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Relativistic Gurzhi effect in channels of Dirac materials
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Charge transport in channel-shaped 2D Dirac systems is studied employing the Boltzmann equation. The
dependence of the resistivity on temperature and chemical potential is investigated. An accurate understanding
of the influence of electron-electron interaction and material disorder allows us to identify a parameter regime,
where the system reveals hydrodynamic transport behavior. We point out the conditions for three Dirac fermion
specific features: heat flow hydrodynamics, pseudodiffusive transport, and the electron-hole scattering dominated
regime. It is demonstrated that for clean samples the relativistic Gurzhi effect, a definite indicator of hydrodynamic
transport, can be observed.
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I. INTRODUCTION

The possibility of hydrodynamical transport of charge car-
riers in condensed matter systems has fascinated the scientific
community for a long time. A system without an underlying
lattice, despite particle interaction, experiences no net momen-
tum relaxation, except at the boundaries. These conditions are
auspicious for hydrodynamic transport. Solid state systems, on
the contrary, tend to dissipate the net momentum of excitations
to a phonon bath. The first experiment with the unambiguous
indications of hydrodynamical transport behavior of electrons
was done 20 years ago in (Al,Ga)As heterostructures [1,2],
on the basis of the nonrelativistic Gurzhi effect. This effect is
characterized by a nonmonotonic dependence of the resistivity
on the electron gas temperature reaching a maximum at the
crossover from the quasiballistic (Knudsen) to the hydrody-
namic (Poiseuille) regime [3]. The main experimental obstacle
to observe the Gurzhi effect is the requirement of high mobility
of charge carriers together with strong intercarrier scattering,
which compels the carriers to propagate as a whole. Similar
conditions, but based on a different mechanism, can be realized
in ultra pure metals [4].

Despite experimental difficulties, solid state systems are
highly interesting objects to study, since they offer an oppor-
tunity for the investigation of rich physics based on different
dimensionalities, complex dispersion relations, topologically
nontrivial band structures, Dirac vs Schödinger fermions,
etc. In this paper, we analyze electron transport in a system
composed of Dirac fermions. The best known example of such
a material is graphene, for which a number of experiments
reported the observation of fluidlike behavior [5–7]. Recent
advances in manufacturing topological materials expand the
variety of realizations of 2D Dirac Hamiltonians, for instance,
based on the surface states of a 3D topological insulator (TI)
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[8,9]. However, the Gurzhi effect in Dirac materials has not
been discussed in the literature so far. We close this gap and
point out the rich transport physics of Dirac fermions in channel
geometries, see Fig. 4 below.

Dirac materials are remarkable for their two related char-
acteristics: strong spin-momentum locking and a Dirac cone
spectrum with both valence and conduction band touching
each other. The strong spin-momentum locking, which plays
a crucial role in the quantum spin Hall effect [10], affects the
scattering of the 2D surface states only quantitatively [11].
The massless relativistic spectrum, in contrast, strongly influ-
ences thermalization processes, making them similar to those
occurring in bad metals [12]. This spectrum results in a finite
resistivity even for absolutely clean systems due to interactions
[13,14]. Furthermore, the system can experience so-called
collision-dominated nonlinear hydrodynamics [15,16].

Here, we study charge transport in a channel of a Dirac
material. The goal is to understand the crossover regimes where
hydrodynamic equations for Dirac systems [17–20] are not yet
fully valid, but the system exhibits a tendency to hydrodynamic
behavior, the relativistic analog of the Gurzhi effect [21].

We exploit the kinetic equation approach, which allows us
to take into account different scattering channels and study
their interplay. Our analysis implies interesting future direction
of research: (i) It allows for a concrete comparison with
experiments done on surfaces of 3D TIs. (ii) Eventually, we aim
to connect our predictions with complementary approaches
based on the gauge-gravity duality [22].

The paper is organized as follows: Section II is devoted
to the qualitative description of various transport regimes and
contains their illustrative classification according to the system
parameters. Section III depicts a rigorous description of the
kinetic equation and collision integrals and demonstrates how
they can be solved. The solutions and their interpretation indi-
cating the presence of hydrodynamical behavior are presented
in Sec. IV. We summarize in Sec. V and move technical details
into the Appendices.
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II. QUALITATIVE ANALYSIS

The stationary Boltzmann equation for the quasiparticles of
our system under consideration can be written as [23]

v · ∂rf + eE · ∂pf = I[f ], (1)

where f ≡ f (r,p̆) is a distribution function, and p̆ denotes
the complete set of quantum numbers that unambiguously
define the quantum state (for Dirac spectra, for example, it is
a band index and the momentum). Here, v = ∂pεp̆ is the group
velocity, e is the elementary charge, and E is the electric field
created by the applied voltage V . The current flowing through
the channel is

I = e

∫ W

0
dy

∫
dp̆ vxf, (2)

where
∫

dp̆ denotes summation over all states (quantum

variables), and
∫ W

0 dy is the integration across the width of the
channel. The collision integral I[f ] has a contribution from
every source of scattering and each term will be considered
separately later.

The differential resistance of a two-dimensional channel can
be expressed in Drude-like form through effective parameters
as

dV

dI
= L

W
ρxx,

1

ρxx

= e2veffνeff leff , (3)

where ρxx is the resistivity, veff is the effective quasiparticles
velocity, νeff the effective density of states, leff the effective
mean free path, W and L are width and length of the electronic
system, correspondingly. The effective mean free path leff

captures the various scattering processes that may occur in
our model. Henceforth, we say effective and use the index
“eff” implying that the values are calculated for a particular
electron distribution. For example, for the Fermi distribution,
the effective density of states νeff can be expressed through
the actual energy-dependent density of states ν(ε) as νeff ≈
ν(max(μ,T )). This chapter is meant to describe physical
pictures of the possible regimes that can be realized in our
setup.

A. Scattering sources

The electron transport in the channel at low temperatures
is subjected to three major sources of scattering, namely (a)
boundary, (b) impurity, and (c) electron mutual scattering,
each of which can be partially characterized by its mean
free path. However, these paths cannot be compared directly,
and an accurate analysis is required. In our paper, we leave
the electron-phonon scattering out of scope considering the
limit of low temperatures. This limit concerns only the lattice
temperature governed by the environment. The electron gas
temperature, which emerges in the electron-electron scattering
rate, can be changed independently, for example when elec-
trons are heated by a current as was done in the experiments
[1,2].

a. Boundary scattering. The most natural sources of scat-
tering are the “walls,” i.e., the edges of the channel. Here, we
assume that the boundaries reflect all incoming excitations.
This requirement is plausible for true 2D materials, like

Wlnext
φ

FIG. 1. Knudsen regime. The schematic trajectory of the particle
(black circle) hitting the “walls,” which scatter isotropically (broken
lines), is shown. The intuitively assumed effective mean free path
leff = W is affected by the small number (proportional to the angle ϕ)
of particles propagating along the channel, which have much larger
mean free path lnext.

monolayer graphene, for example, but should be better justified
for a 3D TI with surface Dirac states.

2D Dirac excitations can, in principle, be confined in a
finite area, by opening a gap outside this area. This type of
confinement, however, is only a particular case of a more
general formulation of boundary conditions, which can be
chirality-asymmetric and lead to the formation of unusual edge
states [24,25]. Requiring a zero current density component
perpendicular to the straight edge, the boundary condition leads
to a full mirror reflection of the incident wave function (see
Appendix A). In case of a rough edge, the incident angle has a
random value at each point, reflecting the incident particle in
an arbitrary direction, but with the same absolute value of the
momentum. Within the Fuchs-Sondheimer model, this implies
scattering with zero specular probability [26]. Theoretically,
the Dirac states in a 3D TI emerge on the whole surface of
the insulator, which has the topology of a sphere in a slab
geometry. Therefore, no boundary conditions should exist. In
experiments, however, distinct Dirac states can only be seen
on the top and bottom surfaces of a thin 3D TI slab, because
its edges are rather disordered. Therefore, we believe that the
coupling between top and bottom Dirac surfaces (via the side
walls) can be neglected.

