consistent
equation, which provides

�α′,k′,α,k(τ,τ ′,τ ′′) = (1 − δα′,α)δk,k′δ(τ − τ ′)δ(τ − τ ′′).

(A11)

Higher-order corrections in � correspond to the so-called
vertex corrections associated with crossed diagrams [81] such
as the one sketched on Fig. 2(b), which are neglected in the
SCBA. Using Eqs. (A8), (A10), and (A11), the equation of
motion (A7) written in the frequency domain takes the form∑

k1

(
(G0

α,k,k1
(ω))−1 − �α,k,k1 (ω)

)
Gα,k1,k′(ω) = δk,k′ ,

with the SCBA self-energy:

�α,k,k′(ω) = ig2(1 − δα,α′ )
∫

dω′

2π
Gα′,k,k′ (ω + ω′)D(ω′)

+
∑
q,η

λ2
α,qϕ

jη

k ϕ
jη

k′ Gq,η(ω), (A12)

and the noninteracting time-ordered GF G0
α,k,k′(ω). Still con-

sidering the high-bias regime, we now use the Langreth rules
together with Eq. (A6), and convert the summation over q
in Eq. (A12) into a frequency integral. This leads to the
expressions of the “lesser” and “greater” electron SEs given
by Eqs. (12) and (13).

Dyson equation for photon GFs. The equation of motion
for the time-ordered photon GF D(ω) can be derived by taking

205303-19



DAVID HAGENMÜLLER et al. PHYSICAL REVIEW B 97, 205303 (2018)

the second time derivative of the cavity vector potential A(t),
and then use the Heisenberg equation ∂τA(τ ) = i[H,A](τ )
two times in a row. As in the previous section, we consider
a vanishing source term H ′ = JA in the Hamiltonian H . The
functional derivative of the ground-state expectation of the
obtained equation with respect to J (τ ′) yields the following
equation of motion for D(τ − τ ′):(

− ∂2
τ

2ωc

− ωc

2

)
D(τ − τ ′)

= δ(τ − τ ′) − ig
∑
α,α′

∑
k

(1 − δα,α′ )δJ (τ ′)Gα,k,α′,k

× (τ,τ+) +
∑

p

μpDp(τ − τ ′), (A13)

where the time τ+ = τ + 0+, and the mixed GF Dp(τ − τ ′) =
−i〈T Ap(τ )A(τ ′)〉 describes correlations between the cavity
mode and the electromagnetic environment. The equation of
motion forDp can be derived similarly as before (by calculating
its second time derivative):(−∂2

τ − ω2
p

)
Dp(τ − τ ′) = 2ωpμpD(τ − τ ′),

which is solved in the frequency domain as Dp(ω) =
μpDp(ω)D(ω). Here, Dp(ω) is the Fourier transform of the
(time-ordered) extra-cavity photon GF −i〈T Ap(τ )A−p(τ ′)〉0.
Using Eq. (A9), the second term in the right-hand side of
Eq. (A13) can be written in the form

δGα,k,α′,k(τ,τ+)

δJ (τ ′)
= g

∑
k1,k2

∫
{dτ }Gα,k,k1 (τ − τ1)�α,k1,α′,k2

× ({τ })D(τ3 − τ ′)Gα′,k2,k(τ2 − τ+),

(A14)

where the vertex function is given by Eq. (A11). In the
SCBA, we only consider the leading order �α,k,α′,k′ (τ,τ ′,τ ′′) =
(1 − δα,α′ )δk,k′δ(τ − τ ′)δ(τ − τ ′′), which we substitute in
Eq. (A14) to put the equation of motion (A13) into the form

((D0(ω))−1 − �(ω))D(ω) = 1

with the cavity photon SE:

�(ω) = − ig2
∑
α,α′

Tr(1 − δα,α′ )
∫

dω′

2π
Gα(ω + ω′)Gα′ (ω′)

