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Second-order topological insulators and superconductors with an order-two crystalline symmetry
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Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along
boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at
hinges of a three-dimensional crystal. A second-order topological phase can be induced by the presence of a bulk
crystalline symmetry. Building on Shiozaki and Sato’s complete classification of bulk crystalline phases with an
order-two crystalline symmetry [Phys. Rev. B 90, 165114 (2014)], such as mirror reflection, twofold rotation, or
inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The
classification also includes antiunitary symmetries and antisymmetries.
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I. INTRODUCTION

In comparison to conventional “first-order” topological
insulators and superconductors, which combine a gapped bulk
with topologically protected gapless boundary states [1–3],
the protected gapless states in a second-order topological
insulator or superconductor exist in one dimension lower
[4]: a two-dimensional second-order topological insulator
or superconductor has zero-energy states at corners of the
crystal [5–9] and a three-dimensional topological insulator
or superconductor has gapless modes along crystal edges
or “hinges” [4,9–14]. Second-order topological insulator and
superconductor phases have been proposed to exist in a (first-
order) topological insulator in three dimensions to which a
suitable time-reversal-breaking perturbation is applied [10,11],
in the superfluid 3He-B phase [12], or in crystals with rotation
or mirror symmetries [4–9,13,14].

A complete classification of first-order topological insu-
lators and superconductors has been developed, accounting
for the presence or absence of nonspatial symmetries [15–17].
The three fundamental nonspatial symmetry operations, time-
reversal T , particle-hole P , and C = PT , known as “chiral
symmetry,” define the ten Altland-Zirnbauer symmetry classes
[18], see Table I. For each Altland-Zirnbauer class, the number
and type of protected boundary states is uniquely rooted in the
topology of the bulk band structure, so that topological classi-
fications of gapped bulk band structure and gapless boundary
states are essentially identical, a feature known as “bulk-
boundary correspondence.” Complete classifications for all
Altland-Zirnbauer classes with additional spatial symmetries
exist only for the order-two crystalline symmetries [19], such as
mirror symmetry [20–22], order-two rotation symmetry, inver-
sion symmetry [23], and nonsymmorphic order-two crystalline
symmetries [24]. In parallel, a wealth of symmetry-based
indicators has been identified for topological phases with other
crystalline symmetries [25–36]. With crystalline symmetries,
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the bulk-boundary correspondence—i.e., the one-to-one cor-
respondence between bulk topology and the number and type
of gapless boundary states—only applies to boundaries that are
invariant with respect to the crystalline symmetry operation;
nonsymmetric boundaries are generically gapped.

In this paper, we consider the classification problem for
second-order topological insulators. We identify the type and
number of zero-energy states at corners or gapless modes
at hinges and relate this classification of corner states and
hinge modes to the topology of the bulk band structure. This
program is carried out for all ten Altland-Zirnbauer classes
with one additional order-two spatial symmetry, for which the
classification of the bulk band structure is known [19].

In contrast to first-order topological insulators, for which
the number and type of protected boundary states depends on
the topology of the bulk band structure only, the occurrence
of zero-energy corner states or gapless hinge modes may
also depend on properties of the boundary, i.e., on the lat-
tice termination. Correspondingly, the classification of corner
states and hinge modes of second-order topological insulators
and superconductors has to distinguish between termination-
dependent and termination-independent properties of corner
states and hinge modes. This naturally leads to an “intrinsic”
topological classification, in which crystals that differ by a
lattice termination only are considered topologically equiv-
alent, and an “extrinsic” classification, which accounts for
termination effects and defines topological equivalence with
respect to continuous transformations that preserve both bulk
and boundary gaps.

An example of an “extrinsic” second-order topological
insulator is a three-dimensional topological insulator (without
further crystalline symmetries) placed in a magnetic field in
a generic direction, such that there is a finite magnetic flux
through all surfaces [10,11], see Fig. 1. Such a crystal has chiral
modes along hinges that connect faces with an inward and
outward-pointing magnetic fluxes. The chiral modes are stable
with respect to continuous transformation of the Hamiltonian
that preserve bulk and surface gaps. They may be removed,
however, upon exchange coupling the crystal faces with an
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TABLE I. The ten Altland-Zirnbauer classes are defined accord-
ing to the presence or absence of time-reversal symmetry (T ), particle-
hole antisymmetry (P), and chiral antisymmetry (C). The superscript
± indicates the square of the time-reversal or particle-hole conjugation
operation. The presence of chiral antisymmetry C = PT is automatic
for Altland-Zirnbauer classes with both time-reversal symmetry and
particle-hole antisymmetry. The third and fourth column give the
classification of stable zero-energy states at generic corners of two-
dimensional crystals (d = 2) or hinges of three-dimensional crystals
(d = 3). This is an “extrinsic” classification, in the sense that the
number of corner states or hinge modes at a generic corner or hinge
is not a bulk property and can be changed by a change of the lattice
termination. Its topological protection is with respect to all continuous
transformations that preserve both bulk and boundary gaps.

Cartan (anti)symmetries d = 2 d = 3

A - 0 Z
AIII C Z 0

AI T + 0 0
BDI T +, P+ Z 0
D P+ Z2 Z
DIII T −, P+ Z2 Z2

AII T − 0 Z2

CII T −, P− 2Z 0
C P− 0 2Z
CI T +, P− 0 0

inward magnetic flux to ferromagnetic insulating films, with
a magnetization direction chosen such that the exchange field
reverses the effect of the applied magnetic field.

An “intrinsic” second-order topological insulator or su-
perconductor, for which the presence of corner or hinge
states does not depend on the lattice termination, requires the
presence of additional crystalline symmetries. Examples that
have been identified in the literature include mirror-reflection
symmetry [4,9], rotation symmetries [4,13,14], or more gen-
eral point group symmetries [6,7,36]. In these cases, corner
states continue to exist under continuous transformations of
the Hamiltonian that close the boundary gap, provided the bulk

(a) (b)

FIG. 1. Schematic picture of an “extrinsic” second-order topolog-
ical insulator consisting of a three-dimensional topological insulator
placed in a magnetic field in a generic direction, as proposed by Sitte
et al. [10] (a). Each surface has a finite flux and there are chiral modes
along hinges that touch two faces with opposite sign of the magnetic
flux. The gapless hinge modes may be removed by exchange-
coupling some of the crystal faces to a two-dimensional ferromagnetic
insulator (b).

(a) (b)

=

FIG. 2. (a) Schematic picture of a generic corner of a two-
dimensional crystal. A generic corner may host a protected zero-
energy state if and only if the corresponding Altland-Zirnbauer class
in d − 1 dimensions is nontrivial. (b) Zero-energy corner states in
a generic corner can always be moved to a different corner by a
suitable change of the lattice termination. For the example shown
here, a one-dimensional topological insulator or superconductor with
two end states is “glued” to one of the crystal faces adjacent to the
top corner, such that its end state and the original zero-energy corner
state mutually gap out. As a result, the corner state has moved to the
corner on the left.

gap is not closed and the lattice termination remains compatible
with the crystalline symmetry.

In the presence of a crystalline symmetry, a classification of
corner states and hinge modes must also distinguish between
corners and hinges that are themselves invariant with respect
to the crystalline symmetry, and generic nonsymmetric cor-
ners or hinges. The classification of zero-energy states and
gapless modes at a generic, nonsymmetric corner or hinge
[schematically shown in Fig. 2(a)] equals that of a generic
codimension-one defect, which is the same as the regular
classification of topological phases but with the dimension
shifted by one [37], see Table I. This simple result also follows
from the observation that the absence of gapless boundary
states implies that the bulk is essentially topologically trivial,
so that a corner or hinge may be seen as a junction between two
“stand-alone” topological edges or surfaces [9]. Note that this
classification of corner states or hinge modes at a generic corner
or hinge is an extrinsic classification: any corner state or hinge
mode at a generic corner or hinge can be moved away from that
corner or hinge by a suitable change of the crystal boundary,
without affecting the bulk, see Fig. 2(b) [4,36]. Hence the
intrinsic classification of corner states or hinge modes at a
generic corner or hinge is always trivial.

A classification of zero-energy states and gapless modes at
mirror-symmetric corners and hinges is given in Sec. IV. In ad-
dition to providing the intrinsic (termination-independent) and
extrinsic (termination-dependent) classifications, we consider
the effect of perturbations that locally break mirror symmetry at
corners and hinges, to account for the experimental reality that
corners and hinges are more prone to defects and disorder than
crystal faces. The intrinsic classification of zero-energy states
and gapless modes at mirror-symmetric corners and hinges
coincides with the classification of bulk topological crystalline
phases in two and three dimensions [19–22], respectively, after
removal of the first-order topological phases. This “corner-
to-bulk correspondence” (or “hinge-to-bulk correspondence,
for three-dimensional topological crystalline insulators and
superconductors) not only confirms that every topological
class of the bulk band structure is associated with a unique
configuration of zero-energy corner states or gapless hinge
modes, but also that for every possible configuration of mirror-
symmetric zero-energy corner states or hinge modes, there is
a topological crystalline phase that produces it.
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With rotation or inversion symmetry there are no symmetry-
invariant corners or hinges for two- and three-dimensional
crystals, respectively. Hence each corner or hinge in a crystal
with rotation symmetry or inversion symmetry is a “generic”
corner or hinge, described by the extrinsic classification of
Table I. Zero-energy corner states or gapless hinge modes at
a given corner or hinge can always be removed by changing
the lattice termination. Nevertheless, as we show in Sec. V,
the role of the bulk crystalline symmetry, combined with the
requirement that lattice termination is symmetry-compatible,
is to impose a Z2 sum rule to the total number of corner or
hinge states, which is an odd multiple of two for the nontrivial
phases and an even multiple of two otherwise. (For Altland-
Zirnbauer classes with a time-reversal or particle-hole symme-
try squaring to −1 one should count pairs of corner states/hinge
modes.)

In Refs. [4,9], the construction of a nontrivial intrinsic
second-order phase out of a nontrivial bulk mirror-reflection-
symmetric phase made use of the bulk-boundary correspon-
dence, according to which a nontrivial topological crystalline
bulk phase implies a gapless boundary mode at a boundary
that is left invariant under mirror reflection. The existence of
protected corner states or hinge modes was then concluded
upon noting that mass terms that are generated upon tilt-
ing the boundary away from the mirror-invariant direction
have a different sign at mirror-related boundaries, such that
a corner separating mirror-related boundaries represents a
domain wall and, hence, hosts a zero-energy state or a gap-
less hinge mode. The same procedure can be applied to a
three-dimensional crystal with a twofold rotation symmetry,
because these, too, allow for symmetry-invariant faces. It fails,
however, for a two-dimensional crystal with twofold rota-
tion symmetry or a three-dimensional crystal with inversion
symmetry, because these have no symmetry-invariant surface.
To derive the existence of a second-order topological phase
with zero-energy corner states in a two-dimensional crystal
with twofold rotation symmetry or of gapless hinge modes
in a three-dimensional crystal with inversion symmetry, we
employ a dimensional reduction scheme, making use of the
existence of symmetry-invariant faces for crystals with the
same order-two crystalline symmetry in one dimension higher.
Our results are consistent with nontrivial second-order topo-
logical phases predicted recently by Fang and Fu [14] and by
Khalaf et al. [36] for three-dimensional inversion-symmetric
crystals.

This article is organized as follows. In Sec. II, we introduce
the relevant symmetry classes for an order-two crystalline
symmetry coexisting with time-reversal symmetry, particle-
hole symmetry, or chiral symmetry and we review Shiozaki
and Sato’s classification of the crystalline bulk phases. The
dimensional reduction map is outlined in Sec. III. A clas-
sification of mirror-symmetric corners and hinges follows
in Sec. IV; Sec. V discusses twofold rotation and inversion
symmetry. A few representative examples of tight-binding
models realizing second-order topological phases are dis-
cussed in Sec. VI. We conclude in Sec. VII. The appendices
contain a detailed discussion of the dimensional reduction
scheme as well as a brief discussion of all relevant crys-
talline symmetry classes that are not considered in the main
text.

II. SHIOZAKI-SATO SYMMETRY CLASSES

We consider a Hamiltonian Hd (k) in d dimensions, with
k = (k1,k2, . . . ,kd ). In addition to the crystalline order-two
symmetry, to be discussed in detail below, the Hamiltonian
Hd possibly satisfies a combination of time-reversal (T )
symmetry, particle-hole (P) antisymmetry, and/or chiral (C)
antisymmetries.1 These take the form [38]

Hd (k) = U
†
T Hd (−k)∗UT ,

Hd (k) = −U
†
PHd (−k)∗UP , (1)

Hd (k) = −U
†
CHd (k)UC,

where UT , UP , and UC are k-independent unitary matrices. If
time-reversal symmetry and particle-hole symmetry are both
present, UC = UPU ∗

T . Further, the unitary matrices UT , UP ,
and UC satisfy UT U ∗

T = T 2 and UPU ∗
P = P2 and we require

that U 2
C = C2 = 1 and UPU ∗

T = T 2P2UT U ∗
P . Throughout we

use the symbols T ± and P± to refer to a time-reversal
symmetry or particle-hole antisymmetry squaring to one (+)
or minus one (−). The ten Altland-Zirnbauer classes defined
by the presence or absence of three nonspatial symmetry
operations T ,P , and C are separated in two “complex” classes,
which do not have antiunitary symmetries or antisymmetries,
and eight “real” classes, which have at least one antiunitary
symmetry or antisymmetry. Following common practice in the
field, we use Cartan labels to refer to the ten Altland-Zirnbauer
symmetry classes, see Table I.

In addition to the nonspatial (anti)symmetries T , P , and
C, the Hamiltonian Hd (k) satisfies an order-two crystalline
symmetry or antisymmetry. The “spatial type” of the symmetry
operation is determined by number d‖ of spatial degrees of
freedom that are inverted: Mirror reflections have d‖ = 1,
twofold rotations have d‖ = 2, and inversion has d‖ = 3. (In
two dimensions, the spatial operations of inversion and twofold
rotation are formally identical. We will refer to this operation
as a twofold rotation.) We will use the symbol S to denote
a general unitary order-two crystalline symmetry, replacing
S by M, R, or I for considerations that apply specifically
to mirror reflection, twofold rotation, or inversion symmetry,
respectively. For a general antiunitary symmetry, antiunitary
antisymmetry, and unitary antisymmetry we use the composite
symbols T ±S , P±S and CS, respectively, again replacing S
by M, R, I when appropriate. Without loss of generality,
we may require that the symmetry operation S squares to
one.2 Following Refs. [19–21], to further characterize the
(anti)symmetry operation, we specify the signs ηT ,P,C indi-
cating whether it commutes (η = +) or anticommutes (η = −)
with time-reversal T , particle-hole conjugationP , or the chiral
operation C.

1Although P and and C are commonly referred to as “particle-
hole symmetry” and “chiral symmetry,” we will refer to these as
antisymmetries, because they connect H to −H , see Eq. (1).

2For spin-1/2 electrons, often spatial symmetries squaring to −1 are
used. Multiplication by i then gives a symmetry operation squaring
to 1. Note, however, that multiplication with i turns a symmetry that
commutes with T or P into a symmetry that anticommutes with T
or P and vice versa.
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TABLE II. Shiozaki-Sato equivalence classes of unitary symme-
try and antisymmetry operations for the Altland-Zirnbauer classes A
and AIII. The symbol σ UηC is used to denote unitary symmetry (σ =
+) and antisymmetry (σ = −) operations that commute (ηC = +) or
anticommute (ηC = −) with the chiral symmetry, if applicable. The
last column lists a unitary crystalline symmetry SηC or the product
of a unitary symmetry operation S and the chiral operation C as a
crystalline symmetry operation representative of the Shiozaki-Sato
class (s,t).

AZ class s t symmetry operations representative

A 0 0 +U S
AIII 1 0 αU+ S+

A 0 1 −U CS
AIII 1 1 αU− S−

Unitary symmetry and antisymmetry operations S and CS
are represented by unitary matrices US and UCS (with S being
replaced by M, R, or I as needed), respectively, such that

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= USHd (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd )U−1
S , (2)

if Hd satisfies a unitary symmetry, and

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= −UCSHd (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd )U−1
CS , (3)

if Hd satisfies a unitary antisymmetry. The matrices US and
UCS satisfy U 2

S,CS = 1, US,CSUT = ηT UT U ∗
S,CS , US,CSUP =

ηPUPU ∗
S,CS , and US,CSUC = ηCUCUS,CS . Similarly, antiuni-

tary symmetry and antisymmetry operations T ±S and P±S
are represented by unitary matrices UT S and UPS , with

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= UT SHd (k1, . . . ,kd‖ ,−kd‖+1, . . . ,−kd )∗U−1
T S , (4)

if Hd satisfies an antiunitary symmetry, and

Hd (k1, . . . ,kd‖ ,kd‖+1, . . . ,kd )

= −UPSHd (k1, . . . ,kd‖ ,−kd‖+1, . . . ,−kd )∗U−1
PS , (5)

if Hd satisfies an antiunitary antisymmetry. The matrices
UT S and UPS satisfy the conditions UT S,PSU ∗

T S,PS = ±1,
UT S,PSU ∗

T = ηT UT U ∗
T S,PS , UT S,PSU ∗

P = ηPUPU ∗
T S,PS , and

UT S,PSU ∗
C = ηCUCUT S,PS .

As pointed out in Ref. [19], the characterization of unitary
and antiunitary symmetry and antisymmetry operations by
means of the signs ηT ,P,C and the square (in case of antiunitary
symmetries) is partially redundant, because symmetry opera-
tions that are characterized differently may be mapped onto
each other using nonspatial symmetries of the Hamiltonian Hd .
For example, if a time-reversal symmetric Hamiltonian Hd sat-
isfies a crystalline unitary symmetry S , then it also satisfies the
antiunitary symmetry T S . Using such equivalences, Shiozaki
and Sato group the (anti)symmetries into 44 “equivalence
classes,” which, together with the Altland-Zirnbauer class of
Table I, are labeled by one integer s or by two integers s and t .
These equivalence classes are defined in Tables II–IV for the
complex Altland-Zirnbauer classes with unitary symmetries

TABLE III. Shiozaki-Sato equivalence classes of antiunitary sym-
metry and antisymmetry operations for the Altland-Zirnbauer classes
A and AIII. The symbol σ A±

ηC is used to denote antiunitary symmetry
(σ = +) and antisymmetry (σ = −) operations that commute (ηC =
+) or anticommute (ηC = −) with the chiral symmetry, if applicable,
and square to ±1. The last column lists the product of a unitary
crystalline symmetry S (SηC for class AIII) and time-reversal T ±

or particle-hole conjugation P± as a crystalline symmetry operation
representative of the Shiozaki-Sato class (s,t).

AZ class s symmetry operations representative

A 0 +A+ T +S
AIII 1 αA

+
+ T +S+

A 2 −A+ P+S
AIII 3 αA

−α
− T −S−

A 4 +A− T −S
AIII 5 αA

−
+ T −S+

A 6 −A− P−S
AIII 7 αA

α
− T +S−

and antisymmetries, the complex Altland-Zirnbauer classes
with antiunitary symmetries and antisymmetries, and the real
Altland-Zirnbauer classes. For each of these Shiozaki-Sato
classes, the tables also list a representative (anti)symmetry
operation, consisting of a unitary symmetry S squaring to
one or a product of a unitary symmetry and one of the
fundamental nonspatial symmetry operations T , P , or C, with
indices ηT ,P,C specifying the fundamental commutation or
anticommutation relations with the nonspatial symmetries T ,
P , and C, if present. We implicitly assume that (anti)symmetry
operations T , P , and C used for the construction of the
representative (anti)symmetry operation commute with the
crystalline symmetry operation S . With these assumptions, the
indicated square of T andP (in Table III) and the commutation
relations of S with C (in Tables II and III) or with T or P
(in Table IV) fix the algebraic properties of the representative
(anti)symmetry operations T S , PS , and CS .

Following this scheme, Shiozaki and Sato have classified
all insulators and superconductors with a single crystalline
order-two unitary or antiunitary symmetry or antisymmetry
[19]. Central to the classification of Ref. [19] is a set of
isomorphisms between the groups KC(s,t |d‖,d), KC(s|d‖,d),
and KR(s,t |d‖,d) classifying d-dimensional Hamiltonians in
the Shiozaki-Sato symmetry class (s,t) or s and withd‖ inverted
spatial dimensions. For the complex Altland-Zirnbauer classes
with unitary (anti)symmetry these isomorphisms are (with
d‖ < d)

KC(s,t |d‖,d) = KC(s,t + 1|d‖ + 1,d)

= KC(s − 1,t |d‖,d − 1), (6)

with the integers s and t taken mod 2. For the complex
Altland-Zirnbauer classes with antiunitary (anti)symmetry, the
isomorphisms read

KC(s|d‖,d) = KC(s − 2|d‖ + 1,d)

= KC(s − 1|d‖,d − 1), (7)
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TABLE IV. Shiozaki-Sato equivalence classes of symmetry and
antisymmetry operations for the eight real Altland-Zirnbauer classes.
The symbols σ U±

ηT ,ηP and σ A±
ηT ,ηP are used to denote unitary

symmetry (U, σ = +), unitary antisymmetry (U, σ = −), antiunitary
symmetry (A, σ = +), and antiunitary antisymmetry (A, σ = −)
operations that square to ±1 and commute (ηT ,P = +) or anticom-
mute (ηT ,P = −) with time-reversal and particle-hole conjugation,
if applicable. The last column lists a unitary crystalline symmetry
SηT ,ηP or the product of a unitary crystalline symmetry and the chiral
operation C as a representative of the equivalence class.

AZ class s t symmetry operation representative

AI 0 0 +Uα
α , +A+

α S+
BDI 1 0 αU

β

β,β , αA
+
β,β S++

D 2 0 +Uα
α , −A+

α S+
DIII 3 0 αU

αβ

β,β , αA
−α
β,β S++

AII 4 0 +Uα
α , +A−

α S+
CII 5 0 αU

β

β,β , αA
−
β,β S++

C 6 0 +Uα
α , −A−

α S+
CI 7 0 αU

αβ

β,β , αA
α
β,β S++

AI 0 1 −Uα
−α , −A−

α CS−
BDI 1 1 αU

αβ

β,−β , αA
α
β,−β S+−

D 2 1 −Uα
α , +A+

α CS+
DIII 3 1 αU

β

−β,β , αA
+
β,−β S−+

AII 4 1 −Uα
−α , −A+

α CS−
CII 5 1 αU

αβ

β,−β , αA
−α
β,−β S+−

C 6 1 −Uα
α , +A−

α CS+
CI 7 1 αU

β

−β,β , αA
−
β,−β S−+

AI 0 2 +Uα
−α , +A−

α S−
BDI 1 2 αU

−β

β,β , αA
−
β,β S−−

D 2 2 +Uα
−α , −A−

α S−
DIII 3 2 αU

−αβ

β,β , αA
α
β,β S−−

AII 4 2 +Uα
−α , +A+

α S−
CII 5 2 αU

−β

β,β , αA
+
β,β S−−

C 6 2 +Uα
−α , −A+

α S−
CI 7 2 αU

−αβ

β,β , αA
−α
β,β S−−

AI 0 3 −Uα
α , −A+

α CS+
BDI 1 3 αU

αβ

−β,β , αA
−α
−β,β S−+

D 2 3 −Uα
−α , +A−

α CS−
DIII 3 3 αU

β

β,−β , αA
−
β,−β S+−

AII 4 3 −Uα
α , −A−

α CS+
CII 5 3 αU

αβ

−β,β , αA
α
−β,β S−+

C 6 3 −Uα
−α , +A+

α CS−
CI 7 3 αU

β

β,−β , αA
+
β,−β S+−

where the label s is taken mod 8. Finally, the isomorphisms for
the real Altland-Zirnbauer classes are

KR(s,t |d‖,d) = KR(s,t + 1|d‖ + 1,d)

= KR(s − 1,t |d‖,d − 1), (8)

where the integers s and t are taken mod 8 and mod 4,
respectively. When applied repeatedly, these isomorphisms can
be used to relate the classification problem of d-dimensional

TABLE V. Classification of topological crystalline phases with
an order-two crystalline symmetry or antisymmetry for the complex
Altland-Zirnbauer classes, based on Ref. [19]. The symbols M, R,
and I refer to mirror reflection (d‖ = 1), twofold rotation (d‖ = 2),
and inversion (d‖ = d = 3), respectively. The entries in brackets give
the purely crystalline component K ′C(s,t |d‖,d) if different from the
full group KC(s,t |d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3
class s t M R M R I

AS 0 0 0 Z2 (Z) Z 0 Z
AIIIS+ 1 0 Z 0 0 Z2 (Z) 0

ACS 0 1 Z2 (Z) 0 0 Z 0
AIIIS− 1 1 0 Z Z2 (Z) 0 Z2 (Z)

Hamiltonians with an order-two crystalline symmetry to a
zero-dimensional classification problem, which can be solved
with elementary methods. The Shiozaki-Sato classification for
two and three dimensional crystals with a mirror reflection M,
twofold rotation R, or inversion symmetry I is summarized
in Tables V–VII. The corresponding classifying groups for
complex and real Altland-Zirnbauer classes without crystalline
symmetries are denoted KC(s,d) and KR(s,d), respectively.
Since they are well known [15–17,39–42] we do not list them
here explicitly; if needed, they can be inferred from Table I,
which lists K(s,d − 1) for d = 2 and 3.