Hence, the incident particles are scattered isotropically at
the side boundaries. Since we conjecture that elastic disorder
on the edges dominates, we come to the same conclusions as
for the general Dirac equation boundary condition at the rough
edge. Thus, in our investigation we assume that the boundary
scattering randomizes the incident particle momentum pre-
serving its absolute value.

The natural (and the only) characterizing parameter of the
boundary scattering process is the width of the channel W . In
the case, when all other scattering sources are negligible, the
effective mean free path in a channel will be

leff ≈ W log(lnext/W ), (4)

where lnext is the next largest mean free path generated in our
system. The logarithm originates from the small percentage of
particles that move along the channel. If all other scattering
processes generate an effective mean free path longer than
the channel length L, then the value lnext = L should be
substituted. In the sequel, we assume that the sample is not
fully ballistic, i.e., there is always a finite lnext shorter than
L. This regime is called the Knudsen regime [27] by analogy
to particle diffusion in a porous medium and schematically
visualized in Fig. 1.
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ni
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FIG. 2. Diffusive regime. The particle (black circle) propagates
diffusively, scattering on the impurities (white circles) the density
of which is ni. The nonisotropic scattering, specific for the Dirac
materials (see Sec. II B 1), is illustrated at the final scattering process.

The “walls” cannot contribute to the collision integral
directly, since they do not alter the bulk, but they affect the
boundary conditions for the distribution function. The diffusive
scattering on a wall described above can be quantitatively
formulated in terms of the distribution function f (x,y,p̆) at
point (x,y) over the states p̆ as follows: The electrons in point
x at the wall moving away from this point are (a) distributed
isotropically and (b) of the same number as those moving to this
point. Mathematically, these conditions at the bottom (y = 0)
and top (y = W ) walls are

f (x,0,p̆)|vy<0 = 〈f (x,0,p̆′)〉v′
y>0, (5a)

f (x,W,p̆)|vy>0 = 〈f (x,W,p̆′)〉v′
y<0, (5b)

correspondingly. Here, the brackets imply 〈f 〉... =
S...[f ]/S...[1], the partial averaging over the direction of
the momentum, namely

Sv′
y≷0[f ] =

∫
δ(ε(p̆) − ε(p̆′))θ (±v′

y)f dp̆′, (5c)

where vy is the y component of the group velocity defined
above, after Eq. (1), and θ is a Heaviside function.

b. Impurity scattering. The scattering of the electrons can
also take place in the whole volume of the sample due to
imperfections of the material. To simplify this analysis, we
restrict ourselves to randomly distributed elastic short-range
potential impurities. The scattering rate of such impurities for
a single particle with fixed energy ε can be estimated in Born
approximation as

τ−1
i (ε) ≈ ni|U0|2ν(ε)/h̄, (6)

where ni is the density of the impurities, U0 = ∫
U (r)d2r with

U (r) a potential of a single impurity, and ν(ε) is the density of
states at energy ε. Thus, the effective mean free path generated
by the impurities is

leff = li ≈ h̄veff

ni|U0|2νeff
, (7)

where li denotes an impurity mean free path. This regime
describes standard diffusion and is schematically visualized
in Fig. 2.

Our analysis is concentrated on short-range impurity scat-
tering, where Eq. (6) is valid. For simplicity, we consider weak
scattering on local impurities within the Born approximation.
We assume a short distancen

−1/2
i between impurities compared

to the system size (but large in comparison to λF in order to
keep the Born approximation and Boltzmann kinetic equation
approach valid). This assumption implies that the graphical

representation of the particle trajectory in Fig. 2 is a rather
schematic illustration, since the particle scatters not on every
impurity it passes by, but rather on a small percentage of them,
proportional to the scattering cross section. It is governed by the
impurity strength U0, leading to the mean free path expression
in Eq. (7), which is different compared to the average distance
between impurities.

The collision integral for the random impurities can be
written in Born approximation as

Ii[f ] = 〈f 〉 − f

τi
, (8)

where τi is defined in Eq. (6) and 〈f 〉 depends on the energy
of the particle εp̆ only, while f is taken for the particular state
p̆. Angle brackets denote averaging over the direction of the
momentum, defined in Eqs. (5a)–(5c) except for the missing θ

function in the integrand in Eq. (5c). In a proper treatment of
Dirac materials, the scattering integral requires new terms (see
below), but in the limit of the kinetic equation approach they
only change the final results quantitatively [28,29].

c. Electron-electron scattering. The third, and the most so-
phisticated process is electron-electron (e-e) scattering. Unlike
the two others, this is an inelastic process, which redistributes
momenta and energies of the colliding electrons, leading to the
thermalization of the system, but, nevertheless, preserving the
total momentum and energy of all electrons. The strength of
the e-e scattering can be described by the rate τ−1

ee , or by the
mean free path lee = veffτee, which we will use further for the
characterization of the scattering strength.

The collision integral for e-e scattering has a complicated
nonlinear functional dependence on the distribution function
f , but in certain cases it can be simplified (see Appendix B).
In the collision integral three major net values are preserved:
energy εp̆, momentum p, and number of particles. The e-e
scattering tends to thermalize the system driving it to the Fermi
distribution, but it does it with a twist. The net effect is a shifted
distribution function, i.e.,

f (p̆)
Iee−→ fV ≡ fF(εp̆ − V · p), (9)

where fF(ε) ≡ 1/[e(ε−μ)/T + 1] is the Fermi distribution func-
tion (from now on, we put the Boltzmann constant to unity
kB = 1). The parameters in the distribution function—the
average drift velocity V of the particles, the temperature T of
the electrons, and the chemical potential μ, corresponding to
the conserved quantities—must be calculated self-consistently
from the initial distribution function. The conservation laws for
energy, momentum, and number of particles which allow us to
calculate T , V, and μ, correspondingly, are∫

εp̆[f − fV]dp̆ =
∫

p[f − fV]dp̆ =
∫

[f − fV]dp̆ = 0,

(10)
where f is the initial and fV the thermalized distribution
function from Eq. (9). If the system is almost thermalized, i.e.,
the difference f − fV is small, one can expand the collision
integral using the Callaway ansatz [2,30,31]:

Iee[f ] = fV − f

τee
, (11)
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FIG. 3. Poiseuille regime. Due to dominating e-e scattering, the
electron system behaves as a liquid, obeying the Navier-Stokes
equation. (a) The parabolic profile of the drift velocity is shown.
(b) Dissipative hydrodynamic flow. The case of weak scatterers
where hydrodynamic flow is affected by the dissipative term in the
Navier-Stokes equation.

where the scattering time τee does not depend on the distri-
bution function f , while the dependence on the state p̆ is
very weak. A more realistic treatment of the relaxation of the
distribution function can be complicated (which we further
address in Sec. II B and Appendix D).

At dominating e-e scattering, in comparison to other
sources, the electron gas starts behaving as a fluid. Due to
the net preserving momentum, the average drift velocity V
of the particles cannot be dissipated by the e-e collisions.
Hence, it can be treated as a flow velocity in a viscous
liquid with the kinematic viscosity ζ ∼ veff lee. Obviously, the
electron-electron scattering, preserving the total momentum,
cannot result in a finite resistivity on its own, so the boundary
conditions play an essential role here. Resolving the scattering
on the walls within the thin layer of thickness lee near the
edge, we can derive the effective conditions on larger scales:
V|boundary = 0, the classical condition for the hydrodynamic
equation. Assuming a laminar flow, the Navier-Stokes equation
yields the standard parabolic velocity profile Vy = 0 and Vx ∝
y(W − y), where x and y are coordinates along and across the
channel, correspondingly (see Fig. 3). The effective mean free
path that will appear in the resistance in Eq. (3) in this case
is (see the solution of Navier-Stokes equation in Appendix E,
and its derivation in Ref. [17])

leff ≈ W 2

lee
. (12)

This case of the laminar hydrodynamic flow is called Poiseuille
regime named by a scientist who investigated the cardiovascu-
lar system of a frog [32].