+
∑

p

μ2
pDp(ω), (A15)

and the bare cavity photon GF D0(ω). The summation over the
continuous index p can again be converted into a frequency
integral, namely,

∑
p → ∫ ∞

0 dω ρ0(ω), where ρ0(ω) denotes
the extra-cavity photon density of states. We introduce the
cavity photon decay rate as κ = 2πρ0(ω)μ2(ω) (assumed to
be frequency independent), and use the Langreth rules in
Eq. (A15). Assuming a vanishing mean population in the
photon bath, i.e., 〈a†

pap〉 = 0, one can compute the (noninter-
acting) extra-cavity photon GFs as D>

p (ω) = −2iπδ(ω − ωp)
and D<

p (ω) = −2iπδ(ω + ωp), and show that the “lesser” and
“greater” photon SEs correspond to Eqs. (19) and (20).

APPENDIX B: ELIMINATION OF THE CAVITY FIELD

In this Appendix, we show that ρ̂, the projection of the
density operator ρ̃ (in the rotating frame) onto the cavity
vacuum state, evolves according to Eq. (28) in the dissipative
regime.

Dissipative regime. We consider the case when the cavity
decay rate κ is large compared to the other rates. In particular,
κ is larger than the injection/extraction rates �α and tunneling
rates tα governing the uncoupled evolution of the electronic
degrees of freedom, and larger than the coupling strength g

between electronic and bosonic variables. This choice has two
main consequences:

(i) We expect the strongly damped cavity field to stay close
to its vacuum state (steady state for g = 0).

(ii) The electrons’ observables evolve on a much longer
timescale than the one associated with the cavity field.

The last point allows us to adiabatically eliminate the light
field from the overall dynamics. For this purpose, we first define
the electron reduced density operator

ρ̃el = TrF [ρ̃] =
∑

n

〈n| ρ̃ |n〉 =
∑

n

ρ̃nn,

which is a density matrix for the electronic degrees of freedom
only. TrF [A] = ∑

n 〈n| A |n〉 denotes the trace of the observ-
able A over the cavity field, and |n〉 with n = 0,1,2, . . . is
the photonic part of the (Fock) state containing n photons. As
already mentioned, we assume that the light field is close to
its vacuum state, i.e., ρ̃el � ρ̃00. In the following, we derive a
closed time evolution for the relevant part ρ̃00 of the reduced
density operator [102,103].

Projectors and coupled differential equations. We introduce
the projectors P and Q with

P ρ̃ = 〈0| ρ̃ |0〉 |0〉 〈0| = ρ̃00 |0〉 〈0| ≡ ρ̂,

Qρ̃ =
∑
n,m

n,m �= 0

〈n| ρ̃ |m〉 |n〉 〈m| =
∑
n,m

n,m �= 0

ρ̃nm |n〉 〈m| ≡ ρ̌.

Using the decomposition (see Sec. II C)

∂τ ρ̃ = (Le + Lc + LI + Ic)ρ̃,

with Ic = κaρ̃a†, together with the property P + Q = 1, the
coupled differential equations for ρ̂ and ρ̌ can be written as

∂τ ρ̂ = PLeρ̂ + P (LI + Ic)ρ̌, (B1)

∂τ ρ̌ = QLI ρ̂ + Q(Le + Lc + LI + Ic)ρ̌. (B2)

The formal solution of Eq. (B2) is given by

ρ̌(τ ) = eQ(Lc+Le)δτ ρ̌(τ0) +
∫ τ

τ0

dτ ′eQ(Lc+Le)(τ−τ ′)V (τ ′),

(B3)

with

V (τ ′) = QLI ρ̂(τ ′) + Q(LI + Ic)ρ̌(τ ′),

and δτ = τ − τ0. The formal solution (B3) can be plugged
into Eq. (B1), and keeping terms up to second order in LI , we
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obtain

∂τ ρ̂ �PLeρ̂ + PLI

∫ τ

τ0

dτ ′eQ(Lc+Le)(τ−τ ′)QLI ρ̂(τ ′)

+ PIc

∫ τ

τ0

dτ ′eQ(Lc+Le)(τ−τ ′)

× QLI

∫ τ ′

τ0

dτ ′′eQ(Lc+Le)(τ ′−τ ′′)QLI ρ̂(τ ′′), (B4)

with the initial condition ρ̌(τ0) = 0 (cavity initially prepared
in its vacuum state).

