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Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution
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We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the
electro-optic effect in bulk semiconductors. We find a general expression for χ (2) evaluated within time-dependent
density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation.
Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to
the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC.
Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement
with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high
electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.
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I. INTRODUCTION

A deep understanding of the nonlinear optical properties of
solids is crucial for the improvement of nonlinear devices and
provides an opportunity to search for new materials. Among
all the nonlinear phenomena existing in nature, an important
role is played by the electro-optic effect. The electro-optic
effect produces a change of the refractive index in a medium
using a dc electric field. In the linear electro-optic effect (LEO)
or Pockels effect, the change is proportional to the applied
electric field. It may be seen as a second-order polarization
and then described by a second-order susceptibility, which is
known to be zero in the dipole approximation for centrosym-
metric materials. Therefore a peculiarity of the LEO effect
comes from the fact that it only occurs in materials without
inversion symmetry or originates from symmetry-breaking
regions.

LEO has attracted particular interest for the development of
optoelectronic devices. Experimental efforts are made toward
the design, fabrication, and search for nonlinear optical mate-
rials. In particular, it has been established that electrorefractive
effect is a promising route to realize efficient high speed optical
modulators [1]. Recently, a giant electro-optic effect has been
observed in Ge/SiGe coupled quantum wells which can be
exploited to enhance the performance of optical modulators
[2]. On the other hand, noncentrosymmetry in crystals can
be obtained by applying an asymmetric strain. It has been
reported that strain in a Si photonic crystal waveguide induces
strong nonlinearities and enables electro-optic effects, showing
that data processing and transmission could be potentially
performed by all-silicon components [3,4]. Moreover, among
recent applications of the LEO effects, one can cite the pos-
sibility of achieving quasiperfect phase matching conditions
in homogeneous crystals, based on controllable birefringence
via the linear electro-optic effect [5]. Finally, because of its
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sensitivity to space symmetry, LEO can be used as a sensitive,
nondestructive and noninvasive probe for studying many kinds
of surfaces and interfaces in semiconductors [6,7].

The design of optimized devices and the search for new
electro-optic materials requires accurate values for the second-
order susceptibilities. The experimental characterization is
not an easy task and requires high-quality crystals. From the
theoretical point of view, most of the calculations for second-
order susceptibilities have been done in the framework of
second-harmonic generation (SHG) (see, for instance, Ref. [8],
and references therein). In that case, the frequency of the
incoming field is considered as high with respect to vibrational
frequencies and the lattice is kept static. Therefore, one has
to evaluate only the electronic contribution, obtained directly
from the optical susceptibility, coming from the interaction of
the valence electrons and the electric fields. The knowledge
of the electro-optic tensor implies, in principle, the evaluation
of two additional contributions, i.e., the ionic and piezoelectric
parts. The ionic contribution is linked to the ionic displace-
ments and depends on the variation of the dielectric tensor
induced by these displacements. The sum of the electronic
and ionic contributions is usually referred to as the clamped
value. The piezoelectric contribution comes from the possible
modification of the shape of the unit cell due to the electric
forces and leads to the so-called unclamped value. For more
details, see Refs. [9,10].

The theoretical description of the second-order response is
a difficult task and only a small number of ab initio works exist
on the topic, mainly focused on the SHG response. In the first
theoretical works on LEO, Hughes and Sipe presented a first-
principles calculation of the susceptibility in crystals based
on the independent-particle approximation, where self-energy
effects were included at the level of a scissors operator [11].
However, it was pointed out later, by some of the authors, that
unlike the case of linear optics the inclusion of the scissors
operator in the nonlinear susceptibilities was far from being a
rigid shift and that it had to be treated with special care [12].
Since then the effect of the scissor operator has been carefully
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analyzed for SHG but has not been investigated for LEO. A dif-
ferent approach from the sum over states methods cited above
was presented by Veithen et al. for the static susceptibility in a
formalism based on the Berry phase and applied to ferroelectric
oxides [9,10,13] and Zn compounds [14].

In the following, we will show our results for the second-
order susceptibility describing the LEO tensor, within the ab
initio framework of time-dependent density-functional theory
(TDDFT). The paper is organized as follows: In Sec. II, we
present our analytic derivation of the macroscopic polarization
up to second order in terms of the electric fields, including the
effect of a scissors operator to account for the quasiparticle
effect. Excitonic effects will be included on the basis of a
simple approach. The results for second-harmonic generation
will be shown for comparison. In Sec. III, we illustrate the
validity of our formalism with the calculation of χ (2) for several
semiconductors in a large frequency range and for different
light-polarization directions. These results will be compared

to experimental data when available. Finally we will address
the case of strained silicon.