The described parabolic profile of the flow holds in the
absence of the dissipation caused by impurities. In the case
li < leff [where leff is predicted in Eq. (12)], the dissipative
term lowers the flow velocity to Vx ∝ li, flattening the velocity
profile as shown at Fig. 3(b). Thus, the Poiseuille regime
is restricted by the bound leeli = W 2, beyond which the
mean free path is leff = li, i.e., the same as in the diffusive
regime. This case, however, is physically very different.
The hydrodynamical limit may still be valid, but the presence
of impurities results in a flow dissipation.

B. Transport regime diagram

The geometry of the sample is typically fixed in a given
experiment, but the lengths lee and li can be varied by adjusting
the chemical potential and temperature of the electron gas. The
chemical potential μ can be changed by applying a voltage
to back or top gates. The electron temperature T can be

raised by increasing the current through the sample. This
technique allows us to increase the temperature of the electron
gas, leaving the bath temperature intact, hence, suppressing
parasitic effects, such as electron-phonon scattering. We de-
velop a “phase diagram” that will allow us to classify the
possible transport regimes. If we could scale the e-e scattering
and impurity mean free paths independently, say, lee by one
external parameter and li by another one, then a simplified
diagram would look like Fig. 4(a). Two main lines in the figure
correspond to the crossovers 1© li = W and 2© lee = W . The
third line indicates when the e-e and impurity scattering are
equal, 3© lee = li.

1. Dirac spectrum

Dirac materials are characterized by a distinct Hamiltonian
H = v σ · p, where σ are Pauli matrices acting on the space
of (iso-)spin and v is the Dirac velocity. The spectra of
such Hamiltonians consists of two—conduction and valence—
cone-shaped bands with the dispersion relation ε+,p = vp

and ε−,p = −vp, correspondingly. The density of states in
2D Dirac materials is linear with energy ν(ε) = |ε|/2πh̄2v2.
The effective velocity in Dirac media is the constant Dirac
velocity veff = v. The effective density of states and the e-e
scattering rate depend on the distribution function f±,p, which
is derived from the standard kinetic equation below [11,12,14].
We assume that the quasiparticles are thermalized and have a
distribution function close to a Fermi distribution:

f±,p ≈ fF(ε±,p) ≡ 1

e(ε±,p−μ)/T + 1
. (13)

In the two opposite cases of strong (μ 
 T ) and weak (μ � T )
chemical potential the effective energies of an electron are μ

and T , respectively.
This implies that the dependence on μ and T of the effective

density of states is

νeff = 1

2πh̄2v2
×

{|μ| for μ 
 T ,
T for μ � T . (14)

Therefore, in our model, the impurity mean free path can be
described by the formula

li = ϑ−1 h̄v

max(μ,T )
, (15)

which is valid for the two regimes μ 
 T and μ � T . Here,
the dimensionless parameter ϑ ∼ ni|U0|2/h̄2v2 characterizes
the cleanliness of the sample. The modified dependence of the
impurity scattering on μ and T is reflected in Figs. 4(b) and 4(c)
by the bending of the line 1© over the line 4© that separates the
μ 
 T and μ � T cases. The (iso-)spin-momentum coupling
in the Dirac Hamiltonian prohibits backscattering. In 1D
materials, this leads to nondissipative propagation, but, in the
2D case, particles can scatter at all angles except for 180◦,
schematically illustrated on the last impurity in Fig. 2. Thus, the
scattering integral for electrons with energy ε±,p gets modified
in comparison to Eq. (8) as [11]

Ii[f ] = 〈f 〉 + n〈n′f 〉 − f

τi
, (16)

where n = v/v = ±p/p, and the quantities 〈f 〉, 〈n′f 〉,
and τi(ε) = 1/ϑ |ε| depends on the energy ε±,p only (see
Appendix C).

205129-4



RELATIVISTIC GURZHI EFFECT IN CHANNELS OF … PHYSICAL REVIEW B 97, 205129 (2018)

The electron-electron scattering does also crucially depend
on the chemical potential of the Dirac material. In the regime
μ 
 T , the system mimics a 2D electron gas and the e-e
scattering mean free path is [12,31,33]

lee ∼ α−2h̄v
μ

T 2
(for μ 
 T ). (17)

A particularly interesting behavior of e-e scattering can be
observed for μ � T : It reminds us of the thermalization
dynamics in bad metals [12,34], i.e.,

lee ∼ α−2 h̄v

T
(for μ � T ). (18)

This regime is reflected by the modified behavior of the lee =
W line labeled as 2© in Figs. 4(b) and 4(c). Here, α is the
parameter of the electromagnetic field coupling. In the absence
of screening and other renormalization effects, it would be
equal to the effective fine structure constant α0 ∼ e2/h̄v, which
due to the low Dirac velocity compared to the speed of light
c/v ∼ 300 can in principle be large (α0 ∼ 3) in condensed
matter systems. In reality, the coupling constant is however
strongly renormalized by (dumped) plasmon screening [35],
in the RG sense [36], by dielectric properties of the substrate,
etc. [37] In any case, α is typically neither an extremely large
nor small number in known Dirac materials.

The logarithmic enhancement of collinear electron-electron
scattering in Dirac materials due to the linear spectrum [15] can
be estimated as τ−1

cee ∼ τ−1
ee log α−2 for small α. In our inves-

tigation, we do not consider this particular type of scattering
for two reasons. At first, if α ∼ 1, which seems to be experi-
mentally relevant, the logarithm log α does not lead to any sub-
stantial enhancement in e-e scattering. Second, the collinear e-e
scattering leads to the relaxation of the energy (and correspond-
ingly the absolute value of the momentum), but not the relax-
ation of the momentum direction, which plays the dominant
role in transport. We address this issue in detail in Appendix D.

Note that the dependence of the e-e and impurity scattering
on μ and T implies the existence of the line 3©, where lee = li,
only for clean enough samples, more precisely, if ϑ < α2, see
Fig. 4(b). Otherwise, if ϑ > α2, impurity scattering always
dominates, i.e., li < lee for all values of μ and T , see Fig. 4(c).

The diagram (b) in Fig. 4 does not take into account the
flow dissipation due to the impurities discussed at the end
of Sec. II A. The corresponding boundary of the Poiseuille
regime is given by the relation li lee = W 2 manifested by the
line 5© in Fig. 4(d). For the case μ 
 T , as follows from
Eqs. (15) and (17), the condition leeli = W 2 transforms into the
relation T = α

√
ϑ h̄v/W , represented by line 5© in Fig. 4(d).

In the opposite case T 
 μ, the condition leeli = W 2 results
in the same relation for temperature (up to a numerical factor).
However, the validity of this condition itself has to be justified
because of the significant presence of holelike excitations,
which substantially changes the physical picture.

2. Electron-hole scattering

The Dirac spectrum consists of conduction and valence
bands occupied by electrons and holes, respectively. The ratio
of chemical potential and temperature determines whether the
system has one or two types of charge carriers. In the first
case, the system behaves similar to a Fermi liquid. In the other

case, an additional electron-hole (e-h) scattering emerges,
which at certain circumstances may lead to the Dirac liquid
behavior [12].

