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We study surface states of topological crystalline insulators and superconductors protected by inversion
symmetry. These fall into the category of “higher-order” topological insulators and superconductors which possess
surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on
the surface. We provide a complete classification of inversion-protected higher-order topological insulators and
superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We
discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator
(class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or
three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges,
whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion,
such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their
location by applying inversion-symmetric perturbations such as magnetic field.
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I. INTRODUCTION

A topological insulator (TI) or superconductor (TSC) is
characterized by a gapped bulk spectrum with gapless states
on any given surface [1–4]. The stability of these gapless
surface states in a TI/TSC usually relies on the presence of
local symmetries which include time-reversal symmetry (TRS)
T , particle-hole symmetry (PHS) P , and their combination S
(usually called chiral symmetry). According to the presence
or absence of these symmetries, gapped Hamiltonians have
been classified into 10 different symmetry classes by Altland
and Zirnbauer (AZ) [5]. In any given dimension, 5 of these 10
classes correspond to a TI/TSC [6–8].

The concept of a TI/TSC can be extended to include
gapped phases protected by crystalline symmetries which map
different points in space to each other such as mirror, rotation,
or inversion symmetries. These phases are called topological
crystalline insulators (TCIs) [9,10] and, unlike conventional
TIs/TSCs, do not necessarily host gapless surface states on
any given surface. Instead, surface states are only expected on
surface planes which preserve the crystalline symmetry.

Recently, several works considered a class of TCIs which
instead host surface states localized to the edges (hinges) or cor-
ners of a physical sample [11–16]; these were dubbed higher-
order TIs/TSCs [11,12]. The surface of a kth-order TI/TSC in d

dimensions is gapped except for a (d − k)-dimensional region
which hosts gapless modes. For example, a second-order TI
in three dimensions hosts one-dimensional (1D) propagating
modes localized to the sample hinges on an otherwise gapped
two-dimensional (2D) surface. Notice that, in this terminology,
a first-order TI/TSC is just a conventional (strong) TI/TSC.
Examples of higher-order TIs/TSCs discussed in recent works
include three-dimensional (3D) insulators with hinge modes
protected by rotation [14–16], mirror symmetry [11,12,16,17],
or a combination of rotation and time reversal [11] as well as

2D insulators with corner modes protected by mirror symmetry
[12,13,17]. Physical realizations of higher-order TIs have
already been implemented in mechanical metamaterials [18],
electronic circuits [19], and microwave resonators [20] and
proposed to exist in several materials [11,21,22]. In addition,
some of the systems considered in earlier works where a mag-
netic field is applied to a 3D TI [23] or to 3He-B topological su-
perfluid [24] also fall in the category of higher-order TIs/TSCs.

In this work, we show that higher-order TIs/TSCs can be
protected by inversion symmetry alone and provide a complete
classification of inversion-protected kth-order TIs/TSCs in any
spatial dimension. The crucial difference between inversion
symmetry and the spatial symmetries considered in earlier
works [11,12,14,17] lies in the fact that inversion does not
leave any point on the surface invariant. This means that,
in contrast to other symmetries such as rotation [9,12] or
mirror [14,15], inversion-protected surface states cannot be
observed by considering some symmetry-invariant plane on the
surface. Instead, they can only be captured on particular sample
geometries by considering the surface as a whole. Furthermore,
inversion-protected surface states are not expected to be pinned
to a particular edge or corner, but instead can be localized at
any pair of corners or edges related to each other by inversion.
This particular property allows for the possibility of controlling
their position by applying inversion-preserving perturbations
such as magnetic field, as we will show later.

We will propose physical realizations for 3D second-order
TIs, 3D second- and third-order TSCs, and 2D second-
order TSCs. The recipe for constructing these higher-order
TIs/TSCs is to either apply a symmetry-breaking perturba-
tion to a given strong (first-order) TI/TSC or to combine
several strong TIs/TSCs such that the total strong index
vanishes (while preserving the symmetry). The latter approach
was used in constructing higher-order TIs in class AII in
Refs. [15,16] in which they were constructed by combining two
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time-reversal-invariant 3D TIs in the presence of some spatial
symmetries. The vanishing strong index implies that the
surface can be gapped out by adding a mass term. The
presence of spatial symmetries may, however, cast some global
constraints on this mass term, forcing it to vanish on some
subregion on the surface, e.g., a line or a set of points, on
which the Hamiltonian remains gapless. The resulting system
implements a higher-order TI/TSC. For example, an inversion-
protected second-order 3D TI with or without TRS can be
respectively constructed by combining two 3D strong TIs or
by applying a magnetic field to a 3D strong TI. In both cases,
the resulting system is trivial from the point of view of the 3D
topology due to the vanishing strong index, but implements a
second-order TI hosting propagating 1D hinge modes due to
inversion.

It should be noted that the dimensionality of surface states,
and consequently the “order” of a certain TCI, cannot be gen-
erally defined without specifying the geometry and boundary
conditions of the sample. For example, a 3D TCI protected
by mirror symmetry exhibits 2D gapless surface states on
any surface plane that is left invariant under mirror symmetry
[10,25]. On the other hand, placing the same TCI on a sphere
(with open boundary conditions in all directions) yields 1D
hinge modes propagating along the circle where the mirror
plane intersects the sphere [16]. This issue arises whenever the
spatial symmetry protecting the phase leaves some subregion
(point, line, etc.) on the surface invariant, as noted in Ref. [16]
which circumvented the difficulty by not referring explicitly to
order and studying all TCIs that host anomalous surface states
on some surface (dubbed “sTCI”). For inversion symmetry,
however, this issue is not relevant since its action does not
leave any point on the surface invariant (assuming the inversion
center is in the bulk of the sample). Hence, in this work we
will refer explicitly to the order k of a higher-order TI/TSC to
indicate the presence of (d − k)-dimensional surface states on
any compact inversion-symmetric surface.

We would like to stress that the higher-order TIs/TSCs
considered in this work are proper bulk topological phases
that can only be trivialized by going through a phase transition
closing the bulk gap. This means that the surface states
considered here are anomalous, i.e., they cannot exist in a
standalone lower-dimensional system. Our definition of the
phase is consistent with the definition given in Refs. [11,16],
but differs from the definition used in Refs. [12,17], where
phases related by a surface phase transition were considered
topologically distinct.

We would also like to point out the relation between
the phases considered here and the inversion-protected TCIs
obtained using K theory [26,27]. The K-theory approach
classifies phases as equivalence classes of bulk Hamiltonians
that can be (stably) deformed into each other without closing
the bulk gap or breaking the protecting symmetries. This means
that the inversion-protected higher-order TIs/TSCs considered
here are stable K-theory phases. On the other hand, it is
easy to show that some of the K-theory phases, e.g., those
corresponding to distinct atomic limits, do not possess any
types of surface states and can thus be considered trivial from
the perspective of surface states. Our classification scheme
considers two phases the same if they differ by the addition of a
phase with gapped surface even if they cannot be adiabatically

connected. Thus, the set of phases we obtain here is equivalent
to the K-theory phases [26,27] modulo those without surface
states.

This paper is structured as follows. We start by summarizing
the main argument used for understanding and classifying
inversion-protected higher-order TIs/TSCs in Sec. II. We show
that higher-order TIs/TSCs can generally be understood as
“globally irremovable surface topological defects,” which is
then used to derive a necessary condition for the existence
of inversion-protected kth-order TI/TSC in any given dimen-
sion. In Sec. III, we propose physical realizations for 3D
second-order TIs, 3D second- and third-order TSCs, and 2D
second-order TSCs. We discuss how these phases can be
constructed by combining conventional TIs/TSCs or applying
symmetry-breaking perturbations (e.g., magnetic field) to them
and provide the pattern of surface states expected in each
case. In Sec. IV, we make use of the layer construction
introduced in Refs. [28,29] to provide a full classification
of inversion-protected kth-order TI/TSC in any dimension
leading to Table I. Afterwards, we provide a minimal Dirac
model for the inversion-symmetric higher-order TIs/TSCs
in any dimension in Sec. V. We close by making several
concluding remarks regarding the stability of the phase against
symmetry-breaking perturbations and the generalization to
other spatial symmetries in Sec. VI.