Some of the topological crystalline phases remain topo-
logically nontrivial if the crystalline symmetry is broken.
These are strong topological insulators or superconductors,
which have gapless states at all boundaries, not only at
boundaries that are invariant under the symmetry opera-
tion. The remaining “purely crystalline” topological phases,
which become trivial if the crystalline symmetry is bro-
ken, are classified by a subgroup of the classifying groups
KC(s,t |d‖,d), KC(s|d‖,d), and KR(s,t |d‖,d), which we de-
note K ′C(s,t |d‖,d), K ′C(s|d‖,d), and K ′R(s,t |d‖,d), respec-
tively. The quotient groups K(s,t |d‖,d)/K ′(s,t |d‖,d), which

TABLE VI. Classification of topological crystalline phases with
an order-two antiunitary crystalline symmetry or antisymmetry for the
complex Altland-Zirnbauer classes, based on Ref. [19]. The symbols
M,R, andI refer to mirror reflection (d‖ = 1), twofold rotation (d‖ =
2), and inversion (d‖ = d = 3), respectively. The entries in brackets
give the purely crystalline component K ′C(s|d‖,d) if different from
the full group KC(s|d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3
class s M R M R I

AT +S 0 Z (0) Z2 0 Z2 0
AIIIT

+S+ 1 Z2 0 Z (0) Z2 2Z (0)
AP+S 2 Z2 2Z (0) Z2 0 0
AIIIT

−S− 3 0 0 Z2 2Z (0) 0
AT −S 4 2Z (0) 0 0 0 0
AIIIT

−S+ 5 0 0 2Z (0) 0 Z (0)
AP−S 6 0 Z (0) 0 0 Z2

AIIIT
+S− 7 0 Z2 0 Z (0) Z2
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TABLE VII. Classification of topological crystalline phases with
an order-two crystalline symmetry or antisymmetry for the real
Altland-Zirnbauer classes, based on Ref. [19]. The symbols M, R,
and I refer to mirror reflection (d‖ = 1), twofold rotation (d‖ = 2),
and inversion (d‖ = d = 3), respectively. The entries in brackets give
the purely crystalline component K ′R(s,t |d‖,d) if different from the
full group KR(s,t |d‖,d).

d = 2 d = 2 d = 3 d = 3 d = 3
class s t M R M R I

AIS+ 0 0 0 2Z 0 0 2Z
BDIS++ 1 0 Z 0 0 2Z 0
DS+ 2 0 Z2 Z (0) Z 0 0
DIIIS++ 3 0 Z2 0 Z2 Z (0) 0
AIIS+ 4 0 0 2Z (4Z) Z2 0 Z (2Z)
CIIS++ 5 0 2Z 0 0 2Z (4Z) Z2 (0)
CS+ 6 0 0 Z (0) 2Z 0 Z2

CIS++ 7 0 0 0 0 Z (0) 0

AICS− 0 1 0 0 0 0 0
BDIS+− 1 1 0 Z 0 0 2Z
DCS+ 2 1 Z2 (Z) Z2 0 Z 0
DIIIS−+ 3 1 Z2

2 (Z2) Z2 Z2 (Z) Z2 Z (0)
AIICS− 4 1 Z2

2 (Z2) 0 Z2
2 (Z2) Z2 0

CIIS+− 5 1 0 2Z Z2
2 (Z2) 0 2Z (4Z)

CCS+ 6 1 2Z2 (2Z) 0 0 2Z 0
CIS−+ 7 1 0 0 2Z2 (2Z) 0 Z (0)

AIS− 0 2 0 0 2Z 0 0
BDIS−− 1 2 0 0 0 0 0
DS− 2 2 0 Z2 (Z) 0 0 Z
DIIIS−− 3 2 Z (2Z) Z2

2 (Z2) 0 Z2 (Z) Z2

AIIS− 4 2 Z2 (0) Z2
2 (Z2) Z (2Z) Z2

2 (Z2) Z2

CIIS−− 5 2 Z2 0 Z2 (0) Z2
2 (Z2) 0

CS− 6 2 0 2Z2 (2Z) Z2 0 2Z
CIS−− 7 2 2Z 0 0 2Z2 (2Z) 0

AICS+ 0 3 2Z 0 0 2Z 0
BDIS−+ 1 3 0 0 2Z 0 0
DCS− 2 3 Z (0) 0 0 0 0
DIIIS+− 3 3 0 Z (2Z) Z (0) 0 Z2 (Z)
AIICS+ 4 3 2Z (4Z) Z2 (0) 0 Z (2Z) Z2

2 (Z2)
CIIS−+ 5 3 0 Z2 2Z (4Z) Z2 (0) Z2

2 (Z2)
CCS− 6 3 Z (0) 0 0 Z2 0
CIS+− 7 3 0 2Z Z (0) 0 2Z2 (2Z)

are subgroups of the classifying groups K(s,d) without crys-
talline symmetries, classify the strong topological phases that
are compatible with the crystalline symmetry. Tables V–VII
also list the groups K ′C and K ′R between brackets if they are
different from the full classifying groups KC and KR. The
“purely crystalline” subgroups are evaluated in Sec. IV B and
Appendix C.

The Shiozaki-Sato classification of topological crystalline
insulators and superconductors with an order-two crystalline
symmetry [19], as well as the preceding complete classifica-
tions of mirror-symmetric topological insulators and supercon-
ductors [20,21], is a “strong” classification, in the sense that it
addresses topological features that are robust to a resizing of the
unit cell, allowing the addition of perturbations that break the
translation symmetry of the original (smaller) unit cell, while

preserving the crystalline symmetries. Reference [19] argues
that for such a strong classification it is sufficient to classify
Hamiltonians Hd (k) with argument k defined on a sphere,
rather than on a Brillouin zone of a shape determined by the
underlying Bravais lattice. The construction and classification
of second-order topological insulators and superconductors
that we pursue here also follows the paradigm of a strong
classification scheme. Since boundaries play an essential role
when considering second-order topological phases, we will
not deform the Brillouin zone into a sphere, as in Ref. [19], but
instead use the freedom offered by the possibility to resize the
unit cell to restrict ourselves to rectangular Bravais lattice with
mirror plane and rotation axes aligned with the coordinate axes.
This is consistent with the mathematical form of the symmetry
operations given in Eqs. (2)–(5) above.

III. DIMENSIONAL REDUCTION

The dimension-raising and lowering isomorphisms devised
by Shiozaki and Sato apply to Hamiltonians with argument
k defined on a sphere [19], rather than on a torus, which
complicates a direct application to crystals with boundaries
and corners. For that reason, we here make use of an alternative
dimension-lowering map, which maps a Shiozaki-Sato class
with index s in d dimensions to a Shiozaki-Sato class with
index s − 1 in d − 1 dimensions, while preserving the second
Shiozaki-Sato index t and the number of inverted dimensions
d‖. Our dimension-lowering map is a generalization of a
map first proposed by Fulga et al. for the standard Altland-
Zirnbauer classes [43], and recently extended to mirror-
reflection-symmetric models by two of us [22]. Though not as
powerful as the isomorphisms of Ref. [19], which also relate
symmetry classes with different d‖, this map is sufficient for the
purpose of determining the conditions under which a nontrivial
bulk crystalline phase implies the existence of zero-energy
corner states (for a two-dimensional crystal) or gapless hinge
modes (for a three-dimensional crystal).

The dimension-lowering procedure starts from the calcu-
lation of the reflection matrix rd for a d-dimensional Hamil-
tonian Hd embedded in a two-terminal scattering geometry.
Following Ref. [43], the reflection matrix is reinterpreted as a
Hamiltonian Hd−1 in d − 1 dimensions, but with a symmetry
class that is different from that of the original Hamiltonian Hd .
This reinterpretation is different for Hamiltonians Hd with and
without chiral antisymmetry. If Hd has a chiral antisymmetry,
one can choose a basis of scattering states such that rd is a
Hermitian matrix, allowing the definition of a Hamiltonian
Hd−1 without chiral antisymmetry as

Hd−1 = rd . (9)

On the other hand, if Hd has no chiral antisymmetry, Fulga
et al. set

Hd−1 =
(

0 rd

r
†
d 0

)
, (10)

which has a chiral antisymmetry with UC = diag (1,−1). A
more detailed review of the reflection-matrix based dimen-
sional reduction scheme is given in Appendix A. In the
appendix, we also show that if Hd has a crystalline symmetry
or antisymmetry of Shiozaki-Sato class (s,t) with d‖ < d then
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ideal lead crystalline insulator

ain

in=rd aaout

ideal lead

FIG. 3. Schematic picture of a lattice model for a crystalline
insulator in a two-terminal scattering geometry. The reflection matrix
rd relates the amplitudes ain and aout of incident and reflected waves as
shown in the figure. The ideal leads are modeled as a grid of parallel
one-dimensional chains, which endows the reflection matrix rd with
a real-space structure.

Hd−1 has a crystalline symmetry of class (s − 1,t) with the
same value of d‖. (This was shown in Ref. [22] for unitary
mirror symmetries and antisymmetries with d‖ = 1.)

Although Refs. [22,43] apply the reflection-matrix-based
reduction scheme to Hamiltonians with periodic boundary
conditions, the mapping of Eqs. (9) and (10) can also be
used in a real-space formulation, where it can be applied to
crystals with boundaries. In particular, the mapping of Eqs. (9)
and (10) maps d ′-dimensional protected boundary modes of
Hd to d ′ − 1-dimensional boundary modes of Hd−1 for all
1 � d ′ < d, thus not only providing a link between regular
first-order topological insulators and superconductors in dif-
ferent dimensions, but also between second-order topological
insulators and superconductors.

To show how this works explicitly, we consider a d-
dimensional crystalline insulator or superconductor, embedded
in a two-terminal scattering geometry and of finite size in
the transverse directions, as shown schematically in Fig. 3
for a two-dimensional lattice model. We then calculate the
reflection matrix rd (r⊥,r′

⊥) for an ideal lead consisting of a
grid of one-dimensional chains at discrete coordinates r⊥ in
the transverse direction, see Fig. 3, and construct a Hermitian
lattice Hamiltonian Hd−1(r⊥,r′

⊥) using the mapping of Eqs. (9)
and (10). Since it is derived from a reflection matrix rd for
a lead with a finite (d − 1)-dimensional cross section and
open boundary conditions in the transverse direction, Hd−1

also describes a (d − 1)-dimensional system of finite size
and open boundary conditions. For a crystalline insulator or
superconductor of finite width, the existence of gapless modes
along the sample boundary implies the existence of perfectly
transmitted modes along sample boundaries (in case of a
first-order topological insulator or superconductor) or hinges
(for a second-order topological insulator or superconductor).
Since the total scattering matrix, describing reflection and
transmission, is unitary, any such perfectly transmitted modes
correspond to a zero singular value of the reflection matrix
rd (r⊥,r′

⊥) and, hence, to a zero-energy eigenstate of Hd−1.
Since these gapless modes derive from transmitted modes
proceeding along the sample boundary, their eigenvectors
have support near the lead’s boundaries (if Hd is a first-order
topological insulator) or the intersection of two of the lead’s
boundaries (if Hd is a second-order topological insulator), so
that they represent true boundary/corner/hinge modes of Hd−1.

outa ain=r3outa ain

order TI
2d 2nd

3d 2nd order
Chern
insulator

H2

dimensional 

H

H1

2 H3

2=r

reduction

ideal lead

2d Chern
insulator

1d TI

ideal lead

FIG. 4. Comparison of the reflection-matrix-based dimensional
reduction scheme applied to a two-dimensional Chern insulator (left)
and a three-dimensional second-order Chern insulator. In each case
a lower-dimensional Hamiltonian can be constructed out of the
reflection matrix rd describing scattering from a half-infinite crystal
coupled to an ideal lead. Upon constructing the lower-dimensional
Hamiltonian Hd−1, the chiral edge states (left) and hinge states (right)
map to protected zero-energy eigenstates localized near ends (left) or
corners (right).

As an example, we consider a Chern insulator in two
dimensions and a second-order Chern insulator in three di-
mensions, shown schematically in Fig. 4. In both cases, the
corresponding Altland-Zirnbauer class is Cartan class A. The
two-dimensional Chern insulator has chiral modes propagating
along the sample’s edges, see Fig. 4 (left). When the Chern
insulator is embedded in a two-terminal scattering geometry,
the presence of the edge modes leads to perfectly transmitted
modes or, equivalently, to zero singular values of the reflection
matrix rd . The left and right eigenvectors corresponding to this
zero mode, which build the corresponding eigenvectors of the
Hamiltonian Hd−1 calculated via Eq. (10), are localized near
the lead edges. Similarly, a three-dimensional second-order
Chern insulator has chiral hinge modes, as shown schemati-
cally in Fig. 4 (right). Again, when embedded in a scattering
geometry, the presence of the hinge modes leads to perfectly
transmitted modes and, hence, zero singular values of the
reflection matrix rd . The support of the corresponding left and
right eigenvectors is near the lead hinges that are connected to
the sample hinges carrying the chiral modes. Correspondingly,
the Hamiltonian Hd−1 obtained from the dimensional reduc-
tion scheme has zero-energy eigenstates at sample corners.
Hence Hd−1 is a second-order topological insulator.

A numerical simulation of this scenario is shown in Fig. 5.
The dimensional reduction scheme has been applied to a two-
dimensional lattice model with Hamiltonian

H = (m + 2 − cos k1 − cos k2)σ1 + sin k1σ2 + sin k2σ3,

(11)

which describes a two-dimensional Chern insulator for −2 <

m < 0, and to a lattice model of a three-dimensional second-
order Chern insulator [4,9], which has Hamiltonian

H3 = (m + 3 − cos k1 − cos k2 − cos k3)τ1σ1

+ τ1σ3 sin k1 + τ2 sin k2 + τ3 sin k3 + bτ1 (12)
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(a)

(c)

(b)

(d)

0

1.0

-1.0

0

1.0

-1.0

FIG. 5. Support of the zero-energy eigenstates (a) and 30 lowest
energies of the spectrum (b) of the mapped Hamiltonian H1 for a two-
dimensional Chern insulator with Hamiltonian H2 given in Eq. (11),
following the reflection-matrix-based dimensional reduction scheme.
(c) and (d) show the same for the mapped Hamiltonian H2 for the
three-dimensional second-order Chern insulator with Hamiltonian H3

of Eq. (12) with b = 0.4.

with −2 < m < 0 and b numerically small. In both models,
the σj and τj are Pauli matrices acting on different spinor
degrees of freedom. Figure 5 shows the spectra of the mapped
Hamiltonians Hd−1 [Figs. 5(b) and 5(d)], calculated using
the KWANT software package [44], as well as the support of
the zero-energy eigenstates [(c) and (d)]. Consistent with the
scenario laid out above, the spectra are gapped up to two zero
eigenvalues, which have support at the ends of the mapped
one-dimensional chain [Fig. 5(a)] and at mirror-reflection-
symmetric corners [Fig. 5(c)].

IV. MIRROR REFLECTION-SYMMETRIC
SECOND-ORDER TOPOLOGICAL INSULATORS

AND SUPERCONDUCTORS

A. Classification of mirror-symmetric corners and hinges

We now proceed with the classification of zero-energy
states at mirror-symmetric corners and gapless hinge modes
at mirror-symmetric hinges of a mirror-symmetric crystalline
insulator or superconductor. As explained in Introduction, such
a classification depends on the possible presence of local
mirror-symmetry-breaking perturbations at corners or hinges,
and on whether it is an “intrinsic” (termination-independent)
classification or an “extrinsic” (termination-dependent) one.
We recall that we term a classification intrinsic if it is invariant
under a change of lattice termination, as long as the mirror
symmetry of the corner or hinge is preserved, and extrinsic if
it depends on termination. The intrinsic classification describes
properties of the bulk lattice, which is why it is closely related
to the classification of bulk topological crystalline phases,
as we discuss below. Although the extrinsic classification
is termination dependent, it is important to point out that
the extrinsic classification remains valid in the presence of
perturbations that do not close the boundary gap, such as weak
disorder. Figure 6 schematically shows the four classification
rules that follow from the options discussed above for the case

(b)

(e) (f)

(c)(a)

(d)

FIG. 6. Schematic picture of a generic corner (a), a mirror-
symmetric corner with locally broken mirror symmetry (b), and a
mirror-symmetric corner in a crystal with a bulk mirror symmetry.
(d)–(f) represent the possibility to add zero-energy corner states by
changing the lattice termination. Effectively, this amounts to the ad-
dition of one-dimensional topological insulators or superconductors
to the boundaries. At a generic corner, it is possible to change the
termination of only one boundary, as shown in (d). In a symmetric
corner, such a change in termination needs to be applied to both
symmetry-related boundaries, shown schematically in (e) and (f) for
a corner with and without a perturbation that locally breaks the mirror
symmetry.

of a two-dimensional mirror-symmetric crystal, and contrasts
these with the classification of a generic corner discussed in
the Introduction.

We denote the classifying groups for corners according to
the four possible classification rules that arise from the above
considerations as Ki(s,t |d‖,d), K̄i(s,t |d‖,d), Ke(s,t |d‖,d),
and K̄e(s,t |d‖,d), where the subscripts i, e refer to in-
trinsic (termination-independent) and extrinsic (termination-
dependent) classification and the bar refers to corners or hinges
with locally broken mirror reflection symmetry. For mirror
reflection d‖ = 1 throughout. (The second argument is omitted
for the complex Altland-Zirnbauer classes with antiunitary
symmetries and antisymmetries.) Tables VIII–X contain the
complete classification results, ordered as Ki, K̄i (Ke, K̄e).

Although we will explain the derivation of each entry in
the table in detail below and in the appendix, we first outline
the general strategy that results in this classification. Our
first observation is that the extrinsic, termination-dependent,

TABLE VIII. Classification of mirror-symmetric corners (d = 2)
or hinges (d = 3) of second-order topological insulators and super-
conductors in the complex Altland-Zirnbauer classes with unitary
symmetries or antisymmetries. The first two entries in the fourth and
fifth column give the intrinsic, termination-independent, classification
without and with perturbations that locally break mirror symmetry at
the corner or hinge. The entries between brackets give the correspond-
ing extrinsic, termination-dependent classification. The ordering is
Ki,K̄i(Ke,K̄e).

AZ class s t d = 2 d = 3

AM 0 0 - Z,Z2 (Z2,Z)
AIIIM+ 1 0 Z,Z2 (Z2,Z) -

ACM 0 1 Z,0 (Z,0) -
AIIIM− 1 1 - Z,0 (Z,0)
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TABLE IX. Classification of mirror-symmetric corners (d = 2)
or hinges (d = 3) of second-order topological insulators and super-
conductors in the complex Altland-Zirnbauer classes with antiunitary
symmetries or antisymmetries. The ordering is Ki,K̄i(Ke,K̄e).

AZ class s d = 2 d = 3

AT +M 0 - -
AIIIT

+M+ 1 Z2,Z2 (Z,Z) -
AP+M 2 Z2,0 (Z2,0) Z2,Z2 (Z,Z)
AIIIT

−M− 3 0,0 (Z2,0) Z2,0 (Z2,0)
AT −M 4 - 0,0 (Z2,0)
AIIIT

−M+ 5 0,0 (2Z,2Z) -
AP−M 6 - 0,0 (2Z,2Z)
AIIIT

+M− 7 - -

classification of mirror symmetric corners/hinges is identical
to the classification of end states of (d − 1)-dimensional
insulators and superconductors with a crystalline symmetry

TABLE X. Classification of mirror-symmetric corners (d = 2)
or hinges (d = 3) of second-order topological insulators and super-
conductors in the real Altland-Zirnbauer classes. The ordering is
Ki,K̄i(Ke,K̄e).

class s t d = 2 d = 3

AIM+ 0 0 - -
BDIM++ 1 0 Z,Z2 (Z2,Z) -
DM+ 2 0 Z2,Z2

(
Z2

2,Z2

)
Z,Z2 (Z2,Z)

DIIIM++ 3 0 Z2,Z2

(
Z2

2,Z2

)
Z2,Z2

(
Z2

2,Z2

)
AIIM+ 4 0 - Z2,Z2 (Z2

2,Z2)
CIIM++ 5 0 2Z,Z2 (2Z2,2Z) -
CM+ 6 0 - 2Z,Z2 (2Z2,2Z)
CIM++ 7 0 - -

AICM− 0 1 - -
BDIM+− 1 1 - -
DCM+ 2 1 Z,Z2 (Z,Z2) -
DIIIM−+ 3 1 Z2,Z2 (Z2,Z2) Z,Z2 (Z,Z2)
AIICM− 4 1 Z2,0 (Z2,0) Z2,Z2 (Z2,Z2)
CIIM+− 5 1 - Z2,0 (Z2,0)
CCM+ 6 1 2Z,0 (2Z,0) -
CIM−+ 7 1 - 2Z,0 (2Z,0)

AIM− 0 2 - 2Z,0 (2Z,0)
BDIM−− 1 2 0,0 (2Z,2Z) -
DM− 2 2 - 0,0 (2Z,2Z)
DIIIM−− 3 2 2Z,Z2 (2Z,Z2) -
AIIM− 4 2 - 2Z,Z2 (2Z,Z2)
CIIM−− 5 2 Z2,Z2 (2Z,2Z) -
CM− 6 2 - Z2,Z2 (2Z,2Z)
CIM−− 7 2 2Z,0 (2Z,0) -

AICM+ 0 3 Z,0 (Z,0) -
BDIM−+ 1 3 0,0 (Z2,0) Z,0 (Z,0)
DCM− 2 3 0,0 (Z2,0) 0,0 (Z2,0)
DIIIM+− 3 3 - 0,0 (Z2,0)
AIICM+ 4 3 2Z,0 (2Z,0) -
CIIM−+ 5 3 - 2Z,0 (2Z,0)
CCM− 6 3 - -
CIM+− 7 3 - -

FIG. 7. The extrinsic classification of corner states in a mirror-
symmetric corner of a two-dimensional crystal is the same as that
of end states of a one-dimensional crystal with a transverse mirror
symmetry with d‖ = 0. The vertical dashed line is the mirror axis.

with d‖ − 1 = 0 inverted coordinates, see Fig. 7 for d = 2. By
the bulk-boundary correspondence, this latter classification is
identical to the corresponding bulk crystalline classification,
so that we have

Ke(s,t |d‖ = 1,d) = K(s,t |d‖ = 0,d − 1). (13)

The classifying groups K(s,t |d‖ = 0,d − 1) are given in
Ref. [19]. They can also be obtained from Tables V–VII using
the isomorphisms (6)–(8). Similarly, upon locally breaking the
mirror symmetry, we obtain the equality

K̄e(s,t |1,d) = K(s,t |0,d − 1)/K ′(s,t |0,d − 1), (14)

where K ′(s,t |d‖ = 0,d − 1) is the “purely crystalline” sub-
group of the classifying group K(s,t |d‖ = 0,d − 1), see the
discussion at the end of Sec. II.