If T � μ, in addition to electron excitations (in the con-
duction band), the system has a substantial amount of hole
excitations (in the valence band), which have anticollinear
momentum and velocity, opposite to the electrons. The mutual
electron-hole scattering is known to create a finite resistivity
in the Dirac system in the degenerate limit (μ = 0) [14]. If lee

is the shortest length scale, the mean free path is

leff = lee. (19)

The ratio of e-e and e-h collision for finite μ can be estimated
by the volumes in reciprocal space taken by electrons ne and
holes nh as (ne − nh)/(ne + nh) [see Appendix E]. In case μ �
T , the ratio will be μ2/T 2. Thus, the system is composed
of two parallel channels that contribute to the conductivity:
the e-h scattering dominated channel and e-e collision driven
hydrodynamic flow, which is suppressed proportionally to the
rate of the e-e to e-h collisions. In the absence of impurity
scattering the mean free path is then

leff = lee + W 2

lee
× μ2

T 2
. (20)

The line 7©, where these terms are comparable is given by the
relation lee = Wμ/T and according to Eq. (18) sets the critical
chemical potential μ = α−2h̄v/W , see Fig. 4(d). Below this
line is a e-h scattering dominated regime with the mean
free path given in Eq. (19). Between line 7© and line 4©,
which denotes the crossover to the regime μ 
 T , we find
a pseudo-Poiseuille regime, where the hydrodynamical flow
dominates and obeys the very same Navier-Stokes equation,
but its contribution is suppressed by the factor μ2/T 2. This
results in the mean free path

leff = W 2

lee

μ2

T 2
. (21)

This special regime is further restricted from the third side by
the increasing strength of impurity scattering, entering in the
very same way as in the Navier-Stokes equation. Hence, we
substitute W 2/lee → li if li < W 2/lee. This means that the line
5© that separates the Poiseuille regime from diffusive regimes

preserves its definition and shape under the line 4© (i.e., for
μ � T ).

If the impurity scattering is very strong, but still lee < li, it
transforms the Poiseuille hydrodynamic flow into dissipative
hydrodynamic flow yielding a mean free path of

leff = lee + li × μ2

T 2
. (22)

For the case μ 
 T , the e-e scattering takes place in the
conduction band, so the suppressing factor μ2/T 2 drops
out. Since lee < li in the clean case, the second term always
dominates for μ 
 T , as illustrated in Fig. 4(d). For μ � T ,
it is not always the case. Nevertheless, if lee/li < μ2/T 2, the
second term dominates after all, giving us a line 7© described
by the relation μ = α−1

√
ϑ T , which singles out a special

pseudodiffusive regime with effective mean free path

leff = li
μ2

T 2
. (23)
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(a)

(b) (c)

(d) (e)

FIG. 4. Set of “phase diagrams” helping us to introduce the
different transport regimes in Dirac channels. (a) The simplest
diagram introduces three basic transport regimes depending on ratios
between e-e scattering (lee), impurity scattering (li), and the width of
the channel W . For pedagogical reasons, first simplified dependencies
of li/ee on μ and T are assumed [see the axes labels]. (b) Improvement
of the previous diagram by taking into account more realistic physical
dependencies of li/ee on μ and T for clean (ϑ < α2) samples. The
diagrams (a) and (b) are labeled “simplified” since they are based
on simplified assumptions that allow us to disentangle different
scattering processes. (c) Physical diagram for dirty (ϑ > α2) samples.
(d) Physical diagram for clean (ϑ < α2) samples derived from case (b)
by taking into account electron-hole scattering and the sensitivity of
hydrodynamical flow on impurities. The Knudsen regime is labeled by
green color, Poiseuille regime by blue, diffusive regime by yellow, and
the area with dominating electron-hole scattering by red. The different
shades of the color denote slight differences in the conductance
dependence on μ and T within the same regime. For instance, light
yellow stands for the (intermediate) pseudodiffusive regime. The
formulas for the lines labeled in (d) are collected in Table I. The
differential resistances for each regime labeled in (e) are collected
in Table II. The intervals marked by the thick black lines in (e)
correspond to the parameter intervals for the plots in Fig. 5.

Knowing the estimates for the effective mean free path for
every regime [Eqs. (4), (7), (12), (19), (21), (23)], and the
expression for the density of states from Eq. (14), using the
formula in Eq. (3), we can determine the differential resistance
for each case. We have summarized the definitions of all

TABLE I. Crossovers labeled by encircled numbers in Fig. 4(d).
The first block classifies the cases of the lengths li, lee, and W ordering;
the second block distinguishes between μ � T and μ 
 T cases; the
third one corresponds to the limit of the Poiseuille regime; and the
fourth one describes the effect of the electron-hole scattering in the
regime μ � T .

1© li = W μ = 1

ϑ

h̄v

W

2© lee = W
T = 1

α2

h̄v

W
if μ � T

μ = α2T 2 W

h̄v
if μ 
 T

3© lee = li μ = α√
ϑ

T

4© μ = T

5© leeli = W 2 T = 1

α
√

ϑ

h̄v

W

6© lee

W
= μ

T
μ = 1

α2

h̄v

W

7© lee

li
= μ2

T 2
μ =

√
ϑ

α
T

lines shown in Fig. 4(d) and their expressions for the μ-T
dependence in Table I and the differential resistances for all
regimes shown in the enlarged diagram in Fig. 4(e) in Table II.

III. KINETIC EQUATION FOR THE TRANSPORT IN A
DIRAC CHANNEL

In this section, we demonstrate the solution of the kinetic
equation given in Eq. (1) with a collision integral which
contains both electron-electron and impurity scattering con-
tributions, see Eqs. (11) and (16), correspondingly, together
with the boundary conditions formulated in Eqs. (5a)–(5c).

It is convenient to parametrize a state belonging to the Dirac
spectrum by a direction of the velocity vector n and an energy

TABLE II. The resistivity for the regimes labeled by encircled
letters in Fig. 4(e). The blocks are ordered according to the described
regimes: (from top to bottom) diffusive, Knudsen, Poiseuille, and
dominating e-h scattering (including pseudodiffusive) regimes.

A©,A′© ρxx = h

e2
× ϑ

B© × h̄v

μW
log−1 h̄v

ϑμW

C© × h̄v

μW
log−1 μh̄v

α2T 2W

D© × h̄v

T W
log−1 h̄v

α2T W

E© × α−2 h̄2v2

T 2W

F© × α−2 h̄2v2

μ2W

G© × ϑ
T 2

μ2

H©,H′© × α2
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of the state ε. The sign of the energy denotes the band, while
the velocity and momentum can be expressed as v = vn and
p = ε n/v. Together with the explicit expression of the col-
lision integrals from Eqs. (11) and (16), the static kinetic
equation takes the form

v · ∇fn,ε + eE · ∂pfn,ε = 〈fn,ε〉 + 〈n′fn′,ε〉n − fn,ε

τi(ε)

+ fF(ε − V · n ε/v) − fn,ε

τee
, (24)

where the momentum derivative in terms of the new
parametrization turns into v−1∂p = n∂ε + ε−1∂n, and the drift
velocity V is obtained from the second condition in Eq. (10),
which corresponds to momentum conservation. We consider
the case when the leads attached to the ends of the channel have
the same electron temperature. Thus, the energy conservation
condition is satisfied by definition. The conservation of the
number of particles can be automatically satisfied using the
following parametrization of the distribution function:

f = fF(ε + χ ) = 1

e(ε+χ−μ)/T + 1
. (25)

In the experimentally relevant case, the deviation of the
distribution function from the Fermi distribution is typically
weak, i.e., |∂pχ | � v. Under this condition, the expansion
fF(ε + χ ) ≈ fF + f ′

Fχ , where fF = fF(ε) and f ′
F = ∂εfF(ε),

is valid (see Appendix F). Performing this expansion in the
kinetic equation, Eq. (24) becomes

n · (∇χ − ∇μ − eE) = ϑ
|ε|
h̄v

(〈χ〉 + 〈χn′〉n − χ )

