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Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm
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The growing interest in using x-ray spectroscopy for refined materials characterization calls for an accurate
electronic-structure theory to interpret the x-ray near-edge fine structure. In this work, we propose an efficient
and unified framework to describe all the many-electron processes in a Fermi liquid after a sudden perturbation
(such as a core hole). This problem has been visited by the Mahan-Noziéres-De Dominicis (MND) theory, but
it is intractable to implement various Feynman diagrams within first-principles calculations. Here, we adopt a
nondiagrammatic approach and treat all the many-electron processes in the MND theory on an equal footing.
Starting from a recently introduced determinant formalism [Phys. Rev. Lett. 118, 096402 (2017)], we exploit
the linear dependence of determinants describing different final states involved in the spectral calculations. An
elementary graph algorithm, breadth-first search, can be used to quickly identify the important determinants for
shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small terms. This search
algorithm is performed over the tree-structure of the many-body expansion, which mimics a path-finding process.
We demonstrate that the determinantal approach is computationally inexpensive even for obtaining x-ray spectra
of extended systems. Using Kohn-Sham orbitals from two self-consistent fields (ground and core-excited state)
as input for constructing the determinants, the calculated x-ray spectra for a number of transition metal oxides are
in good agreement with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by
this approach, are also discussed, such as shakeup excitations and many-body wave function overlap considered
in Anderson’s orthogonality catastrophe.
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I. INTRODUCTION

There is a fast-growing interest in using first-principles
computational methods to interpret x-ray spectroscopies for
characterizations of materials and thereby enhance our basic
understanding of electronic structure [1–20]. Fulfilling this
task requires a reliable prediction of possible atomic structures
that could lead to the observed spectra, and more challengingly,
a generic theory that can predict accurate x-ray spectral
fingerprints for given systems. Central to a first-principles
spectroscopic theory is solving the dynamics of a many-
electron Hamiltonian upon excitation of a core electron by
an x-ray photon, for realistic systems ranging from molecules
to solids, in an efficacious manner.

From a fundamental viewpoint, the approaches to tackle a
many-body problem fall into two major categories. Quantum-
field-theoretical methods [21–24] focus on describing the
trajectories of a many-body system. Through computing the
path integrals of all trajectories from one many-body state to
another, one obtains the transition probability between the two.
The field-theoretical approach has given rise to a set of power-
ful first-principles tools such as the GW and Bethe-Salpeter-
Equation (BSE) method [25–28]. In current implementations
of these methods, only a finite set of diagrams are incorpo-
rated, due to the daunting complexity of evaluating all them.
The other category of approaches focuses on the description
of many-body wave functions based on Slater determinants
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[29–31]. This leads to methods that are used prevalently in
quantum chemistry such as the full configuration interaction
(CI) approach and the coupled-cluster technique [32–34], or
exact diagonalization for solving strongly correlated systems
[35,36]. Currently, these methods are mostly applied to systems
with 10–20 electrons limited by the exponential growth of the
configuration space.

For x-ray excitations and associated spectra, we have wit-
nessed the success of the constrained-occupancy density func-
tional theory (�SCF) [4,11,14,15,19,37,38], which approxi-
mates an x-ray excited state as the combination of a static core-
hole perturbation with one empty Kohn-Sham (KS) orbital in
the final state. Recently, we highlighted the shortcomings in
this single-particle (1p) approach for a class of 3d transition
metal oxides (TMOs) and the significant contributions of
higher-order excitations involving multiple electron-hole (e-h)
pairs [39]. Driven by these deficiencies, we proposed a better
many-body wave-function ansatz that approximates the initial
and final states with a single Slater determinant. The initial-
state Slater determinant is constructed from the KS orbitals
of the ground-state system, while the Slater determinant for
a specific final-state is derived from the KS orbitals of the
core-excited system. Within this approximation, the transition
amplitude can also be expressed as a determinant [39–43]
comprising transformation coefficients between the two KS
basis sets. We find this determinant approach can rectify
the deficiency of the 1p �SCF approach for a few TMOs
[39]. It is natural to ask: (a) when it is necessary to apply
the determinant approach, given the previous success of the
1p �SCF approach in other systems; (b) can this approach
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permit access to higher-order excitations and describe various
many-body x-ray spectral features beyond the BSE, especially
for metallic systems; and (c) is it practicable for calculations
of extended systems, given the huge configuration space?

In this work, we answer these questions by demonstrating an
efficient yet simple approach to explore the large configuration
space in the determinant formalism. A crucial first step is
to relate similar determinants to one another via exterior
algebra [44,45] and then evaluate them via updates, rather
than from scratch. Even so there are still 106 to 109 many-
body states to consider for configurations with double e-h
pairs. However, only a small portion of these determinants
have significant transition amplitudes, due to the spatially
localized nature of core-level excitations, as can be tested by
brute-force calculations. Motivated by this observation, we
adopt a breadth-first search (BFS) algorithm [46,47] to look
for nontrivial configurations rather than exhausting the entire
configuration space.

The BFS algorithm is a basic algorithm for traversing a
tree structure, finding the shortest path [48,49], solving a maze
[50], and other combinatorial search problems. Although the
BFS algorithm cannot guarantee answers within a polyno-
mial time, substantial speed-up can often be achieved via
heuristically pruning the search tree [51,52]. For the many-
body configuration problem, we design the BFS to search for
active “pathways” from the initial state to many excited-state
configurations. Instead of directly accessing a large number of
high-order configurations, the search algorithm first visits their
parent configurations with fewer e-h pairs. If the amplitude of
a transition to a high-order configuration is below a certain
threshold, the search algorithm will discard the configuration
before its child configurations are generated. Furthermore, if
multiple pathways to a configuration interfere destructively
and result in a small transition amplitude, the search algorithm
will also discard that configuration. We will show that this
tree-pruning technique can typically lead to at least 100-
fold speed-up in the calculation of x-ray spectra. Although
examples investigated in this work are x-ray excitations, the
search algorithm does not require the perturbation to be local
and can be extended to arbitrary types of sudden perturbation
to a Fermi gas.

This heuristic search process shares similar philosophy
with the restricted CI approaches [53–56] in quantum chem-
istry, or the expansion-series method [57–59] for obtaining
x-ray excitations over small strongly correlated clusters, in
that these methods all actively construct the most relevant
configurations instead of passively enumerating them. During
the construction of the configuration space, these methods
estimate how likely a class of configurations may contribute
to the transition amplitude or the multideterminant expansion
of interest. If a class of configurations is proven to be barely
relevant for the final result, they will be thrown away to
constraint the rapid growth of the configuration space. What
is unique in the proposed BFS algorithm is that it relies on
the hierarchical expansion of the many-body configurations at
different orders (one-, two-, three-body, etc.). Then we make
use of the tree-pruning technique to remove configurations
with small transition amplitudes. These observations turn out
to be particularly helpful for simulating x-ray excitations for
systems in which strong correlations are absent, such that a

single-determinant approach is reasonably accurate. However,
in the presence of strong correlations, the application of this
approach to a multi-determinant expansion will be explored in
future work.

The determinant formalism is an exact solution to the
Mahan-Noziéres-De Dominicis (MND) model [60,61] in
which multiple electrons interact with a core hole. Hence, this
approach can naturally incorporate all many-electron processes
in the MND theory, which includes the direct and exchange
diagrams as in the BSE [26–28], the zigzag diagrams, and the
diagrams with a core hole dressed by many e-h bubbles. While
the BSE diagrams mainly describe e-h attraction, or excitonic
effects, the zigzag or bubble diagrams describe higher order
e-h excitations that lead to shakeup features [43,62–67] or
many-body effects due to reduced wave-function overlap. A
reduction in many-body wave function overlap is the origin of
the Anderson orthogonality catastrophe [40,66]. If one were to
include all of these effects using the diagrammatic approach,
a comprehensive set of techniques, such as solving BSE-like
equations and using a cumulant expansion [68,69], would be
required. Here, the determinant formalism, in conjunction with
the first-principles KS orbitals, provides an efficient means to
investigate all many-electron effects within the MND model
rigorously, for a wide energy range, within a simple unified
framework.

This new determinant formalism has already shown great
practicality to address realistic problems in materials charac-
terization. We systematically study the O K-edge (1s → np)
x-ray absorption spectra (XAS) of various TMOs and find
this approach can faithfully reproduce the experimental x-ray
line shapes for most of the investigated systems. This can
be immediately applied to study various energy conversion
and storage systems involving oxides [70–78], where the
interpretation of x-ray spectra can be challenging, and the
conclusions often depend sensitively on intricate near-edge line
shapes.

The rest of this work is mainly divided into three sections.
First, Sec. II discusses the theoretical backgrounds and the
newly proposed search algorithm, with technical details in-
cluded. Secondly, Sec. III shows the simulated XAS of a variety
of oxides using the new method, together with a comparison
with previous theories, and discusses how many-body effects
help contribute to defining the x-ray spectral line shape.
The many-body aspects beyond the BSE as captured by this
method will be discussed in Sec. III D and III E, using the
half-metal CrO2 as an example. Finally, the numerical details
and efficiency of this algorithm are analyzed in Sec. IV.

II. THEORETICAL MODELS AND METHODS

The methodology section is organized as follows. Section
II A revisits the many-body effects captured by the MND
theory in terms of Feynman diagrams. Sections II B and II C
provide a solution to the MND model from the perspective of
many-electron wave functions and introduces the determinant
formalism. Section II D introduces exterior algebra to elucidate
the linear dependence of the determinants that is encoded in
the so-called ζ matrix, followed by a BFS algorithm for an
efficient evaluation in Sec. II E. Section II G discusses how to
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combine this algorithm with DFT simulations and its validity
in the presence of e-e interactions.

A. Independent-electron model and diagrammatic approaches

We first revisit the conceptually simple MND model from
the perspective of Feynman diagrams. The incorporation of
first-principles calculations will be deferred to Sec. II G. In the
MND model [43,61,66], the electrons only interact with the
core hole and electron-electron (e-e) interactions are neglected.
Consider a supercell with one of the atoms replaced by its
core-excited version. This is typically a good approximation
to a core-excited system at low photon flux. Assume there areN

valence electrons in its ground state and there is only one core
level. The MND Hamiltonian without e-e interactions reads

H = H0 + HI ,

H0 =
∑

c

εca
†
cac − εhh

†h,

HI =
∑
cc′

Vcc′a†
cac′h†h,

(1)

where the diagonal part H0 is composed of the valence orbitals
(c iterates over both occupied and empty valence orbitals) and
the core level (h). a

†
c and h† are electron and hole creation

operators, respectively. The only two-body term in H is the
Coulomb interaction between the valence orbitals and the core
level, as described by HI , in which the core-hole potential Vαβ

is defined by

Vαβ =
∫

d3rd3r ′ψ∗
α (r)ψβ(r)V (r,r′)ψ∗

h (r′)ψh(r′), (2)

where ψi’s are the 1p wave functions and V (r,r′) is the
(effective) Coulomb potential. The two-body interaction Vαβ

accounts for the electron scattering from orbital β to α due to
the core-hole potential.

The x-ray photon field can be described by a current operator
[66] that promotes one core electron to a valence orbital:

Ĵ =
∑

c

a†
ch

†〈ψc|ĵ |ψh〉 + H.c. (3)

The transition operator is the electric field polarization-
projected position operator that couples the core level to
valence orbitals: ĵ = ε · r , in the limit of zero-momentum
transfer and within the dipole approximation [4,79]. In prin-
ciple, the transition operator ĵ can be any other local sudden
perturbation, not necessarily limited to a core hole.

The independent-electron model was originally considered
by the MND theory [60,61,66] using diagrammatic techniques.
The time evolution of the many-electron system after photon
absorption is described by the Kubo current-current correlation
function

�(t) = − i

V 〈	i |T Ĵ (t)Ĵ (0)]	i〉

= 1

V
∑
cc′

〈ψc|ĵ |ψh〉〈ψh|ĵ |ψc′ 〉Lcc′ (t)

= 1

V
∑
cc′

wcw
∗
c′Lcc′ (t), (4)

FIG. 1. Four distinct types of e-h processes in the second-order
Feynman diagrams in the MND theory. There are exactly two
Coulomb lines (at t1 and t2) in each diagram, as marked by vertical
dashed lines.

where wc = 〈ψc|ĵ |ψh〉 is the vertex that represents the absorp-
tion of a photon to create an e-h pair (w∗

c represents the opposite
process). The x-ray absorption spectrum (XAS) A(ω) is the
spectral function of the photon self-energy in the frequency
domain:

�(ω) =
∫ ∞

−∞
dteiωt�(t),

A(ω) = − 1

π
Im�(ω).

(5)

In the following discussion, we focus on the e-h correlation
function as defined in Eq. (4),

Lcc′ (t) = −i〈	i |T h(t)ac(t)a†
c(0)h†(0)|	i〉, (6)

which includes all the many-electron processes in x-ray ab-
sorption.

