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Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large
quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy
strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate
KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e.,
the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple
nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy
gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is
accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better
than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.
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I. INTRODUCTION

The main quantity in the density functional theory (DFT)
[1,2] is the ground-state electron density n(r). In the most
straightforward realization of DFT, i.e., orbital-free (OF) DFT,
the electron density is found by solving the Euler equation [2]

δTs[n]

δn(r)
+ vext(r) +

∫
dr′ n(r′)

|r − r′| + δEXC[n]

δn(r)
= μ, (1)

where Ts[n] is the noninteracting kinetic energy (KE) func-
tional, vext(r) is the external potential, EXC[n] is the exchange-
correlation (XC) energy functional, and μ is a Lagrange
multiplier fixed from the normalization condition

∫
dr n(r) =

N , with N being the total number of electrons. Both Ts[n]
and EXC[n] are unknown and they must be approximated.
Many valuable approximations, even at the semilocal level of
theory, have been developed for EXC [3,4]. On the other hand,
accurate approximations of Ts[n] are much harder to obtain
[5–8] because this term usually gives the dominant contribution
to the ground-state energy [2] and especially because of its
highly nonlocal nature [5,7,9–12].

This problem is bypassed in the Kohn-Sham (KS) [13]
formalism where the noninteracting KE is treated exactly
via the one-particle orbitals of an auxiliary system of non-
interacting particles. In this way, practical DFT calculations
in both quantum chemistry and material science are made
routinely possible [14,15]. However, one has to pay the cost
of the introduction of orbitals into the formalism, which
makes the method formally scale as O(N3). To overcome
this limit, various fast electronic structure approaches have
been developed, such as linear scaling O(N ) methods based
on density matrix approximations [16,17], as well as tight-
binding and semiempirical methods [18–20]. Anyway, these
methods are numerically quite cumbersome if compared to
the elegant OF-DFT approach. Thus, intensive investigations
are performed in the field of KE functional approximations

suitable to OF-DFT [5,6], and important OF-DFT large-scale
applications have been studied [21–29].

Kinetic energy functionals can be written in the general
form

Ts[n] =
∫

τ [n](r)dr, (2)

where τ is the KE density, which is formally defined as τ (r) =∑
i |∇φi(r)|2/2, with φi(r) being the ith occupied Kohn-Sham

orbital. For other (equivalent) formal definitions of τ , see for
example Refs. [30,31].

Approximations of τ (r) can be classified on a ladder of
complexity. The first rung contains functionals whose KE
density is only a function of the density τ (r) = τ (n(r)), such
as Thomas-Fermi (TF) [32,33]. The TF theory [32–34] can not
bind atoms into molecules [35], although it is asymptotically
correct for heavy atoms and molecules [36–40] and accounts
for the stability of bulk matter [36]. Nevertheless, for the
simple extension of the TF theory with the von Weizsäcker
kinetic energy [41], Lieb et al. have mathematically proven
the existence of binding for two very dissimilar atoms [42].
This fact encouraged the investigation of exact KE properties
[30,31,43–51], and the development of semilocal KE func-
tional approximations. The simplest of them are found on
the second rung of the ladder and are mainly represented
by the generalized gradient approximations (GGAs), of the
form τGGA(r) = τ (n(r),∇n(r)). Starting with von Weizsäcker
[41] and second-order gradient expansion [52], there are
many GGA functionals constructed from exact conditions
[53–57], model systems [58–61], and empirical considerations
[62–65]. Often these semilocal functionals display several
drawbacks and have limited applicability in the context OF-
DFT calculations [66]. However, some notable exceptions also
exist [6,66–72]. Among them we mention the VT84F GGA
of Ref. [72], and the vWGTF1 and vWGTF2 of Ref. [66],
that can be considered state-of-the-art semilocal functionals
for OF-DFT [6,66,68,69]. On the third rung of the ladder
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are the Laplacian-level meta-GGA functionals, with the form
τMGGA(r) = τ (n(r),∇n(r),∇2n(r)). The most known meta-
GGA is the fourth-order gradient expansion of the uniform
electron gas [73,74], that had been applied to metallic clusters
in the OF-DFT context [75,76]. Several meta-GGAs have been
recently developed [77–80] for various purposes, including
OF-DFT for solids [80]. The next rung includes the class
of u-meta-GGA functionals. Such approximations have been
recently proposed [81,82] and they use as additional ingredient
the Hartree potential u(r) = ∫

dr′n(r′)/|r − r′|, such that the
KE density has the form

τuMGGA(r) = τ (n(r),∇n(r),∇2n(r),u(r)). (3)

The u-meta-GGAs are promising tools for OF-DFT, but they
require further investigations before they can become practical
tools for these calculations.