II. FORMALISM AND METHODS

The macroscopic second-order polarization, at frequency
ω, in terms of the time-dependent electric field E(ω) and the
static field E is expressed in frequency space as

P(2)(ω) = 2 χ (2)(−ω; ω,0) : E(ω) E. (1)

The factor 2 in front of the susceptibility appears when
the two input frequencies are different, i.e., for the sum- or
difference-frequency generation (see Appendix A of Ref. [11]
for more details). In the independent-particle approxima-
tion (IPA) the rank-3 tensor χ (2)(−ω; ω,0) is connected to
the second-order response function χ

(2)
0 (q,q1,q2,ω1,ω2), ex-

pressed as (atomic units will be used unless otherwise stated;
h̄ = 1, e = 1, m = 1)

χ
(2)
0 (q,q1,q2,ω1,ω2) = 2

V

∑
n,m,p

∑
k

〈φn,k|e−iqr|φm,k+q〉〈φm,k+q|eiq1r1 |φp,k+q2〉〈φp,k+q2 |eiq2r2 |φn,k〉
En,k − Em,k+q + ω1 + ω2 + 2iη

×
(

fn,k − fp,k+q2

En,k − Ep,k+q2 + ω2 + iη
+ fm,k+q − fp,k+q2

Ep,k+q2 − Em,k+q + ω1 + iη

)
+ [(q1,ω1) ↔ (q2,ω2)], (2)

where the vectors q1 and q2 are along the polarization of
the electric fields and q = q1 + q2, φn,k denotes the Bloch
wave functions, the wave vector k lies in the first Brillouin
zone, with a normalization volume V , and fn,k are Fermi
occupation numbers, which are considered to be either 0 or
1 for unoccupied and occupied states, respectively. The spin
is accounted for by a factor 2 in the above expression. This
IPA response function is then related to the second-order
susceptibility by the following equation:

q̂
↔
χ

(2)
(ω1,ω2) q̂1 q̂2 = − i

2
χ

(2)
0 (q̂,q̂1,q̂2,ω1,ω2). (3)

As we are interested in the low-energy part of the spectrum, we
consider only the optical limit (q → 0). We have used the k · p
perturbation theory and followed the derivation of Ref. [15] to
expand Eq. (2).

In principle, electron bands have to be calculated within
the many-body formalism, using the GW approach. However,
its application is not trivial in the calculation of second-
order response functions and we have used instead a simpler
approach, the so-called scissors operator [12],

Ŝ = �s

∑
k

∑
n

(1 − fn,k)|φn,k〉〈φn,k|, (4)

accounting for the GW gap corrections

E�
n,k = En,k + (1 − fn,k)�s. (5)

The scissors operator is nonlocal and has to be treated with
special care when performing the k · p expansion, as it does
not commute with the position operator. After some lengthy
calculations, the second-order susceptibility contains two con-
tributions: a two-band term

χ
(2),2bnd
0 (q̂,q̂1,q̂2,ω,0) = 2

V

∑
k

∑
n,m

fnm(
E�

nm,k + ω̃
) [�nm,k(q̂1)r̂nm,k(q̂2)r̂mn,k(q̂)

+�nm,k(q̂)r̂nm,k(q̂2)r̂mn,k(q̂1)]

(
1(

E�
nm,k

)2 + 1

E�
nm,k Enm,k

− 2

(Enm,k)2

)
, (6)

and a three-band term, which can be split into interband transitions and intraband transitions:

χ
(2),inter
0 (q̂,q̂1,q̂2,ω,0) = 2

V

∑
k

∑
n,m,p

σn,m,p(
E�

nm,k + ω̃
)
{

r̂nm,k(q̂)r̂mp,k(q̂1)r̂pn,k(q̂2)

[
− fnp

E�
np,k

− fmp(
E�

pm,k + ω̃
)
]

+ r̂nm,k(q̂)r̂mp,k(q̂2)r̂pn,k(q̂1)

[
− fnp(

E�
np,k + ω̃

) − fmp

E�
pm,k

]}
, (7)
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χ
(2),intra
0 (q̂,q̂1,q̂2,ω,0) = 2

V

∑
k

∑
n,m,p

σn,m,p

{
r̂nm,k(q̂)r̂mp,k(q̂1)r̂pn,k(q̂2)