We exemplify these many-electron processes by four types
of second-order Feynman diagrams of Lcc′ (t), as shown in
Fig. 1. The time axis runs from left to right and the Coulomb
lines are vertical due to the neglect of dynamical effects in
the Coulomb interaction HI . The BSE captures two kinds
of processes: direct e-h attraction as described by the ladder
diagram in Fig. 1(a), and e-h exchange as described by the
diagram in Fig. 1(b). In these diagrams, there is only one e-h
pair present at any time of the propagation. However, there
are other diagrams with more e-h pairs present at a time, e.g.,
the zigzag diagram in Fig. 1(c). The corresponding process
involves a core hole causing the ground state to decay into a
valence e-h pair (c′ and v) at t1. At a later time t2, the core hole
assists the newly generated valence hole (v) to recombine with
an incoming electron (c), leaving an outgoing electron (c′) and
the core hole. Lastly, it is also possible that the valence e-h
pair (c′ and v) generated earlier does not correlate with the
incoming electron at all and simply annihilates at a later time
t2. This leads to a bubble diagram with a freely propagating
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electron and a core hole dressed by e-h bubbles as shown in
Fig. 1(d). These e-h bubbles tend to reduce the many-body
wave function overlap and are the causes for the Anderson
orthogonality catastrophe [40].

The MND theory [60,61,66] systematically studies and es-
timates the impact of these diagrams on the near-edge structure
of x-ray spectra. In essence, it is found that denominators in
the BSE diagrams involve εc − εh, which is roughly the energy
required to create an electron-core-hole excitation, while the
denominators in the zigzag or bubble diagrams involve an
offset of εc − εv , the energy required to create an additional
(valence) e-h pair. This means the zigzag processes or the
bubble diagrams can become significant in a metallic system
where εc − εv can be vanishingly small, or if the photon
energy is sufficiently high to be in resonance with double e-h
excitations.

In practical first-principles calculations, as will be discussed
in Sec. II G, the bare Coulomb interactions in the above MND
diagram will be replaced by the exchange-correlations poten-
tial due to the core hole, and the valence electronic screening
will be taken into account by self-consistently relaxing the
electron density.

B. An alternative MND solution based on many-body
wave functions

In the last section, we have discussed the diagrammatic
approach, or many-body perturbation theory (MBPT), for
solving the MND model [Eq. (1)]. However, this Hamiltonian
is essentially quadratic and exactly solvable. For the initial
state, no core hole is excited and 〈h†h〉 = 0 and hence the
initial-state Hamiltonian Hi is simply H0. For the final state,
there is exactly one core hole, i.e., 〈h†h〉 = 1, and the final-state
Hamiltonian Hf also becomes quadratic,

Hf = Hi +
∑
cc′

Vcc′a†
cac′ . (7)

Within the quadratic forms, it is straightforward to construct
the many-body wave functions of the initial and final states.
The initial state is simply a Slater determinant that con-
sists of N valence electrons occupying the N lowest-lying
orbitals:

|	i〉 =
⎛
⎝ N∏

μ=1

a†
μ

⎞
⎠h|0〉, (8)

where μ goes over all the occupied valence orbitals, h annihi-
lates the core hole (fills the core level with one electron), and
|0〉 is the null state with no electrons. The final-state XAS wave
functions can be expressed in a similar manner, but using the
eigenvectors of Hf :

|	f 〉 =
N+1∏
μ=1

ã
†
fμ

|0〉, (9)

where the index f is a tuple: f = (f1,f2, . . . ,fN+1), which
denotes the valence N + 1 orbitals that the N + 1 electrons
will occupy in the final state. ãi (with tilde) correspond to

the eigenvectors of Hf so that Hf = ∑
i ε̃i ã

†
i ãi . To apply the

Fermi’s Golden rule, one needs to work within the same basis
set. We express the final-state basis set in terms of the initial-
state one:

|ψ̃i〉 =
∑

j

ξij |ψj 〉,

ã
†
i =

∑
j

ξij a
†
j ,

(10)

where ξij ’s are the transformation coefficients: ξij =
〈ψj |ψ̃i〉.

With these expressions for |	i〉 and |	f 〉, the many-body
transition matrix element for any one-body operator O has
been calculated in previous work [39,42,43],

〈	f |O|	i〉 =
∑

c

(
Af

c

)∗〈ψc|o|ψh〉, (11)

in which the transition amplitude also takes a determinantal
form:

Af
c = det

⎡
⎢⎢⎣

ξf1,1 ξf1,2 · · · ξf1,N ξf1,c

ξf2,1 ξf2,2 · · · ξf2,N ξf2,c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N ξfN+1,c

⎤
⎥⎥⎦.

(12)

The row index goes over N + 1 occupied final-state orbitals
fi , and the column index over the lowest-lying N initial-state
orbitals plus one empty orbital labeled by c. (This empty orbital
is coupled to the core level with the one-body operatorO.) This
determinantal form reflects how these N + 1 electrons transit
from the initial to the final state in the x-ray excitation process.
All the possible electronic pathways are taken into account by
the transformation matrix in A

f
c . The transition amplitude of

an individual electron is quantified by the matrix elements, i.e.,
the initial-final orbital overlap ξij = 〈ψj |ψ̃i〉. The interference
of these pathways is lumped into a determinant due to the
fermionic nature of electrons.

For the quadratic Hf , the energy of a final-state |	f 〉 can
be obtained by direct summation of orbital energies

Ef =
N+1∑
j=1

ε̃fj
, (13)

where ε̃fj
are taken from the diagonalized Hf . A relative

energy 
f = Ef − Eth may also be defined for later dis-
cussion, where Eth is the energy of the lowest-lying |	f 〉:
Eth = ∑N+1

j=1 ε̃j .
For ease of calculation, previously, we have also regrouped

the final-state multielectron configurations according to the
convention in quantum chemistry [30,33,41]. The configura-
tion f = (1,2, . . . ,N,c0) with c0 > N is dubbed as a single
or an f (1) configuration because it has one electron-(core-)
hole pair. A shorthand notation for an f (1) configuration can
be employed, using (c) to denote the orbital of the excited
valence electron. f = (1,2, . . . ,v1 − 1,v1 + 1, . . . ,N,c0,c1)
with v1 � N and c1 > c is dubbed as a double or f (2) config-
uration because it has one extra (valence) e-h pair as defined
by the electron (hole) index c1 (v1). The shorthand notation
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FIG. 2. Definitions of the multielectron configurations used in
the initial(i)- and final(f)-state picture according to the convention
in quantum chemistry. A final-state configuration (a single Slater
determinant) at the order of f (n) can be hybridized from a number of
initial-state configurations at multiple orders, as shown by the thick
opaque down arrows, which illustrates the spirit of Eq. (9). The solid
up arrows in a configuration indicate one possible multielectronic
pathway to access that configuration from the ground state. The
dashed up arrows show the other possible pathway to access the f (2)

configuration.

for f (2) is (c0,v1,c1). This definition can be extended to higher
orders such as triples and so forth. For unique indexing, we
require c0 < c1 < c2 < · · · < cn−1 and v1 > v2 > · · · > vn−1

in an f (n) index. Examples of final-state f (n) are shown in
Fig. 2 (schematics on the second row).

C. Interpretation of the final-state many-body approach
from an initial-state perspective

In this section, we provide a comparison between the
outlined determinant formalism and MBPT using Feynman
diagrams. While the determinant formalism constructs many-
electron states using both initial- and final-state orbitals,
MBPT, such as BSE, relies on initial-state quantities only. To
relate the two theories, we can express the MND many-electron
final states |	f 〉 in Eq. (9) using only the initial-state orbitals.
We rewrite the final-state operators ãi according to a linear
combination of the initial-state operators ai [Eq. (10)] and
express the wave function |	f 〉 in terms of |	i〉:

|	f 〉 =
N+1∏
μ=1

∑
jμ

ξfμ,jμ
a
†
jμ

|0〉

=
N+1∏
μ=1

⎛
⎝∑

jμ

ξfμ,jμ
a
†
jμ

⎞
⎠(

N∏
ν=1

aν

)
h†|	i〉. (14)

We expand the product of the operators and regroup like terms,

|	f 〉 =
∑

c∈unocc

Af
c a†

ch
†|	i〉

+
∑

c,c′ ∈ unocc
v ∈ occ

B
f

cc′,v(a†
ch

†)(a†
c′av)|	i〉 + · · · . (15)

The leading-order term comprises linear combinations of
single electron-(core-)hole pairs, because there are N + 1
creation operatorsa

†
i andN destruction operatorsai in Eq. (14),

leaving at least one creation operator a
†
c for an unoccupied

state. For this term, N out of N + 1 indices jμ are chosen from
1,2, . . . ,N so that N a

†
i ’s can cancel with N ai’s. There are

(N + 1)! such permutations, and reordering the fermionic op-
erators gives rise to the determinantal form of the coefficients,
as previously stated in Eq. (12).

The next term in Eq. (15) is a double term (a†
ch

†)(a†
c′av),

which has one additional valence e-h pair (a†
c′av) generated

on the top of the electron-core-hole pair. This term takes
into account the second-order many-electron processes: the
valence e-h excitations induced by the core-hole potential,
which are also known as the shakeup excitations [43,62–67],
because an additional amount of energy is required to create
these valence excitations. As the series expansion proceeds,
each term will have one more valence e-h-pair than the last,
and more complicated shakeup processes with multiple e-h-
pairs are included. A full schematic for the relation of one
single final-state configuration |	f 〉 (written as one Slater
determinant using final-state orbitals) in terms of initial-state
configurations is shown in Fig. 2.

Within MBPT, the configuration series in Eq. (15) is typi-
cally truncated, and the coefficients are solved by expanding
the Hamiltonian over the restricted configuration space and
solving the eigenvalue problem. In the BSE, for instance, the
final-state Hamiltonian is expanded over the single-e-h-pair
space a

†
ch

†|	i〉 and the eigenvector coefficients (analogous to
A

f
c ) refer to this single-e-h basis. In some sense, this approx-

imation corresponds to the ladder and exchange diagrams: at
any point in time of the propagation, there is only one e-h pair
involved.

By contrast, the determinant formalism does not restrict the
number of e-h pairs in the final-state configuration space. When
|	f 〉 is projected onto |	i〉 as in Eq. (15), a superposition of
single, double, and high-order terms naturally arises, although
only the leading-order coefficients A

f
c are relevant for calculat-

ing the matrix elements of the one-body operator. In this way,
the zigzag and bubble diagrams, present within MND theory,
which involve multiple e-h-pair generation, are automatically
incorporated.

D. Efficient evaluation of determinantal transition amplitudes

The above determinantal formalism provides an alternative
solution to the MND model in Eq. (1) without using dia-
grammatic approaches. If a sufficient number of final states
are included, one may expect the determinantal method to
give the spectrum as solved from the MND model. How-
ever, a brute-force calculation is rarely used because the
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many-electron configuration space grows factorially with the
number of electrons. It does not seem to be practical to compute
the large number of determinants that would represent all
configurations.

For a half-filled system with M orbitals and N (N ≈ M/2)
electrons, even the f (2) group has (M − N )(M − N − 1)N ≈
M3/8 configurations. Iterating the index c ofAf

c [Eq. (12)] over
all empty initial-state orbitals multiplies the time complexity
by a factor of M/2. Calculating the determinant for each
configuration requires a computational cost of O(M3). With
all the three factors combined, obtaining the determinants for
all of the f (2) configurations gives rise to a time complexity
of O(M7). For metallic systems where the Fermi surfaces are
susceptible to the core-hole potential, higher-order terms such
as f (3) are typically needed for testing convergence, which
leads to a higher time complexity ofO(M9). Such a brute-force
calculation that scales up quickly with the number of states is
not very practical for realistic core-hole calculations in which
there could easily be 102 to 103 orbitals.

In this section, we introduce an efficient algorithm at much
lower computational cost to access the determinants that are
important for determining the x-ray spectrum. The O(M3)
determinant calculation needs to be performed only once for
a given configuration, and subsequently the determinants for
other configurations can be derived from it. More importantly,
a BFS algorithm is employed to identify the important determi-
nants above a specified threshold, largely reducing the number
of configurations to be visited.

An apparent first step is to move the summation over c in
Eq. (11) into the definition of the transition amplitude coef-
ficient, so that for each final-state configuration f , obtaining
Af = 〈	f |O|	i〉 requires calculating only one determinant.
More specifically, we rewrite Af as

Af = det Af ,

Af =

⎡
⎢⎢⎣

ξf1,1 ξf1,2 · · · ξf1,N

∑
c ξf1,cw

∗
c

ξf2,1 ξf2,2 · · · ξf2,N

∑
c ξf2,cw

∗
c

...
. . .

...
ξfN+1,1 ξfN+1,2 · · · ξfN+1,N

∑
c ξfN+1,cw

∗
c

⎤
⎥⎥⎦,

(16)

where wc = 〈ψc|o|ψh〉. The summation in the (N + 1)th

column of Af can be calculated first before obtaining the
determinant. This reduces the overall time complexity by a
factor of M .

Secondly, when considering transitions to various final-state
configurations, the determinants of interest in fact have many
common rows so one can make use of the multilinearity of
determinants to speed up the calculations significantly. For
example, the tuple for a double configuration (1,2, . . . ,v1 −
1,v1 + 1, . . . ,N,c,c1) only differs from the ground-state one
(1,2, . . . ,N,N + 1) by three indices, meaning their corre-
sponding determinants Af only differ by three rows. This
observation motivates us to choose the determinant for the
ground state as a reference, and evaluate other determinants
for excited states via a low-rank updating technique.