The intrinsic, termination-independent, classification of
mirror-symmetric corners or hinges can be obtained via the
homomorphism

K(s,d − 1)
ct→ Ke(s,t |d‖ = 1,d), (15)

which embeds the equivalence class of the Hamiltonian H (k)
into corresponding Shiozaki-Sato class of Hamiltonian

ct [H (k)] =
(

H (k) 0
0 σSUSH (k)U †

S

)
, (16)

for US a unitary onsite symmetry (σS = 1) or antisymmetry
(σS = −1) and

ct [H (k)] =
(

H (k) 0
0 σSUSH ∗(−k)U †

S

)
, (17)

for US an antiunitary onsite symmetry or antisymmetry.
For the intrinsic classification, corner states or hinge modes

that differ by termination effects are identified. Such cor-
ner states or hinge modes are precisely those in the image
ct [K(s,d − 1)], so that we have

Ki(s,t |1,d) = Ke(s,t |1,d)/ct [K(s,d − 1)]. (18)

In other words, the elements of the group Ki(s,t |1,d) can
be viewed as topologically nontrivial d − 1-dimensional
crystalline insulators or superconductors with an onsite
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twofold symmetry that cannot be obtained by gluing two
corresponding noncrystalline d − 1-dimensional topological
insulators or superconductors.

In the next section, we demonstrate, by explicit considera-
tion of all symmetry classes, that the intrinsic (termination-
independent) classification group Ki(s,t |1,d) of corner or
hinge states is identical to the “pure crystalline” group
K ′(s,t |1,d) classifying topological crystalline bulk phases that
are not at the same time strong topological phases,

Ki(s,t |1,d) = K ′(s,t |1,d). (19)

Equation (19) says that a mirror-symmetric topological crys-
talline phase is either a strong topological phase, with gapless
modes at all boundaries, or a topological crystalline phase
which can be uniquely characterized using protected modes
at mirror-symmetric corners (for a two-dimensional crystal)
or hinges (for a three-dimensional crystal). For such “pure
crystalline” topological crystalline phases Eq. (19) this extends
the bulk-boundary correspondence to a “corner-to-bulk corre-
spondence” or “hinge-to-bulk correspondence.”

We now discuss the classification table for the complex
Altland-Zirnbauer classes with unitary mirror symmetries
and antisymmetries in detail. The classification of mirror-
symmetric corners of two-dimensional crystals for the complex
Altland-Zirnbauer classes with antiunitary mirror symme-
tries and antisymmetries and of the real classes is given in
Appendix B. The classification of mirror-symmetric hinges for
these classes can be obtained from the dimensional reduction
scheme of Sec. III and is not discussed in detail.

Class AM, (s,t) = (0,0), d = 2. This class does not allow
protected zero-energy states at corners.

Class AIIIM+ , (s,t) = (1,0), d = 2. At a mirror-symmetric
corner zero-energy states can be counted according to their
parity under mirror reflection M and the chiral operation C,
since M and C commute. (Recall that we use the convention
that the mirror operation M squares to one.) We denote the
number of corresponding modes with NσC,M . Since pairs of
zero modes with opposite σC but equal σM can be gapped out
by a mirror-symmetric mass term acting locally at the corner,
only N++ − N−+ and N+− − N−− are well defined. This gives
the Z2 extrinsic classification listed in Table VIII.

By changing the termination, e.g., by adding a suitably
chosen chain of atoms on a crystal face, such that the global
mirror symmetry is preserved, one can add a pair of zero modes
with the same σC , but opposite values of σM, see Fig. 8. (Note
that such a procedure involves closing the boundary gap.)
As a result, the difference N = N++ + N−− − N+− − N−+
is the only remaining invariant, and one finds a Z intrinsic
classification, which is the same classification as the one arising
from the bulk classification of Refs. [19–22,38].

With a mirror-symmetry-breaking local perturbation at the
corner, one may only distinguish corner states by their parity
under C. We use NσC to denote the number of zero modes with
parity σC . Since pairs of zero modes with opposite σC can be
gapped out by a mass term acting locally at the corner, only the
difference N+ − N− is well defined. This gives a Z extrinsic
classification in the presence of a mirror-symmetry-breaking
perturbation. Moreover, changes of the termination allow one
to change N+ or N− by an even number, resulting in a Z2

intrinsic classification in that case.

L R

FIG. 8. Pairs of corner states may be created by “glueing” one-
dimensional topologically nontrivial chain to the crystal edges. Mirror
symmetry requires that the chains added to mirror-related edges are
mirror images of each other.

Class ACM, (s,t) = (0,1), d = 2. This class allows corner
modes only if the mirror antisymmetry is not broken locally at
the crystal corner. In that case, corner modes can be counted
according to their parity σCM under the mirror antisymmetry
CM. (Recall that we use the convention that CM2 = 1.) The
mirror antisymmetry protects zero modes at the same value
of σCM, but allows pairs of zero modes at opposite mirror
parity σCM to gap out. We conclude that the difference N =
N+ − N− is the corresponding topological invariant, giving
the Z classification listed in Table VIII. There is no difference
between an “extrinsic” and an “intrinsic” classification because
the Altland-Zirnbauer class A is trivial for d = 1, so that no
protected zero modes can be added by changing the lattice
termination. This phase is trivial if the mirror antisymmetry is
broken locally at the corner.

Class AIIIM− , (s,t) = (1,1), d = 2. The bulk crystalline
phase in this class is trivial. However, since the Altland-
Zirnbauer class AIII is nontrivial in one dimension, one
should consider the possibility that corner states can arise by
suitable decoration at the crystal edges, see Fig. 8. Hereto,
consider the addition of two one-dimensional chains with
zero-energy end states, labeled |L〉 and |R〉. The chains are
placed symmetrically, so that |L〉 = M|R〉. Since M anti-
commutes with C, the end states |L〉 and |R〉 have opposite
parity under C. Upon coupling the chains to each other, a term
|L〉〈R| + |R〉〈L| that gaps the two zero modes out is allowed
under C antisymmetry and mirror reflection symmetry. Hence
we conclude that no stable corner states can be created by
changing the lattice termination. (Alternatively, one may note
that a mirror reflection operation that anticommutes with C can
be viewed as a valid term in the Hamiltonian, which gaps out
zero-energy states on the left and right of the corner.)

We point out that whereas in this symmetry class a mirror-
symmetric corner does not allow for protected zero-energy
states, a generic corner still does. The reason is that in a generic
corner one may separately choose lattice terminations at both
edges that meet at that corner, whereas in a mirror-symmetric
corner the lattice terminations at the edges meeting in that
corner are symmetry-related.

Class AM, (s,t) = (0,0), d = 3. We use y to denote
the coordinate running along the hinge. Hinge modes can
be characterized by their mirror parity σM and by their
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propagation direction in the y direction. Whereas counter-
propagating modes with the same mirror parity can mutually
gap out, counterpropagating hinge modes constructed with
opposite σM are protected by mirror symmetry. Using NσM± to
denote the number of hinge modes of mirror parity σM prop-
agating in the ±y direction, the differences N++ − N+− and
N−+ − N−− are two well-defined integer extrinsic topological
invariants, consistent with the Z2 extrinsic classification of
gapless hinge states.

By adding, e.g., integer quantum Hall insulators on the
mirror-related faces adjacent to the hinge, two co-propagating
hinge modes with opposite mirror parity can be created, leaving
N++ − N+− − N−+ + N−− as the only remaining intrinsic
integer topological invariant. If mirror symmetry is broken
locally at the hinge, all counterpropagating modes can in
principle be gapped out, giving rise to Z and Z2 extrinsic and
intrinsic topological invariants, respectively.

Class AIIIM+ , (s,t) = (1,0), d = 3. This class does not
allow for topologically protected hinge modes.

Class ACM, (s,t) = (0,1), d = 3. The mirror antisymmetry
rules out the existence of protected hinge modes for this
class—recall that for a mirror-symmetric hinge the mirror
antisymmetry CM is effectively a local operation. Whereas
a single dispersing hinge mode can not be an eigenmode of
the antisymmetry CM, two modes |L〉 and |R〉 = CM|R〉
can be gapped out by the mirror-antisymmetric perturbation
i(|L〉〈R| − |R〉〈L|). Note that for class ACM a generic hinge
may still carry a protected hinge mode. (Compare with the
discussion of class AIIIM− for d = 2.)

Class AIIIM− , (s,t) = (1,1), d = 3. The hinge modes can
be chosen to have a well-defined mirror parity σM. Since M
anticommutes with C, they occur as doublets with opposite
σM and opposite propagation direction. For each doublet the
“mixed parity” σ , the product of propagation direction and
mirror parity σM, is well-defined. The corresponding integer
invariant N counts the difference of the number of such
doublets with positive and negative σ . Since Altland-Zirnbauer
class AIII is trivial in two dimensions, there is no difference
between an extrinsic and intrinsic classifications for this class.
Breaking the mirror symmetry locally at the hinge removes the
protection of the hinge modes.

B. From bulk crystalline phase to second-order phase

The above classification of Tables VIII–X is based on a
classification of zero-energy states localized at corners and
gapless modes at hinges only. To make a connection with
the bulk topology we use the bulk-boundary correspondence
for mirror-symmetric topological crystalline insulators, which
uniquely connects the bulk crystalline phase with the existence
of gapless boundary modes at boundaries that are invariant
under the mirror reflection operation.

In a two-dimensional crystal, the edge is one dimensional
and we can introduce a coordinate x running along the edge. If
the boundary is tilted slightly away from the invariant direction,
such that a corner connecting to mirror-related edges emerges
at x = 0, as shown schematically in Fig. 9, generically a mass
term is generated, which is odd under the mirror reflection
operation M. Such a mass term gaps out the edge states,
but the fact that it is odd under mirror reflection implies the

x = 0 x = 0x
x

(a) (b)

FIG. 9. A mirror-symmetric edge, with coordinate x running
along the edge (a) can be deformed into a corner joining two mirror-
related edges (b). The situation shown in (a) has mirror symmetry
acting everywhere along the edge; in (b) mirror symmetry exists only
for a mirror reflection axis going through the corner at x = 0.

existence of a domain wall and an associated zero-energy
state at the corner at x = 0. There is a one-to-one relationship
between the number of topologically protected edge modes
and the number of zero modes obtained in this way—with
the caveats that such zero modes may be annihilated by local
mirror-symmetry breaking perturbations at the corner and that
additional zero modes may be generated by a modification
of the lattice termination. In a three-dimensional crystal, in
principle, the same arguments apply, with the only modification
that in this case the invariant boundary is a surface.

Reference [9] has implemented this construction for all
Shiozaki-Sato classes that have unitary mirror symmetries,
and for which the mass term is unique. A unique mass term
guarantees that a single corner or hinge mode cannot be gapped
out by a perturbation that breaks the mirror symmetry locally at
the corner. To complete the discussion of the complex Altland-
Zirnbauer classes with a unitary mirror symmetry, we here
discus how the presence of gapless states at a mirror-symmetric
edge or surface gives rise to zero-energy corner states at mirror-
symmetric corners or gapless hinge modes at mirror-symmetric
hinges. Comparing to the analysis of the previous section, we
thus verify that we precisely recover the zero-energy corner
state found by inspection of the corner alone. Appendix C
carries out the same program for the remaining Shiozaki-Sato
classes.

Class AIIIM+ , (s,t) = (1,0), d = 2. For concreteness, we
use UC = σ3 and UM = σ3τ3 to represent the commuting
operations C and M. The bulk phase has a Z classification
[19–21] with an integer topological invariant N , which counts
the difference of counterpropagating pairs of edge modes with
positive and negative mixed parity σMC at zero energy. (Al-
though the productMC is an antisymmetry of the Hamiltonian,
not a symmetry, edge modes can be chosen to be eigenmodes of
MC at zero energy. Pairs of counterpropagating edge modes
can not mutually gap out if they have the same eigenvalue
σMC .) After a suitable basis transformation and rescaling, the
Hamiltonian of a “minimal” edge, in which all gapless modes
have the same mixed parity σMC , may be written as

Hedge = −ivσ1∂x1N, (20)

where x is the coordinate along the edge, see Fig. 9(a), 1N the
N × N unit matrix, and v a constant with the dimension of
velocity. A corner between two mirror-related edges meeting
at x = 0, as shown in Fig. 9(b), is represented by a mass term
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m(x)σ2 with m(x) = −m(−x) a N × N Hermitian matrix. The
eigenvalues of m(x) have “domain walls” at x = 0, allowing
for N zero modes localized around x = 0. The bulk theory does
not specify the sign of the limiting values of the eigenvalues
of the mass term m(x) at a large distance from the corner. The
two choices for this sign give corner states with different parity
eigenvalues σC and σM, but the same value of σMC = σCσM:
A domain wall with m(x) > 0 for x 	 0 gives a solution with
σC = σMCσM = +, whereas a domain wall with m(x) < 0 for
x 	 0 gives a solution with σC = σMCσM = −. One verifies
that if mirror symmetry is present locally around x = 0, neither
perturbations coupling such zero-energy states with the same
value of σMC = σCσM nor perturbations coupling zero-energy
states with different values of σM are allowed.

The analysis of corner states of the previous section
counted their numbers NσC ,σM with parities σC and σM (at
zero energy) and found that the differences N++ − N−+ and
N+− − N−− are the extrinsic topological invariants, whereas
N = N++ + N−− − N+− − N−+ is the intrinsic topological
invariant. The above analysis provides a confirmation of
the differences N++ − N−+ and N+− − N−− as extrinsic,
termination-dependent invariants, and identifies the intrinsic
invariant N describing the corner states with the bulk topolog-
ical invariant N .

Class ACM, (s,t) = (0,1), d = 2. This phase has a Z2

bulk classification [19,22], with a purely crystalline clas-
sifying group K ′ = Z. The first-order (strong) topological
phase has chiral edge modes. For a second-order topological
phase we restrict ourselves to purely crystalline topological
phases with equal numbers of counterpropagating modes.
The corresponding integer index N counts the difference
of the numbers of pairs of counterpropagating edge modes
with positive and negative parity σCM at zero energy. (One
verifies that a pair of counterpropagating modes can not
mutually gap out if both modes have the same parity un-
der CM, i.e., the same eigenvalue of UCM.) For a min-
imal edge, in which all edge modes have the same par-
ity σCM, we may represent the mirror antisymmetry with
the unit matrix, UCM = 1. After a suitable rescaling and
basis transformation, the edge Hamiltonian may then be
written as

Hedge = −ivσ3∂x1N, (21)

where x is the coordinate along the crystal edge, 1N is the
N × N unit matrix, and σ3 a Pauli matrix acting on pairs
of counterpropagating modes. Although mirror antisymmetry
does not allow a uniform mass term, a mass term m1(x)σ1 +
m2(x)σ2 in which m1(x) and m2(x) are Hermitian N × N

matrix-valued antisymmetric functions of x is allowed if the
edge is deformed into two mirror-related edges meeting in a
corner at x = 0. Such a mass term allows for N zero-energy
states localized near x = 0. No further topology or symmetry
related numbers can be associated with the zero-energy states,
consistent with the integer classification obtained by inspection
of corner states given in the previous section.

Class AM, (s,t) = (0,0), d = 3. We use UM = σ2 to
represent mirror reflection. This class admits surface states
with dispersion −iv(σ1∂x ± σ2∂y), where the sign ± defines
the “mirror chirality” and x and y are coordinates along
the surface, such that the mirror reflection sends x → −x.

The bulk crystalline phase has a Z topological classification
[19–22], with an integer topological invariant N equal to the
difference of surface states with positive and negative mirror
chirality [45]. For a minimal surface, all surface states have the
same mirror chirality. With a suitable choice of basis and after
rescaling the corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)1N, (22)

with 1N the N × N identity matrix and x and y coordinates
at the invariant surface. The unique mass term m(x,y)σ3 with
m(x,y) = −m(−x,y) an N × N Hermitian matrix gaps out the
surface states. The fact that the mass term is odd under mirror
reflection guarantees the existence of gapless hinge modes at
mirror-symmetric hinges.

Considering the surface Hamiltonian (22) with a mass term
m(x)σ3 with m(x) = −m(−x), the propagation direction of the
hinge states and their mirror parity σM are determined by the
signs of the eigenvalues of m(x) for x 	 0, such that a positive
eigenvalue corresponds to a hinge state with positive σM, mov-
ing in the positive y direction, whereas a negative eigenvalue
corresponds to a hinge state with negative σM, moving in the
negativey direction. (The mirror parityσM and the propagation
direction are opposite if we would have started from a surface
Hamiltonian describing surface states with negative mirror
chirality.) Counterpropagating hinge modes constructed this
way have opposite σM and are, hence, protected by mirror
symmetry. Since the sign of m depends on the details of the
surface termination, changing the surface termination allows
to simultaneously switch the propagation direction ± and
the mirror parity σM of the hinge states, consistent with the
intrinsic topological invariant N++ − N+− − N−+ + N−−.

Class AIIIM− , (s,t) = (1,1), d = 3. We choose UC = σ3

and UM = σ2 to represent C and M, respectively. This class
supports gapless surface states with dispersion ∝−iv(σ1∂x ±
σ2∂y), which defines the chirality ±. The crystalline bulk has
a Z2 classification [19–22], with purely crystalline classifying
group K ′ = Z, see Table V. The strong integer index counts
the number of such surface Dirac cones, weighted by chirality.
For a second-order topological phase, we are interested in the
purely crystalline topological phases, in which the surface
carries multiple pairs of Dirac cones of opposite chirality.
Their dispersion is −iv(σ1τ3∂x ± σ2τ0∂y), where the sign ±
defines the mirror chirality and the τj , j = 0,1,2,3, are Pauli
matrices acting on a different spinor degree of freedom than the
matrices σj , j = 0,1,2,3. The corresponding (second, purely
crystalline) integer topological invariant N counts the number
of such pairs of Dirac cones, weighted by mirror chirality. A
minimal surface with N � 0 has surface Hamiltonian

Hsurface = −iv(σ1τ3∂x + σ2τ0∂y)1N, (23)

where 1N is the N × N unit matrix. The mass terms
allowed by chiral symmetry and mirror reflection sym-
metry are m1(x,y)σ1τ1 + m2(x,y)σ1τ2 with m1,2(x,y) =
−m1,2(−x,y) N × N Hermitian matrices. This ensures the
presence of gapless hinge modes at mirror-symmetric hinges.
One verifies that the surface Hamiltonian (23) gives N doublets
for which the mixed parity, the product of mirror parity σM
and the propagation direction, is positive. Similarly, surface
Dirac cones with negative mirror chirality give hinge doublets
of negative mixed parity, thus allowing one to identify the
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(a)

mirror−symmetric cornermirror−related edges

(b)

FIG. 10. (a) A two-dimensional crystal with a pair of mirror-
related edges, but without a mirror-symmetric corner. (b) The crystal
may be smoothly deformed into a crystal with a mirror-symmetric
corner. The parity of the number of zero-energy states between the
two mirror-related edges in (a) is the same as the parity of the number
of zero-energy states at the mirror-symmetric corner in (b).

topological invariants derived from counting gapless hinge
states and the (purely crystalline) topological invariant N

describing the bulk crystalline topology.

C. Mirror-symmetric crystals without
mirror-symmetric corners

In principle, a mirror-symmetric crystal need not have
mirror-symmetric corners. However, as long as the crys-
tal has at least a pair of mirror-related edges (for a two-
dimensional crystal) or a pair of mirror-related faces (for a
three-dimensional crystal), the bulk topology determines the
parity of the number of corner or hinge states between the
two mirror-related edges or surfaces. An example of such a
situation is shown in Fig. 10. Since such a crystal without
mirror-symmetric corners or hinges (but with two mirror-
related edges or surfaces) may be smoothly deformed into
a crystal with a mirror-symmetric corner without closing the
bulk gap, and since corner states and hinge modes can only
be generated or annihilated pairwise in such a deformation,
one immediately finds that the parity of corner states or hinge
modes is the same as the parity of corner states or hinge
modes at a mirror-symmetric corner. The corresponding entry
in Tables VIII–X is the classifying group K̄i.

V. CLASSIFICATION OF SECOND-ORDER
TOPOLOGICAL INSULATORS AND SUPERCONDUCTORS

WITH TWOFOLD ROTATION AND INVERSION
SYMMETRY

A. Twofold rotation symmetry for d = 3

The construction of Sec. IV B, in which the existence of
a protected corner state or hinge mode is derived from a
nontrivial bulk crystalline topology, can be directly extended
to the case of a three-dimensional insulator or superconductor
with a twofold rotation symmetry, provided a (generic) hinge
allows for the existence of a protected hinge mode, see Table I.
In that case, the argument starts from the existence of a
gapless mode on a surface that is invariant under the twofold
rotation operation. We first consider the case that the number
of gapless modes is “minimal,” i.e., we consider a generator of
the topological crystalline phase. Following the construction
of Sec. IV B, one then argues that a unique mass term is

θ

φ

(b)(a)

FIG. 11. (a) A surface perpendicular to the twofold rotation axis
hosts a gapless mode in a nontrivial topological crystalline phase.
The surface Hamiltonian acquires a mass term m(θ,φ) upon tilting
the surface away from the normal direction, which depends on the tilt
angle θ and the azimuthal angle φ. The mass term is odd under the
twofold rotation operation, m(θ,φ) = −m(θ,φ + π ). (b) A generic
rotation symmetric surface. Surfaces related by twofold rotation have
opposite mass terms. As a result, a protected gapless hinge mode
(thick black line) forms at the intersection of surfaces with masses
of different sign. The situation shown in the figure corresponds to
sign(m1) = −sign(m2).

generated upon tilting this surface away from the invariant
direction. The mass term m depends on the tilt angle θ and the
azimuthal angle φ of the tilted surface, see Fig. 11(a), and is odd
under the twofold rotation operation,m(θ,φ) = −m(θ,φ + π ),
since the twofold rotation symmetry forbids a mass term for
the rotation-invariant surface. As a consequence, a protected
gapless hinge mode forms at the intersection of surfaces with
masses of different sign, see Fig. 11(b). Since the number of
sign changes of the mass term for 0 � φ < 2π must be an odd
multiple of two, the number of such hinge modes intersecting
a generic cross section of the crystal is an odd multiple of two.

The above argument guarantees the existence of hinge
modes globally, as long as the lattice termination is consistent
with the twofold rotation symmetry, but it does not address
the existence of a hinge mode at a given hinge. Indeed,
generically, single hinges are not mapped to themselves under
the twofold rotation operation; in this sense, all hinges are
“generic” in a crystal with twofold rotation symmetry. This is a
difference with the mirror-reflection symmetric case, for which
a nontrivial mirror-symmetric topological crystalline phase can
guarantee the existence of hinge modes at mirror-symmetric
hinges.

All hinges being generic, hinges modes at a given hinge
can also be induced by a suitable manipulation of the lattice
termination. However, a change of lattice termination that
is compatible with the twofold rotation symmetry always
changes the total number of hinge modes passing a generic
cross section of the crystal by a multiple of four. Since, as seen
above, nontrivial bulk crystalline topology can also induce a
number of hinge modes that is an odd multiple of two, we
conclude that second-order topological phases protected by
a twofold rotation symmetry have a Z2 invariant, which is
nontrivial if the number of hinge modes is an odd multiple of
two. Generators of the topological crystalline classes have a
nontrivial Z2 index; if the bulk topological crystalline phase
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TABLE XI. Classification of topological crystalline phases with
an order-two rotation symmetry or an inversion symmetry for the
complex Altland-Zirnbauer classes. The symbols R and I refer to
twofold rotation (d‖ = 2) and inversion (d‖ = d = 3), respectively.

d = 2 d = 3 d = 3
class s t R R I

AS 0 0 0 0 Z2

AIIIS+ 1 0 0 0 0

ACS 0 1 0 Z2 0
AIIIS− 1 1 Z2 0 0

has an integer classification, only the odd topological numbers
map to a nontrivial second-order phase.