[
− fnmEpm,k

2
(
E�

nm,k + ω̃
)2

Enm,k

+ fmpEnm,k

2
(
E�

pm,k + ω̃
)2

Epm,k

+ fnp(Epm,k + Enm,k)

2
(
E�

np,k + ω̃
)
(Enp,k)2

+ fmpEnp,k(
E�

pm,k + ω̃
)
Epm,k

(
1

E�
pm,k

− 1

2Epm,k

)

+ fnmEnp,k(
E�

nm,k + ω̃
)
Enm,k

(
1

E�
nm,k

− 1

2Enm,k

)]
+ r̂nm,k(q̂)r̂mp,k(q̂2)r̂pn,k(q̂1)

[
fnmEnp,k

2
(
E�

nm,k + ω̃
)2

Enm,k

+ fnpEnm,k

2
(
E�

np,k + ω̃
)2

Enp,k

+ fnpEpm,k(
E�

np,k + ω̃
)
Enp,k

(
1

E�
np,k

− 1

2Enp,k

)

− fnmEpm,k(
E�

nm,k + ω̃
)
Enm,k

(
1

E�
nm,k

− 1

2Enm,k

)
+ fmp(Enp,k + Enm,k)

2
(
E�

pm,k + ω̃
)
(Epm,k)2

]}
, (8)

where σn,m,p = 1 if n, m, and p are all different and σn,m,p = 0
otherwise and we have used the following notations:

Enm,k = En,k − Em,k, ω̃ = ω + iη. (9)

For a clean cold semiconductor, the Fermi occupation numbers
do not depend on the wave vector k and we note fnm = fn −
fm. The operator r̂ is defined in terms of the usual position
operator r:

r̂nm,k(q̂) = 〈φn,k|iq̂r̂|φm,k〉 if En,k �= Em,k

= 0 if En,k = Em,k

and �nm,k(q̂) stands for

�nm,k(q̂) = v̂nn,k(q̂) − v̂mm,k(q̂), (10)

where v is the velocity operator. In practice, the matrix element
of r is calculated in terms of the matrix element of v, with

〈φn,k|ir̂|φm,k〉 = 〈φn,k|v̂|φm,k〉
En,k − Em,k

. (11)

Note that if no scissors correction is applied, the shifted
and nonshifted energies, E�

n,k and En,k, become equal and
we can show that the two-band term is identically zero. This
contrasts with the case of second-harmonic generation, in
which this term vanishes only for specific cases, such as the
cubic symmetry for instance [16].

IPA is the simplest level of approximation for the calculation
of the response function and a more accurate description
requires the inclusion of many-body effects, i.e., local field
and excitonic effects, corresponding to the microscopic fields
induced inside the material by the perturbation and to the
interaction of electron-hole pairs, respectively (see Ref. [17]).
They can be included in the framework of TDDFT through a
Dyson equation (see Ref. [15] for details on this calculation in
the case of second-harmonic generation). It has been shown for
SHG that for some specific materials, such as those presenting
the zinc-blende structure, local fields can be neglected while
excitonic effects are important [15,18]. Since accounting for
the local fields is quite cumbersome, it is interesting for these
materials to simplify the Dyson equation and include only the
excitonic effects, using the so-called scalar long-range kernel

−α/q2, defined in Refs. [19,20] and successfully applied for
SHG in Ref. [15].

To account only for the excitonic effects, we will solve a
second-order Dyson equation, where the microscopic compo-
nents of the Coulomb potential have been neglected, retaining
only its macroscopic part corresponding to v(G = 0). There-
fore, the second-order Dyson equation reduces to a simple
scalar equation:

χ (2)(q,q1,q2,ω1,ω2)

= χ
(2)
0 (q,q1,q2,ω1,ω2)

[
1 + α

q2
1

χ (1)(q1,ω1)

]

×
[

1 + α

q2
2

χ (1)(q2,ω2)

]

+χ
(1)
0 (q,ω)

α

q2
χ (2)(q,q1,q2,ω1,ω2), (12)

where χ
(2)
0 is the IPA response function while χ (2) includes the

excitonic effects and should replace χ
(2)
0 in Eq. (3). χ (1) and

χ
(1)
0 are the corresponding first-order response functions.