+ l−1
ee (〈χ〉 + εv−1V · n − χ ), (26)

and the boundary conditions are readily obtained from Eq. (5)
by substituting f → χ . Here, the overline is defined as

X = F [X]/F [1], where F [X] = −
∫

X f ′
F|ε|dε. (27)

Note that F [1] = ∫ +∞
0 fFdε − ∫ 0

−∞(1 − fF)dε = μ. The so-
lution of Eq. (26) can be exploited for the calculation of the
resistivity through the formula for the current density

j = e

2πh̄2v
F [〈nχ〉] = e

2πh̄2v
μ 〈nχ〉. (28)

The value χ as a function of the direction n does not have
a zero harmonic contribution, i.e., 〈χ〉 = 0. This stems from
the kinetic equation (26) being linear in χ possessing certain
reflection symmetries (see Appendix G), and satisfying particle
conservation by construction. The momentum conservation
law takes the form

〈nχ〉 = − 1

2v
V, X = F [X ε]/F [ε2]. (29)

We assume a uniform chemical potential for simplicity, i.e.,
∇μ = 0. The current is driven by the electric field E = (E,0)
directed along the channel. The linearity of Eq. (26) in
χ allows us to parametrize the function by the coordinate
and momentum dependent effective mean free path χ =
eE cos ϕ l(y,ε,ϕ). Note that the effective mean free path l

depends on the coordinate across the channel y, the energy

ε, and the angle ϕ shown in Fig. 1. The conductivity, using the
function l can then be expressed as

σ = e2

2πh̄

μ

h̄vW

∫ W

0
l̃ dy, l̃(y,ε) = 2〈l(y,ε,ϕ) cos2 ϕ〉,

(30)

where the bar over l̃ is defined in Eq. (27). Since, according
to Eq. (30), the full angle-resolved information about the
distribution function is not needed, we restrict ourselves to
the following equation for l̃ (see Appendix H):

l̃(y,ε) =
∫ W

0

(
1 + ϑ

2h̄v
|ε|l̃(y ′,ε) + ε

lee
l̃(y ′,ε′)

)
×K(|y − y ′|/ltot)dy ′, (31)

where K(z) = 2
π

∫ π/2
0

cos2 ϕ

sin ϕ
e−z/ sin ϕdϕ, the parameter l−1

tot =
ϑ
h̄v

|ε| + l−1
ee , and the function l̃(y ′,ε′) depends on y ′ only [the

underline is defined in Eq. (29)]. This Fredholm equation
of a second kind can be solved numerically, for example
as described in Appendix I. We discuss the results for the
resistivity of the channel in the next section.

IV. RESULTS AND DISCUSSION

To illustrate the transport properties of our system we sup-
plement our qualitative picture in Fig. 4 with the quantitative
solution of the kinetic equation described in Sec. III using
a numerical computation (see Appendix I for details). For a
given choice of sample cleanliness ϑ and e-e coupling α, we
calculate the resistivity as a function of temperature T for
different values of the chemical potential μ. The parameter
range of the chemical potential and temperature used for the
computation is qualitatively shown in Fig. 4(e) by the thick
black horizontal lines. The plots are collected in Figs. 5(a)–5(d)
sorted in the same order as the lines in Fig. 4(e). The different
regimes in a single plot are designated by the color of the curve
that corresponds to the colors used in Figs. 4(d) and 4(e). The
most interesting features are enlarged in insets. Let us discuss
these regimes and compare the behavior of the curves with the
qualitative predictions summarized in Table II.

The simplest case is the one with the largest chemical
potential. It is demonstrated in Fig. 5(a) for ϑ = 0.05 and
α = 0.7. The chemical potential is large enough to make
li shorter than the width of the channel and we see the
constant value (approximately) of the resistance predicted by
expression A© in Table II. For temperatures larger than the
chemical potential (to the right of the tick 4©) we enter the
pseudodiffusive regime, where the number of the effective
carriers drops and the resistivity rises according to formula G©
in Table II. This rise takes place until the line 7©, after which the
e-h scattering dominates. The resistance then saturates to the
value given by the expression H©. Naturally, the e-h scattering
driven resistance H© is much easier to be reached at low values
of the chemical potential, e.g., in the case of Fig. 5(d), which
is drawn for the same values of ϑ and α, and with the same
scale on the x axis as Fig. 5(a). At low temperatures, the
resistance is large due to the low density of states and depends
weakly on temperature (see B© and C© in Table II), but after
the crossing label 4© the density of states is proportional to
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FIG. 5. Temperature dependence of the resistivity for different
fixed chemical potentials corresponding to the thick horizontal lines
in Fig. 4(e). The insets contain the enlarged features of the main plot.
The circled labels on x axes correspond to the lines in Fig. 4(d) and
the color of the curve sections matches the color associated to the
corresponding regime in Figs. 4(d) and 4(e). The labels on the y axis
are the values of the resistivity in units of the Klitzing resistance h/e2.
All plots are computed for the e-e coupling α = 0.7. Plots (a) and (d)
are drawn for ϑ = 0.05, and plots (b) and (c) are generated for the
much cleaner case ϑ = 10−3 which resolves the Poiseuille regime
(see Fig. 6 and its discussion in Sec. IV concerning the existence of
the distinct hydrodynamic regime). The scale of the x axis of the main
plots that belong to the same pair [with the same α and ϑ , i.e. (a),(d)
and (b),(c)] is kept constant.

the temperature (regime D©) and the resistivity drops until the
temperature reaches the value 2©, above which the regime H©
takes over.

In order to resolve the Poiseuille regime in Figs. 5(b) and
5(c) we investigate a much cleaner system with ϑ = 10−3 and
the same choice of α. As one can see, smaller ϑ moves the lines
1© and 5© upwards and to the right, correspondingly, leaving

the lines 2© and 6© intact, increasing the regions E© and F©.
The plot in Fig. 5(b) is a prominent illustration of the rela-

tivistic Gurzhi effect in a Dirac material [3], which constitutes
a nonmonotonic dependence of the resistivity on the strength
of the e-e scattering regulated by the electron temperature. At
low temperature, the system is in the Knudsen regime. Then,
the particles relax their momentum by scattering at the walls,
see regimes B© and C©. Increasing temperature, we turn on
e-e scattering, which helps to redistribute the momentum as
long as the boundary scattering dominates, increasing thus
the resistivity. However, above the temperature 2©, when the
e-e scattering length lee gets shorter than the width of the
channel, electrons cannot reach the walls anymore and scatter
on each other, so that only a small percentage of electrons
situated in the vicinity of the boundary can reach it. This is
the conventional hydrodynamical regime E©: the increasing of
the temperature shortens lee and thus decreases the viscosity.
This behavior obviously lowers the net resistivity. The decrease
of the resistivity lasts until the dissipative term originating
from the impurity scattering starts being relevant (line 5©).
After this point the behavior of the curve retraces the one in
Fig. 5(a): We enter the diffusive regime A© characterized by
a constant resistivity, which depends neither on temperature
nor on chemical potential. Afterwards, crossing 4©, we are in
the pseudodiffusive regime G© with increasing resistivity with
temperature. The crossover to the e-h scattering regime is not
shown in the plot 5(b), since a very low value of ϑ pushes the
line 7© to high temperatures.

The remaining plot 5(c) demonstrates at low temperatures
the same features as plot 5(b). The difference lies in the fact
that the lines 2© and 4© are swapped. This peculiarity opens
a parameter window where the hydrodynamic approximation
is still valid, but the Dirac system is close to charge neutrality.
This condition results in heat flow hydrodynamics, which has
already been studied in graphene [7]. In this regime F©, the drop
in the viscosity is compensated by the decrease of the ratio of
the numbers of e-e and e-h scattering events (see discussion
in Sec. II B). Crossing the line 4©, the system enters the
pseudodiffusive regime G© straight away, developing similarly
to the plot 5(b). Comparing the main plots in Figs. 5(b)
and 5(c), one may notice that despite the wider region of
the hydrodynamical behavior in plot 5(c) it shows a less
pronounced Gurzhi effect than plot 5(b), since the drop of the
resistance happens only in the conventional Poiseuille regime
E©, which is narrower in the plot 5(c).