It is interesting to point out that for a nontrivial bulk
crystalline phase in a symmetry class that does not allow
for protected hinge modes, i.e., for which the corresponding
Altland-Zirnbauer class in d = 2 dimensions is trivial, the
mass term obtained by tilting the surface away from the
invariant direction is not unique. With two or more masses
m1(θ,φ) and m2(θ,φ), the antisymmetry relation m1,2(θ,φ) =
−m1,2(θ,φ + π ) no longer forces the mass to be zero for certain
values of the azimuthal angle φ, so that no stable gapless modes
exist at hinges. This is a key difference with the case of mirror
reflection-symmetric crystalline insulators, where protected
modes are guaranteed at mirror-symmetric corners or hinges
even in the presence of multiple mass terms.

The resulting classification is shown in the Tables XI–XIII.
The nontrivial entries in these tables are those Shiozaki-
Sato symmetry classes, for which both the purely crystalline
classification groupsK ′ of Tables V–VII and the corresponding
entry Table I are both nonzero. Below we give detailed
considerations making this construction explicit for the non-
trivial complex Altland-Zirnbauer classes with unitary twofold
rotation symmetry or antisymmetry. The complex Altland-
Zirnbauer classes with antiunitary twofold rotation symmetry
or antisymmetry and the real Altland-Zirnbauer classes are
discussed in Appendix D.

Class AIIIR+ , (s,t) = (1,0). The presence of the chiral
antisymmetry with UC = σ3 allows one to assign a chirality ±
to surface modes with Dirac-like dispersion ∝−iσ1∂x ± iσ2∂y ,
where x and y are the Cartesian coordinates parameterizing
the surface and the twofold rotation operation sends x → −x

TABLE XII. Same as table XI, but for antiunitary symmetries and
antisymmetries.

d = 2 d = 3 d = 3
class s R R I

AT +S 0 0 Z2 0
AIIIT

+S+ 1 0 0 0
AP+S 2 0 0 0
AIIIT

−S− 3 0 0 0
AT −S 4 0 0 0
AIIIT

−S+ 5 0 0 0
AP−S 6 0 0 Z2

AIIIT
+S− 7 Z2 0 0

TABLE XIII. Classification of topological crystalline phases with
an order-two crystalline symmetry or antisymmetry for the real
Altland-Zirnbauer classes. The symbols R and I refer to twofold
rotation (d‖ = 2), and inversion (d‖ = d = 3), respectively.

d = 2 d = 3 d = 3
class s t R R I

AIS+ 0 0 0 0 0
BDIS++ 1 0 0 0 0
DS+ 2 0 0 0 0
DIIIS++ 3 0 0 0 0
AIIS+ 4 0 0 0 Z2

CIIS++ 5 0 0 0 0
CS+ 6 0 0 0 Z2

CIS++ 7 0 0 0 0

AICS− 0 1 0 0 0
BDIS+− 1 1 Z2 0 0
DCS+ 2 1 Z2 Z2 0
DIIIS−+ 3 1 Z2 Z2 0
AIICS− 4 1 0 Z2 0
CIIS+− 5 1 Z2 0 0
CCS+ 6 1 0 Z2 0
CIS−+ 7 1 0 0 0

AIS− 0 2 0 0 0
BDIS−− 1 2 0 0 0
DS− 2 2 Z2 0 Z2

DIIIS−− 3 2 Z2 Z2 Z2

AIIS− 4 2 0 Z2 Z2

CIIS−− 5 2 0 0 0
CS− 6 2 0 0 Z2

CIS−− 7 2 0 0 0

AICS+ 0 3 0 0 0
BDIS−+ 1 3 0 0 0
DCS− 2 3 0 0 0
DIIIS+− 3 3 Z2 0 Z2

AIICS+ 4 3 0 Z2 Z2

CIIS−+ 5 3 Z2 0 0
CCS− 6 3 0 Z2 0
CIS+− 7 3 0 0 0

and y → −y. The crystalline bulk has a Z2 classification [19],
with purely crystalline classifying group K ′ = Z, see Table V.
For a second-order topological phase, we restrict ourselves to
the purely crystalline topological phases, which have equal
numbers of Dirac cones of both chiralities. Such Dirac cones
can not mutually gap out for a rotation-invariant surface if they
have the same parity underRC. At a minimal surface, in which
all surface modes have the same parity under RC, the twofold
rotation symmetry may be represented by UR = UC = σ3.

With a suitable choice of basis and after rescaling, the
surface Hamiltonian of a minimal surface may be written as

Hsurface = −iv(σ1τ3∂x + σ2∂y)1N, (24)

where 1N is the N × N unit matrix. The mass terms allowed
by chiral symmetry and rotation symmetry are m1(x,y)σ1τ1 +
m2(x,y)σ1τ2 with m1,2(x,y) = −m1,2(−x,−y) N × N Her-
mitian matrices. Although surfaces related by the twofold
rotation operation have opposite masses, the existence of two
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mass terms allows the crystal faces to avoid domain walls and
the associated protected hinge modes.

Class ACR, (s,t) = (0,1). The bulk has a Z topological
classification, with an integer topological invariant N equal to
the difference of surface states with positive and negative parity
σCR at zero energy. For a minimal surface, all surface states
have the same value of σCR and one may effectively represent
CR using UCR = 1. With a suitable choice of basis and after
rescaling the corresponding surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ2∂y)1N, (25)

with1N the N × N identity matrix and x and y are coordinates
at the invariant surface. The unique mass term m(x,y)σ3 with
m(x,y) = −m(−x,−y) an N × N Hermitian matrix gaps out
the surface states. If N is odd the existence of hinge modes at
the intersection of surfaces with opposing signs of det m(x,y)
is guaranteed by the rotation antisymmetry. If N is even one
can still construct a mass term which is nonzero everywhere
(except at the origin), corresponding to a state without hinge
modes.

B. Twofold rotation symmetry for d = 2
and inversion symmetry

The above construction can not be applied to two-
dimensional crystals with twofold rotation symmetry and to
three-dimensional crystals with inversion symmetry, because
these do not have symmetry-invariant boundaries. Instead, we
argue for the existence of a second-order topological phase
in this case using the reflection-matrix based dimensional
reduction scheme outlined in Sec. III. Starting from a second-
order topological phase in d + 1 dimensions in Shiozaki-Sato
symmetry class (s + 1,t) (class s + 1 for complex Hamilto-
nians with antiunitary symmetries) and d‖ < d + 1 inverted
coordinates, the dimensional reduction scheme allows one
to construct a second-order topological insulator or super-
conductor in Shiozaki-Sato symmetry class (s,t) (class s

for complex Hamiltonians with antiunitary symmetries) in
d dimensions, with the same number d‖ of inverted dimen-
sions. The real-space version of the reflection-matrix based
dimensional reduction scheme directly maps hinge states in
a three-dimensional second-order topological insulator or su-
perconductor with twofold rotation symmetry to corner states
in a two-dimensional topological insulator or superconductor
with twofold rotation symmetry, see Fig. 12. Similarly, it maps
generalized hinge states of a four-dimensional second-order
topological insulator or superconductor with an order-two
inversion with d‖ = 3 to hinge states of a three-dimensional
second-order topological insulator or superconductor with
inversion symmetry. The resulting Z2 classification is given
in Tables XI–XIII.

VI. EXAMPLES

In this section, we give various tight-binding model realiza-
tions of the second-order topological insulators. The models
we consider all follow the same pattern. We first describe their
general structure and then turn to a description of specific
Shiozaki-Sato symmetry classes. The model Hamiltonian we

2d 2nd order topological
insulator with twofold
rotation symmetry

H3

dimensional 
reduction

r

rotation symmetry

3d 2nd order topological
insulator with twofold

ideal lead

H2

FIG. 12. Dimensional reduction scheme from a three-
dimensional second-order topological insulator with twofold
rotation symmetry to a two-dimensional second-order topological
insulator with inversion symmetry. Upon dimensional reduction, the
Altland-Zirnbauer class changes from s to s − 1 (modulo 2 for the
complex classes, modulo 8 for the real classes), see the discussion in
the main text.

consider is of the general form H (k) = H0(k) + H1, with

H0(k) =
d∑

j=0

dj (k)�j , H1 =
d∑

j=1

bjBj , (26)

where the �j and the Bj , j = 1, . . . ,d, are matrices that depend
on the specific Shiozaki-Sato class and that satisfy �2

j = B2
j =

1, the bj are real numbers typically chosen to be numerically
small, and

d0(k) = m +
d∑

j ′=1

(1 − cos kj ′),

(27)
dj (k) = sin kj , j = 1, . . . ,d.

The matrices �0 and �j , j = 1, . . . ,d, anticommute mutually,
which ensures that for small numbers bj , the Hamiltonian (26)
is in a nontrivial topological crystalline phase for −2 < m < 0.
We further choose the matrix B1 such that it commutes with
�1 and �0 and anticommutes with �j with j � 1. For the
remaining matrices Bj with j > 1, we set

Bj = �j�1B1, j = 2, . . . ,d, (28)

which ensures that Bi commutes with �i and �0 and anticom-
mutes with �j for j �= i. Mirror symmetry with k1 → −k1

requires b2 = b3 = 0; twofold rotation symmetry with rotation
around the x3 axis requires b3 = 0. The role of the perturbation
H1 is to reduce the symmetry of the Hamiltonian, while
preserving the crystalline symmetry of interest. Further, as
we will show below, each Bj term gaps the surface that is
perpendicular to the xj direction. When appropriate, we will
simplify our notation by writing the matrices �j and Bj and the
numbers bj as vectors, � = (�1, . . . ,�d ), B = (B1, . . . ,Bd ),
and b = (b1, . . . ,bd ).

For all of the examples that we discuss below we verified the
existence of Majorana corner modes or gapless hinge modes
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by numerical diagonalization of a finite cluster. (All numerical
calculations in this section were performed using the KWANT

software package [44].) Alternatively, for a Hamiltonian of
the form (26), with the constraints as described above, the
existence of zero-energy corner modes or gapless hinge modes
can also be concluded from an explicit solution of the low-
energy theory, modeling the crystal boundaries as interfaces
between regions with negative and positive m, with negative
m corresponding to the interior of the crystal. The low-energy
limit of H0 near a sample boundary has the form

H0 = m(x⊥)�0 − ih̄� · ∂r, (29)

where x⊥ = n · r is the coordinate transverse to a boundary
with outward-pointing normal n. We require m(x⊥) > 0 for
x⊥ > 0 and m(x⊥) < 0 for x⊥ < 0, so that the sample interior
corresponds to negative x⊥. The Hamiltonian (29) admits a
zero-energy boundary mode with spinor wave function ψ(x⊥)
satisfying

∂x⊥ψ(x⊥) = − i

h̄
m(x⊥)(n · �)�0ψ(x⊥). (30)

For 2b-dimensional spinors, this equation has b bounded solu-
tions with an x⊥-independent spinor structure. The projection
operator to the b-dimensional space of allowed spinors is

P (n) = 1
2 [i(n · �)�0 + 1]. (31)

The effective b-band surface Hamiltonian is obtained using
the projection operator P (n). To illustrate this procedure,
we consider a family of surfaces with surface normal n =
(cos φ, sin φ) for d = 2 or n = (cos φ, sin φ,0) for d = 3. In
this case, we write the projection operator as

P (φ) = 1
2 (i�1�0 cos φ + i�2�0 sin φ + 1)

= eφ�2�1/2P (0)e−φ�2�1/2. (32)

The projected Hamiltonian then reads,

P (n)HP (n) = eφ�2�1/2P (0)

× [−ih̄
(
�2∂x‖ + �3∂x3

) + m(φ)B1
]

× P (0)e−φ�2�1/2, (33)

where m(φ) = b1 cos φ + b2 sin φ and ∂x‖ = cos φ ∂x2 −
sin φ ∂x1 is the derivative with respect to a coordinate along
the surface. [For d = 2 the terms proportional to ∂x3 should
be omitted from Eq. (33) and from Eq. (34) below.] From
Eq. (33), we derive the effective boundary Hamiltonian

Hboundary = −ih̄
(
�′

2∂x‖ + �′
3∂x3

) + m(φ)B ′
1, (34)

where �′
2 = P (0)�2P (0), �′

3 = P (0)�3P (0), and B ′
1 =

P (0)B1P (0) are effectively b × b matrices because of the
projection operator P (0). (Note that �2, �3, and B1 commute
with P (0).) The boundary Hamiltonian (34) supports boundary
modes with a gap |m(φ)|. For d = 2 zero-energy corner states
appear between crystal edges with opposite sign of m(φ); for
d = 3 gapless hinge modes appear between crystal faces with
opposite sign of m(φ).

A. Examples in two dimensions

1. Class D with t = d‖

This example applies to symmetry class DCM+ , (s,t) =
(2,1) and to symmetry class DR− , (s,t) = (2,2). We represent
the symmetry operations using UP = σ1, UCM = σ1, and
UR = σ3. The mirror operation sends k1 → −k1. For the
matrices �j and Bj in the tight-binding Hamiltonian (26), we
choose

�0 = σ3, � = (τ3σ1,σ2), B = (τ2σ3,−τ1). (35)

For class DCM+ , the mirror antisymmetry imposes that b2 = 0;
for class DR− nonzero b1 and b2 are allowed. We note that
for b1 = 0 this example also possesses a mirror symmetry for
mirror reflection k2 → −k2, which is represented by σ2τ3. The
mirror-symmetric case hosts Majorana zero modes at corners
that are bisected by the mirror axis. The rotation-symmetric
case also hosts Majorana modes at corners, but these corners
are determined by the orientation of the vector b (numerical
data not shown).

2. Class D with t = d‖ + 3 mod 4

This example applies to symmetry class DM+ , (s,t) = (2,0)
and to symmetry class DCR+ , (s,t) = (2,1). We represent the
symmetry operations using UP = 1, UM = σ1, and UCR =
τ3σ1. For the matrices �j and Bj in the tight-binding Hamil-
tonian (26), we choose

�0 = τ2, � = (τ1σ3,τ3), B = (τ2σ1,−σ2). (36)

Again the mirror symmetry imposes that b2 = 0; for class
DCR− nonzero b1 and b2 are allowed. As in the previous
example, the mirror-symmetric case hosts Majorana zero
modes at corners that are bisected by the mirror axis [9]. The
rotation-symmetric case also hosts Majorana zero modes at
corners that are determined by the orientation of the vector b
(numerical date not shown).

3. Class DIII with t = d‖ − 1 mod 4

This example applies to symmetry classes DIIIM++ and
DIIIR−+ , which both have a Z2 classification. We consider
an eight-band model, for which we represent the symmetry
operations using UT = σ2, UP = τ1, UM = ρ3, and UR = σ3,
where the ρj , σj , and τj are Pauli matrices acting on different
spinor degrees of freedom. For the matrices �j and Bj in the
tight-binding Hamiltonian (26), we choose

�0 = τ3, � = (ρ1τ1σ1,ρ3τ1σ1),

B = (ρ3τ3,−ρ1τ3). (37)

Mirror symmetry imposes that b2 = 0. The perturbation b1B1

preserves both mirror and rotation symmetries, but breaks
a mirror symmetry with x2 → −x2, represented by ρ1. As
shown in Fig. 13(a), the mirror-symmetric model with nonzero
b1 hosts Majorana Kramers pairs at its symmetry-invariant
corners. The corner states persist if the mirror-symmetry-
breaking perturbation b2B2 is switched on, see Fig. 13(b). In
this case, the ratio of b1 and b2 determines the corner at which
the Majorana Kramers pairs reside, such that they move to the
other corners if b1 = 0, see Fig. 13(c).
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(a)  (b) (c)

FIG. 13. Support of the zero-energy corner state obtained from
exact diagonalization of the two-dimensional time-reversal invariant
superconductor in class DIII with Hamiltonian (26) with m = −1 and
� and B given by Eq. (37) with b = (0.3,0) (a), b = (0.3,0.1) (b), and
b = (0,0.3) (c).

4. Class AII with t = d‖ + 2 mod 4

This example applies to symmetry classes AIICM+ and
AIIR+ . We represent the symmetry operations using UT = σ2,
UCM = τ2σ3, and UR = τ2σ1. This symmetry class allows a
perturbation H1 of the form

H1 =
d∑

j=1

bjBj +
d∑

j=1

cjCj , (38)

where the matrices Cj anticommute with the matrices Bj and
otherwise satisfy the same properties, see Eq. (28) and the
discussion preceding that equation. For the matrices �j , Bj ,
and Cj , we choose

�0 = τ2σ1, � = (σ3,σ2),

B = (μ2τ3σ3,μ2τ3σ2), C = (μ2τ1σ3,μ2τ1σ2), (39)

where the μj , σj , and τj are Pauli matrices acting on different
spinor degrees of freedom. As in the previous examples the mir-
ror antisymmetry imposes that b2 = c2 = 0; for class AIIR+

nonzero b1,2 and c1,2 are allowed. The mirror antisymmetry
can protect a zero-energy Kramers pair at mirror-symmetric
corners. However, if the mirror antisymmetry is broken, the
twofold rotation symmetry alone cannot protect a topologically
protected zero-energy state if both b and c are nonzero and
linearly independent. (If b and c are both nonzero and linearly
dependent, the model specified by Eq. (39) obeys an accidental
chiral antisymmetry, effectively placing it in the Shiozaki-Sato
symmetry classes CIIM−− and CIIR+− , which stabilizes a
zero-energy corner mode even if mirror symmetry is broken.)

Figure 14 shows the result of the exact diagonalization of
this model on a finite-sized lattice. Panel (a) shows the support
of the Kramers pairs for a system with b2 = c1 = c2 = 0
as well as the spectrum near zero energy. Upon adding the
mirror-antisymmetry-breaking perturbation c2C2 locally near
the top corner, the Kramers pair located there acquires a finite
energy, see panel (b). Both Kramers pairs disappear if the
mirror-symmetry-breaking perturbation is added to both top
and bottom corners, see Fig. 14(c).

B. Examples in three dimensions

1. Class A with t = d‖ + 1 mod 4

Langbehn et al. [9] considered this class for the case of a
mirror symmetry with k1 → −k1 represented by UM = σ1.
Here we give an example that also has twofold rotation

(a)

(b)

(c)

0.2

0.1

0

0.1

0.2

0.2

0.1

0

0.1

0.2

0 5 10 15 20 25 30

0.1

0

0.1

0.2

FIG. 14. Support of the zero-energy eigenstates (if present, left)
and the lowest 30 eigenvalues [right (a)–(c)] of the model discussed in
Sec. VI A 4. (a) is for the case that mirror antisymmetry is present, b =
(0.4,0) and c = (0,0), which has a Kramers pair of zero-energy states
localized at the mirror-symmetric top and bottom corners. Breaking
the mirror antisymmetry locally at the top corner removes one zero-
energy Kramers pair, as shown in (b). No zero-energy Kramers pairs
remain after removing the mirror antisymmetry at both the top and
the bottom corner, as shown in (c).

antisymmetry, represented by UCR = τ2σ1, and inversion sym-
metry, represented by UI = τ1σ1. For the matrices �j and Bj

in the tight-binding Hamiltonian (26), we choose

�0 = τ1σ1, � = (τ1σ3,τ2,τ3), B = (τ1,τ2σ3,τ3σ3). (40)

Mirror symmetry imposes that b2 = b3 = 0; twofold rotation
antisymmetry imposes that b3 = 0. The mirror-symmetric
model with b2 = b3 = 0 was already considered in Sec. III.
Additionally, the system has a mirror symmetry sending k2 →
−k2 (k3 → −k3) represented by UM = τ3σ2 (UM = τ2σ2) and
a twofold rotation antisymmetry around x1 axis (x2 axis) repre-
sented byUCR = σ2 (UCR = τ3σ1). The mirror-symmetric case
AM in which only the perturbation b1B1 is present has a single
chiral mode wrapping around the sample hinges [9]. These
modes persist when all three perturbations bjBj are switched
on, where the orientation of the vector b determines which
hinges support the chiral hinge modes. As an example, Fig. 15
shows the support of the chiral hinge modes for two different
choices of b.

Upon performing the reflection-matrix dimensional reduc-
tion scheme of Sec. III the model defined by the choice
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(a) (b)

(c)

FIG. 15. Support of the zero-energy hinge modes for a
three-dimensional crystal with tight-binding Hamiltonian specified
by Eqs. (26) and (40) for b = (0.8,0.8,0.8)/

√
3 (a) and b =

(0.8,0.8,0)/
√

2 (b). The example shown in (a) has mirror-reflection
symmetry, twofold rotation symmetry, and inversion symmetry; the
example in (b) has inversion symmetry only. (c) shows the support
of the zero-energy corner modes obtained for the two-dimensional
tight-binding model specified by Eqs. (26) and (41) with b = (0.4,0).

(40) can be used to generate an eight-band two-dimensional
Hamiltonian in classes AIIIM+ and AIIIR− with UC = μ3,
UM = σ1, and UR = μ1τ2σ1. Figure 5 shows the support of the
zero-energy corner states of the two-dimensional Hamiltonian
that is obtained this way. For comparison, we may con-
sider a four-band model for a two-dimensional tight-binding
Hamiltonian, with UC = τ3, UM = σ1, and UR = τ1σ1 and
Hamiltonian specified by

�0 = τ1σ1, � = (τ1σ3,τ2), B = (τ1,τ2σ3). (41)

The above model has a mirror symmetry for b2 = 0 and a
twofold rotation symmetry for arbitrary b1, b2. This model
has zero-energy corner states. Figure 15(c) shows the support
of these zero-energy corner states for the parameter choice
b = (0.4,0).

2. Class AII with s = 4, t = d‖ + 1 mod 4

This example applies to the classes AIIM− , AIICR+ , and
AIII+ , which all have a Z bulk crystalline classification, with
purely crystalline component K ′ = 2Z [19–23,46]. We use
UT = σ2, represent the (spinful) mirror operation by UM =
σ3τ3, rotation antisymmetry by UCR = σ1τ2, and inversion as
UI = τ3. The lattice Hamiltonian is specified by

�0 = τ3, � = (σ3τ1,σ2τ1,σ1τ1),

B = (σ3τ0ρ2,σ2τ0ρ2,σ1τ0ρ2), (42)

where mirror symmetry forces b2 = b3 = 0 and rotation anti-
symmetry forces b3 = 0. In addition to the spatial symmetries
mentioned above, the model has a mirror symmetry with k2 →
−k2 if b1 = b3 = 0, represented by σ2τ3, a mirror symmetry
with k3 → −k3 if b1 = b2 = 0, represented by σ1τ3, and
rotation antisymmetries around the x1 axis (if b1 = 0) and x2

axis (if b2 = 0), represented by σ3τ2 and σ2τ2, respectively. The

(a)  (b)

FIG. 16. Support of helical hinge modes of the tight-binding
Hamiltonian (26) with � and B given by Eq. (42) and b = (0.4,0.4,0)
(a) and b = (0.4,0.4,0.4) (b). For the example shown in (a) the top
and bottom surfaces are invariant with respect to the twofold rotation
symmetry, which explains the presence of gapless surface modes at
the top and bottom surface. The twofold rotation symmetry is broken
in (b), which has inversion symmetry only.

model with mirror symmetry has a single helical mode located
at the mirror-symmetric sample hinges [9]. The helical modes
persist upon turning on all perturbations bjBj , j = 1,2,3,
leaving inversion as the only symmetry of the model. Figure 16
shows the helical hinge modes for two different choices of b.
The existence of hinge modes in the presence of inversion sym-
metry is consistent with Refs. [14,36], where the same symme-
try class was considered. The case of a spinful mirror symmetry
was analyzed previously in Refs. [4,9].