A. Computational details

We first determine the electronic structure of the material in
its ground state within density-functional theory (DFT) with
the ABINIT package [21–24]. The Kohn-Sham energies and
wave functions are obtained in terms of a basis of plane waves.
The local density approximation for the exchange-correlation
potential is used, with norm-conserving pseudopotentials. The
calculation of the nonlinear optical spectra for LEO has been
implemented in the 2light code [25].

The converged parameters for all the different compounds
are reported in Table I, which includes the cutoff energy Ecutoff,
the lattice constant acell, the numbers of off-symmetry shifted
k points nkpt, and unoccupied states nunoc

band, as well as the value
of the shift �s for the scissors operator in Eq. (4).

B. Comparison between the LEO and SHG susceptibilities

We have first tested our approach on a simple semi-
conductor, namely, cubic silicon carbide, which is a
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TABLE I. Convergence parameters.

3C-SiC 2H-SiC GaAs α-GaN Si1

Ecutoff (Ha) 40 40 50 50 20
acell (Å) 4.36 a = 3.16, 5.63 a = 3.19, 5.41

c = 5.19 c = 5.17
nkpt 4096 18750 27000 6358 16250
nunoc

band 16 22 36 22 44
�s (eV) 0.84 0.8 0.85 1.4 0.6

1Strained silicon: the lattice parameters and the atomic positions vary
depending on the strain and are given in Sec. III B.

noncentrosymmetric material, with only one nonvanishing
component for the second-order susceptibility tensor, χ (2)

xyz.
If one considers the limit ω → 0, the LEO and SHG

susceptibilities become equivalent:

lim
ω→0

χ
(2)
SHG(−2ω; ω,ω) = lim

ω→0
χ

(2)
LEO(−ω; ω,0), (13)

as illustrated in Fig. 1. The factor 2 that usually appears
between SHG and SFG susceptibilities is here not included
in the definition of the LEO susceptibility but is taken into
account in the polarization [see Eq. (1)]. Note that at lower
frequencies the SHG curve is rising faster than the LEO one.
This can be expected as the first set of resonances starts at half
the gap for the SHG process, while only one set of resonances
is present for LEO at ω > Egap.

C. Effect of the scissors correction

To go beyond the independent-particle approximation, we
have included a scissors correction [12], for 3C-SiC and one of
the hexagonal polytypes 2H-SiC. The correction �s is reported
in Table I for both compounds. This kind of calculation will
be referred to as the quasiparticle approximation (QPA).

The effect of the scissors on second-order suscep-
tibilities, SHG and LEO, is shown in Fig. 2. It is
known that, for the linear response, this effect corre-
sponds to a rigid blue shift of the spectrum, while for the
second-harmonic spectrum the peaks are also blue shifted,
but the weight of the various contributions is modified
[26–28]. The latter has been attributed to the fact that two types

0 1 2 3 4
0

50

100

150

ω1 (eV)

|χ
(2

)
x

y
z
(−

ω
;ω

1
,ω

2
) |

[p
m

/
V

]

SHG: ω2 = ω1

LEO: ω2 = 0

FIG. 1. Comparison between second-order optical responses in
3C-SiC below the band gap: xyz component of the LEO ten-
sor |χ (2)

xyz(−ω; ω,0)| (dashed green line) and SHG susceptibility
|χ (2)

xyz(−2ω; ω,ω)| (solid blue line).

of denominators, containing (Enm,k + 2ω) and (Enm,k + ω),
appear in the SHG expression of χ (2)

xyz(−2ω; ω,ω). It turns
out that in the LEO spectra, only a rigid shift is visible, as
displayed in the second row of Fig. 2. The effect of the scissors
operator is very similar to the linear case, despite the fact that
all eigenvalues En,k are not simply replaced by scissored ones
E�

n,k. This was also verified for other materials, such as other
types of SiC polytypes, GaAs, as well as SiGe superlattices
and strained Si which both present a tetragonal symmetry.