To demonstrate this technique, it is most transparent to
express the determinant in terms of the wedge (exterior)
product [44,45] of its row/column vectors. The wedge product

is anticommutative and has similar algebra to the fermionic
operators. Suppose an arbitrary matrix A has n row/column
vectors a1,a2, . . . ,an, its determinant can be expressed as

det A = a1 ∧ a2 ∧ · · · ∧ an. (17)

Assume det A has been calculated from scratch and is nonzero
(assume A is a full rank). If an is replaced by a new vector
an+1, which can be considered as a rank-1 update, the updated
determinant can be obtained by expanding an+1 in terms of
a1,a2, . . . ,an:

det A′ ≡ a1 ∧ a2 ∧ · · · ∧ an+1

= a1 ∧ a2 ∧ · · · ∧
n∑

i=1

ζn+1,iai

= ζn+1,na1 ∧ a2 ∧ · · · ∧ an

= ζn+1,n det A, (18)

where ζij is the expansion coefficient defined as

an+1 =
n∑

i=1

ζn+1,iai . (19)

ζn+1,i can be obtained via the matrix inversion of A: ζn+1,i =∑
j an+1,j (A−1)ji . When multiplied by a1 ∧ a2 · · · ∧ an−1,

only an survives in the summation because ai ∧ ai = 0. Then
the new determinant det A′ is simply the product of an
expansion coefficient ζn+1,n and the already-known det A.

Now if the last two lines of A are replaced by two new row
vectors an+1 and an+2, the rank-2 updated determinant is

det A′′ ≡ a1 ∧ · · · ∧ an−2 ∧ an+1 ∧ an+2

= a1 ∧ · · · ∧ an−2 ∧
n∑

i=1

ζn+1,iai ∧
n∑

j=1

ζn+2,j aj

= a1 ∧ · · · ∧ an−2 ∧ (ζn+1,n−1ζn+2,nan−1 ∧ an

+ ζn+1,nζn+2,n−1an ∧ an−1)

= a1 ∧ · · · ∧ an−2 ∧ (ζn+1,n−1ζn+2,nan−1 ∧ an

− ζn+1,nζn+2,n−1an−1 ∧ an)

= det

[
ζn+1,n−1 ζn+1,n

ζn+2,n−1 ζn+2,n

]
det A. (20)

The minus sign arises from the anticommutative property
of the wedge product: ai ∧ aj = −aj ∧ ai . Thus the new
determinant is the product of a 2 × 2 determinant composed
of the expansion coefficients and det A. The above procedure
can be carried out to more general situations where more
row/column vectors are replaced. This removes the need to
calculate the new determinant from scratch using the O(n3)
algorithm. For a rank-r update, one only needs to compute the
product of the reference determinant Aref ≡ det A and a small
r × r determinant containing ζij , at the cost of O(1).

In the context of the determinantal formalism as in Eq. (16),
we define the row vector corresponding to the ith final-state
orbital as

ai = [
ξi,1 · · · ξi,N

∑
c ξi,cw

∗
c

]
. (21)
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Then the ground-state reference determinant can be expressed
as Aref = a1 ∧ a2 ∧ · · · ∧ aN ∧ aN+1. To access the determi-
nants for excited states via this updating method, we formally
introduce the auxiliary ζ matrix (ζ ) for a system with M

orbitals and N valence electrons (M > N ), which is the trans-
formation matrix from a1,a2, . . . ,aN+1 to aN+1,aN+2, . . . ,aM :⎡
⎢⎢⎣

aN+1

aN+2
...

aM

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 · · · 1
ζN+2,1 ζN+2,2 · · · ζN+2,N+1

...
...

...
ζM,1 ζM,2 · · · ζM,N+1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a1

a2
...

aN+1

⎤
⎥⎥⎦.

(22)

We rewrite the above matrix multiplication in a compact form,
and we have Anew = ζ Aref, where (ζ )ij = ζN+i,j . Then ζ can
be obtained easily via matrix inversion and multiplication:

ζ = Anew(Aref)−1. (23)

Note that Aref is a (N + 1) × (N + 1) matrix and we find it is
typically invertible in practical calculations.

ζ is of size (M − N ) × (N + 1). Its column indices map
onto the lowest-lying (N + 1) orbitals while the row indices
map onto the (N + 1)th to Mth orbitals. An f (n) determinant
can be obtained from the product of Aref, an n × n minor
of ζ , and an overall ± sign due to permutation of rows
(trivial to consider in the single-determinant case). The last
column of this n × n minor must be taken from the last
[the (N + 1)th] column of ζ , because there are n electron
orbitals and (n − 1) hole orbitals in an f (n) configuration,
and the extra one electron can be viewed as removed from
the hole on the (N + 1)th orbital. The n × n minor reflects
the interference effect of n! pathways to access the f (n)

configuration via permuting n empty orbitals. The rows
(columns) of the n × n minor indicate the electrons (holes)
that are excited in the given f (n) configuration: the minor
formed by rows i1,i2, . . . ,in (i1 < i2 < · · · < in) and columns
j1,j2, . . . ,jn−1,N + 1 (j1 < j2 < · · · < jn−1 < N + 1) cor-
responds to the configuration (c0,v1,c1, . . . ,vn−1,cn−1) =
(i1 + N,jn−1,i2 + N, . . . ,j1,in + N ).

E. Pruning the configuration space using the breadth-first
search algorithm

With this updating technique, we can access the deter-
minants of many configurations without repeatedly carrying
out the full determinant calculation for each. However, the
number of configurations still grows exponentially with the
order n. Even the f (3) group grows rapidly as M5, and a system
with M = 103 orbitals may have 1015 f (3) configurations. The
problem now becomes how to efficiently find all the significant
minors of ζ at all orders. Enumerating all of these minors will
definitely be a hard problem that can not be solved within a
polynomial time, and the question is whether it is necessary to
visit all of them. In fact, we find that for the systems studied
in this work (introduced in Sec. III A) ζ is sparse, with its
nonvanishing elements concentrated in some regions, as will
be shown in Sec. IV. A more efficient algorithm should be
possible given the sparsity of ζ .

To make the best use of the sparsity of ζ , we investigate
its minor determinants in a bottom-up and recursive manner.

According to the Laplace (cofactor) expansion, an n × n de-
terminant can be expanded into a weighted sum of n minors of
size (n − 1) × (n − 1). The n × n determinant is nonvanishing
only when at least one of these (n − 1) × (n − 1) minors is
nonvanishing. Physically, this means that a transition to an f (n)

configuration is only probable when at least one of its parent
f (n−1) configurations is probable, otherwise the transition to
that f (n) configuration is forbidden. Assume that ζ is sparse,
and one can keep a short list of nonvanishing (n − 1) × (n − 1)
minors. When proceeding to nth order, one can construct the
n × n determinant from the short list of nonvanishing (n −
1) × (n − 1) minors instead of exhaustively listing all of them.

This recursive construction of n minors from the (n − 1)
minors leads us to an ultimate improvement of the efficiency of
the determinantal approach. We employ the breadth-first search
(BFS) algorithm to enumerate all important minors of ζ . An
f (n) configuration can be considered as a descendent of f (n−1)

via creating one more e-h pair with the f (n−1) configuration.
Through arranging f (n) according to this inheritance relation,
a treelike structure of the many-body expansion is formed, as
illustrated in Fig. 3. The BFS algorithm visits this treelike struc-
ture in ascending order of f (n). Note that an f (n) configuration
can be accessed from its multiple f (n−1) parents via different
pathways. If these pathways to the f (n) configuration interfere
destructively such that the transition amplitude is vanishingly
small, the BFS algorithm will discard this f (n) configuration,
hence reducing the search space for the next order. Here is the
detailed algorithm.

Algorithm 1. Breadth-first search for pathways

1. initialize f (1) *
2. n ← 2
3. repeat
4. for f ∈ f (n−1) do
5. extract the indices of f : (c0,v1,c1, . . . ,vn−2,cn−2)
6. for all ζcv satisfying |ζcv| > ζth *
7. if c /∈ {c0,c1, . . . ,cn−2} and v < vn−2 *
8. Obtain a composite index at f (n) order:

f ′ ← (c′
0,v

′
1,c

′
1, . . . ,v

′
n−1,c

′
n−1) *

9. If f ′ /∈ f (n)

10. Add f ′ to f (n)

11. Af ′ ← 0
12. Ef ′ ← Ef + (ε̃c − ε̃v)
13. Af ′ ← Af ′ + (−1)pζcvA

f *
14. for f ∈ f (n) do
15. if |Af |2 < Ith then Delete f *
16. Calculate the spectral contribution from f (n)

17. n ← n + 1
18. until the spectrum converges

Below are further instructions on the lines marked by
asterisks.

L1: Af of f (1) can be simply taken from the nonzero matrix
elements on the last column of ζ .

L6: ζth is a threshold for small matrix elements. One can
set ζth = rthζm, where ζm ≡ max |ζij | and rth is a user-defined
relative threshold.

L7: The n × n determinant of f (n) is constructed via a
Laplace expansion along its first column. v < vn−2 ensures

205127-7



YUFENG LIANG AND DAVID PRENDERGAST PHYSICAL REVIEW B 97, 205127 (2018)

FIG. 3. The search tree in the BFS algorithm for finding all nontrivial minors of ζ . The digits in the bracket denote the configuration, e.g.,
(53629) means (c = 5, v1 = 3, c1 = 6, v2 = 2, and c2 = 9). The semitransparent configurations are discarded in the search process so that
they do not spawn any child configuration.

the chosen matrix element ζcv is always on the first column of
the n × n determinant.

L8: Compare to f, f ′ contains one more e-h pair labeled
by c and v. Because we require the ordering of c0 < c1 <

· · · and v1 > v2 > · · · for unique indexing, the new index
(c′

0,v
′
1,c

′
1, · · · ,v′

n−1,c
′
n−1) must obey the same order. The new

sequence (c′
i) can be obtained by this procedure: first, place

the new c in front of the (ci) sequence of f (n−1) that is already
increasingly sorted, and then shift c to the right by swapping
indices till the whole sequence is also sorted. Define p to be
the number of swaps performed for deciding signs. (v′

i) can be
obtained simply by placing v at the end of (vi).

L13: (−1)pζcv is the cofactor of the Laplace expansion of
an f (n) determinant, where p is the proper position for inserting
c into (ci), as defined above. At the end of the ζcv loop, there are
at most n contributions to the total amplitude Af ′

of a specific
f (n) configuration, corresponding to the transition amplitudes
of n different pathways from its parent f (n−1) configuration.

L15: Ith is a threshold for removing states with small
oscillator strengths. Similar to ζth, Ith can be set to Ith = RthIm,
where Im is the maximal oscillator strength and Rth is a
user-defined relative threshold. Im can be chosen to be the
maximal intensity within the f (1) group, which typically have
the strongest oscillator strengths among all f (n) groups. Rth can
be related to the previously defined relative matrix-element
threshold rth. If the contribution from a small acv were not
added to Af ′

, its intensity would be |Af ′ − (−1)pζcvA
f |2 =

|Af ′ |2 − 2(−1)pRe[ζcvA
f ′

(Af )∗] + O(|ζcv|2). Replacing ζcv

with 0 will lead to an error of ∼|ζcv||Af ′ ||Af | � rth|ζm|Im.
Therefore, choosing a rth such that Rth ∼ ζmrth can guarantee
error in intensities smaller than Ith = RthIm. In practice, one
can lower Rth till convergence is achieved.
The detailed implementation of this search algorithm can be
found at Ref. [80] within an open-source PYTHON simulation
package.

Here, we demonstrate the BFS algorithm with a toy model
with M = 9 orbitals and N = 4 valence electrons. Suppose the
ζ of the system is

⎡
⎢⎢⎢⎢⎢⎣

1 2 3 4 5
5 0 0 0 0 1
6 0 ζ62 ζ63 0 ζ65

7 ζ71 0 0 0 0
8 0 0 ζ83 0 ζ85

9 0 ζ92 ζ93 0 0

⎤
⎥⎥⎥⎥⎥⎦. (24)

The BFS algorithm for this example of ζ is carried out as
follows. First, the nonzero f (1) configurations are initialized,
(5), (6), and (8), whose determinants are simply the matrix
elements: 1, ζ65, and ζ85, respectively. These configurations
are considered as the roots of the BFS trees, as is shown in
Fig. 3.

Next, the f (2) configurations are constructed based on the
obtained f (1) configurations. Take the configuration (8) in
f (1) for example. There are five nonzero matrix elements that
are to the left of (8) and are not on the same row as (8),
which are ζ63, ζ93, ζ62, ζ92, and ζ71. Paired up with these matrix
elements, the (8) configuration spawns five f (2) configurations:
(638), (839), (628), (829), and (718) (comma omitted due to
the single-digit indices). Likewise, (5) and (6) spawn six and
four f (2) configurations, respectively.