II. SUMMARY OF THE ARGUMENT

We begin by summarizing our main argument for the
construction and complete classification of inversion-protected
higher-order TIs/TSCs (Fig. 1). Following Ref. [16], we think
of the surface states of higher-order TIs/TSCs as globally
irremovable topological defects. Recall that a topological
defect corresponds to a region in space, e.g., a domain wall,
where some parameter in the Hamiltonian is changed such that
it hosts zero energy states. Being topological means that the
zero energy states are robust against any symmetry-preserving
perturbations, but they can generally be moved freely. The
simplest example of a topological defect is the surface of a
strong TI/TSC which can be thought of as a domain wall
between the bulk topological Hamiltonian and the trivial
vacuum outside. More interesting examples include vortices
in 2D px + ipy superconductors, which host Majorana zero
modes [30,31], or dislocations in layered topological insul-
ators [32].

The local stability of a topological defect depends only
on the dimension of the defect (which is the difference between
the spatial dimension and the codimension of the defect) and

FIG. 1. Surface states of inversion-protected higher-order TI/TSC
in two and three dimensions.
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TABLE I. Classification of higher-order TIs/TSCs protected by inversion symmetry. The first column s indicates the Bott label for the
complex and real classes, second column the AZ (or Cartan) label, and the next three columns indicate the presence (±1) or absence (0)
of time-reversal and particle-hole symmetries distinguishing the cases of T 2,P2 = ±1 as well as the presence (1) or absence (0) of chiral
symmetry S = T P . The next eight columns give the classification of inversion-protected kth-order TI/TSC in d dimensions, which depends
only on δ = d − k + 1 (k = 1 corresponds to standard TIs/TSCs). The superscripts to the Z2 entries indicate the commutation properties of
the inversion symmetry with the local symmetries T , C, and S (when present) for which the nontrivial phase is possible. For class AIII, the
superscript σS = ± is defined as S−1IS = σSI. For real classes with a single antiunitary symmetry A = T ,P (AI, D, AII, C), the superscript
σA = ± is similarly defined as A−1IA = σAI. For real classes with both T and P symmetries (BDI, DIII, CII, CI), the two superscripts
σT ,P = ± are defined as T −1IT = σT I and P−1IP = σPI, respectively (σT always occurs first). The superscripts between brackets indicate
the commutation/anticommutation signatures for which a higher-order TI/TSC is only possible up to a certain value of the order k = km, with
km = 2,3 indicated as a subscript for the bracket.

Symmetry δ = d − k + 1

s AZ T 2 P2 S2 0 1 2 3 4 5 6 7

0 A 0 0 0 Z2 0 Z2 0 Z2 0 Z2 0
1 AIII 0 0 1 0 Z−

2 0 Z−
2 0 Z−

2 0 Z−
2

0 AI 1 0 0 Z+
2 0 0 0 Z

+,(−)3
2 0 Z

+,(−)2
2 Z+

2

1 BDI 1 1 1 Z
+−,(++)2
2 Z+−

2 0 0 0 Z
+−,(−+)3
2 0 Z

+−,(++,−+)2
2

2 D 0 1 0 Z
−,(+)2
2 Z−

2 Z−
2 0 0 0 Z

−,(+)3
2 0

3 DIII −1 1 1 0 Z
+−,(−−,−+)2
2 Z

+−,(−−)2
2 Z+−

2 0 0 0 Z
+−,(−+)3
2

4 AII −1 0 0 Z
+,(−)3
2 0 Z

+,(−)2
2 Z+

2 Z+
2 0 0 0

5 CII −1 −1 1 0 Z
+−,(−+)3
2 0 Z

+−,(++,−+)2
2 Z

+−,(++)2
2 Z+−

2 0 0
6 C 0 −1 0 0 0 Z

−,(+)3
2 0 Z

−,(+)2
2 Z−

2 Z−
2 0

7 CI 1 −1 1 0 0 0 Z
+−,(−+)3
2 0 Z

+−,(−−,−+)2
2 Z

+−,(−−)2
2 Z+−

2

the presence or absence of the local symmetries T , P , and
S [32]. Using this knowledge, one can immediately deduce
the classification of stable topological defects of a certain
dimension from the classification of strong TIs/TSCs in one di-
mension higher. The resulting classification table in any dimen-
sion for the 10 AZ classes was given in Ref. [32] and it is
identical to the classification table of TIs/TSCs [6–8] with
the dimension shifted by 1. Similar to the classification of
TIs/TSCs, topological defects of any given dimension are
stable in five symmetry classes, three of which can host an
arbitrary number of gapless states in the defect (Z defects),
while two can host at most one gapless state (Z2 defects).

In general, a topological defect on an otherwise gapped
compact surface can always be removed.1 For instance, on the
surface of a sphere, a line defect can always be deformed to a
point. Similarly, point defects have to occur in pairs which can
be annihilated by bringing them together. Thus, despite their
local stability, topological defects whose dimension is lower
than that of the surface are globally unstable. Spatial symme-
tries, however, can make it impossible to remove these defects
without breaking the symmetry. In the case of inversion, this
follows from the fact that no point on the surface is left invariant
by inversion, thus, an inversion-symmetric topological defect
can never be deformed to a point. For example, inversion forces
a pair of point defects to be located at two inversion-related
(antipodal) points which can never be brought together without
breaking inversion. Likewise, line defects will be confined to
inversion-symmetric curves which cannot be deformed to a
point.

1Whenever we refer to a compact surface in this work, we implicitly
assume it has genus 0, e.g., a sphere.

The correspondence between inversion-protected surface
states and topological defects can be established by noting that
inversion acts nonlocally on the surface by mapping different
points to each other, thus, the only symmetries which can
stabilize the gapless states locally are T , P , and S . As a
result, the surface states of an inversion-protected kth-order
topological insulator in a given symmetry class in d dimensions
are locally identical to (d − k)-dimensional topological defects
in the same class and are thus only stable if these defects
are stable.2 Using the notation of Ref. [32], which labels the
complex AZ classes by aZ2 variable sc = 0,1 for classes A and
AIII, respectively, and the real AZ classes by aZ8 variable sr =
0, . . . ,7 for classes AI, BDI, . . . , CI, respectively (cf. Table I),
this condition implies that an inversion-protected kth-order
TI/TSC is possible in d dimensions when sc − d + k − 1 = 0
mod 2 for complex classes or when sr − d + k − 1 = 0,1,2,4
mod 8 for real classes.