III. RESULTS

A. Comparison with experiments

The linear electro-optic effect can be seen as a correction
to the dielectric tensor induced by the dc electric field E:

ε̃ij (ω) = εij (ω) +
∑

k

8π χ
(2)
ijk(−ω; ω,0)Ek, (14)

where Ek is the component of the dc field along k. Experi-
mentally, the quantity measured is an electro-optic coefficient
rijk(ω), defined in terms of the impermeability tensor ηij (ω)
and corresponding to the inverse of the permittivity εij (ω):

η̃ij (ω) = ηij (ω) + rijk(ω)Ek. (15)

It is linked to the second-order susceptibility by the relation

χ
(2)
ijk(−ω; ω,0) = − 1

8π
n2

i (ω)n2
j (ω)rijk(ω). (16)

1. Gallium arsenide

Previous LEO numerical results were published by Hughes
and Sipe [11] and applied to GaAs and GaP, yielding a
good agreement with experimental results. However, a decade
later, it was shown by the same authors (Ref. [12]) that the
scissors correction was incorrectly implemented in nonlinear
calculations. A new implementation was proposed for SHG
and the comparison among the two calculations for GaAs
shows that there is a difference close to a factor 2 at low
energy. It is expected that such a difference remains for LEO
in this energy range, since the susceptibilities for SHG and
LEO become equivalent at zero frequency [see Eq. (13)]. The
good agreement with experiments that was observed, despite
the old implementation of the scissors operator, is explained
by the fact that the comparison was performed with the full
clamped electro-optic coefficients rS

ijk measured experimen-
tally, whereas only the electronic contribution was included
in the calculation. While only considering the electronic part
may be a good approximation for SHG since the phonons
only become significant when the input frequency drops below
10−2 eV [29], it is not enough for LEO which is generated by
a static field, and therefore may contain a non-negligible ionic
part due to phonons.

The total electro-optic coefficient, also called the un-
clamped or stress-free LEO coefficient, is expressed as

rT
ijk = rS

ijk + rP
ijk = r

S,e
ijk + r

S,i
ijk + rP

ijk, (17)

where rS
ijk is called the clamped or strain-free LEO coefficient

and rP
ijk represent the inverse piezoelectric contribution. The

clamped coefficient itself can be separated into an electronic
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Σs = 0.84 eV
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Σs = 0.0 eV

Σs = 0.8 eV
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0
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| χ
(2

)
ij

k
(−

ω
;ω

, 0
)|

[p
m

/
V

] 3C-SiC
xyz

Σs = 0.00 eV

Σs = 0.84 eV

0 2 4 6 8 10 12
0

200

400

ω (eV)

2H-SiC
xzx

Σs = 0.0 eV

Σs = 0.8 eV

FIG. 2. Effect of the scissor on SHG and LEO susceptibilities, respectively, on the 1first and second row, applied on silicon carbide, cubic
(3C-SiC) on the left side and hexagonal (2H-SiC) on the right. The dashed red curves include the scissor (QPA), while the solid ones do not
(IPA).

and an ionic term and the ratio of these two contributions
is referred to as the Faust-Henry coefficient CFH = rS,i/rS,e.
Taking into account this relation between the electronic and
ionic contributions gives the following expression for the
electronic susceptibility χ (2),e

xyz (−ω; ω,0) in terms of the full
clamped LEO coefficient rS

xyz(ω):

χ (2),e
xyz (−ω; ω,0) = − [ε(ω)]2 rS

xyz(ω)

2(1 + CFH)
, (18)

where χ (2),e and rS are expressed in SI.
It allows for a comparison of our theoretical calculation

with experimental clamped coefficients compiled by Adachi
[30] from Refs. [31–39], for which we extracted the electronic
part using Eq. (18). The Faust-Henry coefficient, CFH = −0.51
[33], has been measured at ω = 1 eV and we have assumed
it is constant in the energy range presented in Fig. 3 (red
dots). We have also checked that if we take the ionic part
as constant and given by its value at ω = 1 eV, the results
are very similar (blue crosses). One notes the dispersion
between experimental values for a given frequency, as some
of the clamped coefficients were estimated by Adachi from
unclamped values. Nonetheless, we can see that we reach a
rather good agreement on the electronic part within the QPA
approximation, which lies in the range of the experimental data.

2. Gallium nitride

A few experimental studies were presented on a material
similar to GaAs, that is, gallium nitride [40–42]. One of the
main differences, however, between these two compounds is
the width of their band gap, which, while it is a direct band
gap in both cases, is much smaller for GaAs (∼1.4 eV) than for

GaN (∼3.4 eV). Here we study its hexagonal polytype with a
wurtzite structure, α-GaN. The first experimental studies were
restricted to thin GaN layers, showing important divergences. It
is only recently that high-quality materials, with a much larger
thickness were studied, allowing for accurate comparison with
theoretical calculations on bulk materials.