Both (6) and (8) give rise to (638) and the contributions from
the f (1) configurations are merged: A(638) = ζ63ζ85 − ζ83ζ65.
The two possible pathways are (1) the core electron is first
promoted to orbital 6 and then coupled with the e-h pair formed
by orbital 3 and 8; (2) the core electron is first promoted to
orbital 8 and then coupled with the e-h pair formed by orbital
3 and 6. If A(638) is vanishingly small (ζ63ζ85 happens to be
close with ζ83ζ65) due to the destructive interference of the
two pathways, then (638) will be removed from the f (2) list
because it cannot contribute to the transition amplitude of any
higher-order configuration. When the search process for f (2)

is completed, 13 nontrivial configurations are found.
Proceeding to the third order, the 13 f (2) configurations

spawn 14 f (3) configurations. Paring (536) with ζ92 and (539)
with ζ62 both lead to (53629), whose determinant is ζ62ζ93 −
ζ63ζ92. Paring (538)(= ζ83) with ζ62 leads to (53628) (the other
two pathways are forbidden because ζ52 = ζ82 = 0). If ζ83 and
ζ62 are small numbers such that their product is smaller than the
specified threshold Ith, then (53628) will be removed from f (3).
The above process can be repeated until all new determinants
are small enough or no new determinants can be found.

If one brute-forcedly enumerates all possible determinants,
there are

(5
2

)(5
1

) = 50 f (2) and
(5

3

)(5
2

) = 100 f (3) determinants
to examine for the above ζ matrix. By contrast, the BFS
algorithm only visits the nontrivial determinants and only
14 f (2) and 14 f (3) determinants are computed.

F. Spin convolution and x-ray photoemission spectra

This section discusses another speed-up by breaking down
the entire system into two spin channels and the relation of XAS
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to x-ray photoemission spectra (XPS) within the determinant
formalism. In the collinear spin-polarized case, the total wave
function can be decomposed into the product of the spin-up
wave function and the spin-down one |	〉 = |	↑〉 ⊗ |	↓〉, and
hence the transition amplitude boils down to

〈	f |O|	i〉 = 〈	↑,f |O|	↑,i〉〈	↓,f |	↓,i〉 + {↑ � ↓}, (25)

which essentially means the ξ matrix is block-diagonalized and
each transition either occurs within the spin-up or spin-down
manifold. The total absorption spectra can be obtained from
combining individual spectra from the two spin channels (for
the collinear case) using the spectral convolution theorem in
Appendix C,

σXAS(E) =
∫

dE′σXAS,↑(E − E′)σXPS,↓(E′) + {↑ � ↓},
(26)

where σXAS,μ is the XAS of an individual spin channel μ.
σXPS,μ is the core-hole spectral function of spin μ,

σXPS,μ(E) =
∑
f

∣∣〈	Nμ

μ,f

∣∣	Nμ

μ,i

〉∣∣2
δ(E − (Eμ,f − min Eμ,f )).

(27)

Here, |	Nμ

μ,f 〉 (|	Nμ

μ,i〉) is the Nμ-electron (excluding the core
electron) many-body wave function of final state f (initial
state i) within the spin manifold μ, and Nμ is the number
of electrons in its initial state (N↑ �= N↓ for a ferromagnetic
system). Because the core-hole spectral function is analogous
to the corresponding x-ray photoemission spectrum (XPS)
[68], we dub the former as σXPS (or σP for brevity) hereafter.
The XPS does not involve any transition matrix operator and
can be regarded as the pure wave function overlap effect, which
has significant meaning for determining the XAS line shape for
some metallic systems, as will be discussed in Sec. III D.

The calculation of σXPS,μ resembles that of σXAS,μ. The

amplitude 〈	Nμ

μ,f |	Nμ

μ,i〉 can also be obtained from the determi-
nant formalism as det Aμ, where Aμ = (ξfi ,j )Nμ×Nμ

, and fi’s
are the indices of the occupied orbitals of the XPS final state.
These final states can be grouped similar to the convention in
Sec. II B, except that now f (0) denotes the (single) final-state
ground state, with no e-h pair, f (1) with one valence e-h pair,
and so forth. The prominent matrix elements 〈	Nμ

μ,f |	Nμ

μ,i〉 are
also found by the BFS algorithm outlined in Sec. II D.

G. Incorporating first-principles calculations into
the determinant formalism

In the above sections, we have demonstrated an efficient
solution to the MND model using many-body wave functions
for simulating x-ray transition amplitudes. However, in order
to simulate reliable x-ray spectra without fitting parameters
from experiments, we still need accurate approximations to
the initial and final states and their energies. To this end,
we rely on DFT calculations to obtain the KS eigenstate
energies (for ε̃f ) and wave functions (for both |ψ̃i〉 and |ψj 〉) as
input for constructing the transformation matrix A

f
c [Eq. (12)]

and computing the energies of many-electron excited states
[Eq. (13)].

For the final state, we employ the standard �SCF core-
hole approach to obtain the KS orbitals and eigenenergies. The
core-excited atom is treated as an isolated impurity embedded
in the pristine system, and typical supercell settings for finite
[81] and extended [11,14,15,39] systems can be employed. To
simulate an electron-core-hole pair, the core-excited atom is
modeled by a modified pseudopotential with a core hole, and an
electron is added to the supercell system and constrained to one
specific empty orbital. In principle, a �SCF iteration needs to
be performed for each case of constraint occupancy [for all f =
(1,2, . . . ,N,c)], which may lead to an expensive computational
cost. As a trade-off, the electron is only placed onto the lowest
unoccupied orbital [f = (1,2, . . . ,N,N + 1)], which we have
dubbed the excited-state core-hole (XCH) method. After the
�SCF calculation is done, the KS equation with a converged
charge density is used for Hf .

Another important variation of the XCH method is the full
core-hole (FCH) approach, in which the core-hole excited state
is modeled by the configuration f = (1,2, . . . ,N) without the
excited electron. A homogeneous charged background is then
added to the system to ensure charge neutrality. The advantage
of FCH is that it does not bias towards the lowest excited state
and treat all excited states on an equal footing.

For the initial state, the same supercell as in the final state
is used except that the core-excited atom is replaced by a
ground-state atom, using the occupation f = (1,2, . . . ,N), or
the Fermi-Dirac occupation. A standard DFT calculation can
be done to obtain the KS orbitals |ψi〉.

With the KS orbitals |ψ̃i〉 and |ψj 〉 obtained from the �SCF
core-hole and ground-state calculations, we can compute
the orbital overlap integral ξij = 〈ψj |ψ̃i〉 for computing the
determinantal amplitudes. To reduce computational cost, we
employ ultrasoft pseudopotentials [82] to model electron-
ion interactions. The atomic core regions of each orbital
are reconstructed within the frozen-core projector-augmented-
wave (PAW) formalism for the evaluation of matrix elements
[37,83,84]. The excited atom potential has deeper energy levels
and more contracted orbitals so its PAW construction differs
from the ground-state atom. In Appendix A, we derive the
formalism to calculate expectation values between |ψj 〉 of the
ground-state system and |ψ̃i〉 of the core-excited system. Initial
dipole matrix elements 〈ψc|o|ψh〉 are also evaluated within this
PAW formalism [37,84].

As in typical DFT impurity calculations, some low-lying
excited states in the core-hole approach could be bound to
the core-excited atom, resembling mid-gap localized electronic
states near an impurity. In this situation, the electronic structure
is well described by using a single k point (the � point) to
sample the Brillouin zone (BZ). However, for the purpose
of spectral simulations, which include delocalized scattering
states well above the band edges, we find that employing
k-point sampling is necessary to improve the accuracy of the
calculated line shape. Therefore we perform the determinantal
calculation individually for each k point and take the k-point-
weighted average spectrum as the final spectrum. The band
structure and orbitals are interpolated accurately and efficiently
using an optimal basis set proposed by Shirley [85,86], whose
size is much smaller than the plane-wave basis. In the Shirley
construction, the periodic parts of Bloch wave functions across
the first BZ are represented using a common basis which spans
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the entire band structure. Because there is only one optimal
basis to represent the Bloch states for all k points, the overlap
ξ matrix for every k point can be computed quickly as in
Appendix B. After the XAS is calculated by the first-principles
determinantal approach, an established formation-energy cal-
culation can be adopted to align spectra for core-excited atoms
in different chemical contexts, using the XCH method to
determine the excitation energy of the first transition [81,87].

Although there are no valence e-e interaction terms in the
MND theory, which results in a single-determinant solution
to the many-body wave functions, we argue that our first-
principles determinantal approach does not entirely neglect
valence e-e interactions. The DFT self-consistent-field (SCF)
procedure updates the total charge density and KS orbitals
simultaneously, and hence takes into account some degree of
valence electronic screening through the mean-field. That said,
the �SCF approach should lead to a more realistic equilibrium
total electron density for the x-ray excited states. By contrast,
MBPT treats the core-hole perturbation within linear response,
which limits the change in the resulting excited-state electron
density. Presumably, a more accurate charge density may lead
to a better approximation to quasiparticle (QP) wave functions.
Finally, we may imagine the bare Coulomb lines in Fig. 1
are replaced by the screened core-hole potential, which is
determined by the chosen exchange-correlation functional that
takes into account some static dielectric screening effects.

H. Comparison with the one-body �SCF core-hole approach

In many previous works, the many-body transition ampli-
tudes in the �SCF core-hole approach were often approxi-
mated with 1p matrix elements,

〈	f |ε·R|	i〉 ≈ S〈ψ̃f |ε·r|ψh〉, (28)

where the core orbital |ψh〉 is in the initial state while the
electron orbital |ψ̃f 〉 is in the final states, both of which can be
taken from DFT calculations. S represents the response of the
rest of the many-electron system (excluding the electron-core-
hole pair) due to the core hole, and it is normally assumed to be
a constant for ease of calculations. This 1p form of the matrix
element implies that (a) the transition from the initial core level
|ψh〉 to the final electron orbital |ψ̃f 〉 occurs instantaneously
with the response of many other electrons in the system, with
no particular time ordering; (b) the core-level transition and
the many-electron response are not entangled. This is also the
so-called sudden or frozen approximation.

We know that from the diagrammatic interpretation of the
x-ray many-body processes in Fig. 1, the photon first decays
into an initial-state e-h pair instantaneously, and then the
other electrons see the core-hole potential and begin to relax
over a finite period of time. This physical reality can also be
seen in the determinant formalism, in which the core hole
is only coupled to an initial-state orbital, and the subsequent
many-electron response is described by the determinantal
amplitude. So the question is why the simpler 1p matrix
element in the frozen approximation still works for a good
number of systems in the past.

In this section, we approach this question theoretically
by relating the determinantal amplitude to the 1p matrix
element. To do this, we first express the (N + 1) × (N + 1)

determinantal amplitude A
f
c in terms of is N × N minors

(wave-function overlaps of N -electron systems, such as S) by
Laplace expansion along its last column

Af
c =

N+1∑
i=1

M
f

i ξfi ,c, (29)

where ξfi ,c are the matrix elements on the last column of A
f
c

as in Eq. (12) and M
f

i is the minor complementary to ξfi ,c.
Since in the one-body core-hole approach only the f (1) terms
are summed, we limit our analysis here to the many-body f (1)

terms and condense the configuration tuple into a single index:
(1,2, . . . ,N,f ) �→ f . Then the matrix elements 〈	f |O|	i〉
can be written as∑

c∈empty

(
Af

c

)∗〈ψc|o|ψh〉

= (
M

f

N+1

)∗ ∑
c∈empty

〈ψ̃f |ψc〉〈ψc|o|ψh〉

+
N∑

i=1

(
M

f

i

)∗ ∑
c∈empty

〈ψ̃i |ψc〉〈ψc|o|ψh〉. (30)

First, for systems with significant band gaps (insulators
and semiconductors), we could expect that the overlap of the
occupied final state orbitals with the unoccupied initial state
orbitals could be quite small. For many orbitals unaffected by
the localized core-hole perturbation, for example, we might
expect the final-state occupied orbitals to closely resemble
their initial state counterparts, which would render 〈ψ̃v|ψc〉
identically zero by orthogonality. Therefore the sum over
v in Eq. (30) may only be significant in cases where the
transformation matrix ξ indicates mixing of unoccupied initial
state character into the occupied final state orbitals, which
might easily be the case for orbitals close to the Fermi level in
a metal or otherwise open-shell system.

The first term in Eq. (30) is more directly relevant to our
previous one-body approximation. Here, M

f

N+1 is the minor
of (ξij )N×N , the transformation matrix without its (N + 1)th

column and row. It reflects the N -electron many-body overlap
between the initial and final state occupied orbitals and should
reflect the extent to which the electron density is modified by
the core-hole perturbation. Since M

f

N+1 does not depend on
f , we can relate it to the many-body prefactor that appears in
the final-state rule of Eq. (28): S = (Mf

N+1)∗. Using the com-
pleteness relation:

∑
c∈empty |ψc〉〈ψc| = 1 − ∑

v∈occ |ψv〉〈ψv|,
the first term in the expansion of Eq. (30) can be expressed as

S

[
〈ψ̃f |o|ψh〉 −

∑
v∈occ

〈ψ̃f |ψv〉〈ψv|o|ψh〉
]
. (31)

If it happened that 〈ψv|ψ̃f 〉 = 0, then this expression would
amount to the final state matrix element as defined in the
one-body final-state rule [see Eq. (28)]. By the same argu-
ments made above, for systems with limited mixing of orbital
character across a significant band gap, then we might easily
expect orthogonality (zero overlap) between occupied initial
state and unoccupied final-state orbitals. By the same token,
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we should be wary of limitations in the one-body approach
when this is not the case.