One specific feature of inversion-protected higher-order
TIs/TSCs is that they always have aZ2 classification regardless
of the underlying classification of the defects [this means that
the stability of (d − k)-dimensional topological defects is a
necessary but not sufficient condition for the existence of an
inversion-protected kth-order TI/TSC in d dimensions]. The
reason for this is that a pair of inversion-symmetric topological
defects (notice that an inversion-symmetric 0D defect consists
of two points) can each be deformed to a point without breaking

2A similar argument can be made for point-group symmetries other
than inversion. In that case, however, we need to be careful when we
consider points/lines which are left invariant by the symmetry, where
the spatial symmetry acts as an onsite unitary symmetry, possibly
leading to a different effective symmetry class at these invariant
regions.
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FIG. 2. The upper panel illustrates how two chiral modes can
be removed without breaking inversion symmetry. The lower panel
illustrates how a pair of 0D topological defects (each defects consists
of two zero modes at two inversion related points with opposite chi-
rality) can be removed by moving states of opposite chirality towards
each other and annihilating them. As a result, the classification of
inversion-protected higher-order TIs/TSCs is always Z2 regardless
of the classification of the defect.

inversion. This is achieved by ensuring they are related to each
other by inversion at every stage of the process. This process
is visually illustrated in Fig. 2 for zero- and one-dimensional
defects on the surface of a sphere. The upper panel illustrates
how two chiral modes living on a 1D curve on the surface, for
example in class A, can be removed while preserving inversion.
This process is equivalent to adding a 2D quantum Hall layer
on the upper hemisphere and its inverted copy on the lower one,
which should have no influence on the bulk phase (a similar
argument was used in Ref. [11]). The lower panel illustrates
how this can be done for Z-type 0D defects, for example,
in class BDI. In this case, the zero modes can be assigned
a definite chirality such that the total chirality over the whole
surface vanishes (in a 1D BDI wire, chirality distinguishes the
zero mode at the two end points such that the two modes at
the same end point do not hybridize but two modes belonging
to different end points can gap out by hybridizing). Defects
of opposite chirality can be brought together and annihilated
as shown in the figure. This is equivalent to adding a BDI
Majorana chain and its inverted copy to the surface.

The complete classification of inversion-protected kth-
order TI/TSC in a given symmetry class in a given dimension
d is given in Table I. It should be noted that only inversion-
protected phases (phases which are trivialized upon breaking
inversion) are considered. This automatically excludes stan-
dard (first-order) TIs/TSCs. As anticipated, the classification
depends only on the dimensionality of the surface states d − k

and is always either 0 or Z2. Recall that the action of T , P , S
(when present), and I on the Hamiltonian is given by

T −1H∗
kT = H−k, P−1H∗

kP = −H−k,

S−1HkS = −Hk, I−1HkI = H−k. (1)

The last piece of information needed to determine whether a
higher-order TIs/TSCs is possible in a given dimension and
symmetry class is the commutation/anticommutation relations
between inversion and the local symmetries T , P , and S .
This information is provided in Table I via the superscripts

for Z2, which indicate commutation (+) or anticommutation
(−) between inversion symmetry and T , P , or S (when
present), such that a higher-order TI/TSC is possible. When
the three symmetries T , P , or S are present, we specify the
commutation/anticommutation sign for time reversal followed
by that for particle hole (we leave out the sign for chiral
symmetry which is fixed by these two). The signs placed
between brackets indicate that for these commutation relations,
a kth-order TI/TSC is only possible up to a finite order km = 2
or 3, which is indicated by the corresponding subscript. For
example, the entry Z

+−,(−−)2
2 for class DIII when d − k +

1 = 2 mod 8 means that it is possible to have a kth-order
phase in d dimensions for any k when I commutes with
T and anticommutes P , but it is only possible for orders
k � 2 when I anticommutes with both T and P . For the
classification in Table I, inversion is assumed to square to
+1. The case of I2 = −1, which is relevant for example for
inversion symmetry for spinful electrons in strictly 2D systems,
is obtained by replacing I → iI. This replacement changes
the commutation/anticommutation sign for the antiunitary
symmetries T and P but leaves the sign for S unchanged. The
derivation of the commutation/anticommutation constraints
given in the table will be provided in Sec. IV by means of
a layer construction.

III. PHYSICAL REALIZATIONS

A. Inversion symmetry in Bogoliubov–de
Gennes Hamiltonians

Before discussing concrete physical realization for higher-
order TIs/TSCs protected by inversion, it is instructive to re-
view how inversion symmetry is implemented in Bogoliubov–
de Gennes (BdG) Hamiltonians, which describe superconduc-
tors. A BdG Hamiltonian is given by

H = 1

2

∑
k

(ψ†
k,ψ−k)Hk

(
ψk

ψ
†
−k

)
, Hk =

(
�k �k

�
†
k −�T

−k

)
,

(2)

with ψk = (ck,↑,ck,↓), �k representing the single-particle part
and �k the pairing or gap function. The Hamiltonian Hk

satisfies the PHS τxH∗
kτx = −H−k with τ representing the

Pauli matrices in the particle-hole (Nambu) space. For a
centrosymmetric superconductor, the single-particle part �k

is invariant under inversion I−1�kI = �−k. For the gap
function �k, the two possibilities �−k = ±�k are consistent
with inversion symmetry and they correspond to even- (+) or
odd- (−) parity superconductors. It should be noted that in
a simple two-band model without spin-orbit coupling, even
(odd) parity corresponds to a singlet (triplet) superconductor,
but this relation does not hold in more complicated models
[33–36]. Inversion symmetryI can be promoted to a symmetry
Iτ of the full BdG Hamiltonian by extending it to the Nambu
space as

Iτ =
{
I ⊗ τ0, : �−k = �k,

I ⊗ τz, : �−k = −�k,
(3)

which commutes (anticommutes) with PHS for even (odd)
parity when I2 = 1. We note that the form of inversion
symmetry (3) in odd-parity superconductors was previously
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derived in Refs. [33,34], which concluded that odd parity
is required to obtain a time-reversal-symmetric TSC in 3D.
According to Table I, most of the physically relevant cases
for higher-order TIs/TSCs, e.g., second- or third-order class
D in two or three dimensions, can only be achieved when
inversion anticommutes with PHS, which, as we have just seen,
corresponds to odd-parity superconductors.

B. Higher-order three-dimensional topological insulators

In this section, we consider examples of higher-order TIs in
3D. According to Table I, third-order TIs (classes A, AI, or AII)
are impossible in 3D, whereas second-order ones are possible
in 3D in the presence or absence of spinful TRS T 2 = −1
corresponding to classes AII or A, respectively. In class A,
this can be implemented by applying magnetic field (which
breaks time reversal but preserves inversion) to a time-reversal-
invariant 3D TI. To see this, let us consider the Hamiltonian
for a 3D TI:

H = (sin kxσx + sin kyσy + sin kzσz)τx

− (3 − λ − cos kx − cos ky − cos kz)σ0τz, λ = 1. (4)

Here, τ and σ denote the Pauli matrices in the orbital and
spin spaces, respectively (notice that we use τ here to indicate
orbital space unlike Secs. III A, III C, and III D, where it
indicates Nambu space). The Hamiltonian (4) is invariant under
inversion and time-reversal symmetries given, respectively,
by I = σ0τz and T = iσyτ0K (K here indicates complex
conjugation as usual).

Next, we place the system on some compact inversion-
symmetric manifold in 3D (open boundary conditions in all
directions). The derivation of the surface theory follows the
standard procedure [37] by introducing a spatial dependence in
the mass parameter λ → λt , where t denotes the distance from
the surface along the perpendicular direction. The surface is
defined such that λ0 = 0 and λt → ±1 quickly away from the
surface with the interior (exterior) of the sample corresponding
to +1 (−1). We next linearize the Hamiltonian by expanding
in small momenta around the 	 point and consider it close to
the surface

H = σ · kSτx + [−iσ · nrτx∂t + λtσ0τz]. (5)

Here, nr indicates the normal to the surface at point r ,
satisfying n−r = −nr and kS is the momentum parallel to the
surface (we assume the surface is a smooth manifold so that
the surface momentum at a given by point can be defined as a
vector in the tangent space at this point). We now look for the
eigenstates ψt,kS

of (5) that are localized close to the surface.
These are fixed by the requirements that they decay fast enough
away from the surface and are annihilated by the term between
square brackets in (5) to be

ψt,kS
= e

∫ t

0 dt ′λt PψkS
, P = 1

2 (1 − nr · σ τy). (6)

Here, P denotes the surface projection operator [16], which
can be simplified by rotating to a basis where it is diagonal
using