In Table II, we present the results for the electronic con-
tribution χ (2) in the independent-particle and quasiparticle ap-
proximation, showing the influence of the sScissors correction
for this compound and GaAs for comparison. Using the set
of Faust-Henry coefficients from Ref. [43], CFH

x = −3.46,

0 0.4 0.8 1.2
0

100

200

300

400

ω (eV)

|χ
(2

)
x

y
z
(−

ω
;ω

,0
)|

[p
m

/
V

]

FIG. 3. Electronic part of the LEO susceptibility for GaAs calcu-
lated in this work (green curve) and extracted from the experimental
results compiled in Ref. [30], with a constant Faust-Henry coefficient
(red dots) or a constant ionic contribution (blue crosses).
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TABLE II. Comparison with experimental values for excitation
below the band gap of the purely electronic LEO susceptibility
χ (2)(−ω; ω,0) in pm/V for GaN. The values for GaAs are also given
for comparison.

χ
(2)
ijk Expt. [42,44] IPA QPA

xxz (GaN) 5.0 6.3 4.6
zxx (GaN) 4.9 6.3 4.5
zzz (GaN) 7.9 13.7 9.0
xyz (GaAs) 200 455 193

CFH
y = −3.81, CFH

z = −2.31, we compare our values to the
latest experimental results obtained by Irmer et al. [42]. Note
that the components denoted d13, d24, and d33 in Ref. [42]
correspond to half of χ (2)

xxz, χ (2)
zxx , and χ (2)

zzz, respectively.
Compared to GaAs, the effect of the scissors is relatively

weak at low frequency: it always induces a decrease of the static
value, but this decrease is only a few pm/V for GaN, while for
GaAs it is close to 260 pm/V. This is linked to the fact that the
spectrum of a large band-gap material, such as GaN, is quite flat
in the low-energy range. On the contrary, for small band-gap
material such as GaAs, the first series of peaks appears at low
energy, leading to a fast increase of the susceptibility and a
much larger effect of the scissors correction. However, we note
that a better agreement with the experimental results can be
obtained when the scissors correction is taken into account.

It is interesting to note that in this energy range, i.e., below
the band gap, the knowledge of the Faust-Henry coefficients
seems to be enough to account for the ionic motion.

3. Cubic silicon carbide

For zinc-blende symmetry, the dielectric tensor defined
in Eq. (14) is diagonal, with εlr = εxx = εyy = εzz and,
as already stated in the previous section, χ (2)

xyz is the only
nonvanishing second-order component. By applying a dc field
along the z-Cartesian axis, the dielectric tensor acquires an
off-diagonal contribution:

ε̃
(Ez)
M (ω) =

⎛
⎜⎝

εlr (ω) εLEO(ω) 0

εLEO(ω) εlr (ω) 0

0 0 εlr (ω)

⎞
⎟⎠, (19)

which can be expressed as εLEO(ω) = 8πχ (2)
xyz(−ω; ω,0)Ez.

In Figs. 4 and 5, we show the real and imaginary parts of
the dielectric tensor and the induced component for 3C-SiC,
calculated in the QPA. We chose a dc field with an amplitude of
106 V cm−1, which corresponds to the value of the breakdown
field for 3C-SiC [45]. It is the maximum strength of the field
that can be used on a material before it breaks down and
becomes electrically conductive and is most likely destroyed.
The two components are displayed on different scales since
the field-induced one is considerably smaller and would be
indistinguishable otherwise, despite the fact that we used
the most intense field possible. The static value of the real
part of εLEO is small but nonzero. Since the field-induced
component εLEO represents the extra-diagonal part of the
tensor, its imaginary part, unlike the diagonal element, does
not have to be greater than zero.
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e[

ε (
ω
)]
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0.6

εLEO
1

FIG. 4. Real part of the components of the dielectric tensor
already present (solid green curve, scale on the left side) or induced
by a static field (dashed red curve, scale on the right side) of 1.0 ×
106 V cm−1 for cubic silicon carbide with a scissor of �s = 0.84 eV.