Up to this level, the ladder of KE functionals contains
only semilocal approximations, i.e., functions that use as input
ingredients only the electron density at a given point in the
space and other quantities (typically spatial derivatives of the
density) computed at the same point. These approximations
are computationally very advantageous because of their local
nature, and are theoretically justified by the the concept of
nearsightedness of electrons, which means that the density n(r)
depends significantly only on the effective external potential at
nearby points [83]. Consequently, any local physical property
at point r can be described by the density behavior in a small
volume dV around this point. However, this principle does not
hold in general and, especially for KE [12,84], the nonlocal
effects can not be ruled out in all cases. The consequence is
that semilocal KE functionals face several limitations. In fact,
in view of overcoming this problem, the u-meta-GGA already
contains important nonlocality through the Hartree-potential
ingredient. The fundamental solution, anyway, is to consider
fully nonlocal KE approximations.

Nowadays, the most sophisticated KE functionals are the
fully nonlocal ones [85–96]. Most of them can be written in
the generic form

Ts[n] = T TF
s + T W

s + 〈n(r)α|w(r − r′,n(r),n(r′))|n(r′)β〉,
(4)

where T TF
s = 3

10 (3π2)2/3〈n(r)5/3〉, and T W
s = 〈 |∇n(r)|2

8n(r) 〉 are the
TF and von Weizsäcker functionals, respectively, α and β

are parameters, and the kernel w(r − r′,n(r),n(r′)) is chosen
such that Ts[n] recovers the exact linear response (LR) of
the noninteracting uniform electron gas without exchange
[85,86,97]:

F̂
(

δ2Ts[n]

δn(r)δn(r′)
|n0

)
= − 1

χLind
= π2

kF

F Lind(η), (5)

with

F Lind =
(

1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣
)−1

(6)

being the Lindhard function [5,98], η = q/(2kF ) being the
dimensionless momentum [q is the momentum and kF =
(3π2n0)1/3 is the Fermi wave vector of the jellium with the
constant density n0], and F̂(·) denotes the Fourier transform.
The most simple functionals having the form of Eq. (4) are the

ones with a density-independent kernel w(r − r′), which are
also the most attractive from the computational point of view.
After using the constraint of Eq. (5), they depend only on the
choice of the parameters α and β. The most known functionals
of this class are as follows:

(i) the Perrot functional [99], with α = β = 1;
(ii) the Wang-Teter (WT) functional [100], with α = β = 5

6 ;
(iii) the Smargiassi and Madden (SM) functional [101],

with α = β = 1
2 ;

(iv) the Wang-Govind-Carter (WGC) functional [97], with
α,β = 5

6 ±
√

5
6 .

In the context of orbital-free DFT, these KE functionals
are usually accurate for structural properties of simple metals
[97], systems for which the LR of jellium is an excellent
model. However, they may fail for other bulk solids, such as
semiconductors and insulators, where the jellium perturbed
by a small-amplitude, short-wavelength density wave is not a
relevant model.

To improve the description of semiconductors, the Huang-
Carter (HC) functional has been introduced [85]. The kernel
of this functional is more complicated, being dependent on the
density and the gradient of the density, as well as on empirical
parameters. This functional, as any nonlocal KE functional
[97], has a quasilinear scaling with system size (N ), behaving
as O(N ln(N )), but its prefactor may be quite large [87],
lowering considerably the overall computational efficiency.
Consequently, it is significantly slower than nonlocal KE
functionals with density-independent kernels.

Computationally efficient methods/functionals for semi-
conductors have been recently developed. Thus, the density-
decomposed WGCD KE functional [102], as well as the
enhanced von Weizsäcker–WGC (EvW-WGC) KE functional
[87] are both based on the WGC density-dependent kernel
[97]. These functionals, which also contain several empirical
parameters, are a hundred times faster than HC, providing
similar accuracy as the HC functional, for semiconductors.
Additionally, the EvW-WGC functional accurately describes
metal-insulator transitions [87,103]. However, we mention
that, in contrast to HC, the WGCD and EvW-WGC can not
be written in the form of Eq. (4).