As we mentioned before, we use a different value of ϑ in
order to resolve the Poiseuille regions E© and F© demonstrating
the enlargement of the hydrodynamic region at decreasing ϑ .
It is important to stress that this is not the only effect of ϑ :
Its low value is critical for the existence of the relativistic
Gurzhi effect. This statement is best illustrated by Fig. 6.
The plots 6(a) and 6(b) are drawn for the same chemical
potentials (characterized by the value λF/W = h̄v/Wμ given
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FIG. 6. Demonstration of the importance of the sample cleanli-
ness for the Gurzhi effect. The plots are drawn for different chemical
potentials, under the choice α = 0.7, ϑ = 10−3 [plot (b)] and ϑ =
5 × 10−3 [plot (a)]. The chemical potential is characterized by the
parameter λF/W , the value of which (running from 0.01 to 0.05) is
written over each curve in the plots. Short ticks on the x axis pointing
upwards correspond to the position of the line ©4 for each curve,
and short ticks pointing downwards—to the line ©2 . The tick order
repeats the reverse order of the values of the parameter λF/W , i.e.,
the most left corresponds to 0.05, next to 0.04, etc. The line ©5 has the
same position for the curves and is marked by a longer tick pointing
downwards.

for each curve) and the same α = 0.7, but the cleanliness
of the systems is different: ϑ = 5.0 × 10−3 and ϑ = 1.0 ×
10−3, correspondingly. Note that we are far away from the
case illustrated by Fig. 4(c), since for both plots in Fig. 6,
α2/ϑ > 100. As one can see, even at very small ϑ = 0.005,
despite the existing hydrodynamical regime [see Fig. 6(a)],
the growth of the resistance is monotonic. With the increase
of the chemical potential (decrease of λF/W ) the density of
states gets increased and the decoupling of the flow from the
electric field (which manifests itself in the resistance growth
in the pseudodiffusive regime) affects the hydrodynamics less.
Evidently, with the increase of μ, the hydrodynamic region
shrinks and finally disappears before the resistivity curve can
demonstrate a decline. At ϑ = 0.001 the line 5©, which denotes
the end of the Poiseuille regime due to the dumping by the
impurity scattering, is shifted to the right in plot 6(b) by a
factor 5 in comparison to the plot 6(a). Weakening thus the
influence of the pseudodiffusive regime, this shift allows the
change of the d2V/dIdT sign before the Poiseuille regime
interval collapses.

V. SUMMARY

We have studied different mechanisms of electron transport
in 2D Dirac materials within Boltzmann theory. The interplay
of electron-electron, impurity, and boundary scattering results
in rich transport physics. We have classified possible regimes
and described the temperature and chemical potential depen-
dencies of the resistivity for each of those. We have put the
focus on the hydrodynamic behavior in the channel configura-
tion of the system. Two different hydrodynamic (Poisseuille)
regimes are found in a narrow range of temperature and
chemical potential. These are manifestations of the relativistic
Gurzhi effect. The size of the hydrodynamic range depends
on the cleanliness of the sample. We have pointed out an
existence of an additional pseudodiffusive regime, which can
be realized for μ � T . A quantitative numerical solution of
the Boltzmann equation is provided, confirming the qualitative
estimations of the resistivity. Numerical computation also
demonstrates that the signature of the Poisseuille regime, in the
presence of weak disorder ϑ � α2, does not always guarantee
the phenomenology of the relativistic Gurzhi effect. We have
shown that the existence of the nonmotonicity of the resistivity
as a function of temperature is very sensitive to disorder and
reveals itself only below some critical value of the disorder
strength.
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APPENDIX A: CONFINEMENT AND BOUNDARY
CONDITIONS FOR 2D DIRAC ELECTRONS

The confinement of excitations described by the 2D Dirac
equation can be realized due to the unused third Pauli matrix,
which allows us to open a gap outside the confinement area. For
example, all particles with an energy ε < M cannot propagate
at y > 0 if we construct the Hamiltonian [38]

H = σxpx + σypy + σ zMθ (y),

where we put v = 1 for simplicity. Taking the limit of M →
∞ we get an effective boundary condition which preserves
the chirality [25]. A more general boundary condition can, in
principle, be chiral asymmetric and still satisfy the requirement
of zero current perpendicular to the boundary. The general
boundary condition for the spinor (ψ↑,ψ↓) on the boundary
looks like

c↑ψ↑ + c↓ψ↓ = 0, cα =
{
eiϕ/2 cos θb α =↑ ,

e−iϕ/2 sin θb α =↓ ,

where ϕ is the orientation of the boundary in the x-y coordinate
system (ϕ = 0 if the boundary is parallel to the x axis). The
parameter θb encodes the microscopic physics of the boundary.
At some values of θb an additional 1D edge state can develop

[24,25]. The net solution at energy ε =
√
p2

x + p2
y can be written

as

ψ = Aeipxx+ipyy + Beipxx−ipyy + Ceiqx−
√

q2−ε2y,
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where q > ε > px, |A| = |B| in order to cancel out the current
perpendicular to the boundary. The amplitude C denotes the
contribution of the edge mode.

APPENDIX B: ELECTRON-ELECTRON SCATTERING
THERMALIZATION

The collision integral for e-e scattering has a complicated
nonlinear functional dependence on the distribution function
f :

Iee[f0] =
∑
123

w0123[f0(1 − f1)f2(1 − f3) − (1 − f0)

× f1(1 − f2)f3]
∏

i

δ
(
q

(i)
0 − q

(i)
1 + q

(i)
2 − q

(i)
3

)
.

In order to achieve a detailed balance and set the collision
integral to zero, we need that distribution function obeys

f0(1 − f1)f2(1 − f3) = (1 − f0)f1(1 − f2)f3

for every set of the states p̆0/1/2/3. These states are not arbitrary,
but are restricted by the conservation laws [the laws are
enumerated by an index (i)], i.e.,

q
(i)
0 + q

(i)
2 = q

(i)
1 + q

(i)
3 .

Note that the detailed balance condition for the distribution
function can be rewritten as

h0 + h2 = h1 + h3, where hn = log
fn

1 − fn

.

Thus, we can satisfy the detailed balance condition using the
ansatz hn = ∑

i β
(i)q(i)

n , where β(i) are constants independent
on the states p̆n. Inverting the definition of the value h, i.e.,
f = (eh + 1)−1, we derive the general distribution function
that sets the e-e collision integral to zero

fn =
[

exp

(∑
i

β(i)q(i)
n

)
+ 1

]−1

.

In the case when the conserving parameters q(i) are energy ε,
components of the momentum px and py , and the number of
particles (then q(n.p.) = 1), we get

f = 1

eβε+β(m.x)px+β(m.y)py+β(m.p.) + 1
,

where β = 1/T , β(m.x/y) = −Vx/y/T , and β(m.p.) = −μ/T .
This expression is equivalent to the function fV in Eq. (9).

APPENDIX C: MINIMAL IMPURITY SCATTERING

In realistic experimental setups, however, the limit li → ∞
cannot be achieved by decreasing temperature T and chemical
potential μ. Due to various reasons, such as inelastic scatterers,
localized impurity states, electron and hole puddles, etc., the
impurity scattering length has typically an upper limit li0.
The impurity scattering length can thus be approximated as
l−1
i = l−1

i0 + ϑ |ε|/h̄v. Despite that the formalism used in this
work allows us to implement this effect, in order to simplify
the physical picture, we assume that this maximal length
(that corresponds to the minimal scattering) is much larger
than all other scattering lengths like channel width W and

electron-electron scattering length lee. Thus, we neglect it in
the discussion of different transport regimes.