The electronic part of the electro-optic coefficient rS,e
xyz(ω),

also noted r
S,e
41 , is plotted in Fig. 6. The full clamped coefficient

rS
xyz(ω) is then plotted in the band-gap region, as obtained from

the electronic susceptibility using Eq. (18). The Faust-Henry
coefficient is given in Ref. [46], CFH

x = 0.35. The experimental
value rS

41(ω) = 2.7 ± 0.5 pm/V for ω = 2 eV was reported
in Ref. [47], while we find here rS

41(ω) = 1.4 pm/V for the
QPA calculation. However, this calculation does not include
local-field or excitonic effects. The influence of the local-field
contribution has not yet been investigated for LEO but it has
been for both the linear response and the second-harmonic
generation. It was shown to be negligible for the linear response
at ω = 2 eV and reduces only slightly the value of the SHG
susceptibility χ (2)

xyz(−2ω; ω,ω), from 38 to 33 pm/V. From
these considerations, we have, for now, neglected the local
fields and only included the excitonic effect using the α-kernel
approximation to solve the Dyson equation defined in Eq. (12).
It is a static approximation, depending on a single parameter
α, independent of the frequency ω. However, two values are
available for this parameter in the linear response. The static
dielectric constant is well reproduced in TDDFT by using
α = 0.3, while α = 0.5 gives a good absorption spectrum [20].

0 5 10 15 20
−10

0

10

20

30

ω (eV)

Im
[ε

(ω
)]

εlr
2

−0.2

0

0.2

0.4

0.6

0.8
εLEO
2

FIG. 5. Imaginary part of the components of the dielectric tensor
already present (solid green curve, scale on the left side) or induced
by a static field of 1.0 × 106 V cm−1 (dashed red curve, scale on the
right side) for 3C-SiC.
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FIG. 6. Electro-optic coefficient of cubic silicon carbide (3C-
SiC). Solid line (in green): electronic part of the QPA calculation.
Dashed line (in blue): full clamped coefficient in QPA. Dotted line (in
red): full clamped coefficient in the QPA plus α-kernel approximation
with the static value α = 0.3 and without local fields.

To compare with the experimental value measured for LEO
at 2 eV, we expect that the static value of α should be used.
The result of applying Eq. (12) is shown in Fig. 6 (red dotted
curve) for the low-frequency region since the static value
of α is used. As predicted, the amplitude of the spectrum
is slightly increased. For comparison, we have also used
α = 0.5, increasing the LEO coefficients even further. It is
also interesting to note that the effect of the α kernel on the
LEO susceptibility is quite intricate: while the susceptibility is
increased in the low-energy part of the spectrum, the amplitude
of the absorption peak, not displayed here, is decreased. These
effects are amplified when increasing the α parameter.

The value of the full clamped electro-optic coefficient at
ω = 2 eV is reported in Table III for different values of α. We
conclude that by using a quasiparticle correction together with
the α kernel, we reach a good agreement with the experimental
point. However, due to the lack of other experimental data, it
is not possible to get any conclusion on the best value for α.

B. Perpectives: Strained silicon

As previously stated, one way to generate a nonzero second-
order susceptibility for silicon is to apply a strain on the
material in order to break the centrosymmetry of the system.
This kind of numerical calculation was done in Refs. [4,48]
for second-harmonic generation and we have used here the
same unit cells to simulate the strain inside the material, thus
producing a LEO effect.

TABLE III. Effect of the value of α on the LEO susceptibility and
electro-optic coefficient at ω = 2 eV.

α (a.u.) χ (2)
xyz (pm/V) rS

41 (pm/V)

Expt. [47] 2.7 ± 0.5
QPA 0 24.8 1.371

QPA+αstatic 0.3 39.1 2.151

QPA+α 0.5 55.2 2.401

1These theoretical rS
41 coefficients were obtained using CFH = 0.35

[46].

FIG. 7. Scheme of the strain applied inside the tetragonal unit
cell: atom 7 is moved creating a compressive or tensile strain on the
yellow bonds between atoms 6-7 and 7-8.

In the simulation, the strain is generated by moving atoms
initially in their bulk positions, leading to an increase or
a decrease of the bond lengths, therefore creating a tensile
or compressive strain, respectively. In practice, the strain is
applied on bulk Si, for which we switch from the diamondlike
unit cell to the tetragonal cell shown in Fig. 7, where atom
7 is moved along the z axis for the uniaxial strain and in the
(y,z) plane for the biaxial strain, generating an elongation or
shortening of the bonds 6-7 and 7-8.

More details on the construction of the unit cells can be
found in Ref. [48]. Moreover, the different structures are
designated in a similar fashion, with the letters C and T used
to refer to a compressive or tensile strain, respectively, with a
percentage of elongation or compression of the bond compared
to the bulk value. For instance, the structure C1.8_T3.0 refers
to a compressive bond of 1.8% between atoms 6 and 7 and a
tensile bond of 3.0% between atoms 7 and 8. The z coordinate
of atoms 7 and 8 are given in Table IV for the structures
C1.8_T3.0 and C1.8_C3.0. Note that, if the strain is the same in
the two bonds, for instance C3.0_C3.0, then the pressure inside
the material is not zero but the system is still centrosymmetric:
the second-order susceptibility remains zero. If the strain in the
two bonds is opposite, for instance C3.0_T3.0, then the pressure
is compensated inside the material but χ (2) is nonzero.