Ur = exp

(
i
π

4
τx nr · σ

)
⇒ U †

r PUr = 1

2
(1 − τz). (7)

We can now introduce the 4 × 2 matrix p = (0,σ0)T which
acts on a 4 × 4 matrix in the τ and σ space to pick up
the 2 × 2 block corresponding to the nonzero eigenvalue of
the rotated projector. The surface Hamiltonian can then be
explicitly obtained as

h = pT U †
r τxσ · kUrp = pT [iτ0(σ · kS)(n · σ )]p

= −(kS × n) · σ = −(k × n) · σ , (8)

where we used the fact that n × n = 0 in the last line to
replace the surface momentum kS by the total momentum
k = −i∇. The symmetry action on the surface can be likewise
deduced from its bulk action by the use of the projector (6) and
basis rotation (7). Time-reversal symmetry acts on the surface
degrees of freedom as

TS = pT U †
r iσyτ0KUrp = iσyK, (9)

which is the same as its action in the bulk. Inversion symmetry
acts by mapping r to −r and flipping the momentum k and is
represented on the surface by

IS = pT U †
r σ0τzU−rp = −σ0. (10)

We notice that, in principle, the symmetry action on the surface
could depend on the point r although this is not the case here.

We now allow for TRS-breaking mass terms that preserve
inversion, which can be achieved by applying a magnetic field.
The only possible such term has the form mr n · σ (this can be
obtained as the surface projection of the bulk mass term mrτy).
Inversion symmetry requires mr to satisfy m−r = −mr . As a
result, this mass term has to vanish as we go between any point
and its image under inversion along any curve, which in turn
implies the existence of a 1D inversion-symmetric curve on
which the mass term vanishes. Such 1D curve will host a chiral
gapless mode analogous to the edge modes in a quantum Hall
sample. The TRS-breaking mass term mr n · σ can be identified
as a Zeeman term resulting from applying a uniform magnetic
field, with mr being proportional to the field component normal
to the surface. The curve along which the mass term vanishes
corresponds to the region where the magnetic field is tangent
to the surface and thus can be gauged away. Such a phase was
studied before in Ref. [23].

In a cubic sample, the mass term is not expected to change
along any face of the cube, thus, we expect the chiral 1D mode
to propagate along the edges or “hinges” of the sample. When
the applied field is not parallel to any face, there are four pos-
sible configurations of inversion-symmetric edges where the
modes can propagate, shown in Fig. 3 (for each configuration,
the chiral mode can propagate in either direction), depending
on the direction of the applied field. The Hamiltonian is
expected to be gapless at edges where the field is tangent to
the surface so that it can be gauged away. This leads to the de-
pendence of the edge modes on the applied field schematically
illustrated in Fig. 3, where the four possible configurations
correspond to the values (sgn tan φxy, sgn tan φxz) = (±,±).
Here, φxy and φxz correspond to the angle between the x axis
and the projection of the field on the x-y plane and the x-z
plane, respectively.

A time-reversal-symmetric variant of this phase can be
achieved by “stacking” two 3D TIs together as was shown
in Refs. [16,38]. This can be seen by observing that a time-
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FIG. 3. Illustration of the pattern of surface states obtained by
applying a magnetic field to a cubic sample of a time-reversal-
symmetric 3D TI. The four possible patterns correspond to the four
possible values (sgn tan φxy, sgn tan φxz) = (±,±), where φxy and φxz

correspond to the angle between the x axis and the projection of the
field on the x-y and the x-z planes, respectively.

reversal-symmetric mass term can be added in a system
consisting of two copies of the surface Hamiltonian (8), which
is consistent with the fact that a 3D TI has a Z2 classification.
Such mass term has the form mr n · σμy (μ are the Pauli
matrices in the space of the two copies) and, in the presence of
inversion, it will necessarily satisfy m−r = −mr . As a result,
it will vanish along an inversion-symmetric 1D curve on the
surface, which will host a propagating helical gapless mode
similar to the edge of a quantum spin-Hall sample. This state
can be thought of as a sum of the broken TRS case considered
earlier and its time-reversed copy [15].

C. Higher-order three-dimensional topological superconductors

We now consider examples of higher-order TSCs in 3D.
According to Table I, it is possible to have higher-order TSCs
with 1D (second-order) or 0D (third-order) surface states in
triplet superconductors (P2 = +1) with (class DIII) or without
(class D) TRS. Our approach to constructing such phases
follows the previous section by either combining two 3D
TSCs such that their strong 3D topological invariant vanishes
or applying a TRS-breaking perturbation to a time-reversal-
symmetric TSC. In both cases, the surface can be gapped out
by writing a mass term which will be forced by inversion to
vanish on a line or a pair of points on the surface. Our starting
point is a topological superconductor of class DIII (spinful
TRS), which can be thought of as the superconducting analog
of a 3D strong TI but which differs in the fact that is has a Z,
rather than Z2, classification.

A topologically nontrivial state ν = ±1 in class DIII de-
scribes the B phase in liquid 3He [7,39] with �k = k · σ (iσy).
The low-energy effective Hamiltonian can be obtained from the
BdG Hamiltonian by substituting �k = k · σ (iσy) and �k = λ

leading to

Hξ = ξ (−kxσzτx − kyτy + kzσxτx) + λσ0τz, ξ = ±1.

(11)

Here, τ indicates the Pauli matrices in the Nambu space as
in Sec. III A and σ indicates, as usual, the spin Pauli matrices.
The Hamiltonian (11) is invariant under TRS T = σyτ0K, PHS
P = σ0τxK, and consequently the chiral symmetry S = σyτx .
It is also invariant under inversion symmetry implemented
as I = σ0τz, which commutes with T , but anticommutes
with P . This is consistent with Table I and also with the
discussion of Sec. III A about inversion symmetry in odd-parity
superconductors. Here, ξ = ±1 corresponds to phases with
different topological indices ν = ±1 and λ gives the negative
of the chemical potential at k = 0 (we assume that the single-
particle dispersion depends weakly on k close to k = 0).

We will find it more convenient to perform the basis rotation

Hξ → V †HξV , V = ei π
4 σy (τz−τ0). (12)

In the new basis, the Hamiltonian (11) becomes

Hξ = ξ k · σ τx + λσ0τz, (13)

which has the same form as (5). Inversion and TRS are
unaffected by the change of basis, while PHS and chiral
symmetry are given in the new basis by P = σyτyK and
S = σ0τy , respectively.

The surface theory is derived as in Sec. III B using the
rotation Ur defined in (7) followed by the projection

pξ =
{

(0,σ0)T : ξ = +,

(σ0,0)T : ξ = −,
(14)

leading to the surface Hamiltonian

hξ = −ξ (k × nr ) · σ . (15)

One major subtlety in this case is the following: whereas the
surface implementation of TRS and inversion, given respec-
tively by TS = σyK and IS = −ξσ0, is independent on r , the
implementation of PHS (and consequently chiral symmetry)
does depend on the point r on the surface. It is easier to see
this from the surface form of S which is

SS = pT
ξ U †

rSUrpξ = pT
ξ SU 2

r pξ = pT
ξ n · σ τzpξ = −ξn · σ .

(16)

It follows that PS = −ξn · σσyK. The requirement of anti-
commutation with SS forbids any possible mass term even
when we consider several copies of (15) with the same ξ ,
reflecting the Z classification.