APPENDIX D: COLLINEAR SCATTERING

In general, the prefactor in the expansion of the collision
integral over δf = f − fV is momentum dependent, i.e.,
I[f ] = ∑

p′ Rp,p′(δfp′ − δfp). In case of a smooth dependence
of Rp,p′ on the momentum p′, the first term can be neglected
and the collision integral will take the form of Eq. (11), where
τ−1

ee = ∑
p′ Rp,p′ . The collinear scattering in Dirac systems is

enhanced due to the linearity of the spectrum and manifests it-
self in a logarithmically large value of Rp,p. This enhancement
comes from the 1/|pp′ − p · p′| divergence of the scattering
amplitude Rp,p′ , which reveals itself if the group velocities of
initial and finite states are collinear [12]. The corresponding
rate τ−1

cee ∝ Rp,p can be estimated as τ−1
cee ∼ τ−1

ee log(α−2). Note
that for α ∼ 1 the additional collinear scattering integral is not
just added to Iee, but simply drops out, since R acquires back
its smooth dependence on the momenta.

In the collinear limit, the energy and momentum conserva-
tion laws almost coincide, since the momenta are pj ≈ v−1εj n.
The collinear scattering collision integral should also preserve
the momentum and the particle number. This allows us to
use the Callaway ansatz idea for the collision integral with
the modification that we let the parameters of fV [including μ,
playing the role of the chemical potential, see Eq. (9)] vary with
the velocity direction n = λp/p. The corresponding collision
integral can be phenomenologically written as

Icee[f ] = fV,n − fε,n

τcee
,

where

fV,n = fF(ε − (ε − μ)v−1Vn − δμn).

Performing the expansion of the distribution function f in χ ,
we can write the collision integral with the explicit expressions
for the Vn and δμn as

Icee[f ] ≈ −f ′
F × 1

τcee
((ε − μ)v−1Vn + δμn − χε,n). (D1)

This equation is similar to Eq. (26), where Vn and δμn are
obtained from the particle and momentum conservation laws
for each given direction, namely∫

[fV,n − fε,n]|ε|dε = 0,

∫
[fV,n − fε,n]ε|ε|dε = 0.

The general expression (ε − μ)v−1Vn + δμn in Eq. (D1) is
equivalent to the χ that we use in Appendix F, where we justify
the expansion of f in χ . Higher orders in the expansion in
ε − μ do not play an important role here. The symmetry of the
function χ with respect to the e-h hole inversion is encoded
in the dependence on n. This symmetry is important in case
of μ � T and can be extracted by the integrals . . . and . . .

defined in Eqs. (27) and (29), correspondingly.
In other words, when moving from Eq. (24) to Eq. (26),

we imply that (a) the distribution f is close to the hydro-
dynamic distribution fV, (b) it is almost equilibrated in each
chosen direction with respect to the different energies scales,
see Appendix F. The collinear scattering implies a different

205129-10



RELATIVISTIC GURZHI EFFECT IN CHANNELS OF … PHYSICAL REVIEW B 97, 205129 (2018)

(intermediate) saturation value fV,n of the distribution function
(forced by Icee[f ]). However, eventually, the distribution
function fV (forced by Iee[f ]) is reached at long time scales.

APPENDIX E: DIRAC FLUID HYDRODYNAMICS

The hydrodynamic equations for a Dirac system can be
derived from the Boltzmann equation [15,16]

ḟλ,p + vn · ∇fλ,p + eE · ∂pfλ,p = Iee[f ]

multiplying it by the conserved variables (for the momentum
this means that

∑
±,p pIee[f ] = 0 for any fλ,p) and integrating

over all states. The conserved quantity that results in the analog
of the Navier-Stokes equation is the excitation momentum, and
the equation takes form

Ṗ + ∇�̂ − eEN = 0. (E1)

Net momentum density P (or energy current according to
Ref. [17]), charge (electrical) current j, charge density N , and
flow density tensor � are defined as

P =
∑
±,p

pf±,p, j = ev
∑
±,p

nf±,p,

N =
∑
±,p

f±,p, �ij = v
∑
±,p

nipjf±,p.

Here, we use a substitution f−,p → f−,p − 1 in order to avoid
the divergency in summation over the valence band. In the
hydrodynamic limit, the collision integral is the dominating
term in the kinetic equation, so the distribution function
can be expanded around the shifted distribution function
fV introduced in Eq. (9), f = fV + δf , since Iee[fV ] = 0.
Expanding the collision integral in δf , we get the Callaway
ansatz [see Eq. (11)], and from the kinetic equation we obtain
the nonequilibrium correction to the distribution function δf ≈
−τeevn · ∇fV . Calculating the macroscopic values up to the
linear term in drift velocity V (we assume V � v) we get

P = MV, j = eNV,

�ij = Mv2

3
δij − ζ (∂lPl δij + ∂iPj + ∂jPi),

where ζ = v2τee/4 is the kinematic viscosity, N and M are
charge and “mass” densities, correspondingly:

M = 3

2πh̄2v4
F+

3 , N = 1

2πh̄2v2
F−

2 .

Here F±
n = −T n[Lin(−e−μ/T ) ± Lin(−eμ/T )], T is the tem-

perature, μ the chemical potential, and Lin(z) = ∑∞
k=1

zk

kn the
polylogarithmic function. The charge density is connected with
the number of electrons and holes as N ∝ |ne − nh|, where

ne =
∫

f+,p
d2p

(2πh̄)2
, and nh =

∫
(1 − f−,p)

d2p
(2πh̄)2

.

Substituting these expressions into the Eq. (E1) we get the
hydrodynamic equation (without the convection term, since it
is quadratic in V):

Ṗ + v2

3
grad M − ζ [2 grad div P + �P] + eEN = 0.

For constant temperature and chemical potential, in the case
of the stationary laminar flow, the equation gets simplified,
yielding a well-known parabolic velocity profile:

∂2
yVx = eEN/ζM, Vx = (eEN/2ζM)(W − y)y.

Here, the boundary conditions which correspond to the zero
boundary slip length [39] Vx(0) = Vx(W ) = 0 are applied.
Averaging the current density over the coordinate y we obtain
the conductivity

1

ρxx

= e2N
1

W

∫
Vx(y)dy ∼ e2 W 2

ζ

N2

M

= e2

h̄2v2

W 2

τee
×

{
1/μ for μ 
 T ,
μ2/T for μ � T ,

= e2νeff v leff ×
{

1 for μ 
 T ,
μ2/T 2 for μ � T ,

where leff = W 2/lee and the density of states νeff for Dirac
systems is defined in Eq. (14). The obtained formula complies
to the definition of the effective mean free path in Eq. (3), and
derives the factor μ2/T 2 for the Dirac system at μ � T given
in Eq. (21) explicitly.

APPENDIX F: EXPANSION AROUND THE
FERMI SURFACE

The general distribution function can be parametrized using
the coordinate dependent chemical potential μ ≡ μ(r) as

f = fF(ε + χ ) = 1

e[εp+χp(r)−μ(r)]/T + 1
,

where the function χ depends on momentum and coordinates.
We can always require that

〈χp(r)δ(εp − μ(r))〉 = 0,

attributing a nonzero average of χ to the chemical potential.
Let us check whether the expansion over χ is valid under the
condition |∂pχ | � v, i.e.,

fF(ε + χ ) ≈ fF(ε) + f ′
F(ε) χ,

where f ′
F = ∂εfF(ε). If |∂pχ | � v then we can choose some

arbitrary energy scale � that satisfies the condition

|χ | <
|∂pχ |

v
� � T � �.