Timescale separation and integration. We first focus on the
second term in the right-hand side of Eq. (B4), which, after
change of variables, reads as

PLI

∫ δτ

0
dτ ′eQ(Lc+Le)τ ′

QLI ρ̂(τ − τ ′). (B5)

Letting the operator QLI act on ρ̂, one obtains

QLI ρ̂(τ − τ ′) = −igS−ρ̃00(τ − τ ′) |1〉 〈0| + H.c., (B6)

with the collective lowering operator S− = ∑
j c

†
1,j c2,j [S+ =

(S−)†]. Subsequently, according to Eq. (B5), we apply the
free evolution exp[Q(Lc + Le)τ ′] to the previous expression
Eq. (B6):∫ δτ

0
dτ ′eQ(Lc+Le)τ ′

QLI ρ̂(τ − τ ′)

�
∫ δτ

0
dτ ′(−ig)S−ρ̃00(τ − τ ′) |1〉 〈0| e(i�− κ

2 )τ ′ + H.c.,

(B7)

where we have used eQ(Lc+Le)τ ′ ≈ eQLcτ
′

in the integrand.
This approximation is justified in the dissipative regime where
|i� − κ/2| � �α,tα . Corrections to the previous approxi-
mation could be taken into account, e.g., by using partial
integration. They are expected to scale with tα/|i� − κ/2| and
�α/|i� − κ/2| and are small whenever the light-field evolves
on a much shorter timescale than the electronic degrees of
freedom. The timescale separation allows us to further neglect
the variation of ρ̃00 during the relaxation time ∼1/κ of the
cavity, namely,

ρ̃00(τ − τ ′)e(i�− κ
2 )τ ′ ≈ ρ̃00(τ )e(i�− κ

2 )τ ′
. (B8)

We point out that since the evolution of ρ̃00 is gov-
erned by both the electronic term Leρ̃00 in Eq. (B4), and
the photon-mediated effective dynamics which we aim at
calculating, checking the assumption (B8) will be required
(for consistency) at the end of the calculation. Under these
approximations, the second term in the right-hand side of
Eq. (B4) takes the form

PLI

∫ δτ

0
dτ ′eQLcτ

′
QLI ρ̂(τ )

= −2i��[S+S−ρ̂(τ )(1 − e(i�− κ
2 )δτ ) − H.c.]

− 2�κ [S+S−ρ̂(τ )(1 − e(i�− κ
2 )δτ ) + H.c.], (B9)

where �� = g2�

2�2+κ2/2 and �κ = g2κ

4�2+κ2 . We now turn to the
third term in the right-hand side of Eq. (B4). After change of
variables, integration provides

PIc

∫ δτ

0
dτ ′eQLcτ

′
QLI

∫ δτ−τ ′

0
dτ ′′eQLcτ

′′
QLI ρ̂(τ )

= 4�κS
−ρ̂(τ )S+(1 + e−κδτ − 2e− κδτ

2 cos(�δτ )), (B10)

where we have used ρ̃00(τ − τ ′ − τ ′′) � ρ̃00(τ ) and made use
of similar considerations as for the second term in the right-
hand side of Eq. (B4). Collecting the two contributions (B9)
and (B10), and substituting them in Eq. (B4), we finally obtain

∂τ ρ̂ = PLeρ̂ − 2i��[S+S−ρ̂(τ )(1 − e(i�− κ
2 )δτ ) − H.c.]