Let us now combine two copies of the Hamiltonian (13) with
opposite topological index H+ ⊕ H− and consider the surface
theory, which we can write more explicitly by introducing the
Pauli matrices γ in the space of the two copies as

h = −(k × nr ) · σγz. (17)

Here, TRS, PHS, and inversion are implemented as TS = σyK,
PS = −γzn · σσyK, and I = −γz, respectively. Due to the
vanishing strong index, we can write a mass term mrγx which
is invariant under TRS and PHS. Inversion implies m−r =
−mr leading to a single helical 1D Majorana surface mode
propagating along the inversion-symmetric 1D curve where
the mass vanishes. This phase is the superconducting analog
of the doubled strong TI discussed in the previous section (also
in Refs. [15,16,38]) and it implements a second-order TSC
in class DIII. Similarly, we can implement a second-order
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FIG. 4. Schematic illustration of the construction of a third-order
TSC with two corner states in 3D. The first stage involves combining
two (first-order) 3D time-reversal-symmetric TSCs (class DIII) with
opposite topological index ν = ±1 leading to a second-order time-
reversal-symmetric TSC (class DIII) with a helical 1D mode. The
second stage involves applying a TRS-breaking perturbation leading
to a third-order TSC with broken TRS (class D) with a pair of
Majorana zero modes at two antipodal points.

TSC in class D by applying a magnetic field to the surface
Hamiltonian of a single copy of the DIII Hamiltonian (15). In
this case, the only mass term consistent with preserved PHS
and broken TRS is mr n · σ . This mass term is again required by
inversion symmetry to vanish along a 1D inversion-symmetric
curve which will host a propagating chiral Majorana mode.
This phase can be realized by applying a magnetic field to
topological superfluid 3He-B and it was previously studied in
Ref. [24].

We can now build a third-order TSC in 3D with corner
modes by applying a TRS-breaking perturbation to the time-
reversal-invariant second-order TSC constructed above. The
only possible PHS-preserving and TRS-breaking mass term
that can be added to gap out the 1D helical mode on the surface
is given by m̃rγy which satisfies m̃−r = −m̃r due to inversion.
This means that the 1D helical surface mode can be gapped
out except at two antipodal points where both surface mass
terms mr and m̃r have to vanish. These two points resemble
magnetic vortices (the two mass terms are similar to the real
and imaginary parts of a gap function) and they will host a
Majorana mode each, similar to the vortices in a px ± ipy

superconductor. The construction is schematically illustrated
in Fig. 4.

D. Higher-order two-dimensional topological superconductors

In analogy to the previous two sections, we can build
a second-order 2D TSC in class D (superconductor with
broken TRS) by applying a TRS-breaking perturbation to a
2D time-reversal-symmetric TSC (class DIII). Such a 2D TSC
can be implemented as a px (or py) wave superconductor,
as a superposition of a (px + ipy) superconductor and its
time-reversed copy [7], or by coupling the surface of a 3D
TI to a SC as shown by Fu and Kane [40]. Although these
implementations all correspond to the AZ class DIII, the first
two differ from the last one in the commutation relations
between inversion and particle-hole symmetries. Whereas a

p-wave superconductor is an odd-parity superconductor with
inversion anticommuting (commuting) with PHS for I2 = +1
(I2 = −1), a Fu-Kane superconductor is constructed by prox-
imity coupling to an s-wave superconductor where inversion
commutes (anticommutes) with PHS for I2 = +1 (I2 = −1).
Furthermore, both implementationsI2 = +1 andI2 = −1 are
possible in 2D. The former corresponds to 3D spatial inversion
restricted to the 2D plane (which also flips the normal to the
plane), which is relevant for example in a layered material with
an inversion center in the middle, while the latter represents
strictly 2D inversion which is equivalent to twofold rotation
about the axis perpendicular to the plane. According to Table I,
a second-order TSC in class D is only possible when inversion
anticommutes (commutes) with PHS for I2 = +1 (I2 = −1),
which means that it is only possible starting from a p-wave
superconductor either in a layered (quasi-2D) setting with 3D
inversion or in a strictly 2D system with C2 symmetry. The
two cases are related by the replacement I2D = iI3D, and in
the following we will only focus on the layered (quasi-2D)
setting.

We start with the Hamiltonian describing a superposition of
px + ipy and px − ipy superconductors. Using the gap func-
tion �(k) = −σzkx + iσ0ky , we can write this Hamiltonian as

H = −kxσzτx − kyτy + λτz. (18)

Here, we assume the k dependence of the single-particle
dispersion is weak close to 0 and replace it by a constant λ.
This Hamiltonian has PHS given by P = σ0τxK, TRS given
by T = σyτ0K, and inversion symmetry given by I = σ0τz.

The combination of TRS and PHS prohibits any mass term.
The only allowed TRS-breaking mass term is mrσyτx , which
satisfies m−r = −mr due to inversion. As a result, it has to
vanish at least twice at two inversion-related points on any
given compact inversion-symmetric edge. We can see this
more explicitly by writing the edge theory following the same
procedures as in Secs. III B and III C leading to

h = −kSσz, (19)

where kS is the momentum parallel to the edge. The edge im-
plementation of TRS, PHS and inversion is given respectively
by TS = σyK, PS = −nr · σσyK, and IS = σ0, where nr is
the normal to the edge in the 2D plane. The only possible
TRS-breaking mass term consistent with PHS is mr nr · σ

which we can identify as a Zeeman term for an in-plane
field. The field will fail to gap out the Hamiltonian at the two
points where it is tangent to the edge, which will host a single
Majorana mode each. Using this phase, we can also build a
second-order 2D TSC in classes BDI or DIII by adding it to
a time-reversed copy of itself with spinful or spinless TRS,
respectively.

IV. LAYER CONSTRUCTION

To establish the conditions in Table I, we make use of the
layer construction introduced in Refs. [28,29,41] to study topo-
logical phases protected by point-group symmetries. Before
presenting the general argument, we will first illustrate it using
the example of a second-order 3D TI with unbroken TRS (class
AII). Being a symmetry-protected topological phase means
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FIG. 5. Schematic illustration of the layer construction. Here, we
can construct a second-order TI in 3D starting with a 2D strong (first
order) TI and adjoining it with 2D layers and their images under
inversion. We choose here to do it such that the resulting system has
translational symmetry along the stacking direction, thus realizing
a 3D weak TI. Breaking the translational symmetry while keeping
inversion leads to a second-order TI with a single 1D mode which
lives on some inversion-symmetric curve on the surface.

that it becomes trivial in the absence of inversion symmetry.
Let us now consider an inversion-symmetric plane (i.e., one
that contains the inversion center), which divides the 3D
space into two regions mapped to each other under inversion.
Each region separately does not have inversion symmetry and
can, therefore, be adiabatically trivialized, implying that the
nontriviality of the phase is only encoded in the 2D plane.
To get 1D helical modes, this 2D plane needs to be a strong
TI, which in this case is just a quantum-spin Hall (QSH)
system. The same argument can be applied to construct a
third-order TI/TSC with 0D states, which is not possible in
class AII but, for instance, in the superconducting class D.
In this case, we have to consider a 2D layer which hosts
an inversion-protected second-order TSC rather than a strong
TSC. The reduction can then be performed further by splitting
the plane into two halves using a line through the inversion
center and considering a 1D strong TSC, e.g., an SSH chain,
on this line to obtain a 3D third-order TSC. This argument
can be generalized to relate any inversion-protected kth-order
TI/TSC in d dimensions to a (k − 1)th-order TI/TSC in (d − 1)
dimensions. The procedure can then be repeated to eventually
reduce it to a (d − k + 1)-dimensional strong TI/TSC.

The construction of the previous paragraph can also be
reversed. Starting with an inversion-symmetric 2D QSH layer,
we can build a second-order 3D TI in class AII by stacking 2D
layers. To ensure that inversion symmetry is preserved, each
step of the stacking consists of adjoining the system with a 2D
layer (which can either be QSH or trivial insulating layers) and
its copy under inversion. The procedure is shown schematically
in Fig. 5, where we assumed for simplicity that all layers are
QSHs which are arranged such that they are equally spaced
along the stacking direction. The resulting system is a 3D weak
TI, whose gapless surface states are protected by translation.
Breaking translation while preserving inversion will gap out
the surface states except for a single 1D helical edge mode
living on an inversion-symmetric curve.