It appears useful to focus on 〈ψv|ψ̃f 〉 to reveal the role of
hybridization in modulating near-edge spectral intensity. To
quantify the contribution of the second term in Eq. (31), we
introduce the projection spectrum

σf i(E) =
∑
f

|〈ψ̃f |Pco|ψh〉|2δ(E − ε̃f ) (32)

in which the single index f sums over all empty final-state
orbitals, and Pc ≡ ∑

c∈empty |ψc〉〈ψc|. The matrix element is
nothing but Eq. (31) or the first term in Eq. (30) with S = 1.
However, it is easier to calculate Eq. (31) because summation
over all empty orbitals is avoided.

III. RESULTS AND DISCUSSION

A. Applications to transition-metal oxides

In this section, we discuss an important application of
the determinantal approach to computing core-excited state
transition amplitudes, that is, to predict the x-ray absorption
spectra (XAS) for transition metal oxides (TMOs). This is
also our original motivation for proposing the determinantal
approach [39], which can be used to overcome the deficiency
of the one-body core-hole approach. It has been found for a
number of TMOs, that the one-body approach systematically
underestimates the intensity of near-edge features at the O K

edge that correspond to orbitals with hybridization between
oxygen p character and TM 3d character. This underestimation
can prevent reliable interpretations of the x-ray absorption
spectra for this important class of materials.

We use the newly developed determinantal approach to
predict the XAS for eight TMOs: the rutile phase of TiO2,
VO2 (>340 K), and CrO2, the corundum Fe2O3, the per-
ovskite SrTiO3, NiO, and CuO. SiO2 is also chosen for a
comparative study. Their experimental XAS are extracted from
Refs. [87–95]. The chosen TMOs cover a wide range of
electronic and magnetic properties and therefore they are used
as benchmark materials for the determinantal approach.

The O K edges are investigated here, i.e., the transitions
from the O 1s level to np shells. For TMOs, the O 2p

orbitals are covalently hybridized with the transition metal
3d orbitals, and hence the O K-edge spectra can serve as
an informative and sensitive probe for the d-electron physics
[70–78,96]. Moreover, unlike transition metal L2,3 edges
(2p-to-3d transitions), in which atomic multiplet effects split
spectral features into many closely space lines [79], the O K

edges can provide a picture of the electronic density-of-states
related to the d shell more easily interpretable in terms of band
theory or effective 1p states.

The angularly-averaged (except in CrO2, where the polar-
ization is perpendicular to the hard axis) O K-edge spectra
for the chosen TMOs are shown in Fig. 4(a). The very
near-edge part of the spectra, i.e., the spectral features below
535 eV contain the most useful information for 3d material
characterization. For these TMOs, the near-edge spectral fine
structure exhibits two main peaks corresponding to the splitting
of the d orbitals into a t2g and an eg manifold in the (quasi-)
octahedral crystal field. Our goal is to produce reliably all

the spectral features, especially the very near-edge part, so
that one can interpret the spectra on a first-principles basis.
More specifically, we use the ratio of the intensity of the first
(lowest-lying) peak to that of the second (unless otherwise
specified) as a metric for the accuracy of different levels of
approximation.

We first calculate the XAS for the chosen compounds using
the conventional 1p FCH approach [4,37,39] described above.
A modified pseudopotential generated with the configuration
1s12s22p4 is used for the 1s-core-excited O. We choose
supercell dimensions of approximately 10 Å that is sufficient
to separate the effect of the core-hole impurity from its neigh-
boring periodic images. The FCH calculations are performed
using the DFT+U theory [94] with the U value adopted from
Ref. [97]. A uniform 5 × 5 × 5 k-point grid of the supercell
BZ is employed to sample a continuous density-of-states at
higher energies. As we have demonstrated by calculations
before [39], the 1p FCH approach universally underestimates
the peak intensity ratio for all selected TMOs [blue curves in
Fig. 4(a)]. This includes the newly added cases: MnO2, NiO,
and CuO, where the peak intensity ratios are just 50% of the
experimental ones.

The failure of the 1p FCH approach motivated us to use the
determinant formalism in Eq. (12) as a better approximation to
the dipole matrix elements [39]. In this work, we implement the
determinant approach with the efficient procedures discussed
in Sec. II G and the BFS algorithm. We use exactly the same
final-state SCF as in the 1p FCH approach and an initial-state
supercell of the same dimensions. Besides employing the BFS
algorithm to reduce the computational cost, we separate the
two spin channels to speed up the calculations as in Sec. II F.

The spectra calculated with the determinantal approach
up to f (2) order are shown in Fig. 4(a). There is substantial
improvement in the peak intensity ratios and the overall line
shapes for the TMOs being investigated. In particular, the peak
intensity ratios of TiO2, CrO2, Fe2O3, CuO, NiO, and SrTiO3

are in excellent agreement with experiments [Figs. 4(a) and
4(b)]. The peak intensity ratio of VO2 is still underestimated,
however, this may be related to missing contributions to
the leading edge from the nearby V L edge, which is not
included in our simulation [89]. The prediction of the peak
intensity ratio of MnO2 is less satisfactory partly because we
simulate its spectrum using a rutile unit cell with colinear
antiferromagnetic order, whereas its actual magnetic order
is found to be helical and has a larger periodicity [98,99].
The lack of anisotropy in the Hubbard U interactions in
our current calculation may also explain why the simulated
spectrum deviates from experiments. More advanced treatment
of strongly correlated materials, using hybrid functionals
[100–103], for example, could be coupled with the determinan-
tal formalism to produce more accurate results. In principle,
any effective 1p orbital basis can be used in this formalism.

B. Origins of XAS intensity underestimation using
one-body approaches

In a nutshell, the underestimation of the peak intensity ratios
by the one-body approach can be understood from a three
energy-level model. Consider a molecule with one single metal
level (M) hybridized with an O 2p level, plus one O 1s core
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(a)

(b) (c)

FIG. 4. (a) XAS for the selected crystal structures obtained from experiments (black), one-body FCH approach (blue), and the many-electron
determinant approach (red) introduced in this work. The XAS calculated with the f (1) configurations are shown by dashed orange curves. The
energy axes for NiO and SiO2 are relative. (b) Comparison of experimental peak intensity ratios compared with the ones predicted by the
one-body (circles) and the many-electron (triangles) formalism. Each color represents the result for one system. The peak intensity ratio refers
to the ratio of the lowest-energy maxima to the second of the spectrum, unless otherwise specified by the numbers in (a). The spectra are
broadened to the best as compared with experimental broadenings. (c) Schematics showing how the one-body and the many-electron formalism
treats x-ray excitations, using a metal-3d-O-2p molecular model in both the initial (i) and final (f) states. The one-body approach mainly
relies on the single-particle (1p) matrix element and has skipped (red arrow) the dynamics of the many-electron charge relaxation, while the
many-electron formalism considers the actual multiple-step (blue arrows) excitation process that involves all the electrons in the system.
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level, as is shown in the schematics in Fig. 4(c). Hybridization
within the empty (c) and filled (v) states can be expressed
using a unitary transformation of the corresponding atomic
orbitals: (|ψ̃c〉,|ψ̃v〉)T = R(θi)(|M3d〉,|O2p〉)T , where R(θi) is
a 2D rotation matrix:

R(θ ) =
[

cos θ − sin θ

sin θ cos θ

]
. (33)

Initially, the system is half filled and its hybridization rep-
resented by an angle θi ∈ [0,π/2]. The final state can be
expressed likewise using its own angle θf : (|ψ̃c〉,|ψ̃v〉)T =
R(θf )(|M3d〉,|O2p〉)T . Phenomenologically, we expect the ini-
tial and final states to differ in their degree of hybridization
of these two atomic levels. The core-hole potential lowers the
energy of the oxygen 2p orbital in the final state, enhancing
the |O2p〉 component of the occupied final-state orbital v and
reducing the same for the unoccupied final-state orbital c.
Hence 0 < θf < θi .

Within this minimal model of just two electrons, there is
only one available core-excited transition, i.e., the excitation
from i = (h,v) to the final state f = (ṽ,c̃). The exact spectral
intensity calculated by the many-electron formalism as in
Eq. (12) is

|〈	f |ε·R|	i〉|2 = | det[R(θi − θf )]〈ψc|ε · r|O1s〉|2

= |1 × 〈ψc|ε · r|O1s〉|2

= sin2 θi |〈O2p|ε · r|O1s〉|2. (34)

However, using the one-body core-hole approximation, work-
ing with final-state orbitals only, we find

|〈	f |ε·R|	i〉|2 ≈ |〈ψ̃c|ε · r|O1s〉|2

= sin2 θf |〈O2p|ε · r|O1s〉|2. (35)

Therefore based on the smaller value of θf , the one-body
final-state intensity is necessarily weaker than the many-
electron intensity. The origin of this underestimation lies
in erroneously formulating the excitation as a single-step
transition from the core level to the final-state empty orbital,
which contains a reduced O 2p component due to core-hole
attraction [as illustrated in Fig. 4(c)]. On the other hand,
the many-electron formalism takes the correct time-ordering
into account, describing a multi-step transition: the electron
is promoted to the unperturbed initial-state empty orbital
followed by a many-electron charge transfer. By this argument,
the absorption intensity is the same as in the initial-state picture,
sin2 θi |〈O2p|ε · r|O1s〉|2. Note, however, that the energy of the
final-state configuration should be used in the Fermi’s golden
rule.

For the two-peak near-edge fine structure in TMOs, we can
also make use of the above two-electron model. Let us define an
energy dependent hybridization within the unoccupied orbitals
between metal 3d and O 2p character according to sin2 θ =

t2

t2+�2 , where t is the intrinsic hybridization strength, �(ε) =
(ε + √

ε2 + t2), and ε = ε3d − ε2p > 0. Within quasioctahe-
dral symmetry, we would expect lower intrinsic hybridization
values for the t2g orbitals versus the eg , but the eg orbital
energies should lie above those of the t2g . For a two-peak
near-edge, we can define the peak intensities using: t1 and
ε1 = εt2g

− ε2p for the lower energy t2g peak and t2 and ε2 =

TABLE I. The relative near-edge peak intensities in a simple
two-electron system with two available empty orbitals having O 2p

hybridization and energies consistent with t2g and eg orbitals and their
dependence on the final-state orbital energy ε̃2p .

ε̃2p −4.0 (ε2p) −6.0 −8.0 −10.0

sin2 θf1 0.2 0.113 0.072 0.049
sin2 θf2 0.2 0.138 0.100 0.075
ratio 1.0 0.82 0.72 0.65

εeg
− ε2p for the higher energy eg peak, assuming 0 < t1 < t2

and 0 < ε1 < ε2.
Assume, without loss of generality, that within the initial

state picture the t2g and eg peaks have the same intensity:

sin2 θi1 = t2
1

t2
1 +�(ε1)2 = t2

2

t2
2 +�(ε2)2 = sin2 θi2 . For the purposes of

illustration, we can use the following numerical values: εt2g
=

1.0, εeg
= 4.0, ε2p = −4.0, and sin2 θi1 = sin2 θi2 = 0.2 such

that t1 = 2.5 and t2 = 4.0 (a comparable energy unit could be
eV), with the expected ordering.

If the core hole deepens the O 2p orbital energy, ε2p,
to ε̃2p, then the one-body final-state intensities will change
and the intensity ratio decreases, as shown numerically in
Table I. It can be seen from this example that a one-body final-
state estimate of the 3d peak-intensity ratio (sin2 θf1/ sin2 θf2 )
always decreases with increasing core-hole binding.

C. Charge-transfer effects and impact on simulated spectra

While the one-body approach fails systematically in pre-
dicting the XAS for the chosen TMOs, it produces a satisfac-
tory line shape for SiO2. This is consistent with the previous
success with using the one-body approach for a wide variety
of systems [4,11,14,15,19,37,38] that are not TMOs. We make
use of the connections between the one-body and many-body
approaches outlined in Sec. II H to understand why this is the
case here.

A comparison of spectra obtained in different ways is shown
in Fig. 5. The projection spectrum is more intense than the
final-state spectrum in all cases, indicating the hybridization
term 〈ψv|ψ̃f 〉 is not neligible. However, the spectra of the
chosen systems are affected in different manners by this term.
For SiO2, the projection spectrum σf i is in proportion to
the final-state spectrum σf (multiplication by the many-body
overlap, S, correctly renormalizes the spectrum). On the other
hand, the near-edge spectral profiles in TiO2 and CrO2 are
substantially modified from the one-body approximation by the
projection onto empty orbitals, in particular for CrO2 where the
first peak is partly retrieved in terms of its relative intensity with
respect to the second peak (around 532.5 eV). This indicates
that the projection defined in Eq. (32) plays an important
role in retrieving some key absorption features, which makes
this definition an efficient means to determine whether the
final-state rule is sufficient for obtaining a satisfactory XAS.

Although the projection spectrum can rectify the deficiency
of the final-state rule to some extent, it is still necessary to
employ the determinant formalism for a correct and physical
spectrum. For CrO2, the projection spectrum still deviates
significantly from experiments, even after it is rescaled by
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FIG. 5. Comparison of the final-state spectra (σi) and the projec-
tion spectra (σf i) for TiO2, SiO2, and CrO2. The final-state spectra
and the spectra from the determinantal approach (up to f (2)) are taken
from Fig. 4.