3. Class AII with s = 4, t = d‖

This example applies to the classes AIICM− , AIIR− , and
AIICI+ , which all have a Z2

2 bulk crystalline classification
[19–23,46], with purely crystalline component K ′ = Z2. Here
we again represent time-reversal as UT = σ2, and use UCM =
σ1τ3, UR = σ3, and UCI = τ3 to represent the mirror antisym-
metry, spinful rotation symmetry, and inversion antisymmetry.
We choose the matrices of the tight-binding Hamiltonian as

�0 = τ1ρ3, � = (σ1τ3ρ3,σ2τ3,σ3τ3),

B = (σ0τ2ρ2,−σ3τ2ρ1,σ2τ2ρ1), (43)

where mirror antisymmetry forces b2 = b3 = 0 and rotation
symmetry forces b3 = 0. The model has additional mirror an-
tisymmetries with k2 → −k2 (if b1 = b3 = 0) and k3 → −k3

(if b1 = b2 = 0), represented by σ2τ3 and σ3τ3, respectively,
and rotation symmetries around the x1 axis (if b1 = 0) and
x2 axis (if b2 = 0), represented by σ1 and σ2, respectively. A
numerical diagonalization gives results that are indistinguish-
able from those of Fig. 16. The existence of hinge modes in
the presence of spinful twofold rotation symmetry is consistent
with Ref. [36], where the same symmetry class was considered.

4. Antiunitary symmetry: Class A with s = 4 − 2d‖ mod 8

This example applies to the classes AP+M, AT +R, and
AP−I . We represent the symmetry operations using UPM =
τ3, UT R = σ1, and UPI = σ2 and consider a tight-binding
Hamiltonian of the form (26) with

�0 = σ2τ0, � = (σ1τ1,σ1τ3,σ3τ0),

B = (σ2τ3,−σ2τ1,σ0τ2), (44)
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(c)                           (d)

(a)  (b)

FIG. 17. Support of the zero-energy states of the tight-binding
Hamiltonian (26) with � and B given by Eq. (44) and b =
(0.4,−0.4,0) (a) and b = (0.4,−0.4,0.4) (b). For the example shown
in (a), the top and bottom surfaces are invariant with respect to the
twofold rotation symmetry, which explains the presence of gapless
surface modes at the top and bottom surface. The twofold rotation
symmetry is broken in (b), which only has inversion symmetry.
(c) shows the support of the zero-energy corner modes of the
two-dimensional Hamiltonian in class AIIIT

+R− obtained by dimen-
sional reduction of the three-dimensional model, with parameter
b = (0.4,−0.4,0). For comparison, (d) shows the support of the zero-
energy corner modes obtained for the two-dimensional tight-binding
model specified by Eqs. (26) and (45) with b = (0.4,−0.4).

where the antiunitary mirror antisymmetry requires that b2 =
b3 = 0 and the twofold antiunitary rotation symmetry requires
that b3 = 0. Figures 17(a) and 17(b) show the hinge states
for two example lattice structures with m = −1 and b =
(0.4,−0.4,0) and b = (0,4,−0.4,0.4), respectively.

Upon performing the reflection-matrix dimensional reduc-
tion scheme of Sec. III, the model defined by the choice (44)
can be used to generate a two-dimensional Hamiltonian in
classes AIIIT

+M+ and AIIIT
+R− with UC = ρ3, UT M = σ0τ3,

and UT R = σ1ρ1. Figure 17 d shows the support of the zero-
energy corner states of the two-dimensional Hamiltonian that
is obtained this way.

The model that is obtained using the dimensional reduction
scheme is an eight-band model. This is not the minimal number
of bands for which a nontrivial second-order topological
insulator in the classes AIIIT

+M+ and AIIIT
+R− exists. An

example of a minimal model is given by a two-dimensional
tight-binding Hamiltonian of the form (26) with

�0 = σ2τ0, � = (σ1τ1,σ1τ3), B = (σ2τ3,−σ2τ1), (45)

which has a chiral symmetry UC = σ3, mirror symmetry
UT M = σ3τ3 for b2 = 0 and a twofold rotation symmetry
UT R = σ1 for arbitrary b1, b2. This model has zero-energy
corner states, as shown in Fig. 17(d) for the parameter choice
m = −1, b = (0.4,−0.4).

VII. CONCLUSION

In this work, we extend the construction scheme introduced
by Langbehn et al. [9] for second-order topological insulators
and superconductors with mirror reflection symmetry to the
larger class of topological insulators and superconductors
stabilized by any order-two crystalline symmetry or anti-
symmetry, unitary or antiunitary. The order-two crystalline
symmetries include mirror reflection, twofold rotation, and
inversion.

For the mirror-symmetric topological crystalline insulator
and superconductors, we showed that a topologically nontrivial
bulk implies that either all boundaries have gapless modes,
in which case the topological crystalline insulator or super-
conductor is a strong topological insulator or superconductor
which does not rely on the crystalline symmetry for its
protection, or it is a second-order topological insulator, with
zero-energy states at mirror-symmetric corners or gapless
modes at mirror-symmetric hinges. Moreover, we showed
that there is a “corner-to-bulk correspondence” or “hinge-to-
bulk correspondence,” according to which the classification
of possible protected corner or hinge states modulo lattice
termination effects is identical to the that of the bulk topology,
after removal of the strong topological phases. On the other
hand, no complete corner-to-bulk correspondence or hinge-to-
bulk correspondence exists for topological crystalline phases
protected by a twofold rotation symmetry or by inversion
symmetry, since these symmetries no not allow for symmetry-
invariant corners or hinges in two and three dimensions.
Instead, there is a partial correspondence, which relates the
parity of the number of corner states or hinge modes to the
bulk topology.

For topological crystalline phases in which the number
d‖ of inverted spatial dimensions is smaller than the spatial
dimension d, such as phases protected by mirror reflection
for d � 2 or twofold rotation for d � 3, there is a bulk-
to-boundary correspondence, which uniquely links the bulk
topology with the boundary states on a symmetry-invariant
boundary. The corner-to-bulk correspondence or hinge-to-bulk
correspondence for those phases shows that they may have
protected states at corners or hinges, too, but it does not
provide information beyond what is already known from
considering symmetry-invariant boundaries. This is different
for topological crystalline phases with d‖ = d, such as twofold
rotation symmetry for d = 2 or inversion symmetry for d = 3,
for which there are no symmetry-invariant boundaries and,
hence, no (first-order) bulk-to-boundary correspondence. In
this case, the Z2 sum rule for the number of corner states or
hinge modes that we derive here provides a unique boundary
signature of a nontrivial topological crystalline phase for
a case in which no other boundary signatures are known
to exist [14,36]. Correspondingly, the demonstration that a
nontrivial topological crystalline phase implies the existence
of protected corner states or hinge modes cannot start from a
theory of gapless boundary modes, as it does for d‖ < d [9],
but, instead, must start from the gapped bulk, as is done in
Ref. [36] and Sec. VI for specific examples, or, as a general
construction, by dimensional reduction from a hypothetical
higher-dimensional topological crystalline phase for which
symmetry-invariant boundaries exist. This is the route we take
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in Sec. V, using a real-space dimensional reduction scheme
based on the scattering matrix [22,43].

It is important to stress that, although crystalline symme-
tries are key to our construction of second-order topological
phases, second-order topological phases are immune to weak
perturbations that break the crystalline symmetry, as long as
the boundary gaps are preserved [9]. In our description, this
stability is reflected in the use of two classification schemes: an
extrinsic classification scheme, which classifies corner states
or hinge modes with respect to continuous transformations of
the Hamiltonian that preserve both bulk and boundary gaps,
and an intrinsic classification, which allows transformations
of the Hamiltonian in which the boundary gap is closed, as
long as the bulk gap is preserved. The intrinsic classification
depends on the bulk topology only, and is independent of
the lattice termination. On the other hand, it is the extrinsic
classification, with the possible inclusion of local symmetry-
breaking perturbations, that captures the robustness of the
phenomena associated with a second-order topological phase
to weak symmetry-breaking perturbations.

Not all two-dimensional materials with corner states or all
three-dimensional materials with gapless hinge modes are in
a second-order topological phase—just like not all materials
with a gapped bulk and gapless boundary states are topological.
For a second-order topological phase it is necessary that the
corner states or hinge modes have a topological protection.
A classification of the type that we present here is a key
prerequisite to determine whether a true topological protection
can exist, or whether the existence of corner states or hinge
modes in a given model is merely a matter of coincidence. For
example, the existence of zero-energy corner modes always
requires that the Hamiltonian satisfy an antisymmetry, ruling
out a second-order phase in a two-dimensional lattice model
with symmetries only—in contrast to recent claims in the
literature [47–49].

The phenomenology of a second-order topological phase—
the existence of protected zero-energy corner states or gapless
hinge modes on an otherwise gapped boundary—is not the
only possible manifestation of a nontrivial bulk topology
if the standard bulk-to-boundary correspondence does not
apply. As pointed out in Refs. [6,7,47,50,51], a nontrivial
bulk crystalline topology may also manifest itself through
a nontrivial quantized electric multipole moment or through
the existence of fractional end or corner charges. (Note
that a corner charge is different from a zero-energy corner
state: a zero-energy corner state implies a degeneracy of the
many-body ground state, whereas a corner charge implies the
local accumulation of charge in an otherwise nondegenerate
many-particle ground state.) If the Hamiltonian possesses an
antisymmetry, as is the case for certain models considered in
the literature [6,50], a nontrivial electric multipole moment and
protected zero-energy corner states can exist simultaneously,
but this need not always be the case. A counterexample is
the “breathing pyrochlore lattice” of Ref. [47], for which the
nontrivial bulk topology manifests itself through a quantized
bulk polarization, whereas the zero-energy corner states of
Ref. [47] lack topological protection.

Only few materials have been proposed as realizations
of second-order phases. Examples are strained SnTe [4]
or odd-parity superconducting order in doped nodal-loop

materials [52] both with mirror symmetry, and bismuth [53]
with inversion symmetry. Simultaneously, the phenomenology
of second-order phases has been reproduced experimentally
in artificial “materials,” such as electrical [54] or microwave
[55] circuits, or coupled mechanical oscillators [56]. We hope
that the complete classification presented here will help to
identify new material candidates for the solid-state realizations
of second-order topological insulators and superconductors.
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APPENDIX A: REFLECTION-MATRIX-BASED
DIMENSIONAL REDUCTION SCHEME

In this appendix, we describe details of the reflection-matrix
based dimensional reduction scheme. We first review how
this method works in the absence of crystalline symmetry,
following the original article by Fulga et al. [43], and then show
how to include order-two crystalline symmetries with d‖ < d,
generalizing the analysis of Ref. [22]. The reflection-matrix
based dimensional reduction scheme leaves d‖ unchanged, so
that the minimal dimension it can achieve is d = d‖. The main
text discusses how the reflection-matrix based dimensional re-
duction scheme can also be applied to second-order topological
insulators and superconductors.

1. Altland-Zirnbauer classes without crystalline symmetries

The key step in the method of Ref. [43] is the construction
of a (d − 1)-dimensional gapped Hamiltonian Hd−1 for each
d dimensional gapped Hamiltonian Hd . The Hamiltonians Hd

and Hd−1 have different symmetries, but the same (strong)
topological invariants. Fulga et al. show how the Hamiltonian
Hd−1 can be constructed from the reflection matrix rd if a
gapped system with Hamiltonian Hd is attached to an ideal
lead with a (d − 1)-dimensional cross section.

To be specific, following Ref. [43], we consider a d-
dimensional gapped insulator with Hamiltonian Hd (k) =
Hd (k⊥,kd ), occupying the half space xd > 0 and periodic
boundary conditions in the transverse directions, see Fig. 18.
The half space xd < 0 consists of an ideal lead with transverse
modes labeled by the d − 1 dimensional wave vector k⊥. The
amplitudes aout(k⊥) and ain(k⊥) of outgoing and incoming
modes are related by the reflection matrix rd (k⊥),

aout(k⊥) = rd (k⊥)ain(k⊥). (A1)

Since Hd is gapped, rd (k⊥) is unitary. Time-reversal symme-
try, particle-hole antisymmetry, or chiral antisymmetry pose
additional constraints on rd (k⊥). These follow from the action
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aout
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crystalline insulatorideal lead
xd0

FIG. 18. Schematic picture of a d-dimensional gapped crystalline
insulator occupying the half space xd > 0, with periodic boundary
conditions applied along the remaining (d − 1) dimension, coupled to
an ideal lead with a (d − 1)-dimensional cross section. The reflection
matrix rd (k⊥) relates the amplitudes aout(k⊥) and ain(k⊥) of outgoing
and incoming modes in the lead.

of these symmetries on the amplitudes ain and aout,

T ain(k⊥) = QT a∗
out(−k⊥),

(A2)
T aout(k⊥) = VT a∗

in(−k⊥),

Pain(k⊥) = VP a∗
in(−k⊥),

(A3)
Paout(k⊥) = QP a∗

out(−k⊥),

Cain(k⊥) = QC aout(k⊥),
(A4)

Caout(k⊥) = VC ain(k⊥),

where VT , QT , VP , QP , VC , and QC are k⊥-independent
unitary matrices that satisfy VT Q∗

T = QT V ∗
T = T 2, VPV ∗

P =
QPQ∗

P = P2, and QCVC = C2 = 1. Systems with both time-
reversal symmetry and particle-hole antisymmetry also have
a chiral antisymmetry, with QC = VPQ∗

T = T 2P2QT Q∗
P and

VC = QPV ∗
T = T 2P2VT V ∗

P . For the reflection matrix rd (k⊥),
the presence of time-reversal symmetry, particle-hole antisym-
metry, and/or chiral antisymmetry leads to the constraints

rd (k⊥) = QT
T rd (−k⊥)TV ∗

T , (A5)

rd (k⊥) = QT
Prd (−k⊥)∗V ∗

P , (A6)

rd (k⊥) = Q
†
Crd (k⊥)†VC . (A7)

The effective Hamiltonian Hd−1 is constructed out of rd (k⊥)
in different ways, depending on the presence or absence of
chiral symmetry. With chiral symmetry one sets

Hd−1(k) ≡ QCrd (k), (A8)

using Eq. (A7) to verify that Hd−1 is indeed Hermitian. (Recall
that VC = Q

†
C since QCVC = C2 = 1.) Equation (A8) simpli-

fies to Eq. (9) of the main text if the basis of scattering states is
chosen such that QC = VC = 1. Without chiral symmetry one
defines Hd−1 as

Hd−1(k) =
(

0 rd (k)
r
†
d (k) 0

)
, (A9)

which is manifestly Hermitian and satisfies a chiral symmetry
with UC = σ3 = diag (1,−1). Hence, for the complex classes,

the dimensional reduction procedure Hd → Hd−1 maps a
Hamiltonian with chiral symmetry to one without, and vice
versa, corresponding to the period-two sequence

A
d−1−−→ AIII

d−1−−→ A.

Bulk-boundary correspondence implies that the bulk, which
is described by the Hamiltonian Hd (k), and the boundary,
which determines the reflection matrix rd (k⊥), have the same
topological classification. Since rd (k⊥) is in one-to-one corre-
spondence with the Hamiltonian Hd−1(k⊥), this implies that
Hd and Hd−1 have the same topological classification.

Central point in the construction of Ref. [43] is that if the
Hamiltonian Hd possesses an additional antiunitary symmetry
and/or antisymmetry, placing it in one of the real Altland-
Zirnbauer classes labeled s = 0,1, . . . ,7, then Hd−1 possesses
an antiunitary symmetry and/or antisymmetry, too, such that it
is in Altland Zirnbauer class s − 1 [22,43]. Hence, for the real
Altland-Zirnbauer classes, the reflection-matrix based dimen-
sional reduction scheme generates the period-eight sequence

CI
d−1−−→ C

d−1−−→ CII
d−1−−→ AII

d−1−−→ DIII

d−1−−→ D
d−1−−→ BDI

d−1−−→ AI
d−1−−→ CI, (A10)

which is the well-known period-eight Bott periodicity known
from the classification of topological insulators and supercon-
ductors [15,17,39–42].

2. With order-two crystalline symmetries

Bulk-boundary correspondence continues to exist in the
presence of an order-two crystalline symmetry with d‖ < d,
if the sample surface is left invariant under the symmetry
operation. (For d‖ = d, there are no such invariant surfaces.)
Correspondingly, the reflection-matrix based dimensional re-
duction scheme may be used in the presence of such crystalline
symmetries, too, as was shown for the case of reflection
symmetry by two of us in Ref. [22].

Labeling the coordinates as in Sec. II, the coordinate xd

is left invariant by the crystalline symmetry operation S
if d‖ < d. Hence, taking the same geometry as above, the
lead and the lead-crystal interface are mapped to themselves
under S . We now discuss the four cases of unitary symmetry,
unitary antisymmetry, antiunitary symmetry, and antiunitary
antisymmetry separately.

Unitary symmetry. As with the nonspatial symmetries, the
action of a unitary symmetry operation S on the amplitudes ain

and aout of incoming and outgoing states in the leads involves
multiplication with k⊥-independent unitary matrices,

Sain(k⊥) = VS ain(Sk⊥),
(A11)

Saout(k⊥) = QSaout(Sk⊥),

where Sk⊥ = (−k1, . . . ,−kd‖ ,kd‖+1, . . . ,kd−1) denotes the ac-
tion of the symmetry operation on the mode vector k and the
matrices VS and QS satisfy V 2

S = Q2
S = S2 = 1. The presence

of the order-two crystalline symmetry leads to a constraint on
the reflection matrix,

rd (k⊥) = Q
†
Srd (Sk⊥)VS . (A12)
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The algebraic relations involving the matrices QS , VS de-
pend on whether the symmetry operation S commutes
or anticommutes with the nonspatial symmetry opera-
tions T , P , and C, QT Q∗

S = ηT VSQT , VT V ∗
S = ηT QSVT ,

VPV ∗
S = ηPVSVP , QPQ∗

S = ηPQSQP , QCQS = ηCVSQC ,
and VCVS = ηCQSVC .

Unitary antisymmetry. An order-two unitary antisymmetry
CS also exchanges incoming and outgoing modes, such that
one has

CSain(k⊥) = QCS aout(Sk⊥),
(A13)

CSaout(k⊥) = VCSain(Sk⊥),

with Sk⊥ defined a above. For an antisymmetry operation
CS , the matrices VCS and QCS satisfy VCSQCS = QSCVCS =
(CS)2 = 1. The presence of the crystalline unitary antisymme-
try CS implies that the reflection matrix satisfies

rd (k⊥) = Q
†
CSrd (Sk⊥)†VCS , (A14)

and the matrices QCS and VCS satisfy the algebraic rela-
tions QT V ∗

CS = ηT QCSVT , VT Q∗
CS = ηT VCSQT , VPQ∗

CS =
ηPQCSQP , QPV ∗

CS = ηPVCSVP , QCSVC = ηCQCVCS , and
VCSQC = ηCVCQCS .

Antiunitary symmetry. The action of an order-two antiuni-
tary symmetryT ±S on the scattering amplitudes is represented
by unitary matrices VT S and QT S ,

T Sain(k⊥) = QT S a∗
out(−Sk⊥),

(A15)
T Saout(k⊥) = VT Sa∗

in(−Sk⊥),

with VT SQ∗
T S = QT SV ∗

T S = (T S)2 = ±1. The presence of
the order-two crystalline antiunitary symmetry leads to a
constraint on the reflection matrix,

rd (k⊥) = QT
T Srd (−Sk⊥)TV ∗

T S , (A16)

and the matrices QT S and VT S satisfy the algebraic relations
QT V ∗

T S = ηT QT SV ∗
T , VT Q∗

T S = ηT VT SQ∗
T , VPQ∗

T S =
ηPQT SQ∗

P , QPV ∗
T S = ηPVT SV ∗

P , QT SV ∗
C = ηCQCVT S , and

VT SQ∗
C = ηCVCQT S .

Antiunitary antisymmetry. Finally, for an antiunitary anti-
symmetry P±S one has

PSain(k⊥) = VPS a∗
in(−Sk⊥),

(A17)
PSaout(k⊥) = QPSa∗

out(−Sk⊥),

with VPSV ∗
PS = QPSQ∗

PS = (PS)2 = ±1. The reflection ma-
trix satisfies

rd (k⊥) = QT
PSrd (−Sk⊥)∗V ∗

PS (A18)

and the algebraic relations involving the matrices QPS and VPS
are QT Q∗

PS = ηT VPSQ∗
T , VT V ∗

PS = ηT QPSV ∗
T , VPV ∗

PS =
ηPVPSV ∗

P , QPQ∗
PS = ηPQPSQ∗

P , QCQPS = ηCVPSQ∗
C , and

VCVPS = ηCQPSV ∗
C .

To see how the presence of an order-two crystalline symme-
try or antisymmetry affects the dimensional reduction scheme,
we first consider the complex classes A and AIII. We start
from a Hamiltonian in Shiozaki-Sato symmetry class AS ,
(s,t) = (0,0), which is represented by a Hamiltonian Hd in
symmetry class A with a unitary symmetry S . Constructing a
Hamiltonian Hd−1 in class AIII as described above, we find

that the unitary symmetry S imposes the additional constraint

Hd−1(k⊥) = U
†
SHd−1(Sk⊥)US , (A19)

on Hd−1, with

US =
(

QS 0
0 VS

)
. (A20)

Since US commutes with σ3 and U 2
S = 1, we conclude that

dimensional reduction maps the class AS to class AIIIS+ . In the
classification of Shiozaki and Sato this class is labeled (s,t) =
(1,0). Similarly, ifHd is a Hamiltonian in Shiozaki class (s,t) =
(0,1), which is represented by a unitary antisymmetry CS , the
mapped Hamiltonian Hd−1 satisfies the additional symmetry

U
†
CSHd−1(Sk⊥)UCS (A21)

with

UCS =
(

0 VCS
QCS 0

)
. (A22)

This is a unitary symmetry operation that anticommutes with
the chiral operation σ3, so that the mapped Hamiltonian is
in Shiozaki-Sato class AIIIS− , (s,t) = (1,1). Finally, starting
with a Hamiltonian with symmetry of type (s,t) = (1,t),
represented by a class AIII Hamiltonian with an order-two
crystalline symmetry S commuting (ηC = 1) or anticommut-
ing (ηC = −1) with C for t = 0, 1, respectively, the mapped
Hamiltonian satisfies the constraint

Hd−1(k⊥) = ηCV
†
SHd−1(Sk⊥)VS , (A23)

which is a symmetry of Shiozaki-Sato type (s,t) = (0,t), t =
0,1. (It is a unitary symmetry for ηC = 1 and an antisymmetry
for ηC = −1.)

A similar procedure can be applied to the remaining
complex Shiozaki-Sato classes, which are labeled by a single
integer s = 0,1, . . . ,7. Starting with a Hamiltonian of Shiozaki
classes s = 0 and s = 4 (classes AT +S and AT −S , antiunitary
symmetry T S squaring to 1 and −1, respectively), we find that
the mapped Hamiltonian Hd−1 satisfies the constraint

Hd−1(k⊥) = U
†
T SHd−1(−Sk⊥)∗UT S (A24)

with

UT S =
(

0 V ∗
T S

Q∗
T S 0

)
. (A25)

Hence Hd−1 satisfies an antiunitary symmetry that anticom-
mutes with the chiral operation C and squares to 1 or −1,
so that the mapped Hamiltonian is in Shiozaki classes s = 7
and s = 3, respectively. Similarly, for symmetry classes s =
2 and s = 6, corresponding to an antiunitary antisymmetry
squaring to 1 or −1, respectively, we find that Hd−1 satisfies
the constraint

Hd−1(k⊥) = U
†
PSHd−1(−Sk⊥)∗UPS (A26)

with

UPS =
(

Q∗
PS 0
0 V ∗

PS

)
. (A27)

This is an antiunitary symmetry that commutes with the chiral
operation and squares to 1 or −1, corresponding to symmetry
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classes s = 1 and s = 5, respectively. Finally, for the remaining
symmetry classes we may start from an antiunitary symmetry
squaring to ±1 and find that the mapped Hamiltonian satisfies

Hd−1(k⊥) = ηC(QCVT S )†Hd−1(−Sk⊥)∗(QCVT S ), (A28)

which is an antiunitary symmetry (for ηC = 1) or antisymmetry
(for ηC = −1) that squares to ±ηC , so that under dimensional
reduction the class s = 1, 3, 5, 7 is mapped to s = 0, 2, 4, and
6, respectively.