TABLE IV. Atomic positions: z coordinate for atoms 7 and 8 and
lattice parameters.

C1.8_T3.0 C1.8_C3.0 Relaxed bulk

Atom 7 (Å) 7.999 7.999 8.079
Atom 8 (Å) 9.478 9.214 9.425
a (Å) 3.81 3.81 3.81
c (Å) 10.82 10.56 10.77
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FIG. 8. Linear electro-optic spectra for uniaxial strained silicon in different configurations using a scissor �s = 0.6 eV.

The spectra for different uniaxial strains are shown in
Fig. 8. The band gap of the different systems is strongly
decreased when the strain is applied: we get around 1 eV, using
�s = 0.6 eV, which is the scissors correction for bulk silicon
[49]. Two structures appear in the spectra: the first one, around
1 eV, is situated in the gap of the unstrained bulk silicon and is
ascribed to transitions between states induced by the strain. The
second one around 4.4 eV is located at the position of the ab-
sorption peak in the linear response for bulk Si. For the second
peak, the highest amplitude is reached for CT or TC strain, cor-
responding to a low pressure in the system. On the other hand,
a compressive strain seems to be more efficient to generate the
low-energy peak. Note also that the amplitude of the peak at
low energy is always smaller than the one at higher energy.

The spectra for the biaxial strained system are displayed
in Fig. 9. The letter Y is added to the denomination of the
different systems to indicate an additional strain along the y

axis. The component χ (2)
zzz (in Fig. 9) obtained for the biaxial

strain displays the same characteristics as for the uniaxial strain
in Fig. 8, while the new nonzero component χ (2)

yyy , induced by
the additional strain along Y, shows a much higher amplitude
for the first peak around 1 eV. From that, we can conclude that
a biaxial strain is more efficient to generate a high-intensity
response in the band-gap region, whereas a uniaxial stress
is enough if one is interested in the peak around 4.4 eV,
corresponding to the position of the peak in the linear response
spectrum of unstrained silicon.

a. Comparison with experiments. Although the way to apply
the strain on the material is different, we can still have a general

comparison with the LEO experiments in Ref. [3], where a
compressive strain is applied by a straining layer deposited on
top of silicon. An induced coefficient of 15 pm V−1 was found
at ω = 0.8 eV. It corresponds to what is found here for the
C0.7_C3.0_Y system, which is at 11 pm V−1.

b. Comparison with SHG. It was stressed in Ref. [48]
that the uniaxial strain was more efficient in the low-energy
range (around 1 eV) for SHG. It is shown in Fig. 8 that LEO
has an opposite behavior, the peak situated at high energy
being the most intense. We note that the effect of the strain
configuration is roughly the same for the two processes, the
C/C configuration being the most favorable for the low-energy
part of the spectrum while the C/T or T/C cells will enhance
the high-energy range. In the same way, for SHG and LEO,
applying a biaxial strain is by far more efficient than a uniaxial
strain to induce strong nonlinearities at low energy.

IV. CONCLUSION

In conclusion, in this work we have presented the derivation
of the ab initio formalism developed for the calculation of
the second-order susceptibility for the electro-optic effect. In
our formalism, we have included the quasiparticle effect at the
level of the scissors correction and the electron-hole interaction
using a simplified scalar approach. On the other hand, we have
not taken into account the local field effects, thus restricting us
to the study of materials not presenting strong inhomogeneities.

We have applied our method to the calculation of LEO
coefficients for the semiconductors GaAs, GaN, and SiC.
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FIG. 9. Linear electro-optic spectra for biaxial strained Si with a scissor �s = 0.6 eV. Solid line: component zzz; dot-dashed line: component
yyy.
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The ionic contribution has been included using Faust-Henry
coefficients and we have compared our results with the exper-
imental data presented in literature, finding a good agreement.
Finally, we have also presented numerical values for strained
silicon, showing that it is possible to induce large electro-optic
susceptibilities.

This work shows that a high accuracy can be reached for
the electronic part of the electro-optic coefficients for a large

range of frequencies, opening the way to the investigation of
more complex materials with technological interest.
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