In general, the construction of an inversion-protected kth-
order TI/TSC in d dimensions starts with a (d − k + 1)-
dimensional strong TI/TSC as a building block and succes-
sively adjoins it with (d − k + 1)-dimensional blocks and their
inverted copies. This suggests that the problem of classify-
ing inversion-protected higher-order TIs/TSCs reduces to the

problem of classifying inversion-symmetric strong (first-order)
TIs/TSCs, i.e., those which are compatible with inversion
symmetry. It should be noted, however, that not every lower-
dimensional TI/TSC compatible with the symmetry would
lead to a unique higher-dimensional higher-order TI/TSC. The
reason is that two lower-dimensional strong phases related by
the adjoining operation, which adds to the system a “layer” and
its copy under inversion, lead to the same higher-dimensional
phase and should thus be identified [28]. This means that any
kth-order TI/TSC which can be decomposed into a sum of two
systems related by inversion is trivial from the point of view of
higher-dimensional topology and cannot be used to build any
k′th-order phase (k′ > k) in a higher dimension.

The resulting classification criterion for higher-order
TI/TSC is the following: Inversion-protected kth-order
TIs/TSCs in d dimensions are in one-to-one correspon-
dence with nonseparable inversion-protected (k − 1)th-order
TIs/TSCs in d − 1 dimensions. A nonseparable TI/TSC is one
which cannot be written as a sum of a TI/TSC (with the same
local symmetries) and its copy under inversion.

The aforementioned criterion leads immediately to the
anticipated Z2 classification since the sum of two inversion-
symmetric strong TIs/TSCs can always be thought of as a sum
of a strong TI/TSC and its copy under inversion, which is
equivalent to a trivial system under the adjoining operation.
We can also easily understand some of the constraints in
Table I. For instance, inversion symmetry is always required
to anticommute with the chiral symmetry in order for higher-
order TIs to be possible in class AIII. This can be easily seen
from the fact that strong TIs in class AIII are classified with
an integer winding number in odd dimensions d given by
∼ ∫

tr S(H−1dH)2n+1 [8,27], which is even (odd) under inver-
sion if it anticommutes (commutes) with the chiral symmetry
S . Therefore, a nonvanishing winding number cannot be con-
sistent with an inversion symmetry which commutes with S .

We now describe how this criterion can be used to establish
the classification of Table I. This is done by first considering
all nonseparable inversion-symmetric strong TIs/TSCs. We
then construct higher-order TIs/TSCs order by order using a
dimensional raising map similar to the one used in Refs. [27,32]
as we will show below. The main subtlety in this construction
is that we need to ensure that the Hamiltonian is nonseparable
at every stage of the procedure. This problem can be simplified
by restricting ourselves to analyzing Dirac Hamiltonian (DH)
representatives of each phase. Such restriction is justified by the
observation that the Hamiltonian of any higher-order TI/TSC
can be deformed to a DH provided that we allow for the addition
or removal of bands which do not contribute to the surface
states at all and are thus “trivial” from the surface states point
of view. This means that, unlike the classification of strong
TIs/TSCs [8] and TCIs [27], we identify phases with the same
surface states even if they are not adiabatically deformable.

Let us now first review the DH description for strong
TIs/TSCs. The 10 AZ symmetry classes are divided into 2
complex and 8 real classes. The former includes classes which
do not possess any antiunitary symmetry relating the first
quantized Hamiltonian to its complex conjugate. These are
unitary (A) and chiral unitary (AIII) classes which are denoted
by the complex sc parameter sc = 0 and 1, respectively (cf.
Table I). Real classes include the remaining eight classes which
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are labeled by the parameter sr = 0, . . . ,7 as shown in Table I.
A TI/TSC with a Z classification is possible in the complex
classes whenever sc − d = 0 mod 2. The Z invariant is a
Chern number in even dimensions and a winding number in
odd dimensions. Examples include the SSH chain in 1D [42]
(sc = 1) and the quantum Hall effect in 2D [43,44] (sc = 0).
For real classes, there are four series of TIs/TSCs given by
sr − d = 0,1,2,4 mod 8. The series sr − d = 0 mod 8 has
a Z invariant given by a Chern number in even dimensions and
a winding number in odd dimensions. It includes topological
px ± ipy TSCs in 2D [7,30] (sr = 2) and class DIII time-
reversal-symmetric TSCs in 3D [7,39] (sr = 3). The first and
second descendant series are given, respectively, by sr − d =
1,2 mod 8 and they have Z2 classification. An example of the
former is the 3D time-reversal-symmetric TI [45,46] (sr = 4)
and of the latter is the quantum-spin Hall effect in 2D [47–49]
(sr = 4). Finally, there is the sr − d = 4 mod 8 series which
has a 2Z classification, meaning that the Chern number (for
even dimensions) or the winding number (for odd dimensions)
is always even [6–8].

The DH for a strong (first-order) TI/TSC can be written in
all cases as

H =
d∑

i=1

	i sin ki − M
(

d − 1 −
d∑

i=1

cos kd

)
. (20)

Here, 	i denotes a set of Dirac matrices satisfying the Clifford
algebra {	i,	j } = 2δij with i,j = 1, . . . ,2n + 1. Only n of
these 	 matrices are imaginary and we choose these to be the
even ones. The Dirac mass M always satisfies M2 = 1 and
{M,	i} = 0 for i = 1, . . . ,d.

The possible choices of the mass term M for different
symmetry classes in different dimensions are given in Table II,
where strong TIs/TSCs correspond to k = 1 (first order). The
antiunitary operator A is defined for k = 1 as

A(1) =
d∏

l=1
l odd

	l K, (21)

and it may commute (anticommute) with the DH (20) depend-
ing on the choice of the mass term M and the dimension,
representing TRS (PHS). The seventh column in Table II
provides all possible implementations of the inversion operator
I such that I2 = 1, [I,M] = 0, and {I,	i} = 0 for i =
1, . . . ,d. The next three columns indicate whether it commutes
(+) or anticommutes (−) with T , P , and S .

A DH for a kth-order TI/TSC in d can be constructed from
the DH for a (k − 1)th-order TI/TSC in d − 1 dimensions using
the recurrence relation

H(k) = H(k−1) ⊗ τz − M(k)(1 − cos kd ) + sin kdτx,

M(k) = M(k−1) ⊗ τz, (22)

with T , P , S , and I symmetries given by

T (k) = T (k−1) ⊗ τz, P (k) = P (k−1) ⊗ τ0,

S (k) = S (k−1) ⊗ τz, I (k) = I (k−1) ⊗ τz. (23)

Compared to H(k−1), the Hamiltonian H(k) admits an extra
symmetry-allowed mass term ∼ τy , which is odd under in-

version. Since no symmetry-allowed mass can be added to
H(1) (which describes a strong TI/TSC), we can conclude by
induction that H(k) has k − 1 symmetry-allowed mass terms
which are odd under inversion. These mass terms will gap out
the surface leaving a gapless (d − k)-dimensional region, thus
implementing a kth-order TI/TSC. This will be explained in
more detail in the next section.