For the real classes, we may proceed in the same way.
One finds that under dimensional reduction the Shiozaki-Sato
symmetry class (s,t) is mapped to (s − 1,t), with s modulo 8.
The derivation is identical to that given in Ref. [22] for the case
of mirror reflection symmetry.

APPENDIX B: CLASSIFICATION OF
MIRROR-SYMMETRIC CORNERS OF

TWO-DIMENSIONAL CRYSTALS

In this appendix, we explain the origin of the entries in
Tables VIII–X. Throughout we will use the convention that
the chiral operation C squares to one.

1. Complex classes with antiunitary symmetries
and antisymmetries

Class AT +M, s = 0. The topological crystalline phases co-
incide with the strong topological phases of Altland-Zirnbauer
class A. No protected zero-energy corner states can persist in
the trivial strong phase.

Class AIIIT
+M+ , s = 1. Since the antiunitary mirror reflec-

tion operation T M commutes with the chiral operation C,
corner state have a well-defined parity σC under C and can be
chosen to be mapped to themselves under the antiunitary mirror
reflection operation T M. Two corner states with opposite
σC can be gapped out by a reflection-symmetric mass term,
so that we may use the (extrinsic) integer topological index
N = N+ − N− to characterize the zero-energy states at a
corner.

A decoration of the edges by a topologically nontrivial
one-dimensional chain leads to the addition of two zero-energy
states |L〉 and |R〉 = T M|L〉 placed symmetrically around
the corner as in Fig. 8. Since T M commutes with C, these
corner states have the same value of σC . Moreover, the linear
combinations |L〉 + |R〉 and i(|L〉 − |R〉) map to themselves
under T M, so that they meet the classification criteria for
corner states formulated above. Hence, by changing the lattice
termination we may change N+ or N− and, hence, N , by two.
The parity of N remains unchanged under such a change of
termination, which corresponds to an intrinsic Z2 topological
index.

If the antiunitary mirror reflection symmetry is broken
locally near the corner, these conclusions do not change. We
may still define N = N+ − N− as a topological invariant,
which can not change without closing a boundary gap or the
bulk gap, and by changing the lattice termination one may still
change add pairs of zero modes to the corner, so that N mod 2
is the appropriate invariant if topological equivalence is defined
with respect to transformations that possibly close boundary
gaps.

Class AP+M, s = 2. In this symmetry class, the antiunitary
reflection antisymmetryPMmay protect a single zero-energy
state at a mirror-symmetric corner. A pair of zero-energy
states can, however, be gapped out by a mirror-antisymmetric
perturbation. To see this, consider two zero modes |1〉 and |2〉,
for which we may assume that they are both invariant under
PM. Then i(|1〉〈2| − |2〉〈1|) is a local perturbation that obeys
the mirror reflection antisymmetry and gaps out the states
|1〉 and |2〉. We conclude that a mirror-symmetric corner is
described by a Z2 index.

Class AIIIT
−M− , s = 3. The bulk phase is always topo-

logically trivial [19]. However, a single pair of corner states
can be obtained by symmetrically decorating mirror-related
edges with topologically nontrivial one-dimensional chains,
as in Fig. 8. To see this, denote states |L〉 and |R〉 = T M|L〉,
as in Fig. 8. Since (T M)2 = −1 the states |L〉 and |R〉 form a
Kramers pair under the antiunitary mirror reflection operation,
|L〉 = −T M|R〉. A single such pair of zero-energy states can
not be gapped out by a perturbation that respects the antiunitary
mirror reflection symmetry.

Class AT −M, s = 4. The nontrivial topological crystalline
insulator phases in this symmetry class are also strong topo-
logical phases, i.e., they have protected edge modes on all
edges, not only on mirror-symmetric edges. A second-order
topological insulator phase with gapped edges and protected
corner states does not exist for this symmetry class.

Class AIIIT
−M+ , s = 5. The bulk phase is topologically

trivial [19]. However, (multiple) pairs of corner states can
be obtained by symmetrically decorating mirror-related edges
with topologically nontrivial one-dimensional chains, as in
Fig. 8. To see this, denote states |L〉 and |R〉 = T M|L〉,
as in Fig. 8. The states |L〉 and |R〉 have the same parity
under the chiral operation C, since the antiunitary mirror
reflection operation T M commutes with C. Antisymmetry of
the Hamiltonian under C protects corner states of equal parity,
corresponding to a 2Z topological index.

Class AP−M, s = 6. In this symmetry class, the bulk phase
is topologically trivial. Alternatively, one can see that no
protected zero-energy corner states can be consistent with
the existence of an antiunitary mirror reflection antisymmetry
PM with (PM)2 = −1: Such corner states would have to
appear in pairs |0〉, PM|0〉, which can be gapped out by the
mass term |0〉〈0|PM + PM|0〉〈0|, which obeys the required
antisymmetry under PM.

Class AIIIT
+M− , s = 7. This symmetry class is topologi-

cally trivial as a bulk phase and no corner states can be obtained
by symmetrically decorating mirror-related edges with topo-
logically nontrivial one-dimensional chains. To see, we again
denote these end states |L〉 and |R〉 = T M|L〉, as in Fig. 8.
The states |L〉 and |R〉 have opposite parity under the chiral
operation C, since the antiunitary mirror reflection operation
T M anticommutes with C. The Hamiltonian |R〉〈L| + |L〉〈R|
anticommutes with C, commutes with T M, and gaps out the
zero modes |L〉 and |R〉.

2. Real classes

We represent the Shiozaki-Sato classes using unitary mirror
reflection symmetries M or antisymmetries CM squaring to
one.
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Class AIM+ , (s,t) = (0,0). This class has a topologically
trivial bulk phase and does not allow for protected corner
modes.

Class BDIM++ , (s,t) = (1,0). In a mirror-symmetric corner,
corner states can be chosen to have well-defined parities σC and
σM with respect to the chiral operation C and mirror reflection
M. We use NσCσM to denote the number of corner states with
the corresponding parities. No mass terms can be added that
gap out states with the same parity σC . Local mass terms may
gap out pairs of corner states with different σC , but only if
they have the same value of σM; corner states with different
σC and different σM are protected. As a result, N++ − N−+
and N+− − N−− are two independent topological invariants
describing a mirror-symmetric corner. This gives rise to an
extrinsic Z2 topological index.

Upon changing the lattice termination while preserving
the global mirror reflection symmetry, e.g., by “glueing” a
topologically nontrivial one-dimensional chain to the crystal
edges as in Fig. 8, a pair of corner states with the same
parity σC and opposite parities σM can be added to a corner.
Such changes of the lattice termination change the invariants
N++ − N−+ and N+− − N−−, but leaves their difference
N++ − N−+ − N+− + N−− unaffected. Hence, if crystals that
differ only by lattice termination are considered equivalent, the
relevant topological invariant is N++ − N−+ − N+− + N−−,
corresponding to an intrinsic Z topological index.

If mirror reflection symmetry is broken locally at the corner,
corner states can be characterized by their parity σC only. Using
NσC to denote the number of corner states with parity σC , N+ −
N− is a topological invariant—corresponding to an extrinsic Z
classification—which is defined modulo 2 only if crystals that
differ only lattice termination are considered equivalent.

Class DM+ , (s,t) = (2,0). In this class, zero-energy corner
states can be chosen to be particle-hole symmetric (i.e., they
are Majorana states) and with well-defined parity σM under
mirror reflection M. We use NσM to denote the number of
corner states at parity σM. The numbers N+ and N− are defined
modulo two only, since two zero modes of the same parity can
be gapped out by a mirror-symmetric mass term. This gives
an extrinsic Z2

2 topological classification of mirror-symmetric
corners.

A change of lattice termination, e.g., by the addition of
topologically nontrivial one-dimensional superconductors on
mirror-related edges, adds two zero modes of opposite mirror
parity to the corner. This reduces the extrinsicZ2

2 classification
to an intrinsic Z2 classification in case that crystals differ
only by their lattice termination are considered equivalent.
Without local mirror reflection symmetry at the corner, any
pair of Majorana zero modes can gap out, corresponding to a
Z2 classification.

Class DIIIM++ , (s,t) = (3,0). Since particle-hole conju-
gation P and time-reversal T anticommute with the chiral
operation C—recall that we require that C2 = 1—zero-energy
corner states always appear in Kramers pairs |0〉 and T |0〉,
which have opposite parities under C. Since both states of
such a Kramers pair have the same mirror parity σM, we may
characterize the corner states with the help of the number NσM
of Kramers pairs of corner states of mirror parity σM. Mirror
reflection symmetry forbids the gapping out of Kramers pairs
at opposite mirror parity σM, but allows two Kramers pairs at

same σM to annihilate. As a result, both N+ and N− are defined
modulo two only, giving rise to a Z2

2 topological classification.
A change of lattice termination, e.g., by the addition of

topologically nontrivial one-dimensional superconductors on
mirror-related edges, adds two Kramers pairs of zero-energy
states of opposite mirror parity to the corner, thus reducing
the extrinsic Z2

2 classification to an intrinsic Z2 classification.
Without local mirror reflection symmetry at the corner, any
two Kramers pairs of Majorana zero modes can gap out,
corresponding to a Z2 classification.

Class AIIM+ , (s,t) = (4,0). This class has a topologically
trivial bulk phase and does not allow for protected corner
modes.

Class CIIM++ , (s,t) = (5,0). For Altland-Zirnbauer class
CII the chiral operation C commutes with particle-conjugation
P and time reversal T , so that a corner hosts Kramers pairs
of zero modes at the same parity σC under the chiral operation
C. Both states in such a Kramers pair have the same mirror
parity σM, which allows us to count the number NσC ,σM of
Kramers pairs with the corresponding parities σC and σM.
Two Kramers pairs with opposite σC but the same σM may
be gapped by a local mirror reflection-symmetric perturbation
to the Hamiltonian, giving rise to integer topological invariants
N++ − N−+ and N+− − N−−. This corresponds to a 2Z2

extrinsic topological classification.
A change of lattice termination, e.g., by the addition of topo-

logically nontrivial one-dimensional chains on mirror-related
edges, adds two Kramers pairs of zero modes of opposite
parity σM to the corner. This leaves N++ − N−+ − N+− +
N−− as the only integer invariant, corresponding to a 2Z
classification.

Without local mirror reflection symmetry at the corner,
Kramers pairs corner states are characterized by their parity σC
only. The difference N+ − N− of the number of zero-energy
Kramers doublets with the corresponding parities σC is an
integer topological invariant. If crystals that differ only in
lattice termination are considered equivalent, this difference
is defined modulo two only, leading to a Z2 topological
invariant.

Classes CM+ , (s,t) = (6,0), and CIM++ , (s,t) = (7,0).
These classes have a topologically trivial bulk phase and do
not allow for protected corner modes.

Class AICM− , (s,t) = (0,1). This class has a topologically
trivial bulk phase and does not allow for protected corner
modes. This conclusion holds despite the presence of a mir-
ror reflection antisymmetry CM. Since CM anticommutes
with the time-reversal operation, corner modes can not be
simultaneously eigenstates of CM and of the time-reversal
operation T . Hence corner modes appear as pairs, which can
be chosen such that the two states |±〉 in the pair are invariant
under T and CM|±〉 = ±i|∓〉. Then the local perturbation
|+〉〈−| + |−〉〈+| satisfies time-reversal symmetry and mirror
reflection antisymmetry and gaps out these two corner states.

Class BDIM+− , (s,t) = (1,1). This class has a topologically
trivial bulk phase. To see whether stable corner states may be
induced by a suitably chosen lattice termination, we consider
adding two topologically nontrivial one-dimensional chains in
a symmetric fashion to two symmetry-related crystal edges,
as in Fig. 8. The chains have zero-energy end states |L〉 and
|R〉 = M|L〉, which may be chosen to be invariant under time
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reversal. Since the mirror reflection operation M anticom-
mutes with C, the states |L〉 and |R〉 have opposite parity
under C. The Hamiltonian |L〉〈R| + |R〉〈L| is mirror reflection
symmetric, satisfies the symmetry constraints of class BDI,
and gaps out the states |L〉 and |R〉. We conclude that no stable
corner states may be induced on top of an otherwise trivial bulk
by suitably adapting the lattice termination.

Class DCM+ , (s,t) = (2,1). Particle-hole symmetric (i.e.,
Majorana) corner states can be counted according to their
parity σCM under the mirror reflection antisymmetry. Since
a pair of corner states |±〉 with opposite parity σCM can be
gapped by the local perturbation i(|+〉〈−| − |−〉〈+|), whereas
corner states with equal parity σCM are protected by the
mirror reflection antisymmetry, the difference N+ − N− of
the numbers NσC of corner states with parity σC is a well-
defined topological invariant. This number remains unchanged
if one-dimensional topological superconductors are “glued”
to mirror-related edges, since this procedure adds a pair of
zero-energy states with opposite σCM. We conclude that there
is a Z topological classification.

If the mirror reflection symmetry is broken locally at the
corner, any pair of Majorana states can be gapped out by a local
perturbation, and one arrives at a Z2 topological classification.

Class DIIIM−+ , (s,t) = (3,1). Since time-reversal T anti-
commutes with C, zero-energy corner states appear as Kramers
pairs with opposite parity with respect to the chiral operation
C. We denote such a Kramers pair as |+〉 and |−〉 = T |+〉,
where the sign ± refers to the C eigenvalue. Since mirror
reflection M anticommutes with C, these states can not be
chosen to simultaneously beM eigenstates. However, multiple
Kramers pairs of zero modes can always be organized in such
a way that M acts within a single Kramers pair. Since M
anticommutes with C andM2 = 1, one hasM|±〉 = e±iφ |∓〉,
where we may fix the phases of the basis kets |±〉 such that
φ = 0. Whereas a single such Kramers pair is topologically
protected, two Kramers pairs |±,1〉 and |±,2〉 can be gapped
out by the local perturbation i(|+,1〉〈−,2| − |−,2〉〈+,1| −
|+,2〉〈−,1| + |−,1〉〈+,2|), which obeys all relevant symme-
tries. We conclude that the only invariant is the parity of
the number of zero-energy Kramers pairs, which gives a Z2

topological classification.
Class AIICM− , (s,t) = (4,1). A corner may host Kramers

pairs of zero modes, which may also be chosen to have a well-
defined parity under the mirror reflection antisymmetry CM.
Since CM anticommutes with time-reversal T , the two states
in the Kramers pair have opposite CM parity. Denoting the two
members of a Kramers pair by |±〉, time-reversal symmetry
forbids perturbations that have a nonzero matrix element
between the states |+〉 and |−〉, whereas mirror reflection
antisymmetry forbids perturbations that have nonzero matrix
elements between |+〉 and |+〉 and between |−〉 and |−〉. We
conclude that a single such Kramers pair is protected by the
combination of time-reversal symmetry and mirror reflection
antisymmetry. A pair of such Kramers pairs can, however,
be gapped out: denoting the states in the two Kramers pairs
by |±,1〉 and |±,2〉, such a pair of Kramers pairs is gapped
out by the local perturbation i(|+,1〉〈−,2| − |−,2〉〈+,1| −
|+,2〉〈−,1| + |−,1〉〈+,2|). As a result, we find that this class
has a Z2 topological index. If mirror reflection (anti)symmetry
is locally broken at the crystal corner, a Kramers pair can obtain

a finite energy and no protected zero-energy corner states
exist.

Class CIIM+− , (s,t) = (5,1). This class has a topologically
trivial bulk phase and does not admit corner states. To see this,
note that a mirror reflection operator withM2 = 1 represents a
Hermitian operator which satisfies all symmetry requirements
for this class: it commutes with time-reversal T and itself,
and anticommutes with particle-hole conjugation P . Hence
M is a valid term in the Hamiltonian, which gaps out any
mirror-symmetric configuration of corner states.

Class CCM+ , (s,t) = (6,1). Corner states appear as pairs
related by particle-hole conjugation P . Since the mirror re-
flection antisymmetry CM commutes with P , the two states
in the Kramers pair have the same mirror eigenvalue σCM.
Multiple Kramers pairs with the same σCM can not be gapped
out by a mirror reflection-antisymmetric Hamiltonian, but
Kramers pairs of opposite parity σCM may be mutually gapped
out by a local mirror reflection-antisymmetric Hamiltonian.
(For example, in a representation in which P = σ2K and
CM = τ3, τ2 gaps out two pairs of Kramers pairs at opposite
CM parity.) We conclude that the difference N = N+ − N−
between the numbers of Kramers pairs with CM-parity σCM
is a well-defined topological invariant, giving a Z topological
classification. Since Altland-Zirnbauer class C does not allow
one-dimensional chains with protected zero-energy end states,
this conclusion does not depend on whether freedom of
lattice termination plays a role in the topological classification.
No corner states can be stabilized in the absence of mirror
reflection antisymmetry.

Classes CIM−+ , (s,t) = (7,1), and AIM− , (s,t) = (0,2).
These classes have a topologically trivial bulk phase and do
not allow for protected corner modes.

Class BDIM−− , (s,t) = (1,2). This class has a topologically
trivial bulk phase. To see whether stable corner states may be
induced by a suitably chosen lattice termination, we consider
adding two topologically nontrivial one-dimensional chains in
a symmetric fashion to two symmetry-related crystal edges,
as in Fig. 8. The chains have zero-energy end states |L〉 and
|R〉 = M|L〉, which may be chosen to be invariant under
time reversal and particle-hole conjugation. Since the mirror
reflection operation M commutes with C, the states |L〉 and
|R〉 have equal parity σC under C. Taking symmetric and
antisymmetric linear combinations of the states |L〉 and |R〉,
one obtains a corner state doublet with opposite parity under
M, but equal σC . Multiple doublets of this type with the same
σC cannot be gapped out by a local perturbation, whereas two
corner state doublets with opposite σC can. Hence N+ − N− is
a valid integer topological invariant, where NσC is the number
of zero-energy doublets of C-parity σC .

Class DM− , (s,t) = (2,2). This class has a topologically
trivial bulk phase. No zero-energy corner states can be induced
by a suitably chosen lattice termination. To see this, we
consider a mirror reflection symmetry M that squares to one,
so that M is represented by a Hermitian operator. Since M
anticommutes with particle-hole conjugation P , M is itself a
valid perturbation to the Hamiltonian which gaps out any set
of corner states.

Class DIIIM−− , (s,t) = (3,2). Since T 2 = −1 and T anti-
commutes with C, corner modes consist of Kramers Majorana
pairs of opposite parity under the chiral operation C. Since
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the product MC commutes with the time-reversal operation T
and with the chiral operation C, both states in a Kramers pair
have the same “mixed parity” σMC under MC. Two Kramers
pairs of equal mixed parity σMC can not be gapped out by a
mirror-symmetric perturbation, since MC anticommutes with
the Hamiltonian. Two Kramers pairs of opposite mixed parity
σMC can be gapped out by a local perturbation satisfying T
andM symmetries and C antisymmetry. (For example, the two
Kramers pairs |σMC,σC〉withσMC andσC = ± and |σMC,−〉 =
T |σMC,+〉, are gapped out by the perturbation |+,+〉〈−,−| +
|−,−〉〈+,+| − |+,−〉〈−,+| − |−,+〉|+,−〉.) Denoting the
number of zero-energy Kramers pairs with mixed parity σMC
by NσMC , we thus find that N+ − N− is a valid integer topolog-
ical invariant. This invariant can not be changed by changing
the lattice termination, since addition of two one-dimensional
topological superconductors on mirror-related crystal edges as
in Fig. 8 leads to the addition of two Kramers doublets with
opposite mixed parities σMC . If the mirror symmetry is broken
locally at the corner, any pair of Majorana Kramers doublets
can gap out, and the Z topological classification is reduced to
a Z2 classification.

Class AIIM− , (s,t) = (4,2). The bulk crystalline phase is
a strong topological phase, and no stable zero-energy states
can be induced by a suitably chosen lattice termination in the
trivial bulk phase.

Class CIIM−− , (s,t) = (5,2). Corners allow Kramers dou-
blets with equal C parity σC but opposite M parity σM. Two
doublets at the same C-parity σC can not be gapped out, but
two doublets with opposite C can. (For example, the two
Kramers doublets |σC,σM〉 with σC and σM = ± and |σC,−〉 =
T |σC,+〉, are gapped out by the perturbation |+,+〉〈−,+| +
|−,+〉〈+,+| + |−,−〉〈+,−| + |+,−〉|−,−〉.) Denoting the
number of Kramers pairs with C-parity σC by NσC , we thus find
that N+ − N− is a well-defined integer topological invariant.

A change of lattice termination, e.g., by the addition of topo-
logically nontrivial one-dimensional chains on mirror-related
edges, adds two Kramers pairs of zero modes of the same
parity σC to the corner. Taking symmetric and antisymmetric
linear combinations these can be reorganized into two Kramers
pairs |σC,±〉 of the type discussed above. Since changing the
lattice termination allows one to change N+ − N− by an even
number, it is only the modulo two part if this invariant which
is determined by the bulk band structure. The above analysis
does not change if the mirror reflection symmetry is broken
locally at the corner.

Class CM− , (s,t) = (6,2). This class has a topologically
trivial bulk phase and does not allow for protected corner
modes.

Class CIM−− , (s,t) = (7,2). Corner states appear in doublets
related by particle-hole conjugation P . Such doublets have
opposite parity under the chiral operation, since P and the
chiral operation C anticommute for this class. The product
MC commutes with P and C, so that both states in a doublet
have the same mixed parity σMC under MC. Two doublets
of equal mixed parity σMC can not be gapped out by a
mirror-symmetric perturbation, since MC anticommutes with
the Hamiltonian. Two doublets of opposite mixed parity
σMC can be gapped out by a local perturbation satisfying
M symmetry and P and C antisymmetries. (For example,
the two doublets |σMC,σC〉 with σMC and σC = ± and

|σMC,−〉 = P|σMC,+〉, are gapped out by the
perturbation |+,+〉〈−,−| + |−,−〉〈+,+| + |+,−〉〈−,+| +
|−,+〉|+,−〉.) Denoting the number of zero-energy Kramers
pairs with mixed parity σMC by NσMC , we thus find that
N+ − N− is a valid integer topological invariant. This invariant
can not by changed by changing the lattice termination, since
the Altland-Zirnbauer class CI does not allow a nontrivial
one-dimensional phase with protected end states.

Class AICM+ , (s,t) = (0,3). The mirror reflection anti-
symmetry CM allows for the protection of corner states
at a mirror-symmetric corner. Corner states can be chosen
to be real and with well-defined parity σCM under mirror
reflection. Corner states of equal parity can not be gapped out
because of the mirror reflection antisymmetry; corner states
with opposite parity can be gapped out. Hence N = N+ − N−
is an appropriate topological invariant, with NσCM the number
of corner states with CM-parity σCM.