S. This suggests the many-electron effects described by the
second terms in Eq. (30) are not trivial and should be included.

We consider the XAS of CrO2 in more detail. Figure 6(a)
shows the spin-dependent f (1) and f (2) contributions to the
spectrum separately, together with the oscillator strengths of
some main transitions (>10% of the strongest transitions)
presented as “sticks.” We begin with an analysis of the f (1)

terms that consist of only a single electron-core-hole pair.
Because the core hole is fixed, an f (1) term can be mapped
to a single empty final-state orbital

A �→ ẽ1↑, B �→ ẽ3↑, C �→ ẽ3↓, D �→ ẽ4↑, (36)

where ẽ3↑ and ẽ3↓ closely resemble one another, only one of
which is shown in Fig. 6(d). The orbitals defining A, B, C,
and D correspond to a t2g dxy , an eg dz2↑, an eg dz2↓, and an
unbound itinerant (p-like) orbitals, respectively. Hereafter, ↑
is omitted unless for spin-down orbitals.

What do these transitions have in common? They all reflect
projections of the initial (ground) state, mediated by the photon
electric field, onto final states that share a common O 1s

core-hole excitation and its associated perturbing potential.
The core hole attracts electron density towards the excited O
site, as can be seen from the plotted isosurface of the charge-
density difference ρf − ρi in Fig. 6(d) (top left). This charge

TABLE II. Quantities relevant for analyzing the expansion in
Eq. (30) for state A.

ψ̃i |〈ψ̃i |Pcx|ψh〉| |〈ψ̃i |e1〉| |〈ψ̃i |e2〉| |〈ψ̃i |e3〉|
∣∣Mf

i

∣∣
ẽ1 3.79 × 10−3 0.30 0.51 0.05 0.34
h̃4 9.93 × 10−3 0.28 0.08 0.24 0.24
h̃3 1.23 × 10−2 0.27 0.07 0.28 0.26

transfer results from the response of the N -electron system
to the core-hole potential. It is computed as the deviation of
final-state DFT charge density ρf (without the excited electron
as in the FCH approximation) from the one of the initial state
ρi . According to the first term in Eq. (30), there is a single
prefactor common to all final states for this component of the
f (1) transitions, also denoted S in Eq. (31). This N -electron
determinant is yet another way of representing the CT state.
Generally speaking, all (N + 1)-electron final states, within
this MND single-determinant picture, only differ by a few
composite single-particle orbitals that slightly modulate this
CT density. The f (1) states differ by the addition of just one
final-state unoccupied orbital.

Close examination of the final state orbitals in Fig. 6(d)
reveals, surprisingly, that the brightest transition of the entire
spectrum originates from state A, even though its excited
electron orbital, ẽ1, does not overlap with the excited O atom
[marked by “X” in Fig. 6(d)]. As a result, the one-body
final-state rule gives a transition amplitude of only

|〈ẽ1|x|ψh〉| = 9.16 × 10−6(a.u.), (37)

which explains the lack of any significant first peak in the
simulated one-body XAS of CrO2 in Figs. 4 and 5. This small
amplitude is due to Pauli-blocking resulting from the charge
transfer—in other words, the core-hole potential has lowered
some initially unoccupied O 2p orbital character below the
Fermi level of this half-metal, rendering it inaccessible within
this 1p picture.

By contrast, the many-body determinantal amplitude of A

is a few orders of magnitude larger:∣∣∣∣∣
∑

c∈empty

(
Af

c

)∗〈ψc|x|ψh〉
∣∣∣∣∣ = 1.08 × 10−2. (38)

To understand why the many-body state A still has a strong
oscillator strength, an analysis can be provided based on the
Laplace expansion of the determinantal amplitude in Eq. (30).
By inspection, we find that the most important contributions
to the amplitude of A are from ψ̃i = ẽ1, h̃4, and h̃3. They
have substantial overlap (integrals tabulated in Table II) with a
number of initial-state empty orbitals that exhibit p character
at the excited O atom, such as e1, e2, and e3, as shown in
Fig. 6(d) (top row). Consequently, the projection amplitudes
|〈ψ̃i |Pcx|ψh〉| of ẽ1, h̃4, and h̃3 are still significant (i.e., similar
in magnitude to the amplitude of A), although these final-
state orbitals may have small overlap with the core hole.
Furthermore, the corresponding many-electron overlaps, M

f

i ,
are not small (Table II). Therefore the combined contribution∑

i(M
f

i )∗〈ψ̃i |Pcx|ψh〉 for ψ̃i in {ẽ1, h̃4, h̃3} is significant:
6.91 × 10−3, comprising 64% of the total amplitude of A.
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FIG. 6. (a) Decomposed contributions from the single f (1) and double f (2) configurations to the O K edge XAS of CrO2. For each case,
the spectrum is decomposed into an spin-up (↑) and an spin-down (↓) channel. All the spectra are plotted with the same intensity scale, with
sticks, i.e., oscillator strengths of the final states, in the background. Only 10% states with the strongest oscillator strengths are shown. The
major sticks are highlighted with black bars. (b) O 1s XPS of CrO2. The energy of the final ground state (with the least binding energy) is
aligned with zero. (c) Comparison of the peak-intensity ratios of the initial-state spectrum (σA↑ ∗ σP↓ + σA↓ ∗ σP↑, black), the final spectrum
convoluted from the two spin-channels (red), and the fictitious spectrum without convolution (σA↑ + σA↓, red). The first peaks are rescaled to
the same height. (d) Charge difference ρf − ρi of the N -electron charge-transfer (CT) state and relevant 1p orbitals. ei and hi denotes empty
and occupied orbitals respectively. Final-state orbitals are annotated with tilde. a and b are two hard axes of CrO2 and c is the easy axis. The
photon polarization is in the hard-plane. Note that the CT state is shown from a perspective different from the 1p orbitals. For the CT plot, the
charge gain (loss) is shown in orange (green). For the orbital plots, yellow and cyan indicate the phases of the spatial wave functions.

From this example, it can be seen that empty initial-state
orbitals and a multiorbital picture are crucial for understanding
the brightness of near-edge transitions in metallic systems.

D. Shake-up effects in half-metallic CrO2

The determinantal approach introduced in this work does
not set any constraint on the number of e-h pairs to be in-
cluded and is capable of considering more complex excitations
than in the BSE. Higher-order e-h-pair production (so-called
shake-up effects due to the core-hole perturbation) should
be less costly from an energy perspective in systems with
smaller band gaps, and therefore more evident in the near-edge
fine structure. This section discusses these effects for the
half-metallic CrO2, whose majority-spin channel is metallic,
while the minority-spin channel is insulating. The interplay
of the two spin channels in x-ray excitations gives rise to
intriguing physics that cannot be simply explained by excitonic
effects. We will discuss how the measured XAS takes shape to
illustrate additional many-body effects that are captured within
the determinantal approach, beyond those already highlighted
above for the f (1) transitions.

For CrO2, the f (2) XAS contribution becomes comparable
to that of f (1) at ∼4.0 eV above the absorption onset [Fig. 4(a)].
The f (2) configurations can be considered as shake-up excita-
tions derived from f (1). Below is the composition of some
major f (2) configurations outlined in Fig. 6(a):

E �→ (ẽ1,h̃4,ẽ2), F �→ (ẽ1,h̃3,ẽ3),

G �→ (ẽ1,h̃3,ẽ3↓), H �→ (ẽ1,h̃3,ẽ4).
(39)

They can be derived from the f (1) states by adding one more
e-h pair:

E �→ A + (ẽ2,h̃4), F �→ B + (ẽ1,h̃3),

G �→ C + (ẽ1,h̃3), H �→ D + (ẽ1,h̃3),
(40)

where h̃3, h̃4, ẽ1, and ẽ2 are t2g orbitals close to the Fermi
level. As is shown in Fig. 6(d), orbital ẽ1 has significant spatial
overlap with h̃3 (sharing the dxz character at the Cr atom next to
the excited O), and so does orbital ẽ2 with h̃4 (near the oxygens
at the corners of the plot), albeit weaker. This overlap makes
E, F, G, and H also bright transitions. There are alternative
pathways to access these states with two e-h pairs. For instant,
F can also be mapped to A + (ẽ3,h̃3), i.e., A coupled with an
e-h pair (ẽ3,h̃3) (a shake-up d-d transition).

The shake-up excitations can also be found in the satellite
features of XPS, as shown in Fig. 6(b). Recently, these excita-
tions were investigated with a cumulant expansion technique
[68,69]. Here, we show that these satellite features can also
be included naturally within the determinant formalism of
the noninteracting MND theory (albeit poorly approximating
their energies due to missing additional interactions between
these extra e-h pairs). The computation of XPS using the
determinant formalism is outlined in Sec. II F. The strongest
transition (labelled as state I ) originates from the overlap of the
N -electron states, describing the initial ground-state valence
system and the final core-excited valence system (assuming
the excited electron has escaped, approximated using the full-
core-hole approach): 〈	N

f,FCH|	N
i,GS〉. This corresponds to the

charge-transfer state in Fig. 6(d). We may define I as the only
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FIG. 7. Spin-wise spectral function σP↑ and σP↓. The x axis is
the binding energy (EB ). EB = 0 is aligned with the threshold.

zero-order configuration (f (0)) of XPS. f (1) configurations
emerge at larger binding energies and appear as satellite
features in the XPS profile. Two representative states are J

and K ,

J �→ (ẽ1,h̃2), K �→ (ẽ1,h̃1), (41)

which are shake-up excitations from h̃2 (a Cr 3d–O 2p hybrid
with mixed bonding and antibonding character) and h̃1 (a deep
O 2p orbital) to the ẽ1 orbital, respectively. The charge transfer
associated with K is particularly strong.

E. Many-body wave function overlap effects in CrO2

As shown in Sec. III C, the projection onto empty initial-
state orbitals alone cannot account for the XAS line shape for
CrO2, and one must employ the determinant formalism. This
suggests that there are important many-electron effects in the
determinantal amplitude that lead to the ultimate peak-intensity
ratio of ∼1.7 between the first and second absorption features.
To explain this, we rewrite the spectrum as the convolution
defined in Eq. (26),

σA = σA↑ ∗ σP↓ + σA↓ ∗ σP↑, (42)

where σA ≡ σXAS,σP ≡ σXPS, ∗ represents the convolution
integral in Eq. (26), and σAμ and σPμ are spectra of one-spin
channel before convolution. Then the spectral functions σPμ

can be considered as weighting factors of the two absorption
channels σAμ. If the weighting factors are not considered, the
hypothetical spectrum

σ ′
A = σA↑ + σA↓ (43)

has a peak-intensity ratio of∼1.3 that still deviates significantly
from experiment [Fig. 6(c)]. This implies that the modulation
effects of σP↑ and σP↓ on their counter-spin channel are quite
different.

The spectral functions, σP↑ and σP↓, are shown in Fig. 7.
In both cases, most spectral weight is concentrated at zero
binding energy, EB = 0. However, for the metallic ↑ channel,
more spectral weight is transferred to shake-up satellites at
higher energies because its lack of a band gap makes e-h
pair production easier. As a result, σP↓ is more intense than
σP↑ near EB = 0. The integrated intensity of σP↑ is ∼2/3 of
σP↓ for EB < 1.7 eV (shaded areas). The more intense σP↓
enhances the contribution of σA↑, especially the lowest-energy

peak defined by t2g↑ orbitals, leading to a peak-intensity ratio
of ∼1.7 as measured.

To conclude, the three contributing factors leading to the
near-edge line shape of CrO2 are the following: (a) the core-
level excitonic effect in the metallic screening environment
lead to a mild increase in the edge intensity (the initial-state
spectrum is also shown in Fig. 6); (b) shakeup excitations
in the spin-up channel reduces the many-body wave function
overlap σP↑ at EB = 0; (c) the smaller wave function overlap
(orthogonality effects) reduces the intensity of the spin-down
channel that mainly contributes to the second absorption
feature, leading to a even stronger first peak versus the second.

IV. NUMERICAL CONSIDERATIONS AND
COMPUTATIONAL EFFICIENCY

A. Properties of the ξ matrix

One primary concern of the determinantal approach is the
numerical accuracy of the ξ matrix (ξ ). In practice, one can only
choose a finite number of orbitals (bands) in first-principles
calculations and this set of orbitals can not span the full
1p Hilbert space, as illustrated in Fig. 8(a). Therefore the
initial-state orbital set may not overlap with the final-state
one, resulting in a ξ that is projective rather than unitary.
Furthermore, it may be worrisome if the numerical error in the
matrix elements of ξ is accumulative, leading to determinant
values that are either vanishingly small or unrealistically
large.