To establish the classification in Table I, we need to check
whether the Hamiltonian H(k) is separable, i.e., whether it can
be written as the sum of two Hamiltonians (with the same local
symmetries) related to each other by inversion. Separability of
a Hamiltonian H is equivalent to the existence of a unitary
operator U with U 2 = 1 satisfying

[U,H] = [U,T ] = [U,P] = [U,S] = {U,I} = 0. (24)

If such operator exists, we can decompose the Hamiltonian
as

H = H+ + H−, H± = 1
2 (1 ± U )H. (25)

H± satisfy the same local symmetries (T , P , and S) as H. In
addition, they map to each other under inversion since

I−1H±I = H∓, (26)

which implies that H is separable. Conversely, if the Hamil-
tonian can be decomposed as in (25) with H± satisfying (26),
we can choose a basis where I is represented as σx so that H
has the form

H =
(
H+ 0
0 H−

)
. (27)

In this basis, T , P , and S will be diagonal since they preserve
H+ and H− separately. By defining U as σz, we see that it
will satisfy the commutation relations (24). We notice that
the existence an operator U satisfying (24) for the kth-order
Hamiltonian H(k) implies that H(k+1) constructed according
to (22) does not have any surface states. This is consistent
with our criterion which implies that the existence of a
nonseparable kth-order TI/TSC in d dimensions is a necessary
(and sufficient) condition for the existence of a (k + 1)th-order
TI/TSC in d + 1 dimensions, which will be impossible in this
case. One direct way to see this is by noticing that the existence
of the unitary operator U for some k implies the existence of
a mass term M(k+1) = U ⊗ τy satisfying

{M(k+1),H(k+1)} = [M(k+1),I] = 0,

[M(k+1),T ] = {M(k+1),P} = {M(k+1),S} = 0, (28)

which can be used to completely gap out the surface. Such
mass term can be used to construct similar mass terms M(k′)

for k′ > k using the relation M(k′+1) = M(k′) ⊗ τz, thus ruling
out the existence of any k′th-order TI/TSC for k′ > k.

The results of the analysis outlined above are summarized
in Table II. The DH Hamiltonian for a kth-order TI/TSC in
d dimensions is given by the same expression (20) with the
Dirac mass M and the symmetries T , P , S , and I provided
in columns 3 to 7. The operator A for k > 1 is given by

A(k) =
d∏

l=1
l odd

	l

d+k−1∏
m=d + 1
m even

	m K. (29)
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TABLE II. Data for the Dirac Hamiltonian description for higher-order TIs/TSCs. The first column gives the AZ label for the five series
of higher-order TIs/TSCs sc − δ = 0 mod 2 (complex) and sr − δ = 0,1,2,4 mod 8 (real), with δ given by δ = d − k + 1 as in Table I
and q given by q = d + k. The third column gives the Dirac mass for the Hamiltonian (20) consistent with the given symmetry class and
dimension. The next three columns provide the explicit implementation for time-reversal, particle-hole, and chiral symmetries, in terms of the
antiunitary operator A defined in (29). The seventh column gives all possible implementations of the inversion symmetry I such that it satisfies
I2 = 1, [I,M] = 0, and {I,	i} = 0 for i = 1, . . . ,q − 1. The last three columns give the commutation/anticommutation sign of inversion
with time-reversal, particle-hole, and chiral symmetries defined as σT = IT −1IT , σP = IP−1IP , and σS = IS−1IS , respectively. The last
two columns indicate the maximal order km such that a kth-order phase is possible for all k � km and the unitary separation matrix U defined
in (24) for k = km.

sc−δ mod 2 δ mod 2 M T P S I σT σP σS km U

0 	q 0 0 0 	q 0 0 0 ∞ 0
0

1 	q+1 0 0 	q 	q+1 0 0 − ∞ 0

sr −δ mod 8 δ mod 4 M T P S I σT σP σS km U

0 	q A 0 0 	q + 0 0 ∞ 0

1 	q+1 	qA A 	q 	q+1 + − − ∞ 0
0

2 	q 0 A 0 	q 0 − 0 ∞ 0

3 	q+1 A 	qA 	q 	q+1 + − − ∞ 0

0 	q+2 A 	qA 	q

	q+2 + − − ∞ 0

i	q	q+1	q+2 + + + 2 i	q−1	q−1

1 	q+1 0 A 0 	q+1 0 − 0 ∞ 0
1

2 	q+2 	qA A 	q

	q+2 + − − ∞ 0

i	q	q+1	q+2 − − − 2 i	q−1	q+1

3 	q+1 A 0 0 	q+1 + 0 0 ∞ 0

0 	q+2 0 	qA 0
	q+2 0 − 0 ∞ 0

i	q	q+1	q+2 0 + 0 2 i	q−1	q+1

1 	q+3 	q+1A A 	q+1

	q+3 + − − ∞ 0

i	q	q+1	q+3 − − + 2 i	q−1	q

i	q	q+2	q+3 − + − 2 i	q−1	q

i	q+1	q+2	q+3 − − + 2 i	q−1	q+2
2

2 	q+2 	qA 0 0
	q+2 + 0 0 ∞ 0

i	q	q+1	q+2 − 0 0 2 i	q−1	q

3 	q+3 A 	q+1A 	q+1

	q+3 + − − ∞ 0

i	q	q+1	q+3 + + + 2 i	q−1	q

i	q	q+2	q+3 − + − 2 i	q−1	q

i	q+1	q+2	q+3 + + + 2 i	q−1	q+2

0 i	q	q+1	q+2 	q	q+2A 0 0

i	q	q+1	q+2 + 0 0 ∞ 0

	q − 0 0 3 	q−2	q−1	q	q+1

	q+1 − 0 0 3 	q−2	q−1	q	q+1

	q+2 − 0 0 3 	q−2	q−1	q	q+2

1 i	q+1	q+2	q+3 	q	q+1	q+3A 	q+1	q+3A 	q

i	q+1	q+2	q+3 + − − ∞ 0

	q+1 − + − 3 	q−2	q−1	q+1	q+2

	q+2 − + − 3 	q−2	q−1	q+1	q+2

	q+3 − + − 3 	q−2	q−1	q+1	q+3
4

2 i	q	q+1	q+2 0 	q	q+2A 0

i	q	q+1	q+2 0 − 0 ∞ 0

	q 0 + 0 3 	q−2	q−1	q	q+1

	q+1 0 + 0 3 	q−2	q−1	q	q+1

	q+2 0 + 0 3 	q−2	q−1	q	q+2

3 i	q+1	q+2	q+3 	q+1	q+3A 	q	q+1	q+3A 	q

i	q+1	q+2	q+3 + − − ∞ 0

	q+1 − + − 3 	q−2	q−1	q+1	q+2

	q+2 − + − 3 	q−2	q−1	q+1	q+2

	q+3 − + − 3 	q−2	q−1	q+1	q+3
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The last column indicates the separability matrix U which can
be used to decompose the Hamiltonian as in (25) (0 indicates
that no such U exists for any order k) and the column before
indicates the minimum value of the order k = km for which
this is possible. Finite km means that a kth-order TI/TSC is
impossible whenever k > km. We notice that whenever the
inversion operator is the same as the mass term I = M, km

is infinite and the Hamiltonian for the kth-order TI/TSC is
nonseparable for any k. For any other choice of the inversion
operator, km is finite and the Hamiltonian is only nonseparable
for k < 2 or k < 3 depending on the symmetry class and
dimension (cf. Table II).

V. SURFACE THEORY FOR HIGHER-ORDER
TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS

IN ARBITRARY DIMENSION

In this section, we show that the minimal Dirac model
for kth-order TIs/TSCs provided in the previous section does
indeed possess (d − k)-dimensional surface states. The main
observation is that such a model admits k − 1 extra mass
terms, which are odd under inversion. The surface states can
be analyzed by expanding the Hamiltonian (20) around k = 0
and including all possible symmetry-allowed mass terms. For
a kth-order TI/TSC in d spatial dimensions with k � km, this
leads to

H = −
d∑

i=1

i	i∂i +
k−1∑
j=1

mj,r	d+j + λM

= −iγ · ∇ + mr · α + λM, (30)

where we introduced the vectors γ , m, and α defined as

γ = (	1, . . . ,	d ), α = (	d+1, . . . ,	d+k−1),

mr = (m1,r , . . . ,mk−1,r ). (31)

The explicit form of the Dirac mass and the symmetries
T , P , S , and I are provided in Table II. The inversion
operator anticommutes with all 	l for l = 1, . . . ,d + k − 1
and commutes with M. As a result, it enforces the condition
mj,−r = −mj,r .