Class BDIM−+ , (s,t) = (1,3). This class has a trivial bulk
phase. To see whether stable corner states may be induced by
a suitably chosen lattice termination, we consider adding two
topologically nontrivial one-dimensional chains in a symmet-
ric fashion to two symmetry-related crystal edges, as in Fig. 8.
The chains have zero-energy end states |L〉 and |R〉 = M|L〉,
which may be chosen to be invariant under particle-hole conju-
gation since the mirror reflection operation M commutes with
particle-hole conjugationP . A pair of zero-energy states |L,R〉
is protected by the combination of P antisymmetry and M
symmetry. Two such doublets |L,R,1〉 and |L,R,2〉, however,
can be gapped out by the local perturbation i(|L,1〉〈R,2| −
|R,2〉〈L,1| − |L,2〉〈R,1| + |R,1〉〈L,2|), which obeys P and
C antisymmetries and M symmetry. We conclude that the
only invariant is the parity of the number of such zero-energy
doublets, which gives a Z2 topological classification. If mirror
reflection symmetry is broken locally at the corner, the M-
induced protection of a single doublet disappears, and even a
single doublet of zero-energy corner states can be gapped out.

Class DCM− , (s,t) = (2,3). This class is a strong topological
phase, which has doublets of chiral Majorana modes at edges.
A single chiral Majorana mode is not compatible with the
symmetries, since such mode would have to be invariant
under P and CM, which is not possible since P and CM
anticommute. Nevertheless, by a suitable choice of lattice
termination, a protected pair of Majorana zero modes can
be localized at a mirror-symmetric corner in the topologi-
cally trivial bulk phase. To see this, we consider adding two
one-dimensional superconductors with Majorana end states
|L〉 and |R〉 to mirror-related crystal edges of an otherwise
topologically trivial bulk crystal, as in Fig. 8. The end states
|L,R〉 are chosen invariant under particle-hole conjugation P .
Since CM anticommutes with P we have |R〉 = iCM|L〉. A
zero-energy doublet |L,R〉 is then protected by the combination
of CM and P antisymmetries. Two such doublets, however,
can be gapped out by a local perturbation, which results in a
Z2 topological classification.

Class DIIIM+− , (s,t) = (3,3). This class has a trivial bulk
phase and cannot host protected corner states. (In a repre-
sentation in which M2 = 1 the mirror reflection operation
M is represented by a Hermitian operator, which satisfies
P antisymmetry and T symmetry and gaps out any set of
zero-energy states localized at the corner).
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Class AIICM+ , (s,t) = (4,3). This class allows mirror-
protected zero-energy Kramers pairs at corners. Since the
mirror reflection antisymmetry CM commutes with the time-
reversal operator T , such Kramers pairs have the same parity
σCM under mirror reflection. Reflection antisymmetry protects
zero-energy Kramers pairs with equal parity σCM, but allows
the mutual gapping out of Kramers pairs with opposite σCM.
Hence N = N+ − N− is a valid integer topological index for
this class, with NσCM the number of zero-energy corner states
with CM parity σCM.

Class CIIM−+ , (s,t) = (5,3). This class has a topologically
trivial bulk phase, and does not allow protected zero-energy
states at corners. To see this, we consider the addition of
two topologically nontrivial one-dimensional chains in a sym-
metric fashion to two symmetry-related crystal edges, as in
Fig. 8. We denote the doublets at the two chains by |L〉,
|L′〉 = P|L〉, |R〉 = M|L〉 and |R′〉 = P|R〉 = PM|L〉. Since
M anticommutes with C, doublets at the ends of the left and
right chains have opposite parity under the chiral operation
C. These four states can be gapped out by the perturbation
i(|L〉〈R′| − |R′〉〈L| + |R〉〈L′| − |L′〉〈R|).

Class CCM− , (s,t) = (6,3). This class is a strong topo-
logical phase, which has chiral modes at edges. No corner
modes can be constructed in the trivial bulk phase, because
the Altland-Zirnbauer class C is topologically trivial in one
dimension.

Class CIM+− , (s,t) = (7,3). This class is topologically
trivial and does not allow for protected zero-energy corner
states.

APPENDIX C: EDGE-TO-CORNER CORRESPONDENCE
FOR TWO-DIMENSIONAL MIRROR-SYMMETRIC

CRYSTALS

A nontrivial mirror-symmetric topological crystalline bulk
phase implies the existence of protected gapless states on
mirror-symmetric edges. If the topological crystalline insulator
or superconductor is not in a strong topological phase, these
edge states can be gapped out for edges that are not invariant
under the mirror operation. In that case, protected zero-energy
states remain at mirror-symmetric corners. The main text dis-
cusses this scenario in detail for the complex Altland-Zirnbauer
classes with unitary mirror symmetries and antisymmetries. In
this appendix, we give details for the complex classes with
antiunitary mirror symmetries and antisymmetries and for the
real Altland-Zirnbauer classes. For completeness, we repeat
the discussion of those mirror-symmetric topological phases
that were already contained in Ref. [9].

Throughout this appendix we will use x as a coordinate
along a mirror-symmetric edge, see Fig. 9(a), or along an edge
that is symmetrically deformed from a mirror-symmetric edge,
with a mirror-symmetric corner located at x = 0, see Fig. 9(b).
Further, v is a constant with the dimension of velocity, and
we use σj , τj , j = 0,1,2,3 to refer to Pauli matrices acting
on different spinor degrees of freedom, and 1N to denote the
N × N unit matrix. Edge Hamiltonians are always given in the
simplest possible form, after a suitable basis transformation
and after rescaling of energies and coordinates.

1. Complex Altland-Zirnbauer classes with antiunitary
symmetries and antisymmetries

Class AT +M, s = 0. Representing T M by complex con-
jugation K , this phase allows chiral edge modes with Hamil-
tonian Hedge = −iv1N∂x . This is a strong topological phase,
which does not allow localized zero-energy states at corners.

Class AIIIT
+M+ , s = 1. We represent the chiral operation C

using UC = σ3 and the antiunitary mirror reflection operation
using UT M = 1, so that the bulk Hamiltonian H (kx,ky) satis-
fies the constraints H (kx,ky) = −σ3H (kx,ky)σ3 = H ∗(kx,ky).
A nontrivial mirror-symmetric edge is described by the edge
Hamiltonian

Hedge = −ivσ1∂x. (C1)

This edge allows a unique mass term mσ2, which is odd under
T M. The intersection of two mirror-related edges represents
a domain wall with respect to such a mass term and hosts
a protected zero-energy mode. The chiral parity σC of such
a corner state depends on the sign of m far away from the
corner, such that σC is negative if m(x) is positive for x → ∞.
The Z (extrinsic) classification of corner states follows from
the observation that corner states at equal parity σC can not
mutually gap out.

Class AP+M, s = 2. We represent the antiunitary mir-
ror antisymmetry PM by complex conjugation K , so that
H (kx,ky) = −H ∗(kx,−ky). The edge Hamiltonian at a mirror-
symmetric edge is

Hedge = −ivσ2∂x. (C2)

Upon deforming the edge away symmetrically around a corner
at x = 0, two mass terms m1(x)σ1 + m2(x)σ3 are allowed, with
m1,2(x) = −m1,2(−x). Such a Hamiltonian hosts a zero mode
symmetrically located around the corner at x = 0. A mirror-
symmetry-breaking perturbation near x = 0 can however push
this state away from zero energy.

Class AT −M, s = 2. We represent T M by σ2K , where K

is complex conjugation. A mirror-symmetric edge can host
multiple Kramers pairs of chiral modes, described by the edge
Hamiltonian Hedge = −ivσ01N∂x . This is a strong topological
phase which does not allow for localized states at corners.

2. Real classes

Class BDIM++ , (s,t) = (1,0). We use UT = 1, UP = σ3,
UC = σ3, and UM = σ3τ3 to represent time-reversal, particle-
hole conjugation, chiral operation, and mirror reflection. The
integer topological invariant N for class BDIM++ counts the
difference of the number of helical edge states with positive
and negative mixed parity σMC at zero energy. For a minimal
mirror-invariant edge with N � 0, all edge states have the same
(positive) mixed parity, so that effectively we may set UM =
σ3. With a suitable choice of basis and after rescaling the edge
Hamiltonian takes the form

Hedge = −ivσ21N∂x. (C3)

The unique mass term mσ1, with m a N × N Hermitian matrix,
is odd under reflection. The intersection of two mirror-related
edges represents a domain wall with respect to such a mass
term and hosts N protected zero-energy modes. The parity σC
of these modes depends on the sign of the eigenvalues of the
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matrix m(x) away from the corner at x = 0, such that a positive
eigenvalue for x → ∞ corresponds to a corner state with
positive σC . This reproduces the Z2 (extrinsic) classification
of corner states derived in Appendix B.

Class DM+ , (s,t) = (2,0). We choose the unitary matrices
UP = 1 and UM = σ1 to represent particle-hole conjugation
and mirror reflection. The bulk topological crystalline phase
has a Z2 classification, for which the nontrivial phase has
counterpropagating edge modes at a mirror-symmetric edge
described by the edge Hamiltonian Hedge = −ivσ3∂x . This
edge Hamiltonian has a unique mass term mσ2. The intersec-
tion between two mirror-related edges represents a domain
wall and hosts a localized zero-energy state. The mirror parity
σM depends on the sign of m far away from the corner at
x = 0, such that a positive value of m for x → ∞ corresponds
to a positive mirror parity σM. Since no matrix elements may
exist between two corner state with opposite mirror parity σM,
this reproduces theZ2

2 (extrinsic) classification of corner states
derived in Appendix B.

Class DIIIM++ , (s,t) = (3,0). We setUT = σ2,UP = 1, and
UM = σ2τ2. With a suitable choice of basis, a mirror-invariant
edge in the nontrivial topological crystalline phase has a pair
of counter-propagating Majorana modes with Hamiltonian

Hedge = −ivσ3τ0∂x. (C4)

The unique mass term mσ1τ2 is odd under M. As a result,
intersection between two mirror-related edges represents a
domain wall and hosts a Kramers pair localized zero-energy
states. The mirror parity σM depends on the sign of m far away
from the corner at x = 0. The Z2

2 (extrinsic) classification of
corner states derived in Appendix B follows upon noting that
no matrix elements may exist between two corner state with
opposite mirror parity σM.

Class CIIM++ , (s,t) = (5,0). We set UT = σ2, UP = σ2τ3,
so that UC = τ3. The 2Z bulk classification of this symmetry
class counts the difference N of “edge quartets” with positive
and negative “mixed parity” σCM. For a minimal edge all edge
modes have the same mixed parity, so that effectively M may
be represented by UM = τ3. A minimal edge has Hamiltonian

Hedge = −iv∂xσ0τ21N . (C5)

The unique mass term gapping out such edge modes is mτ1,
with m a real symmetric N × N matrix. This mass term is odd
under mirror reflection, ensuring the existence of N Kramers
pairs of corner states at the intersection between two mirror-
related edges. Both states in such a Kramers pair have the same
parity σC , which is determined by the sign of the eigenvalues of
m far away from the corner at x = 0. This corresponds to the
2Z2 (extrinsic) classification of corner states derived in Sec. B.

Class DCM+ , (s,t) = (2,1). We represent particle-hole con-
jugation P by complex conjugation and the mirror antisym-
metry CM by UCM = σ3. We use NLσCM and NRσCM to denote
the numbers of left-moving and right-moving edge modes
with mirror parity σM at zero energy, respectively. Since
edge modes moving in opposite directions and with opposite
mirror parity can mutually gap out, the differences NR+ −
NL− and NR− − NL+ are topological invariants, giving a Z2

classification of edge states. The sum NR+ − NL− + NR− −
NL+ is a strong topological invariant. For a second-order
topological superconductor phase, we are interested in the

case NR+ − NL− + NR− − NR+ = 0, a minimal realization
of which has NL− = NR− = 0 and N = NR+ = NL+. With a
suitable choice of basis and after rescaling, the corresponding
edge Hamiltonian reads

Hedge = −ivτ31N∂x, (C6)

where τ3 is a Pauli matrix in the left mover–right mover basis.
The unique mass term mτ2 is odd under the mirror antisymme-
try, so that the intersection between two mirror-related edges
hosts N Majorana corner states. All N corner states have the
same mirror parity, so that no further classification is possible.
This is consistent with the Z (extrinsic) classification derived
in Appendix B.

Class DIIIM−+ , (s,t) = (3,1). Here we choose the repre-
sentations UT = σ2 and UP = σ1, so that UC = σ3. Although
in the most general case the representation of M requires
the introduction of additional spinor degrees of freedom,
the generators for the nontrivial topological phases can be
constructed using the simpler representation UM = σ1. The
two generators of the Z2

2 topological crystalline classification
have edge Hamiltonians Hedge,1 = −ivσ2∂x and Hedge,2 =
−ivσ2τ3∂x . The former edge Hamiltonian represents a strong
topological phase and is not compatible with a second-order
topological phase. The latter edge Hamiltonian has a unique
mass term mσ2τ2, which is odd under mirror reflection. As
a result, the intersection of two mirror-related edges hosts a
Kramers pair of Majorana zero modes.

Class AIICM− , (s,t) = (4,1). We represent T by σ2K

and CM by σ3. The two generators of the Z2
2 topological

crystalline classification have edge Hamiltonians Hedge,1 =
−ivσ3∂x and Hedge,2 = −ivτ2σ0∂x , where x is the coordinate
along the mirror-symmetric edge and the Pauli matrix τ2

acts on a separate spinor degree of freedom. The former
edge Hamiltonian Hedge,1 describes a strong phase in which
the edge state is protected by time-reversal symmetry alone
and can not be gapped out. The latter Hamiltonian Hedge,2

has two mass terms m1τ1σ0 + m2τ3σ0, which are both odd
under mirror reflection. Such a Hamiltonian hosts a zero mode
symmetrically located around a mirror-symmetric corner at
x = 0. A local perturbation near the corner at x = 0 that
breaks the mirror symmetry can move this state away from
zero energy.

Class CCM+ , (s,t) = (6,1). We set UP = σ2. This phase
allows a strong topological phase with doublets of particle-
hole conjugated co-propagating chiral edge modes. Pairs of
counterpropagating doublets are prevented from mutually
gapping out if they have the same parity under CM. Hence,
within the relevant subspace, we may represent CM by the
identity, UCM = 1. The edge Hamiltonian for N such pairs of
counterpropagating doublets reads

Hedge = −ivσ1τ2∂x1N, (C7)

where τ2 is a Pauli matrix acting on a different spinor degree
of freedom than the σ matrices. Upon deforming the edge
away symmetrically around a corner at x = 0, four mass
terms m1(x)ρ0σ2 + m2(x)ρ0σ3 + m3(x)σ1ρ1 + m4(x)σ1ρ3 are
allowed under a global reflection symmetry, with mj (x) =
−mj (−x), j = 1,2,3,4. Such a Hamiltonian hosts N doublets
of zero modes symmetrically located around the corner at
x = 0.
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Class DIIIM−− , (s,t) = (3,2). We choose the representa-
tions UT = σ2 and UP = σ1, so that UC = σ3. The Z bulk
topological invariant N is the difference of the numbers of
helical edge doublets with positive and negative “mixed parity”
σMC . For a “minimal” edge with N � 0 all modes have the
same (positive) mixed parity and we may represent UM = σ3.
Only topological crystalline phases with an even number N

of pairs of helical modes can be used for the construction
of a second-order topological insulator, since a single helical
Majorana mode corresponds to a strong topological phase.
With a suitable rescaling and basis choice, an edge with N

pairs of helical modes is described by the edge Hamiltonian

Hedge = −ivσ1τ31N/2∂x. (C8)

This edge Hamiltonian has the unique mass term mτ2σ1, where
m is a real symmetric N/2 × N/2 matrix. The mass term is
odd under mirror reflection, ensuring the existence of N/2
Majorana Kramers pairs at a mirror-symmetric corner.

Class AIIM− , (s,t) = (4,2). We represent time-reversal and
mirror symmetry using UT = σ2 and UM = σ3, respectively.
The bulk has a Z2 topological crystalline classification, the
generator of which has edge Hamiltonian Hedge = −ivσ3∂x ,
with x a coordinate along a mirror symmetric edge. This is a
strong topological phase.

Class CIIM−− , (s,t) = (5,2). We choose UT = σ2, UP =
σ2τ3, and UM = σ3. With a suitable choice of basis, the
nontrivial topological crystalline phase has edge Hamiltonian

Hedge = −ivσ1τ1∂x. (C9)

The unique mass term mσ1τ2 for this Hamiltonian is odd under
mirror reflection, ensuring the existence of a Kramers pair
of zero-energy states at a mirror-symmetric corner. A pair of
corner states has a well defined parity σC with respect to the
chiral operation C, which depends on the asymptotic sign of the
mass m far away from the corner. Multiple corner doublets with
the same σC cannot gap out, consistent with the 2Z (extrinsic)
classification of corner states derived in Appendix B.

Class CIM−− , (s,t) = (7,2). We represent T by σ1K , P
by σ2K , so that UC = σ3. An edge allows multiple pairs of
counterpropagating states with support on orbitals with the
same parity under the product MC, so one may represent
M by UM = σ3 on a minimal edge. With a suitable basis
transformation and after rescaling, an edge with N such
pairs of counterpropagating modes is described by the edge
Hamiltonian

Hedge = −ivσ1τ2∂x1N, (C10)

where τ2 is a Pauli matrix acting on an additional spinor degree
of freedom. Upon deforming the edge away symmetrically
around a corner at x = 0, three mass terms m1(x)σ1τ1 +
m2(x)σ2 + m3(x)σ1τ3 are allowed under a global reflection
symmetry, with mi real symmetric matrices satisfying mi(x) =
−mi(−x), i = 1,2,3. Such a Hamiltonian hosts 2N zero-
energy Majorana states symmetrically located around the
corner at x = 0.

Class AICM+ , (s,t) = (0,3). We represent T by complex
conjugation K . An edge allows multiple pairs of counterprop-
agating states with support on orbitals with the same mirror
parity, so that we may represent the mirror antisymmetry CM

using UCM = 1 for a minimal edge. The corresponding edge
Hamiltonian reads

Hedge = −ivτ2∂x1N, (C11)

where τ2 is a Pauli matrix acting on an additional spinor degree
of freedom. Upon deforming the edge away symmetrically
around a corner at x = 0, two mass terms m1(x)τ1 + m2(x)τ3

are allowed under a global reflection symmetry, with m1 and
m2 real symmetric matrices satisfying m1(x) = −m1(−x) and
m2(x) = −m2(−x). Such a Hamiltonian hosts N zero modes
symmetrically located around the corner at x = 0.

Class DCM− , (s,t) = (2,3). We choose UP = 1 and UCM =
σ2. These symmetries allow a chiral edge Hamiltonian Hedge =
−ivσ01N∂x , with x a coordinate along the edge and 1N the
N × N identity matrix. Such an edge represents a strong
topological phase.

Class AIICM+ , (s,t) = (4,3). We represent T by σ2K . An
edge allows multiple pairs of helical modes with support on
orbitals with the same CM parity, so that we may represent
CM using UCM = 1 for a minimal model. An insulator with an
odd number of such helical edge modes is a strong topological
insulator. With a suitable choice of basis, a “minimal” edge
with an even number N of helical modes is described by the
edge Hamiltonian

Hedge = −ivσ1τ0∂x1N/2, (C12)

where τ0 the 2 × 2 identity matrix acting an additional spinor
degrees of freedom. Upon deforming the edge away symmet-
rically around a corner at x = 0, two mass terms m1(x)τ2σ2 +
m2(x)τ2σ3 are allowed under a global reflection symmetry,
withm1 andm2 real symmetricN/2 × N/2 matrices satisfying
m1(x) = −m1(−x) and m2(x) = −m2(−x). Such a Hamilto-
nian hosts N/2 Kramers pairs of zero modes symmetrically
located around the corner at x = 0.

Class CCM− , (s,t) = (6,3). We set UP = σ2 and UCM =
σ3. An edge allows multiple pairs of chiral modes, described
by the edge Hamiltonian Hedge = −ivσ11N∂x , where x is a
coordinate along the edge and 1N the N × N identity matrix.
This is a strong topological phase.

APPENDIX D: SURFACE-TO-HINGE CORRESPONDENCE
WITH TWOFOLD ROTATION SYMMETRY

In this appendix, we give details for the surface-to-hinge
correspondence for topological crystalline insulators and su-
perconductors with twofold rotation symmetry or antisym-
metry and with mirror symmetry or antisymmetry, starting
from a symmetry characterization of the gapless surface states
on symmetry-invariant surfaces. The general idea underlying
the surface-to-hinge correspondence is the same as for edge-
to-corner correspondence with mirror-symmetric edges and
corners, see Sec. IV B and Appendix C. The low-energy theory
of the surface states is given in terms of one or multiple
Dirac cones that are compatible with the nonspatial and spatial
symmetries of the corresponding Shiozaki-Sato class [19].
Tilting the surface away from the invariant direction, as in
Fig. 11, allows for mass terms which must be odd under twofold
rotation or mirror reflection—because otherwise they would
be allowed for the symmetry-invariant surface orientation. If
the mass term is unique, the intersection of surfaces with
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opposite sign of the mass constitutes a domain wall, hosting a
gapless hinge state. If the mass term is not unique, a mirror-
symmetric hinge will still host a gapless mode, but there is no
protection for gapless hinge modes in the rotation-symmetric
case.

Throughout this appendix, x and y are coordinates on
a (eventually tilted) rotation-invariant or mirror-symmetric
surface, where the mirror reflections sends x → −x, 1N is
the N × N unit matrix, and σi , τi , ρi , and μi , i = 0,1,2,3, are
Pauli matrices acting on different spinor degrees of freedom.
We will restrict our discussion to symmetry classes with a
nontrivial bulk topological crystalline phase, see Ref. [19] and
Tables VI and VII.

1. Complex classes with antiunitary symmetries
and antisymmetries

Classes AT +R, s = 0, and AP+M, s = 2. We choose UT R =
σ1 and UPM = σ3 to represent the magnetic point group sym-
metry T R and mirror antisymmetry PM, respectively. These
symmetries can protect a single gapless surface state with
a Dirac-like dispersion Hsurface = −iv(σ1∂x + σ2∂y) (with a
suitable choice of basis). The unique mass term mσ3 is
odd under T R and PM. A hinge at the intersection of
crystal surfaces with opposite signs of m host a gapless hinge
mode.

Classes AIIIT
+R+ , s = 1, and AIIIT

−M− , s = 3. We choose
UC = σ3, UT R = 1, UT M = σ2τ3. The nontrivial phase hosts
a pair of Dirac cones with dispersion Hsurface = −ivσ1(τ1∂x +
τ3∂y) (with a suitable choice of basis). There are two mass
terms that may gap the Dirac cones if the surface is tilted away
from the invariant direction, m1σ2τ0 + m2σ1τ2, where both m1

and m2 must change sign upon shifting to the rotated/mirror-
reflected tilt direction. With two mass terms, there is a protected
hinge mode at a mirror-symmetric hinge, but not generically
in the presence of the twofold rotation symmetry T R.

Classes AIIIT
−R− , s = 3 and AIIIT

−M+ , s = 5. We use
UC = σ3, UT R = σ2, UT M = σ3τ2 to represent the operations
C, T R, and T M, respectively. The twofold rotation symme-
try is compatible with pairs of Dirac cones with dispersion
∝−ivτ2(σ1∂x ± σ2∂y), which defines the chirality ±. The 2Z
bulk topological crystalline index for this symmetry class
counts the difference N = N+ − N− of such Dirac cones with
positive and negative chirality. For a “minimal” surface all sur-
face Dirac cones have the same chirality, so that after rescaling
and with suitable choice of basis the surface Hamiltonian reads
Hsurface = −ivτ2(σ1∂x + σ2∂y)1N . Since such surface states
are protected by chiral antisymmetry alone, this represents a
strong topological phase.

Classes AIIIT
+R− , s = 7, and AIIIT

+M+ , s = 1. Like the
previous case, this is a strong phase, with gapless surface
states on all surfaces. We choose UC = σ3, UT R = σ1 and
UM = 1. The integer bulk topological crystalline index counts
the difference N = N+ − N− of surface Dirac cones with
dispersion ∝−iv(∂xσ1 ± ∂yσ2). For a “minimal” surface all
surface Dirac cones have the same chirality, so that after rescal-
ing and with suitable choice of basis the surface Hamiltonian
reads Hsurface = −iv(∂xσ1 + ∂yσ2)1N . Such surface states are
protected by chiral antisymmetry alone.