Here, we demonstrate that using the optimal basis set for
expanding 1p wave functions can produce a ξij matrix close
to unitary, such that the spectral weight of the determinantal
spectrum is on the same order of magnitude as the 1p final-state
spectrum as compared in Sec. III C. When constructing the
Shirley optimal basis sets, we include a sufficient number of
bands (Table III) so that the optimal basis functions can cover
a range of 1p wave functions, from localized 3d orbitals to
delocalized states. We measure the quality of a transformation
matrix by its eigenvalues. A close-to-unitary transformation
matrix should have eigenvalues that are close to 1 predomi-
nantly. Through examining ξ of the studied systems, we find
more than 90% of the eigenvalues are larger than 0.995, with a
maximum below 1.0001, which suggests these ξ ’s are close to
unitary. A typical statistics of the eigenvalues of ξ using Fe2O3

and CrO2 ↑ as examples is provided in Fig. 8(b).
The second concern regarding the practicality of the deter-

minantal approach is how many configurations are relevant for
a converged line shape. From the analysis of the BFS algorithm,
we know that this depends on the sparsity of ζ and how many
nonvanishing minors one can extract from ζ .

We first analyze the properties of ξ . Figure 8(c) displays the
ξ for the three representative cases, the large-band-gap SiO2

(690 × 690), the semiconducting TiO2 (800 × 800), and the
metallic spin channel (↑) of CrO2 (1200 × 1200). All ξ ’s are
quasi-block-diagonal, which indicates the core-hole-induced
hybridization mainly occurs within orbitals of similar energies.
Overall, the ξ of SiO2 and TiO2 has more off-diagonal matrix
elements compared to CrO2 because the electronic screening
of the core hole is weaker in an insulator/semiconductor than
in a metal. In the region near the Fermi levels, however, the
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FIG. 8. (a) Schematic showing the relation of the subset of initial(final)-state orbitals chosen in practical calculations to the full Hilbert
space. (b) Histograms for the distribution of the eigenvalues of the square ξ ′

s. Counts of eigenvalues are in logarithm scale. The bar widths
(above 0.9) are 2

3 × 10−3. (c) ξ matrices for SiO2, TiO2, and CrO2 ↑. The dashed lines mark the Fermi level of the initial (vertical) and final
(horizontal) state. The right panels are the regions enclosed by the bolded squares on the left ones near the crossings of the two Fermi levels.
Within these regions, the CrO2 has large matrix elements in all four quadrants while the large matrix elements are mainly located within the vv

or cc block for SiO2 and TiO2. (d) ζ -matrices that correspond to the ξ matrices in (c). Rows iterate over empty-orbital indices with 1 being the
lowest empty one. Columns iterate over occupied-orbital indices with 1 being the lowest occupied one. Right panels are enlarged views of the
square regions in the left ones. Both (c) and (d) display the absolute values of the complex matrix elements in logarithmic scale.

ξ of SiO2 and TiO2 has less off-diagonal matrix elements
than CrO2: for SiO2 and TiO2, the significant matrix elements
are mainly concentrated at the vv (occupied-to-occupied) and
cc (empty-to-empty) blocks; but for CrO2, there are more
nonvanishing matrix elements in the vc or cv block, especially
in the vicinity of the Fermi-level crossing. This is because
the Fermi surface of a metallic system is susceptible to the
core-hole potential, which strongly rehybridizes the orbitals
near the Fermi surface.

ξ of SiO2 is also significantly different from those of TiO2

and CrO2. The distribution of nontrivial matrix elements is
more homogeneous within the vv and cc block for SiO2

compared to TiO2 or CrO2. This is also consistent with the
analysis with projection spectra in Sec. III C: the conduction
bands of SiO2 hybridize uniformly with the valence bands
due to the core hole, leading to very similar line shapes
in the 1p, projection, and determinantal spectrum, whereas
the cv hybridization in TiO2 or CrO2 is less uniform and

TABLE III. (Initial-state) band gaps Eg obtained on the DFT (+U ) level; the absolute values of the determinants for the transformation
matrix from the initial to final state for the N -electron systems, i.e., |〈	N

i |	N
f 〉|(| det |), of individual spin channels without the photoelectron;

numbers of all orbitals and those of the occupied ones; numbers of all f (2) configurations and the proportion that actually contributes significantly
to the converged line shapes.

System Calc. Eg (eV) | det | Number of orb. Number of elec. Number of f (2) (M) Number of significant f (2) (M) Ratio (%)

TiO2 1.79 0.8077 800 288 37.7 0.0567 0.15
SrTiO3 2.26 0.8125 1200 540 117 0.891 0.76
Fe2O3 1.10 0.7922 1000 400 71.9 0.197 0.27
VO2 0.00 0.7594 800 300 37.4 0.0345 0.09
CrO2↑ 0.00 0.3397 1200 336 125 0.242 0.19
CrO2↓ 3.68 0.8474 1200 288 119 0.282 0.24
MnO2 0.09 0.8047 800 324 36.6 0.708 1.9
NiO 3.33 0.8122 500 256 7.59 0.0812 1.1
CuO 0.12 0.4871 1024 544 62.5 0.604 0.97
SiO2 6.19 0.8370 690 192 23.7 0.179 0.75
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orbital-dependent, leading to a few-body molecular description
of x-ray excitations as in Secs. III C and III D.

B. Properties of the ζ matrix

Consider an ideal situation where there is no hybridization
induced between the occupied and empty orbitals as the core-
hole potential is introduced. The ξ matrix is exactly block
diagonal and ζ only has nonzero matrix elements in its last
column. The actual ζ matrix can be considered as a deviation
from this ideal situation. How much it deviates depends on the
hybridization of the occupied and empty orbitals. Figure 8(d)
displays the ζ matrices for SiO2, TiO2, and CrO2 ↑, for the
region that spans the lowest 170 unoccupied orbitals (rows) and
the topmost 16 occupied orbitals plus the lowest unoccupied
orbital (columns). Near the Fermi levels, the ξ matrices of SiO2

and TiO2 are quasi-block-diagonal, which leads to a ζ matrix
with significant matrix elements mainly located on its last
column. There are relatively a small number of nonvanishing
2 × 2 or high-order minors, and therefore the XAS converges
mostly at the f (1) order. We can also see that the more uniform,
reduced coupling between occupied and unoccupied orbitals in
SiO2 leads to a ζ matrix with a more dominant final column. By
contrast, the hybridization across the band gap in TiO2 exhibits
less uniformity, reflecting the existence of more localized
orbitals subspaces affected by the core-hole potential, and the
corresponding ζ matrix exhibits more significant terms outside
the final column, indicating that the many-body approach may
be more accurate for TiO2. For CrO2 with strong hybridization,
ζ has more significant matrix elements beyond the last column.
These matrix elements form several strips with widths of a few
columns, leading to more nontrivial high-order minors.

C. Computational overhead

The computational complexity of the BFS depends on how
many nontrivial minors can be found from ζ . A statistics of
the computational effort required to converge XAS is shown in
Table III. The XAS is simulated with a supercell with dimen-
sions around 10 Å and several hundred (Nv) electrons. To
cover an energy window up to 20 eV above onset, another
few hundred (Nc) empty orbitals are also included. Since
the investigated XAS converges at the f (2) order, we use the
number of nontrivial f (2) configurations as a measure of the
computational costs. There are Nc(Nc − 1)Nv/2 f (2) config-
urations in total, whose numbers are from tens to hundreds
of millions for the investigated systems. The number of the
nontrivial f (2) configurations as found by the BFS algorithm
is typically around 1% of the total. In all of the investigated
systems, this translates to at least a 100-fold speed-up of
calculations, thanks to the BFS algorithm that screens out con-
figurations of weak transition amplitudes. For insulators such
as diamond or TiO2, even fewer configurations are needed to
achieve convergence. The overall trend for the computational
cost is the smaller the band gap (Eg), the more the valence
orbitals tend to hybridize with the empty orbitals (due to the
core-hole potential), the smaller the determinant of the overlap
matrix between the initial and final states (〈	N

i |	N
f 〉), and

more configurations and computational efforts are required.

V. CONCLUSIONS AND OUTLOOKS

In conclusion, we have implemented an efficient algorithm
for simulating x-ray absorption spectra (XAS) employing
transition amplitudes computed within a many-body determi-
nantal ansatz. The core of the algorithm exploits the linear
dependence of the determinants representing various elec-
tronic configurations for a fixed number of electrons and a
breadth-first search (BFS) graph algorithm that efficiently and
controllably neglects configurations whose contributions are
insignificant to computed XAS, as defined by some numerical
tolerance. The new methodology has been applied to study a
series of transition metal oxides (TMOs), and this simulation
technique can be readily used for interpreting XAS of these
technologically important materials. In the majority of cases,
this approach provides an accuracy comparable to or exceed-
ing Bethe-Salpeter equation (BSE) solutions and naturally
includes electronic configurations representing higher-order
excitations beyond the subset of Feynman diagrams accessible
within the BSE.

The determinantal approach can be extended to other types
of x-ray spectra besides XAS, such as x-ray photoemission
spectroscopy (XPS) and resonant inelastic x-ray scattering
(RIXS), using a similar linear algebra technique and search
algorithm. It will be worthwhile to compare this new method
with recent studies that apply a cumulant expansion to capture
the charge-transfer satellites in XPS [68,69,104]. And it will
be interesting to test the efficiency of the current approach to
produce 2D RIXS spectra that provide rich information for
materials characterization.

The main drawback of the current approach relates to its
approximation of the various final state configurations, which
are currently derived from a single (core-orbital excited-state)
self-consistent field and its associated valence KS orbitals.
The spectrum of excitation energies within this orbital space
neglects additional valence-orbital excited-state electron in-
teractions. Therefore it cannot describe further excitonic final-
state effects resulting from the shake-up of additional valence
e-h pairs nor coupling with many-body collective modes, such
as plasmon excitations. These effects can be captured within
the cumulant expansion through accurate determination of the
valence dielectric response function beyond the random-phase
approximation. However, this is an excellent approximation
for higher-order contributions to the spectra of metallic or
semi-metallic systems, as demonstrated here for CrO2, and
future work will explore solutions for an interacting picture to
refine our description of higher-order excited states of semicon-
ductors and insulators and their associated spectral features.
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APPENDIX A: PAW FORMALISM FOR OBTAINING THE
OVERLAP MATRIX ELEMENTS

To obtain the transition amplitude A
f
c , a prerequisite is

to find the overlap integral between the initial- and final-
state KS orbitals, i.e., the matrix elements ξij = 〈ψj |ψ̃i〉. In
our implementation of the �SCF calculations, we employ a
plane-wave basis and the electron-ion interaction is modeled
using Vanderbilt’s ultrasoft pseudopotentials. The computa-
tional efficiency gain through the use of a smaller plane-wave
energy cutoff compared to what might be required when
using norm-conserving pseudopotentials is offset by some
additional steps in the formalism, which account for using
nonorthogonal projections in the pseudopotential. In the above
calculations with the many-electron method, we have used the
PAW formalism to find the overlap matrix elements ξij and
here we provide the details for finding these quantities.

In the PAW formalism, the real (all-electron, AE) wave
function is reconstructed from the pseudo (PS) wave function
via a linear transformation T :

|ψAE〉 = T |ψPS〉. (A1)

In practice, there is one such T for each pseudized atom. To
simplify notation, we will omit the sum over atomic indices, I ,
for most of what follows, until it is necessary to the discussion.
T is responsible for correcting the wave function within the
augmented spherical region 
 centered at the atom of interest.
First, T projects the pseudo wave function onto the preselected
projectors |pl〉 of a particular angular momentum l; then T
corrects the wave function in the augmented region using
the difference of the real and pseudoatomic wave functions
of the corresponding l, i.e., |φAE

l 〉 − |φPS
l 〉, and scales the

wave function difference with the projection amplitude. |φAE
l 〉

and |φPS
l 〉 and the associated projectors are all determined

when generating the pseudopotential. Put together, the linear
transformation reads

T = 1 +
∑

l

(|φl〉 − ∣∣φPS
l

〉)〈pl|. (A2)

For simplicity, “AE” is dropped and only “PS” is kept to
indicate a wave function is pseudo.

A PAW construction satisfies the following conditions:
(i) the projector functions 〈r|pl〉 are zero outside the aug-
mented region 
; (ii) the difference of the atomic wave
functions of the same l, i.e., 〈r|φl〉 − 〈r|φPS

l 〉, is also zero
outside 
; (iii) and we have an orthogonality and completeness
relation: 〈φPS

i |pj 〉 = δij , for all i and j , and P = ∑
l |φPS

l 〉〈pl|
is the identity operator over 
. It should be noted that in the
PAW formalism each angular momentum may have more than
one channel so 〈φl|φ̃l′ 〉 = δll′ may not hold in general.

As stated, there is one such linear transformation T for
each type of atom (i.e., for each element) and the projections
should include a structure (phase) factor to account for different
atomic positions within an extended, periodic context. In the
x-ray core-hole approach, however, we introduce a new type
of atom. We have, as before, the initial-state (ground-state)
atoms and one new type to describe the final-state atom with
an excited core hole. In practice, this means that there are
two sets of projectors and atomic wave functions involved for
this particular atom. If one wants to obtain the overlap matrix

elements ξij , it is necessary to obtain overlap integrals of two
wave functions that are reconstructed from two different PAW
constructions. Here, we focus on the single-atom case and find
the expression for the overlap. Consistent with the notation in
the rest of the manuscript, we use a tilde to denote quantities
related to the final (excited) state. Omitting the irrelevant
indices, the overlap between the initial-state and final-state
orbitals is

〈ψ |ψ̃〉 = 〈ψPS|T †T̃ |ψ̃PS〉, (A3)

where ψ and ψ̃ are reconstructed from two different linear
transformations, T and T̃ . Expanding the operator product,
we find

T †T̃ = 1 +
∑

l

|pl〉
(〈φl| − 〈

φPS
l

∣∣) +
∑

l′

(|φ̃l′ 〉 − ∣∣φ̃PS
l′

〉)〈p̃l′ |

+
∑
ll′

|pl〉
(〈φl| − 〈

φPS
l

∣∣)(|φ̃l′ 〉 − ∣∣φ̃PS
l′

〉)〈p̃l′ |. (A4)

This expansion can be regrouped and simplified by making
use of the properties of the projectors and PAW atomic wave
functions in conjunction with the completeness relation.