In this paper, we introduce a nonlocal KE functional with a
density-independent kernel (KGAP) that recovers not Eq. (5)
but the LR of the jellium-with-gap model [61,104]. This is an
important generalization of the uniform electron gas, that has
already been used to have qualitative and quantitative insight
for semiconductors [104–108], to develop an XC kernel for the
optical properties of materials [109], and to construct accurate
functionals for the ground-state DFT [110–115]. Recently,
the KE gradient expansion of the jellium with gap has also
been derived and used in the construction of semilocal KE
functionals [61]. The KGAP functional fulfills important exact
properties and shows a better accuracy as well as a broader
applicability than other existing nonlocal functionals with a
density-independent kernel.

The paper is organized as follows. In Sec. II, we construct
the KGAP functional, and in Sec. IV we test it for equilibrium
lattice constants and bulk moduli of several bulk solids,
performing full OF-DFT calculations. Computational details
of these calculations are presented in Sec. III. Finally, in Sec. V
we summarize our results.
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II. THEORY

Let us consider a generalization of Eq. (4) of the form

Ts[n] = λT TF
s + μT W

s + 〈n(r)α|w(r − r′,Eg)|n(r′)β〉, (7)

where λ,μ ∈ [0,1] as well as α and β are positive parameters,
and w(r − r′,Eg) is a density-independent kernel chosen such
that the whole KE functional Ts[n] satisfies the LR of the
jellium-with-gap model [61,104]

F̂
(

δ2Ts[n]

δn(r)δn(r′)

∣∣∣∣
n0

)
= − 1

χGAP
= π2

kF

F GAP(η), (8)

with

1/F GAP = 1

2
− �

[
arctan

( 4η+4η2

�

) + arctan
( 4η−4η2

�

)]
8η

+
(

�2

128η3
+ 1

8η
− η

8

)
ln

(
�2 + (4η + 4η2)2

�2 + (4η − 4η2)2

)
,

(9)

where � = 2Eg/k2
F , with Eg being the gap. In momentum

space, the kernel w is

w(q) = −χ−1
GAP − λχ−1

TF − μχ−1
W

2αβn
α+β−2
0

= 5

9αβn
α+β−5/3
0

[F GAP(η) − λ − 3μη2], (10)

with χTF = −kF /π2, and χW = −kF /(3π2η2). Some details
on the derivation of Eq. (10) are given in Appendix A.

A careful analysis of F GAP is provided in Ref. [61]. The
most important features of F GAP are also summarized in the
Appendix B. Here, we use them, together with the procedure
proposed in Refs. [86,97], to find the low-q (at � → 0) and
high-q (at any �) limits of the functional of Eq. (7). Some
details of the derivation of these limits are given in Appendix
C. The mentioned limits are

lim
q→0

Ts[n] →
[
λ + 5

9αβ
(1 − λ)

]
T TF

s + T W
s

9
+ 5(1 − λ)

9αβ

(
α + β − 5

3

){
〈δn|τTF〉 +

(
α + β − 8

3

) 〈δ2n|τTF〉
2

}

+
(

1

9
− μ

)
(α + β − 1)

{
〈δn|τW 〉 + (α + β − 2)

〈δ2n|τW 〉
2

}
+ O(δ3n), (11)

lim
q→∞ Ts[n] → T W

s +
(

λ − 1

3αβ
− 5λ

9αβ

)
T TF

s − 3 + 5λ

9αβ

(
α + β − 5

3

){
〈δn|τTF〉 +

(
α + β − 8

3

) 〈δ2n|τTF〉
2

}

+ (1 − μ)(α + β − 1)

{
〈δn|τW 〉 + (α + β − 2)

〈δ2n|τW 〉
2

}
+ O(δ3n), (12)

where δn = n(r)/n0 − 1. Equation (11) is a generalization of
Eq. (17) of Ref. [97], recovering it for the case λ = μ = 1. In
this low-q limit the exact behavior is described by the second-
order gradient expansion (GE2) (i.e., T GE2

s = T TF
s + T W

s /9).
This is recovered whenever

λ = 1 and

(
1

9
− μ

)
(α + β − 1) = 0 (13)

or independently on the values of α and β, when λ = 1 and
μ = 1

9 . The only functional with the form of Eq. (7) that is
correct in the limit q → 0 is the SM functional (α = β = 1