− 2�κ [S+S−ρ̂(τ )(1 − e(i�− κ
2 )δτ ) + H.c.]

+ 4�κS
−ρ̂(τ )S+(1 + e−κδτ − 2e− κδτ

2 cos(�δτ )).

(B11)

This result shows that the photon-mediated dynamics of the
electrons scales with �� and �κ . Those rates should be small
compared to κ in order to use the timescale separation, and
in particular the approximation (B8). This provides an upper
bound for the coupling strength g. We point out that neglecting
further corrections scaling with �� and �κ in Eq. (B8) is
consistent with the approximation of keeping terms only up
to second order in LI in Eq. (B4). In the regime κδτ � 1,
the effective master equation (28) can be finally derived from
Eq. (B11):

∂τ ρ̂ ≡Lredρ̂ = Leρ̂ − 2i��[S+S−,ρ̂]

− 2�κ (S+S−ρ̂ + ρ̂S+S− − 2S−ρ̂S+). (B12)

Coarse graining and discussion. In the regime of parameters
considered here, a coarse-grained timescale �τ satisfying

κ−1 � �τ � t−1
α ,�−1

α , (B13)

can be introduced. Using Eqs. (B11) and (B13), one can
show that the evolution of the reduced density operator on
the timescale �τ is

ρ̂(τ + �τ ) − ρ̂(τ )

�τ
=

∫ τ+�τ

τ

dτ ′ ∂τ ′ ρ̂(τ ′)
�τ

� Lredρ̂(τ ),

(B14)

with τ � τ0, and where consistently with the approxima-
tions used in Eqs. (B7) and (B8), contributions ∼(κ�τ )−1

and ∼�α�τ,tα�τ have been neglected. The effective master
equation (28) is well established on such a footing, and it is
not suitable to describe the dynamics occurring on timescales
smaller than 1/κ . In addition, �τ has to be small compared to
the timescale associated with the photon-mediated dynamics,
such that �τ (Lred − Le)ρ̂(τ ) is negligible. Together with the
condition �τ � κ−1, this provides an upper bound for the
coupling strength g, whose exact form depends on the states
that are involved in the dynamics, and whether collective
effects play a role or not. In coupled spin-cavity systems

205303-21



DAVID HAGENMÜLLER et al. PHYSICAL REVIEW B 97, 205303 (2018)

(with � = 0), the condition
√

Ng � κ (B15)

has been considered sufficient, or even required [102]. We
expect that the condition (B15) is also sufficient in our
fermionic model to use the timescale separation. As a matter
of fact, since quantum states with both orbitals either empty
or fully occupied are not coupled to light, the collective
coupling constant in our open fermionic model is <g

√
N

(see Sec. III D 2), which places us on the safe side regarding
Eq. (B15). Note that the equations of motion (B12) and
(B14) are given in the adiabatic limit, and retardation effects
between cavity and electronic dynamics [107] are neglected.
We conclude this Appendix by a short discussion on how to
compute the mean photon number of the cavity mode, when
the latter can be considered as close to its vacuum state.

Photon number. In the adiabatic limit considered above, and
for � = 0, it can be shown that the mean photon number is well

approximated by the formula [102,106]

〈â†â〉 � g2

(κ/2)2
〈S+S−〉. (B16)

Drawing the conjecture

〈S+S−〉 =
∑

i

〈s+
i s−

i 〉 +
∑
i �=j

〈s+
i s−

j 〉 �
∑

i

〈s+
i s−

i 〉

from numerical simulations, and using Eq. (B16) together with

〈s+
i s−

i 〉 = 〈n̂2i(1 − n̂1i)〉 � 1,

we obtain 〈â†â〉 ≤ Ng2

(κ/2)2 . Restricting the light-matter coupling
strength to values such that the condition (B15) is fulfilled,
one can thus reasonably expect the cavity mode to stay close
to its vacuum state, consistently with the timescale separation
argument discussed before.
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