In order to see the type of surface states corresponding to
the DH (30), we follow the same procedure of Sec. III and
take λ to change from 1 inside the sample to −1 outside it
across some inversion-symmetric surface. We then introduce
the projection operators

P± = 1
2 (1 ∓ i nr · γ M), P 2

± = P±, P+P− = 0, (32)

where nr is the normal to the surface at point r . Using the
projector P+, the surface Hamiltonian can be obtained as

h = γ̃ · kS + mr · α̃, γ̃ = P+γP+, α̃ = P+αP+, (33)

where kS is the momentum tangent to the surface. The projector
P+ ensures that the momentum perpendicular to the surface
drops out since

nr · γ̃ = P+nr · γP+ = P+P−nr · γ = 0, (34)

which follows from the relation P+nr · γ = nr · γP− (since
M anticommutes with nr · γ ).

We now consider an orthonormal basis {ei} in the (d − 1)-
dimensional plane tangent to the surface at a given point r , i.e.,
ei · ej = δij , and define γ̃i = ei · γ̃ . It is easy to see that

{γ̃i ,γ̃j } = 2δijP+, {γ̃i ,α̃l} = 0, {α̃l,α̃m} = 2δlmP+ (35)

for i,j = 1, . . . ,d − 1 and l,m = 1, . . . ,k − 1. This means
that γ̃i and α̃l form a Clifford algebra once projected to the
nonzero block of the projector P+ and the surface Hamiltonian
has the spectrum

εr,kS
= ±

√
k2

S + m2
r , (36)

which is gapless whenever all the masses mj,r vanish. Each of
them is odd under inversion mj,−r = −mj,r and thus vanishes
on a (d − 2)-dimensional region on the surface. It follows that
they simultaneously vanish at a (d − k)-dimensional region on
the surface, thus realizing a kth-order TI/TSC.

VI. DISCUSSION

We now make a few closing remarks regarding the stability
of the phases considered in this work, its relation to other
works, and the generalization of the analysis considered here
for other spatial symmetries.

First, we note that, similar to other gapped topological
phases of matter, the phases considered here are protected by
the bulk gap. This means that symmetry-preserving perturba-
tions that are small enough compared to the bulk gap will not
be able to destroy the surface states. They can, however, move
the surface states around as explained in the main text. We note
also that the surface states are stable against inversion-breaking
perturbations, e.g. disorder, provided they are small compared
to the maximal value of the surface gap. The reason for this
is that the local stability of the surface states relies only
on the local symmetries T , P , and S . Therefore, the only
way to remove them is by deforming them all the way to a
point, for example by bringing two corner states together or
deforming a 1D surface state to a point. In summary, bulk
gap provides protection against inversion-preserving perturba-
tions, while surface gap provides protection against inversion-
breaking perturbations. This conclusion is consistent with the
analysis of Ref. [12], which showed that the surface states
in mirror-protected second-order TIs/TSCs are stable against
mirror-symmetry-breaking perturbations. Note, however, that
perturbations that break the local symmetries T , P , and S can
generally destabilize the surface states even if they are very
small.

Second, we reiterate here that we do not provide a classi-
fication of all TCIs protected by inversion (such classification
was obtained using K theory in Refs. [26,27]). Instead, we
distinguish TCIs by their pattern of surface states. This means
that two distinct K-theory phases with the same pattern of
surface states are considered equivalent even if they are not
adiabatically deformable to each other. This could happen if
they differ by the addition of a nontrivial K-theory phase with
completely gapped surface. The existence of such phases can
be seen by considering the Dirac representatives provided in
Ref. [26], whose Hamiltonians have a very similar form to
Eq. (30), and noting that the surface can be gapped completely
whenever the number of possible symmetry-allowed mass
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terms at the surface equals or exceeds the spatial dimension.
Examples of such phases include obstructed atomic limits (or
frozen polarization phases) [38,50] in the absence of chiral or
particle-hole symmetry to stabilize potential edge or corner
modes, e.g., SSH chain with inversion. Whether all K-theory
TCIs without surface states correspond to atomic insulators is,
to our knowledge, an open question.

It follows from the previous discussion that the set of phases
obtained here is equivalent to the K-theory phases modulo
those without surface states. We stress that such phases exhaust
all possible surface states protected by inversion symmetry
in the 10 AZ symmetry classes in any dimension. Unlike
other spatial symmetries which leave some surface planes
invariant, e.g., mirror symmetry, inversion does not leave any
plane on the surface invariant. Therefore, inversion-protected
surface states can only be observed by considering a sample
with compact geometry and open boundary conditions in all
directions, where the surface is considered as a whole.

It is worth noting that the layer construction employed in
this work was originally employed to study topological phases
protected by spatial symmetries in the presence of interactions
[28,29]. Although the effect of interactions is beyond the scope
of this work, we can make the following remarks. Generally,
the addition of interactions can change the noninteracting
classification in two ways: (i) it can destabilize some of the
noninteracting phases leading to a completely gapped surface,
thereby reducing the noninteracting classification [51–57], or
(ii) it can introduce new phases that do not have any nonin-
teracting counterparts [58,59]. In conventional TIs/TSCs, it is
known that the classification reduction only happens for Z

phases with chiral symmetry, which are reduced to Zn (for
some even integer n) when symmetry-preserving interactions
are added. Such interactions introduce coupling between the
surface modes which gaps them out [60,61]. This suggests that
the phases considered here, which are all Z2 phases hosting a
single surface mode, are stable against interactions. We can
see this more directly by noting that the generator element of
the Z or Z2 factor (in the conventional TI/TSC classification)
used to build inversion-protected higher-order TIs/TSCs (cf.
Sec. IV) is generally stable to the addition of interactions. The
possibility of interaction-induced phases is more difficult to
investigate, but we expect the main conclusions of this work to
hold, mainly, that such interacting inversion-protected higher-

order phases are built by embedding inversion-symmetric
interacting phases (with no noninteracting counterparts) in
higher dimensions using the layer construction and that the
resulting classification is always Z2.

Finally, we note that the method we used here, which
combines a Dirac analysis with the layer construction used
in Refs. [28,29,62], can be readily generalized to any spatial
symmetry and it does not require the knowledge of the full K-
theory classification of the corresponding TCIs, which is only
known for order-two symmetry operations [27]. The method
employed here was recently used to classify all possible
surface states in TCIs with strong spin-orbit coupling (class
AII) protected by any crystalline symmetry in the 230 space
groups [16]. Although the extension of our results to include
other spatial symmetries, e.g., rotations, is straightforward, the
analysis is more complicated since special care is needed when
considering points, lines, or planes left invariant by the sym-
metry. In addition, the existence of surface states may, in many
cases, require unphysical commutation or anticommutation
relations between time-reversal or particle-hole symmetries
and spatial symmetries. A careful investigation would then be
required to separate the physically more relevant cases as we
have done in this work. Furthermore, higher-order TIs/TSCs
protected by symmetries with invariant planes (which includes
all other point-group symmetries apart from rotoinversion) can
usually be understood in a more conventional way by studying
possible surface states on these planes. Therefore, we choose
to leave this question to future works.

Note added. Recently, the author became aware of two
related studies: one considers second-order topological insu-
lators and superconductors protected by order-two symme-
tries [63] and the other discusses realizations of the two-
dimensional second-order topological superconductor consid-
ered in this work [64].
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