2 ,
λ = 1, μ = 1, and Eg = 0). Note, anyway, that for q → 0 we
have T TF

s 
 T W
s , thus, any functional recovering correctly the

TF behavior is accurate.
For the case q → ∞, F GAP behaves as F Lind for any �, and

we recover Eq. (18) of Ref. [97] when λ = μ = 1. The exact
LR behavior [61] is

lim
q→∞ Ts[n] → T W

s − 3

5
T TF

s , (14)

which can be satisfied if

λ − 3 + 5λ

9αβ
= −3

5
,

(
α + β − 5

3

)
3 + 5λ

9αβ
= 0,

(1 − μ)(α + β − 1) = 0. (15)

Only the WGC functional (α,β = 5
6 ±

√
5

6 , λ = μ = 1, Eg =
0) is correct in the limit q → ∞. We also remark that, in this
limit, T W

s 
 T TF
s , therefore, in principle, any functional with

the form of Eq. (7) and with μ = 1 does not fail badly in this
limit.

Inspection of Eqs. (13) and (15) shows that it is not possible
to fix the parameters in order to satisfy exactly both the low-
and high-q limits. Nevertheless, the choice

λ = 1, μ = 1 (16)

allows to recover in both cases the correct leading term,
guaranteeing that Ts[n] performs reasonably well in both
limits, independently on α and β (α,β > 0). This choice
appears then to be the most physical for a kinetic functional.
Moreover, in the low-q limit the correct behavior is anyway
obtained fixing α = αLQ = 1

2 and β = βLQ = 1
2 ; similarly,

in the high-q limit this occurs for α = αHQ = 5
6 +

√
5

6 and

β = βHQ = 5
6 −

√
5

6 .
We can use these observations to propose a kinetic func-

tional based on Eq. (7). This is named KGAP and uses λ = 1
and μ = 1 as well as

αKGAP = αLQ + (αHQ − αLQ)
E2

g

b + E2
g

, (17)
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βKGAP = βLQ + (βHQ − βLQ)
E2

g

b + E2
g

, (18)

where b = 5 eV2 is a parameter that controls the connection
between the low- and high-q limits. Overall, the KGAP
functional satisfies the following conditions: (1) for metals
(Eg = 0), F GAP = F Lind and KGAP performs as the SM
functional, recovering GE2 for slowly varying densities; (2)
for semiconductors and insulators, KGAP is correct at q → 0
[see Eqs. (B1) and (B2)]. This important exact condition is very
difficult to be fulfilled, and even the HC functional constructed
for semiconductors can not satisfy it [85]; (3) for large-gap
insulators, KGAP correctly recovers the exact behavior of
Eq. (14).

III. COMPUTATIONAL DETAILS

The KGAP functional has been implemented in PROFESS

3.0 (Princeton orbital-free electronic structure software), a
plane-wave-based OF-DFT code [116]. We have then tested
it for the simulation of cubic-diamond Si, various III-V cubic
zinc-blende semiconductors (AlP, AlAs, AlSb, GaP, GaAs,
GaSb, InP, InAs, and InAs) [87], and several metals, namely,
Al, Mg, and Li, in their simple-cubic (sc), face-centered-cubic
(fcc), and body-centered-cubic (bcc) structures. The results
have been compared to those obtained with the SM and HC
functionals. In this work, we use the HC with optimized
parameters for semiconductors [85] (λ = 0.01177, and β =
0.7143). On the other hand, using the Perrot, WT, or WGC
functionals almost no well-converged result could be obtained
for the tested semiconductors.

For a better comparison with literature results, we have
used the Perdew and Zunger XC LDA parametrization [117]
for semiconductors and the Perdew–Burke–Ernzerhof (PBE)
[118] XC functional for metals, bulk-derived local pseudopo-
tentials (BLPSs), as in Refs. [66,87], and plane-wave basis ki-
netic energy cutoffs of 1600 eV. Equilibrium volumes and bulk
moduli have been calculated by expanding and compressing
the optimized lattice parameters by up to about 10% to obtain
30 energy-volume points and then fitting with the Murnaghans
equation of state [119].

IV. RESULTS

A. Energy gap

The KGAP functional, defined by Eqs. (7), (10), and (16)–
(18), depends on the energy gap Eg . Previous investigation
on exchange-correlation kernel indicated that Eg can be fixed
to the experimental fundamental gap of semiconductors and
insulators [109]. In this section we will verify if this can be
considered a good approximation also for the kinetic energy.