In the interval |ε − μ| < �, the function χ is limited by
|χ | < |∂pχ | �/v. Therefore, in this interval χ � T and the
expansion is possible. Outside this interval the expansion is
still valid since

fF(ε + χ ) ≈ fF(ε) ≈ θ (μ − ε) + O[e−�/T ],

f ′
F(ε) ≈ T −1O[e−�/T ],

so that the value of the function χ is irrelevant due to the
suppression by the small exponent.

APPENDIX G: SYMMETRY OF THE
DISTRIBUTION FUNCTION

A set of statements about the angular dependence of the
function χ can be made by simple physical arguments and
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elementary analysis of Eq. (26). The kinetic equation (26) is
linear in both χ and electric field term E · n. This automatically
means that the solution has to be proportional to this term.
Introducing the angle ϕ between the vector n and the electric
field E, we can use the parametrization χ = eE cos ϕ l(ϕ),
which we also introduce in the text in Eq. (30). If the electric
field was directed in the opposite way, the distribution function
would be reflected with respect to the line perpendicular to the
electric field. Mathematically this means

χ (ϕ) = −χ (π − ϕ), or l(ϕ) = l(π − ϕ).

This relation automatically means that the zero harmonic in χ

is absent 〈χ〉 = 0, or using the parametrization in terms of the
mean free path, 〈cos ϕ l(y,ε,ϕ)〉 = 0.

APPENDIX H: DERIVATION OF THE EQUATION FOR
THE EFFECTIVE MEAN FREE PATH

Using the parametrization χ = eE cos ϕ l(y,ε,ϕ) in
Eq. (26), where the function l ≡ l(y,ε,ϕ) depends on the
coordinate across the channel y, energy ε, and angle ϕ, together
with the fact that 〈χ〉 = 0, which is derived in Appendix G, we
obtain the equation

sin ϕ ∂yl − 1 = ϑ

2h̄v
|ε|(l̃ − 2l) + 1

lee
(ε l̃ − l), (H1)

where l̃ ≡ l̃(y,ε) depends on coordinate and energy, and l̃ ≡
l̃(y) on coordinate only:

l̃ = 2〈l cos2 ϕ〉, l̃ ≡ l̃(y,ε).

The underline notation is defined in Eq. (29). The boundary
condition from Eq. (5) for fixed energy ε (since the boundary
scattering is elastic) takes the form

l(0,ε,ϕ) = 1

π cos ϕ

∫ 2π

π

l(0,ε,ϕ′) cos ϕ′dϕ′

for 0 < ϕ < π , (H2a)

l(W,ε,ϕ) = 1

π cos ϕ

∫ π

0
l(W,ε,ϕ′) cos ϕ′dϕ′

for π < ϕ < 2π . (H2b)

The conductivity in these terms can be written as

σ = e2

2πh̄

μ

h̄vW

∫ W

0
l̃ dy, (H3)

where overbar is defined in Eq. (27). The solution of the kinetic
equation (H1) with boundary conditions in Eqs. (H2) is

l(y,ε,ϕ) =
∫ y

0

(
1 + ϑ

2h̄v
|ε|l̃(y ′,ε) + ε

lee
l̃(y ′)

)

×e
− y−y′

ltot sin ϕ

sin ϕ
dy ′, for ϕ ∈ [0,π ], (H4a)

l(y,ε,ϕ) =
∫ W

y

(
1 + ϑ

2h̄v
|ε|l̃(y ′,ε) + ε

lee
l̃(y ′)

)

×e
− y′−y

ltot | sin ϕ|

| sin ϕ| dy ′, for ϕ ∈ [π,2π ], (H4b)

where
1

ltot
= ϑ

h̄v
|ε| + 1

lee
.

The full angle-resolved information about the distribution
is not needed for the calculation of the conductivity in
Eq. (H3). Therefore, we derive the equation for l̃ by multiplying
Eqs. (H4) by cos2 ϕ and integrating them over all angles:

l̃(y,ε) =
∫ W

0

(
1 + ϑ

2h̄v
|ε|l̃(y ′,ε) + ε

lee
l̃(y ′)

)
×K(|y − y ′|/ltot)dy ′, (H5)

where

K(z) = 2

π

∫ π/2

0

cos2 ϕ

sin ϕ
e−z/ sin ϕdϕ.

The function K can be alternatively defined through the inte-
gral K(z) = 2

π

∫ ∞
1 t−2

√
t2 − 1e−zt dt , relating it to the modi-

fied Bessel function of the second kind Kn(z) as πz ∂2
z K(z) =

2K1(z).

APPENDIX I: NUMERICAL APPROACH

The function l̃ as a function of the coordinate y exists only
in the interval [0,W ], so that the Fourier transform gives us a
discrete but infinite set of the coefficients. Since the distribution
function is mirror symmetric with respect to the middle of the
channel, l̃ is symmetric too: l̃(W − y) = l̃(y), and all terms
containing a sin in the Fourier expansion drop out:

l̃(y) =
∞∑

n=0

l̃n cos
2πny

W
, l̃0 = 1

W

∫ W

0
l̃(y)dy,

l̃n = 2

W

∫ W

0
l̃(y) cos

2πny

W
dy. (I1)

Using the notation a = ϑ
2h̄v

|ε| and b = ε
lee

to make the ex-
pressions shorter, we can write the Fredholm equation in
Eq. (31) as

(1 + δn0)l̃n = Kn0 +
∞∑

m=0

(1 + al̃m + bl̃m)Kmn,

where

Knm = 2

W

∫∫ w

0
K

( |y − y ′|
ltot

)
cos

2πny

W
cos

2πmy ′

W
dydy ′.

The conductivity is proportional to the zero harmonic of the
expansion (I1)

1/ρxx = e2νF vF μ l̃0 . (I2)

Defining the infinite column 10 = (1,0,0, . . .)T and diagonal
matrix Unm = δm0δn0 + δnm, we can write the equation in a
matrix representation

Ul̃ = K(10 + a l̃ + b l̃), (I3)

where U and K are square matrices of infinite dimensions.
Introducing the matrix Q = (U − aK)−1K , Eq. (I3) can be
written as

l̃ = Q(10 + b l̃).
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Integrating it over the energy, as defined in Eq. (29) for the
underline symbol, we get the result

l̃ = (1 − bQ)−1Q 10.

Substituting it back into the equation for l̃, we obtain the final
expression

l̃ = Q(1 + b(1 − bQ)−1Q)10.

Since we need only the first element of the column l̃ to
calculate the conductivity [see Eq. (I2)], the formal result for
the conductivity is

1/ρxx = e2νF vF μ × [Q(1 + b(1 − bQ)−1Q)]00. (I4)

In order to calculate this formal expression it is sufficient to cut
off the infinite matrices to a finite size. Due to the rapid decay
of the matrix Knm with large indices n and m, as the numerical
computation shows, the size 4 × 4 of the matrices is sufficient.

APPENDIX J: NOTATIONS

I current along the sample
V voltage along the sample
ρxx resistivity

p momentum
p̆ full set of quantum numbers defining a quantum state

(momentum and band number for Dirac spectra)
f,fp̆ distribution function
εp̆ dispersion relation
v,v group velocity (vector, scalar)
n electron propagation direction v/v

ν density of states
I...[f ] collision integral of the . . . scattering process
τ−1
... (p̆) the rate of the . . . scattering process for the electron

in the state p̆
l... scattering length of the . . . scattering process
leff effective mean free path
L × W length×width of the channel
(x,y) coordinates along and across the channel
ni impurities density
U0 impurity strength
h̄ reduced Planck’s constant
V drift/flow velocity
μ chemical potential
T electron temperature
α e-e scattering strength (effective fine-structure constant)
ϑ impurity scattering strength
ζ kinematic viscosity
w e-e scattering probability
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