2. Real classes

Classes BDIR++ , (s,t) = (1,0), and BDIM−+ , (s,t) = (1,3).
We represent time-reversal and particle-hole conjugation using
UT = σ0, UP = σ3, UC = σ3, UR = σ3ρ3, and UM = σ2. A
symmetry-invariant surface may host multiple pairs of Dirac
cones with dispersion ∝−iv(σ1τ2∂x ± σ2τ0∂y), which defines
the “mirror chirality” ± for class BDIM−+ . The integer invari-
ant N counts the number of such pairs of Dirac cones, weighted
by the parity underRC (for class BDIR++) or by mirror chirality
(for class BDIM−+). A minimal surface with N � 0 has pairs
of Dirac cones of the same mirror chirality or the same RC
parity, so that effectively we may use UR = σ3 to represent R.
The corresponding surface Hamiltonian is

Hsurface = −iv(σ1τ2∂x + σ2τ0∂y)1N . (D1)

Two mass terms m1σ1τ1 + m2σ1τ3, with m1 and m2 N × N

real symmetric matrices, are allowed upon tilting the surface
away from the symmetry-invariant orientation. These mass
terms are odd under R and M. Since there are two such mass
terms, there are no protected hinge modes for the rotation-
symmetric case. However, there are protected hinge modes at
mirror-symmetric hinges in the mirror-symmetric case.

Classes DIIIR++ , (s,t) = (3,0), and DIIIM+− , (s,t) = (3,3).
We set UT = σ2, UP = σ1, UM = σ1τ2, and UR = τ3. Without
rotation or mirror symmetry, there are protected surface states
with dispersion −iv(σ1∂x ± σ2∂y), which defines the chirality
±. The integer topological invariant N counts the number of
such surface Dirac cones, weighted by the chirality. One such
Dirac cone is not compatible with R or M symmetry on a
symmetry-invariant surface, but two Dirac cones with the same
chirality are, the dispersion for a pair of Dirac cones being
−ivτ1(σ1∂x ± σ2∂y). Since they have the same chirality, such a
pair of Dirac cones is protected byT andP alone. A phase with
multiple such pairs of Dirac cones is a strong topological phase
with gapless surface states for surfaces of arbitrary orientation.

Classes CIIR++ , (s,t) = (5,0), and CIIM−+ , (s,t) = (5,3).
We let time-reversal be represented by UT = iσ2 and particle-
hole by UP = iσ2τ3, so that UC = τ3. We further set UM =
τ3 and UR = τ3ρ3. A symmetry-invariant surface admits
pairs of gapless surface states with Dirac-like dispersion
∝−i(σ0τ2∂x ± σ1τ1∂y), which defines the mirror chirality ±
for class CIIM−+ . The integer invariant N counts the number
of such pairs of Dirac cones, weighted by the parity under RC
(for class CIIR++) or by mirror chirality (for class CIIM−+). A
minimal surface with N � 0 has pairs of Dirac cones of the
same mirror chirality or the same RC parity, so that effectively
we may use UR = τ3 to represent R. A single pair of Dirac
cones is protected by T and P symmetry alone, corresponding
to a strong topological phase with gapless surface states on all
surfaces. A purely crystalline phase requires an even number
N of pairs of surface Dirac cones, so that the corresponding
surface Hamiltonian is

Hsurface = −iv(τ1σ1∂x + τ2σ0∂y)μ01N/2. (D2)

Such a Hamiltonian admits two mass terms m1τ1σ2μ2 +
m2τ1σ3μ2, where m1 and m2 are N/2 × N/2 real symmetric
matrices, which change sign under mirror reflection and
twofold rotation. Since there are two mass terms, the rotation-
symmetric class CIIR++ does not have protected hinge modes,
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whereas the mirror-symmetric class CIIM−+ has protected
gapless modes at mirror-symmetric hinges.

Classes CIR++ , (s,t) = (7,0), and CIM+− , (s,t) = (7,3). We
set UT = σ1 and UP = σ2, so that UC = σ3. We further set
UR = τ3 and UM = σ1τ3. A symmetry-invariant surface ad-
mits surface states with dispersion −iτ2(σ1∂x ± σ2∂y), where
± defines the chirality. The integer invariant counts the number
of such pairs of surface Dirac cones, weighted by chirality.
Since such pairs of surface Dirac cones do not rely on
crystalline symmetries for their protection this is a strong
phase, which has gapless surface states on surfaces of arbitrary
orientation.

Classes DCR+ , (s,t) = (2,2), and DM+ , (s,t) = (2,1). We
set UP = 1, UCR = τ3, and UM = σ3. A symmetry-invariant
surface admits surface states with dispersion ∝−i(σ1∂x ±
σ3∂y), which defines the mirror chirality ± (for class DM+).
This class has an integer topological invariant N , which counts
the differences of the number of Dirac cones with positive
and negative CR parity at zero energy or mirror chirality, as
appropriate. On a minimal surface with N � 0 all surface Dirac
cones have the same mirror chirality or CR parity, so that we
may effectively represent CR by UCR = 1. The corresponding
surface Hamiltonian reads

Hsurface = −iv(σ1∂x + σ3∂y)1N . (D3)

Such a surface admits a unique mass term σ2m, with m an
N × N real symmetric matrix, which changes sign under
mirror reflection or under the rotation antisymmetry. Corre-
spondingly, a mirror-symmetric hinge admits gapless modes.
With twofold rotation antisymmetry, gapless hinge modes are
guaranteed to exist if N is odd.

Classes DIIIR−+ , (s,t) = (3,1), and DIIIM++ , (s,t) =
(3,0).— We set UT = σ2 and UP = σ1, so that UC = σ3,
UR = σ1τ3, UM = τ3. The crystalline bulk phase has a Z2

topological classification, for which the nontrivial phase has a
surface state with Hamiltonian

Hsurface = −iv(σ1τ1∂x + σ2τ0∂y) (D4)

at a symmetry-invariant surface. There is a unique mass term
mσ1τ2, which is odd under twofold rotation and under mirror
reflection. We conclude that the conditions for the existence of
gapless hinge modes are met.

Classes AIICR− , (s,t) = (4,1) and AIIM+ , (s,t) = (4,0).
For a minimal model we choose UT = σ2, UCR = σ1, and
UM = τ3. The crystalline bulk phase has a Z2 topological
classification, for which the nontrivial phase has a surface state
with Hamiltonian

Hsurface = −ivσ1(τ1∂x + τ3∂y). (D5)

The model admits a unique mass term mσ1τ2, which changes
sign under the twofold rotation antisymmetry operation and
under mirror reflection. Correspondingly, this model admits a
helical gapless hinge mode.

Classes CCR+ , (s,t) = (6,1) and CM+ , (s,t) = (6,0). We
set UP = σ2, UCR = ρ3, and UM = τ2σ3. The surface admits
pairs of surface states with a dispersion −ivτ2(σ1∂x ± σ3∂y),
which defines the mirror chirality (for class CM+ ). The integer
topological invariant N for class CCR+ counts the difference of
the number of surface Dirac cones with CR eigenvalue 1 and

−1 on a symmetry-invariant surface, and we may use UCR = 1
to represent CR on a minimal surface with N � 0. With mirror
symmetry, N counts the number of pairs of surface Dirac cones
weighted by mirror chirality. In both cases, a minimal surface
with N � 0 has Hamiltonian

Hsurface = −ivτ2(σ1∂x + σ3∂y)1N . (D6)

Such a surface has a unique mass term mτ2σ2, with m a real
symmetric N × N matrix which is odd under CR and M.
Correspondingly, this mirror-symmetric model admits helical
gapless hinge modes at a mirror-symmetric hinge for all N ,
whereas the rotation-antisymmetric model has gapless hinge
modes if N is odd.

Classes DIIIR−− , (s,t) = (3,2) and DIIIM−+ , (s,t) = (3,1).
We set UT = σ2, UP = σ1, UC = σ3, UR = σ3τ3, and UM =
σ1. These classes admit surface states with Dirac dispersion
−iv(σ2∂x ± σ1∂y), which defines the chirality ±. Such a
surface state is compatible with R and M symmetries, but
protected by chiral antisymmetry C alone. The corresponding
strong integer index counts their number, weighted by chirality.
A pair of surface states of opposite chirality, with dispersion
−iv(σ2ρ3∂x ± σ1ρ0∂y), where the sign ± defines the mirror
chirality for class DIIIM−+ , is protected by rotation or mirror
symmetry. The associated integer topological index N counts
the number of such pairs of surface Dirac cones, weighted
by RC parity (for class DIIIR−−) or by mirror chirality (for
class DIIIM−+). This allows one to effectively set UR = σ3

for a minimal surface with N � 0. The corresponding surface
Hamiltonian reads

Hsurface = −iv(σ2ρ3∂x + σ1ρ0∂y)1N . (D7)

The surface Hamiltonian admits a unique mass term mσ2ρ2,
withm a real symmetricN × N matrix, which changes sign un-
der the twofold rotation antisymmetry operation and under mir-
ror reflection. Correspondingly, this mirror-symmetric model
admits helical gapless hinge modes at a mirror-symmetric
hinge for all N , whereas the rotation-antisymmetric model has
gapless hinge modes if N is odd.

Classes AIIR− , (s,t) = (4,2), and AIICM− , (s,t) = (4,1)
We set UT = σ2, UR = σ3, and UCM = σ1. These classes
have a Z2

2 classification, with purely crystalline part Z2.
A generator for the strong phase has a surface state with
Dirac dispersion −iv(σ1∂x + σ2∂y), which is protected by
time-reversal symmetry alone. The generator for the purely
crystalline topological phase has a pair of surface Dirac cones
with surface Hamiltonian

Hsurface = −iv(σ1τ0∂x + σ2τ3∂y). (D8)

This surface Hamiltonian has a unique mass term mσ2τ2, which
is odd under R or M. We conclude that these classes admits
a protected hinge mode.

Classes CIIR−− , (s,t) = (5,2) and CIIM+− , (s,t) = (5,1).
We set UT = σ2, UP = σ2τ3, UC = τ3, UR = σ3 and UM =
σ2τ2. These classes have a Z2

2 classification, with purely
crystalline part Z2. On a symmetry-invariant surface, the
generator for the strong phase has a pair of surface Dirac cones
with dispersion −ivτ1(σ2∂x + σ1∂y), which is compatible with
R and M symmetries, but does not rely on those symmetry
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for its protection. The nontrivial purely crystalline phase has
two pairs of surface Dirac cones with Hamiltonian

Hsurface = −ivτ1(σ1ρ0∂x + σ2ρ3∂y). (D9)

This surface Hamiltonian admits two mass terms m1σ2τ1ρ2 +
m2σ1τ2ρ1, which is odd under R or M. We conclude that
class CIIM+− admits a protected hinge mode along mirror-
symmetric hinges, whereas class CIIR−− does not allow pro-
tected hinge modes.

Classes CIR−− , (s,t) = (7,2), and CIM−+ , (s,t) = (7,1).
We choose UT = σ1, UP = σ2, UC = σ3, UR = σ3ρ3, UM =
σ2τ2. These classes admit pairs of surface states with dispersion
−ivτ2(σ1∂x ± σ2∂y), which defines the chirality ±. Such a
surface state is compatible with R and M symmetries, but
protected by chiral antisymmetry C alone. The corresponding
strong integer index counts their number, weighted by chirality.
Two pairs of surface states of opposite chirality, with dispersion
−ivτ2(σ1μ3∂x ± σ2μ0∂y), where the sign ± defines the mirror
chirality for class CIM−+ , are protected by rotation or mirror
symmetry. The associated integer topological index N counts
the number of such pairs of surface Dirac cones, weighted
by RC parity (for class CIR−−) or by mirror chirality (for
class CIM−+). This allows one to effectively set UR = σ3 for
a minimal surface with N � 0. The corresponding surface
Hamiltonian reads

Hsurface = −ivτ2(σ1μ3∂x + σ2μ0∂y)1N . (D10)

The surface Hamiltonian admits four mass terms m1σ1τ2μ2 +
m2σ2τ1μ1 + m3σ2τ3μ1 + m4σ1τ0μ1, with m1, m2, m3, and m4

real symmetric N × N matrices which change sign under the
twofold rotation antisymmetry operation and under mirror re-
flection. Correspondingly, this mirror-symmetric model admits
helical gapless hinge modes at a mirror-symmetric hinge for
all N , but the rotation-symmetric model has no protected hinge
states.

Classes AICR+ , (s,t) = (0,3), and AIM− , (s,t) = (0,2). We
choose UT = 1, UCR = ρ3, and UM = σ2τ3 to represent time
reversal, twofold rotation antisymmetry, and mirror reflection
symmetry, respectively. A symmetry-invariant surface admits
pairs of surface states with a dispersion −ivσ2(τ1∂x ± τ3∂y),
which defines the mirror chirality (for class AIM−). The integer
topological invariant N counts the number of such pairs of
surface Dirac cones, weighted by CR parity or by mirror
chirality, as appropriate. On a minimal surface with N � 0 we

may use UCR = 1 to represent CR. The corresponding surface
Hamiltonian reads

Hsurface = −ivσ2(τ1∂x + τ3∂y)1N . (D11)

Such a surface has three mass terms m1σ1τ1 + m2σ2τ2 +
m3σ3τ0, with m1, m2, and m3 real symmetric N × N matrices.
Correspondingly, this mirror-symmetric model admits helical
gapless hinge modes at a mirror-symmetric hinge for all N ,
but the rotation-antisymmetric model has no protected hinge
states.

Classes AIICR+ , (s,t) = (4,3) and AIIM− , (s,t) = (4,2).
We set UT = σ2, UCR = τ3, and UM = σ2. This phase allows
surface Dirac cones on symmetry-invariant surfaces with dis-
persion −iv(σ1∂x ± σ2∂y), which defines the mirror chirality
for class AIIM− . The integer invariant N counts the number
of such surface Dirac cones, weighted by CR parity or mirror
chirality, as appropriate. Odd values of N correspond to strong
phases, which have gapless surface states irrespective of the
surface orientation. For even N , one has a purely crystalline
phase. For a minimal model with N � 0, one may effectively
use UR = 1 to represent twofold rotation. The corresponding
surface Hamiltonian is

Hsurface = −ivρ0(σ1∂x + σ2∂y)1N/2. (D12)

There is a unique mass term mσ3ρ2, with m an N/2 × N/2
matrix, which is odd under CR or M. Correspondingly, a
mirror-symmetric hinge has N/2 protected helical modes,
whereas there are protected hinge modes in the presence of
twofold rotation antisymmetry if N/2 is odd.

Classes CIIR−+ , (s,t) = (5,3), and CIIM−− , (s,t) = (5,2).
We set UT = σ2, UP = σ2τ3, UC = τ3, UR = σ3τ1, and UM =
σ1. These classes have a Z2 classification, for which the
nontrivial phase has a pair of Dirac cones with dispersion
−iτ1(σ1∂x + σ2∂y) on a symmetry-invariant surface. Such a
pair of Dirac cones is protected by time-reversal symmetry
and particle-hole antisymmetry alone, so that this is a strong
topological phase, which has gapless modes on all surfaces.

Classes CCR− , (s,t) = (6,3), and CM− , (s,t) = (6,2). We
choose UP = τ2, UCR = τ3, and UM = τ3σ3. These classes
have a Z2 classification, for which the nontrivial phase has a
pair of Dirac cones with dispersion −iτ0(σ1∂x + σ3∂y) on a
symmetry-invariant surface. Such a surface admits a unique
mass term mσ2τ0, which is odd under CR and M. We
conclude that the conditions for gapless hinge modes on a
mirror-symmetric hinge or with rotation-symmetric crystal
termination at surfaces are met.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University Press,
Princeton, New Jersey, 2013).

[3] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[4] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, arXiv:1708.03636.

[5] W. A. Benalcazar, J. C. Y. Teo, and T. L. Hughes, Phys. Rev. B
89, 224503 (2014).

[6] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science
357, 61 (2017).

[7] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev.
B 96, 245115 (2017).

[8] Y. Peng, Y. Bao, and F. von Oppen, Phys. Rev. B 95, 235143
(2017).

[9] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Phys. Rev. Lett. 119, 246401 (2017).

[10] M. Sitte, A. Rosch, E. Altman, and L. Fritz, Phys. Rev. Lett. 108,
126807 (2012).

205135-32

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
http://arxiv.org/abs/arXiv:1708.03636
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1103/PhysRevB.89.224503
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevB.95.235143
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.108.126807
https://doi.org/10.1103/PhysRevLett.108.126807
https://doi.org/10.1103/PhysRevLett.108.126807
https://doi.org/10.1103/PhysRevLett.108.126807


SECOND-ORDER TOPOLOGICAL INSULATORS AND … PHYSICAL REVIEW B 97, 205135 (2018)

[11] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 110,
046404 (2013).

[12] G. E. Volovik, JETP Lett. 91, 201 (2010).
[13] Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402

(2017).
[14] C. Fang and L. Fu, arXiv:1709.01929.
[15] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys.

Rev. B 78, 195125 (2008).
[16] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, AIP

Conf. Proc. 1134, 10 (2009).
[17] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[18] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142

(1997).
[19] K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014).
[20] C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142

(2013).
[21] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
[22] L. Trifunovic and P. W. Brouwer, Phys. Rev. B 96, 195109

(2017).
[23] Y.-M. Lu and D.-H. Lee, arXiv:1403.5558v1.
[24] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 93, 195413

(2016).
[25] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86,

115112 (2012).
[26] C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 87,

035119 (2013).
[27] R.-J. Slager, A. Mesaros, V. Juricic, and J. Zaanen, Nat. Phys.

9, 98 (2013).
[28] P. Jadaun, D. Xiao, Q. Niu, and S. K. Banerjee, Phys. Rev. B 88,

085110 (2013).
[29] X.-J. Liu, J. J. He, and K. T. Law, Phys. Rev. B 90, 235141

(2014).
[30] A. Alexandradinata, C. Fang, M. J. Gilbert, and B. A. Bernevig,

Phys. Rev. Lett. 113, 116403 (2014).
[31] X.-Y. Dong and C.-X. Liu, Phys. Rev. B 93, 045429 (2016).
[32] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager,

Phys. Rev. X 7, 041069 (2017).
[33] H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun. 8,

50 (2017).
[34] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.

Felser, M. I. Aroyo, and B. A. Bernevig, Nature (London) 547,
298 (2017).

[35] K. Shiozaki, M. Sato, and K. Gomi, Phys. Rev. B 95, 235425
(2017).

[36] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe,
arXiv:1711.11589.

[37] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
[38] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod.

Phys. 88, 035005 (2016).
[39] M. Stone, C.-K. Chiu, and A. Roy, J. Phys. A: Math. Theor. 44,

045001 (2011).
[40] X.-G. Wen, Phys. Rev. B 85, 085103 (2012).
[41] G. Abramovici and P. Kalugin, Int. J. Geom. Methods Mod.

Phys. 9, 1250023 (2012).
[42] R. Kennedy and M. R. Zirnbauer, Commun. Math. Phys. 342,

909 (2016).
[43] I. C. Fulga, F. Hassler, and A. R. Akhmerov, Phys. Rev. B 85,

165409 (2012).
[44] C. W. Groth, M. Wimmer, A. R. Akhmerov, and X. Waintal,

New J. Phys. 16, 063065 (2014).
[45] J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B 78, 045426

(2008).
[46] A. M. Turner, Y. Zhang, R. S. K. Mong, and A. Vishwanath,

Phys. Rev. B 85, 165120 (2012).
[47] M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018).
[48] M. Ezawa, arXiv:1801.00437.
[49] Y. Xu, R. Xue, and S. Wan, arXiv:1711.09202.
[50] A. Lau, J. van den Brink, and C. Ortix, Phys. Rev. B 94, 165164

(2016).
[51] G. van Miert, C. Ortix, and C. Morais Smith, 2D Materials 4,

015023 (2017).
[52] H. Shapourian, Y. Wang, and S. Ryu, Phys. Rev. B 97, 094508

(2018).
[53] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani,

S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov,
H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, and T.
Neupert, arXiv:1802.02585 [cond-mat.mtrl-sci].

[54] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp, T.
Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert, and
R. Thomale, arXiv:1708.03647.

[55] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
Nature 555, 346 (2018).

[56] M. Serra-Garcia, V. Peri, R. Süsstrunk, O. R. Bilal, T. Larsen,
L. G. Villanueva, and S. D. Huber, Nature 555, 342 (2018).

205135-33

https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1103/PhysRevLett.110.046404
https://doi.org/10.1134/S0021364010040090
https://doi.org/10.1134/S0021364010040090
https://doi.org/10.1134/S0021364010040090
https://doi.org/10.1134/S0021364010040090
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246402
http://arxiv.org/abs/arXiv:1709.01929
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.55.1142
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
https://doi.org/10.1103/PhysRevB.96.195109
http://arxiv.org/abs/arXiv:1403.5558v1
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.93.195413
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.86.115112
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1103/PhysRevB.87.035119
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1038/nphys2513
https://doi.org/10.1103/PhysRevB.88.085110
https://doi.org/10.1103/PhysRevB.88.085110
https://doi.org/10.1103/PhysRevB.88.085110
https://doi.org/10.1103/PhysRevB.88.085110
https://doi.org/10.1103/PhysRevB.90.235141
https://doi.org/10.1103/PhysRevB.90.235141
https://doi.org/10.1103/PhysRevB.90.235141
https://doi.org/10.1103/PhysRevB.90.235141
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevLett.113.116403
https://doi.org/10.1103/PhysRevB.93.045429
https://doi.org/10.1103/PhysRevB.93.045429
https://doi.org/10.1103/PhysRevB.93.045429
https://doi.org/10.1103/PhysRevB.93.045429
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
https://doi.org/10.1103/PhysRevB.95.235425
http://arxiv.org/abs/arXiv:1711.11589
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1088/1751-8113/44/4/045001
https://doi.org/10.1103/PhysRevB.85.085103
https://doi.org/10.1103/PhysRevB.85.085103
https://doi.org/10.1103/PhysRevB.85.085103
https://doi.org/10.1103/PhysRevB.85.085103
https://doi.org/10.1142/S0219887812500235
https://doi.org/10.1142/S0219887812500235
https://doi.org/10.1142/S0219887812500235
https://doi.org/10.1142/S0219887812500235
https://doi.org/10.1007/s00220-015-2512-8
https://doi.org/10.1007/s00220-015-2512-8
https://doi.org/10.1007/s00220-015-2512-8
https://doi.org/10.1007/s00220-015-2512-8
https://doi.org/10.1103/PhysRevB.85.165409
https://doi.org/10.1103/PhysRevB.85.165409
https://doi.org/10.1103/PhysRevB.85.165409
https://doi.org/10.1103/PhysRevB.85.165409
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1088/1367-2630/16/6/063065
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1103/PhysRevB.85.165120
https://doi.org/10.1103/PhysRevB.85.165120
https://doi.org/10.1103/PhysRevB.85.165120
https://doi.org/10.1103/PhysRevB.85.165120
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
https://doi.org/10.1103/PhysRevLett.120.026801
http://arxiv.org/abs/arXiv:1801.00437
http://arxiv.org/abs/arXiv:1711.09202
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1103/PhysRevB.94.165164
https://doi.org/10.1088/2053-1583/4/1/015023
https://doi.org/10.1088/2053-1583/4/1/015023
https://doi.org/10.1088/2053-1583/4/1/015023
https://doi.org/10.1088/2053-1583/4/1/015023
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
https://doi.org/10.1103/PhysRevB.97.094508
http://arxiv.org/abs/arXiv:1802.02585
http://arxiv.org/abs/arXiv:1708.03647
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25777
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25156