In Fig. 1, we report the errors on equilibrium volumes

(Å
3
/cell) and bulk moduli (GPa) for AlAs and GaSb, as a

function of the parameter Eg . We recall that setting Eg = 0,
the KGAP functional is equivalent to the SM functional,
which is not accurate for semiconductors, as shown in Fig. 1.
When Eg is increased, the errors decrease for both systems
and properties vanishing near the the vertical lines, which
indicate the experimental fundamental gaps of AlAs (2.23 eV)
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FIG. 1. Errors of KGAP OF-DFT calculations with respect to
the KS-DFT references (OFDFT-KSDFT) for equilibrium volumes

(Å
3
/cell, red lines), and for bulk modulus (GPa, green lines), as a

function of the energy-gap parameter Eg (in eV), for the AlAs and
GaSb semiconductors. The experimental fundamental band gaps are
shown with horizontal lines (Eg = 2.23 eV and 0.81 eV for AlAs and
GaSb, respectively).

and GaSb (0.81 eV). Similar results are obtained for other
semiconductors.

Next, in Fig. 2, we show the OF-DFT densities of Si and
GaAs along the [111] direction, computed with several KE
functionals. In both panels, all functionals, with the exception
of the Eg = 10 eV extreme case, agree well in most of the
space and more significant differences are obtained only at the
bonding region, in the range between 0.4 and 0.8. Here, the SM
functional (i.e., the KGAP withEg = 0) gives smaller densities
than the HC ones, with pronounced oscillatory features. On the
other hand, the KGAP functional with the exact experimental
band gap gives accurate densities, being of comparable accu-
racy as the HC ones. We also note that the results obtained
from KGAP with Eg = 10 eV are inaccurate because of an
unrealistic value of the Eg parameter. Nevertheless, even in
this extreme case, the densities are smooth and the calculations
are numerically stable. These facts are strong indications that
F GAP is a useful, well-behaved generalization of F Lind.

The results of Figs. 1 and 2 show that the experimental
fundamental gap is a good choice for the Eg parameter of
the KGAP functional. Hence, unless differently stated, in all
our calculations we fixed Eg to the experimental fundamental
gap value of the investigated material. Finally, we mention
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FIG. 2. Electron densities of Si (upper panel) and GaAs (lower
panel) along the [111] direction, obtained from OF-DFT calculations
with several KE functionals. The results for KGAP use the exact
experimental band gaps (Eg = 1.17 eV for Si and 1.52 eV for GaAs,
respectively), the vanishing band-gap case (Eg = 0) which represents
the SM functional, and the case Eg = 10 eV. For comparison, see also
Figs. 8 and 9 of Ref. [87].

that, due to its Eg dependence, the KGAP can be considered a
semiempirical functional.

B. Global assessment for semiconductors and metals

In Fig. 3 we show the total energy versus volume curves for
GaSb, GaAs, and GaP bulk solids, computed using various KE
functionals. We observe that for all three cases, the Perrot, WT,
and WGC functionals do not predict any binding. Moreover,
their failures are accentuated when the fundamental band
gap of the material Eg increases. For example, the Perrot
functional gives converged results for GaSb (Eb = 0.81 eV),
while it converges only within few points in the cases of GaAs
(Eb = 1.52 eV) and GaP (Eb = 2.35 eV). Also, the quality
of the WT and WGC results diminishes for GaAs and GaP in
comparison with GaSb. On the other hand, SM always yields
a bound result, but the potential energy curves are generally
rather flat and the minima are always moved towards too
large volumes. Finally, KGAP can consistently reproduce the
reference values with good accuracy. Nevertheless, inspection
of the figures shows that the KGAP functional yields a quite

−30.9

−30.8

−30.7

−30.6

−30.5

−30.4

−30.3

 35  40  45  50  55  60  65  70

E t
ot

al
(H

ar
tre

e)

V(Å3)

GaSb

−35.2

−35

−34.8

−34.6

−34.4

−34.2

−34

−33.8

 25  30  35  40  45  50  55

E t
ot

al
(H

ar
tre

e)

V(Å3)

GaAs

WT
WGC

Perrot
SM

KGAP
Exact

HC

−36.2

−36

−35.8

−35.6

−35.4

−35.2

−35

−34.8

 25  30  35  40  45  50

E t
ot

al
(H

ar
tre

e)

V(Å3)

GaP

FIG. 3. Total energy (in Hartree) versus the volume of the unit cell

(in Å
3
) computed using OF-DFT calculations with several nonlocal

functionals with density-independent kernels (Perrot [99], WT [100],
WGC [97], SM [101], and KGAP) for GaSb (upper panel), GaAs
(middle panel), and GaP (lower panel). The KS-DFT equilibrium
point (denoted as Exact) is shown with black big dot. The SM and
KGAP equilibrium points are also emphasized with big dots. For
comparison, we also show the results of the HC [85] state-of-the-art
nonlocal KE functional with a density-dependent kernel.

systematic overestimation of the total energies, giving a shift
about 0.5 Hartree towards higher energies. Such a behavior is
explained by Eq. (B6). This feature is anyway not a serious flaw
for the functional since absolute energies are rarely important,
whereas relative energies (such as in potential energy curves)
are well described by KGAP.
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TABLE I. Errors of OF-DFT with respect to the KS-DFT ref-

erences (OFDFT–KSDFT) for equilibrium volumes (Å
3
/cell), com-

puted from different KE functionals. The KS reference values (from
Refs. [66,87]) are reported in the last column, and the exact band-gap
energies (in eV) used for the KGAP functional are shown in the second
column. The last lines of every panel report the mean absolute errors
(MAE).

Eg (eV) SM KGAP HC KS

Semiconductors
Si 1.17 1.3 −0.3 0.0 19.781
GaP 2.35 2.8 0.9 0.8 37.646
GaAs 1.52 5.8 1.3 −0.6 40.634
GaSb 0.81 3.0 −1.0 0.7 52.488
AlP 2.50 2.5 −1.0 0.4 40.637
AlAs 2.23 4.8 0.2 −1.1 43.616
AlSb 1.69 2.3 −3.8 0.7 56.607
InP 1.42 2.7 0.7 0.1 46.040
InAs 0.42 4.9 3.0 −1.5 49.123
InSb 0.24 2.2 0.5 0.1 62.908
MAE 3.24 1.27 0.63

Metals
Al-sc 0 0.32 0.32 −0.52 19.937
Al-fcc 0 1.95 1.95 2.44 16.575
Al-bcc 0 0.97 0.97 1.94 17.025
Mg-sc 0 0.62 0.62 1.07 27.107
Mg-fcc 0 1.28 1.28 1.28 23.073
Mg-bcc 0 1.42 1.42 1.25 22.939
Li-sc 0 0.20 0.20 0.46 19.932
Li-fcc 0 0.22 0.22 0.52 19.308
Li-bcc 0 0.22 0.22 0.51 19.397
MAE 0.80 0.80 1.11

In Tables I and II, we report the results for equilibrium vol-
umes and bulk moduli of semiconductors and simple metals.
The mean absolute relative errors (MARE) and the standard
deviations (StdDev) are illustrated in Fig. 4.

As shown in Fig. 3, among the nonlocal KE functionals
with a density-independent kernel constructed from the LR of
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FIG. 4. Error statistics [mean absolute relative error (MARE) and
standard deviation (StdDev)] of the OF-DFT calculations performed
with SM [101], HC [85], and KGAP KE functionals. Full results are
reported in Tables I and II.

TABLE II. Errors of OF-DFT with respect to the KS-DFT refer-
ences (OFDFT–KSDFT) for bulk moduli (GPa), computed from dif-
ferent KE functionals. The KS reference values (from Refs. [66,87])
are reported in the last column, and the exact band-gap energies (in
eV) used for the KGAP functional are shown in the second column.
The last lines of every panel report the mean absolute errors (MAE).

Eg (eV) SM KGAP HC KS

Semiconductors
Si 1.17 −42 −14.2 0.9 98
GaP 2.35 −28 −2.8 −14 80
GaAs 1.52 −35 −12.8 −3 75
GaSb 0.81 −21 −6.4 −6 56
AlP 2.50 −32 −8.6 1 90
AlAs 2.23 −33 −10.8 4 80
AlSb 1.69 −23 2.3 −1 60
InP 1.42 −25 −14.1 5 73
InAs 0.42 −24 −17.7 4 65
InSb 0.24 −17 −13.1 1 50
MAE 27.91 10.28 4.00

Metals
Al-sc 0 4.1 4.1 1.8 57
Al-fcc 0 −13.8 −13.8 −28.0 77
Al-bcc 0 −5.3 −5.3 −24.4 70
Mg-sc 0 1.5 1.5 3.7 24
Mg-fcc 0 −0.3 −0.3 −3.2 38
Mg-bcc 0 1.2 1.2 −4.3 38
Li-sc 0 −0.1 −0.1 −0.6 17
Li-fcc 0 0.2 0.2 −0.2 17
Li-bcc 0 −0.5 −0.5 −0.9 16
MAE 3.00 3.00 7.64

the uniform electron gas, only the SM functional [101] shows
converged results for semiconductors and a meaningful energy
versus volume convex curve: for this reason, this is the only one
reported in this section. Anyway, the performance of the SM
functional is quite modest for semiconductors, giving a MARE
of 7.5% for equilibrium volumes and a MARE of 38.1% for
bulk moduli. On the other hand, accurate results are obtained
for metals with a MARE of 4.0% for equilibrium volumes and
MARE of 5.3% for bulk moduli. Nevertheless, we recall that
the WGC and WT KE functionals are in general better than
the SM functional, for simple metals [120].

An opposite trend is obtained for the HC functional which
has been developed for semiconductors [85]. The MAREs for
equilibrium volumes and bulk moduli are 1.4% and 6% for
semiconductors, whereas much bigger errors are found for
metals (5.7% and 13.2%, respectively). Thus, although the
HC is very accurate for semiconductors, it is worse than SM
for metals (improvement can be obtained employing dedicated
fitting parameters).

The KGAP functional is significantly better than the SM
functional for semiconductors. For equilibrium volumes, the
MARE is 2.7% and for bulk moduli the MARE is below
14.6%, thus not far from the HC. By construction, the KGAP
functional is equivalent to SM for metals, so that KGAP is
reasonably accurate for these systems. Note that for bulk
moduli the mean absolute error is about 10 GPa, being
comparable or even smaller than that due to the use of XC
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approximations in full KS-DFT calculations (see, for example,
Table I of Ref. [121]).

In the right panels of Fig. 4, we report the standard devia-
tions considering both semiconductors and metals, in order to
measure if a given functional describes different systems with
similar accuracy. The SM functional describes very differently
metals and semiconductors, so the StdDev is large, in particular
for the bulk modulus (StdDev = 17%). The HC functional has
similar StdDev as SM functional for the equilibrium volume,
whereas it is smaller for the bulk modulus (StdDev = 11%).
On the other hand, the KGAP functional gives significantly
reduced StdDev for both properties.

V. CONCLUSIONS

We have constructed a simple nonlocal KE functional
named KGAP, with a density-independent kernel found from
the linear response of the jellium-with-gap model. This func-
tional has the correct physics of metals, semiconductors, and
insulators in the q → 0 limit, being also very accurate for
small perturbations of the density with large wave vectors.
The KGAP functional performs well in the orbital-free DFT
context, converging very fast and being equally accurate for
metals (where by construction recovers the SM functional),
and semiconductors. To our knowledge, the KGAP functional
is the only one from the class of approximations with density-
independent kernels, that has a rather broad applicability in
solid-state physics.

In this first implementation, the KGAP functional has
been tested on simple bulk systems. In this case, the KGAP
semiempirical functional requires the a priori knowledge of
the Eg parameter which can be well approximated by the
fundamental band-gap energy of the system. For more general
applications (e.g., interfaces), the Eg parameter must be spa-
tially dependent, as shown for example in Refs. [61,115,122].
Such a KE functional will be more complicated than the simple
KGAP, but we expect it to be very accurate. We will address
this important issue in next work.

APPENDIX A

Let consider a functional J [n] of the form

J [n] =
∫ ∫

dr dr′ nα(r)w(r − r′)nβ(r′), (A1)

with α and β positive constants. Using the definition of
functional derivative∫

δJ

δn(r)
φ(r)dr = d

dε
J [n + εφ] |ε=0 , (A2)

we find

δJ

δn(r)
=

∫
dr′ w(r − r′){αn(r)α−1n(r′)β + βn(r′)αn(r)β−1}.

(A3)

Finally, we obtain

δ2J

δn(r)δn(r′)

∣∣∣∣
n=n0

= 2αβn
α+β−2
0 w(r − r′). (A4)

Equation (A4) combined with Eqs. (7) and (8) give Eq. (10).

APPENDIX B

For a given �, a series expansion of F GAP for η → 0 gives

F GAP −→ 3�2

16η2
+ 9

5
+ 3

175

175�2 − 192

�2
η2 + · · · . (B1)

Thus, for any system with � > 0 we have that F GAP ∝ �2η−2,
which is the most relevant physical result. We recall that for
semiconductors and insulators, the density response function
behaves as [85,123]

− 1

χ semicond(k)
−→
k→0

b

k2
, (B2)

with b � 0 being material dependent. Note that in the jellium-
with-gap model, b is a function of the band gap Eg .

On the other hand, if we first perform a series expansion for
� → 0, and then a series expansion for η → 0 we obtain

F GAP −→
[

1 + 1

3
η2 + 8

45
η4 + · · ·

]

+�

[
π

8

1

η
+ π

12
η + · · ·

]
+ · · · ,

F GAP = F Lind, when � = 0 (B3)

such that at small band gaps, F GAP is close to the Lindhard
function F Lind:

F GAP → F Lind + O(�) + · · · for � → 0. (B4)

In the limit of large wave vectors, i.e., for η → ∞, we have

F GAP → 3η2 − 3

5
+

(
− 24

175
+ 3

16
�2

)
1

η2
+ O

(
1

η4

)
. (B5)

Therefore, in this limit, F GAP always behaves as F Lind for � =
0. Moreover, for any � and η, the following inequality holds
(see Fig. 2 of Ref. [61]):

F GAP � F Lind. (B6)

APPENDIX C

Following Ref. [86], we can write Eq. (7) in momentum
space as

Ts[n] = 
∑

q

t̃ α,β
s (q),

t̃α,β
s (q) = λt̃TF(q) + μt̃W (q) + t̃

α,β

X (q),

t̃TF(q) = 3

10
(3π2)2/3n5/6

q n
5/6
−q ,

t̃W (q) = 1

2
n1/2

q q2n
1/2
−q . (C1)

Let us consider the partition (see also Ref. [86])

t̃
α,β

X (q) = −tI(q) − tII(q) − tIII(q), (C2)

205137-7



CONSTANTIN, FABIANO, AND DELLA SALA PHYSICAL REVIEW B 97, 205137 (2018)

where

tI(q) = 1

2αβn
α+β−2
0

nα
q

1

χGAP
n

β
−q,

tII(q) = λ
k2
F

6αβn
α+β−1
0

nα
qn

β
−q,

tIII(q) = μ
1

8αβn
α+β−1
0

nα
qq2n

β
−q. (C3)

Note that, for simplicity of notation, we use nα
qGn

β
−q instead

of the symmetric function 1
2 {nα

qGn
β
−q + n

β
qGnα

−q}.
From Appendix B, we find

lim
q→0

lim
�→0

1

χGAP
= − 1

3n0

(
k2
F + q2

12

)
,

lim
q→∞

1

χGAP
= 1

n0

(
k2
F

5
− q2

4

)
, (C4)

then, substituting Eq. (C4) into Eq. (C3), we find after some
algebra

lim
q→0

tI(q) = −1

λ
tII(q) − 1

9μ
tIII(q),

lim
q→0

t̃s(q) = λt̃TF(q) + μt̃W (q) + tII(q)

(
1

λ
− 1

)

+ tIII(q)

(
1

9μ
− 1

)
,

lim
q→∞ tI (q) = 3

5λ
tII(q) − 1

μ
tIII(q),

lim
q→∞ t̃s(q) = λt̃TF(q) + μt̃W (q) − tII(q)

(
3

5λ
+ 1

)

+ tIII(q)

(
1

μ
− 1

)
. (C5)

Performing the integrals, we find

TIII

= 
∑

q

μ
1

8αβn
α+β−1
0

nα
qq2n

β
−q

= μT W
s + μ(α + β − 1)

{
〈δn|tW 〉 + (α+β − 2)

2
〈δ2n|tW 〉

}
(C6)

and

TII = λ
5

9αβ
T TF

s + λ
5

9αβ

(
α + β − 5

3

)

×
{
〈δn|tTF〉 + 1

2

(
α + β − 8

3

)
〈δ2n|tTF〉

}
. (C7)

Combining Eqs. (C5)–(C7), we obtain Eqs. (11) and (12).
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