First, the last summation in Eq. (A4) can be further ex-
panded so as to make use of the projection operators P =∑

l |φPS
l 〉〈pl| and P̃ , as follows:

∑
ll′

|pl〉
(〈φl| − 〈

φPS
l

∣∣)(|φ̃l′ 〉 − ∣∣φ̃PS
l′

〉)〈p̃l′ |

=
∑
ll′

|pl〉(〈φl|φ̃l′ 〉 − 〈
φPS

l

∣∣φ̃PS
l′

〉)〈p̃l′ |

−
∑

l

|pl〉
(〈φl| − 〈

φPS
l

∣∣)(∑
l′

∣∣φ̃PS
l′

〉〈p̃l′ |
)

−
(∑

l

|pl〉
〈
φPS

l

∣∣)∑
l′

(|φ̃l′ 〉 − ∣∣φ̃PS
l′

〉)〈p̃l′ |. (A5)

The last two terms can be regrouped with the two single-
summations over l and l′ in Eq. (A4). For instance, the second
summation in Eq. (A5) can be combined with the second term
in Eq. (A4) as ∑

l

|pl〉
(〈φl| − 〈

φPS
l

∣∣)(1 − P̃ ). (A6)

While the operator |pl〉(〈φl| − 〈φPS
l |) is only nonzero within


, (1 − P̃ ) projects the wave function onto the region com-
plementary to 
̃. Therefore we can consider the union of the
augmented regions for the ground-state and the core-excited
atom, 
 ∪ 
̃ as a volume within which the product of these
operators will zero out any wave function, and the operator
in Eq. (A6) is a zero operator. In practice, we can set the
radial limit for atomic integrals, like 〈φ|φ̃〉 to the maximum
of the cutoff radii used when generating the pseudopotentials
for the ground-state and the core-excited atom. More often than
not, these cut-off radii are identical and 
 = 
̃. And so, the
second and third summations in Eq. (A5) cancel exactly with
the second and third terms in Eq. (A4).
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With all terms combined, the final expression for the
operator product is simplified as

T †T̃ = 1 +
∑
ll′

|pl〉
(〈φl|φ̃l′ 〉 − 〈

φPS
l

∣∣φ̃PS
l′

〉)〈p̃l′ |. (A7)

In a multiatomic system, the overlap matrix elements in
Eq. (A3) can be written as

〈ψ |ψ̃〉 = 〈ψPS|ψ̃PS〉 +
∑
I,ll′

〈
ψPS

∣∣pI
l

〉(〈
φI

l

∣∣φ̃I
l′
〉

− 〈
φ

I,PS
l

∣∣φ̃I,PS
l′

〉)〈
p̃I

l′
∣∣ψ̃PS

〉
(A8)

in which the index I goes over all the PAW atoms in the system.
Here, we only consider one core-excited atom within a given
supercell, and so, for all but one of the atoms, the initial and
final state PAW projections are identical (i.e., we can drop the
tildes).

The first term in Eq. (A8) can be obtained efficiently using
the pseudo-wave-functions in their native plane-wave basis.
The routines to evaluate the projection amplitude 〈ψPS|pI

l 〉
are already required to obtain the core-level position matrix
operator at the core-excited atom (as we have done in the past
for the one-body final state approach). The same procedure can
be trivially extended to estimate projection amplitudes for all
atoms and for both the initial and final state, using outputs from
the pseudopotential generation. An additional routine is needed
for the atomic overlap term SI

ll′ ≡ 〈φI
l |φ̃I

l′ 〉 − 〈φI,PS
l |φ̃I,PS

l′ 〉,
which can be obtained beforehand using the atomic wave
functions from two given PAW constructions. All of these
quantities can be computed and stored in advance for an
established set of pseudopotentials and then used for any
number of further periodic calculations.

APPENDIX B: OPTIMAL BASIS SET FOR OBTAINING
ELECTRONIC STRUCTURE OVER DENSE k-GRID

Generating electronic states over a dense enough k grid
within the first Brillouin zone (BZ) is an essential step for
producing continuous spectral functions that respect the con-
tinuity in the electronic density of states. This is particularly
important for simulating x-ray absorption spectra, especially
when excited states extend into the continuum, either beyond
the ionization potential in a noninfinite system or into the
Bloch-periodic states of extended periodic systems. Although
setting up a supercell for simulating XAS is equivalent to
using some k-point sampling over the BZ of the primitive unit
cell, generating a k grid on the top of the supercell setups in
some occasions does further improve the quality of simulated
spectra, particularly at higher energies. Similarly, a metallic
system may have a large number of extended states near the
Fermi level, which need to be included to accurately reproduce
the near-edge fine structure. The number of extended states is
proportional to and limited to the size of the supercell that can
be realistically simulated in the �SCF core-hole calculation. In
this circumstance, using k-point sampling over the supercell
BZ may partially compensate for the disadvantage of using
a supercell that is not quite large enough. However, k-point
sampling will not correct for a model of the final state within
which the charge-density response to the core-excited state has
not sufficiently converged within the supercell.

Previously, we have studied, implemented, and tested an
efficient calculation scheme for obtaining the band structure on
a dense k grid. By employing the so-called optimal basis sets
[85,86], one can first generate the band structure on a coarse k
grid and then reproduce band energies and wave functions at
any k point with much less computational effort. The optimal
basis set is the minimal basis for representing the periodic
components of Bloch-waves across the BZ, constructed by
removing linear dependence between these vectors (with the
assumption that these functions vary smoothly throughout the
BZ). Similar to plane-wave basis sets or maximally localized
Wannier functions [105], the optimal basis functions, denoted
as {Bi}, can be used to expand a Bloch-periodic wave function
|ψk〉 = eik·r |uk〉, in terms of its periodic component: 〈Bi |uk〉,
but are not limited to extended or localized states, no more
than the actual KS orbitals themselves. Moreover, the number
of optimal basis functions required is much smaller than the
number of plane waves for expanding these orbitals. The size
of a good optimal basis set ranges from 103 to 104, which can
be at easily 1000 times smaller than the plane-wave basis set
of equivalent accuracy. The energies and eigenstates at a given
k point are obtained from diagonalization of a representation
of the original (k-dependent) KS Hamiltonian in this much
smaller basis.

Now, we revisit the quantities needed for computing
the overlap matrix elements in Eq. (A8), 〈ψPS|ψ̃PS〉 and
〈pI

l |ψPS〉(〈p̃I
l |ψ̃PS〉), which will benefit greatly from using

optimal basis sets. First, the pseudo overlap matrix element
(carried out at every k-point independently) can be computed
as 〈

ψPS
nk

∣∣ψ̃PS
mk

〉 =
∑
ij

〈
uPS

nk

∣∣Bi

〉〈Bi |B̃j 〉
〈
B̃j

∣∣ũPS
mk

〉
, (B1)

where 〈uPS
nk |Bi〉 (〈B̃j |ũPS

mk〉) are the eigensolutions (Hermitian
conjugates) of the k-dependent Hamiltonian in their corre-
sponding optimal bases. Although each optimal basis set is
constructed to be orthonormal, 〈Bi |Bj 〉 = δij and 〈B̃i |B̃j 〉 =
δij , note that the k-independent overlap matrix is not, in
general, 〈Bi |B̃j 〉 �= δij , because we employ different optimal
basis sets to represent initial- and final-state systems. We
could, in principle, employ a suboptimal basis to describe both
systems, but it has not been attempted here.

Although optimal basis functions themselves are repre-
sented in a plane-wave basis, {Gi}, the relatively expensive
calculation, 〈Bi |B̃j 〉 = ∑

i ′ 〈Bi |Gi ′ 〉〈Gi ′ |B̃j 〉, only needs to be
computed once, and the matrix is universally applicable to any
k point. Similarly, 〈pI

l |ψPS〉 can be obtained by inserting the
optimal basis set, in the same manner used to construct the
same projectors in the nonlocal pseudopotential within the
Hamiltonian. This procedure has been implemented in the one-
body core-hole approach and it simply needs to be extended to
all atoms in the system.

APPENDIX C: SPECTRAL CONVOLUTION THEOREM

In practice, we may encounter a situation where a many-
electron system can be factorizable into subsystems that are not
entangled with each other, and intersystem transitions are for-
bidden. For example, in a system where electron spins are
collinear, and each electron can be associated with either a
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spin-up or -down state, then a many-body transition operator
which can be similarly partitioned cannot induce transitions
from the spin-up subsystem to the spin-down subsystem. The
many-body dipole operator, which is the sum of one-body
dipole operators, behaves in this way, and so, light-induced
transitions of spin-collinear systems (within the dipole approx-
imation) cannot affect spin crossover.

In general, if a spectrum reflects a multidimensional integral
over a function factorizable for each independent variable (or,
equivalently, over some partitioning of the same space), then
we can take advantage of the spectral convolution theorem.
For two independent variables, x sampling subsystem A and
y sampling subsystem B, suppose f (x,y) = fA(x)fB(y), and
we define a spectral function

σ (E) =
∫ ∫

f (x,y)δ(E − (x + y))dxdy

=
∫ [∫

fA(x)δ((E − y) − x)dx

]
fB(y)dy

=
∫

σA(E − y)fB(y)dy

=
∫

σA(E − E′)σB(E′)dE′, (C1)

where we have just changed variable (E′ = y) in the last line
and defined the following subsystem spectral functions for each
subset I in the partition {A,B}:

σI (E) =
∫

I

fI (E′)δ(E − E′). (C2)

The general case, for many subsystems I in {In} can be written
as a set of nested integrals over each subsystem,

σ (E) =
∫

dE1σI1 (E − E1)
∫

dE2σI2 (E1 − E2)

· · · ×
∫

dEnσIn−1 (En−1 − En)σIn
(En). (C3)

Let us assume that the many-body wave functions are
factorizable and limit our discussion to two subsystems, A

and B, so that |	〉 = |	A〉 ⊗ |	B〉. Then the transition am-
plitude can be factorized by considering final states where the
transition probes each subsystem at a time, assuming that the
transition operator can also be partitioned, for example, O =∑

i∈A Oi + ∑
j∈B Oj . Note that, in practice, if the symmetry

of the system causes final states in different subsystems to be
distinct, we should do a separate �SCF calculation to define
each final state orbital subspace. Here, let us focus on the
components of the transition operator which act directly on
subsystem A, inducing a many-body response in subsystem B,
and index each final state by similarly partitioning the orbital
configuration vector: f = (f A,f B) (same for i) as follows:

〈	f |O|	i〉 = 〈	f A |O|	iA〉〈	f B |	iB 〉. (C4)

Then the total spectrum can be written using Eq. (C1), but
recognizing a subtle difference between the subset spectral
functions:

σA(E) =
∑
fA

∣∣〈	A
fA

∣∣O∣∣	A
i

〉∣∣2
δ
(
E − �EfA

)
, (C5)

FIG. 9. Comparison of O K edge of TiO2 computed using the �

point and the 5 × 5 × 5 k-point sampling.

this includes the transition operator, while

σB(E) =
∑
fB

∣∣〈	B
fB

∣∣	B
i

〉∣∣2
δ
(
E − �EfB

)
(C6)

reflects the response of subsystem B to the excitation in A.
�Ef = �EfA

+ �EfB
is the energy required to make the

transition.
This theorem is particularly useful for combining spectra

from opposite spin orientations and different k points by
performing each calculation separately. In the many-electron
formalism, the size of determinants for each subsystem is much
smaller than the determinants for the entire system with spins
taken into account, and hence one can compute a spectrum
for each subsystem at much lower memory cost and time
complexity and then obtain the resulting total spectrum via
the nested spectral convolution outlined in Eq. (C3).

APPENDIX D: k-POINT SAMPLING OVER SUPERCELL
BZ AND THE DETERMINANT FORMALISM

This section mainly addresses two issues: (1) why it is nec-
essary to employ k-point sampling over the BZ of the supercell
in the x-ray calculation; and (2) why it is justified to perform
a determinant calculation for each k point separately and take
the k-weight-averaged spectrum as the output spectrum.

First, a k grid over the BZ of the supercell is employed
to include the natural dispersion of high energy, scattering
orbitals whose density of states is poorly approximated by
sampling at the �-point alone. The size of the supercell that
can be achieved in practical x-ray (impurity) calculations could
be limited by the first-principles computational capability.
In this circumstance, using k-point sampling for a smaller
supercell can produce some continuum states that are represent
in �-point calculation for a very large supercell [106]. On
the other hand, the very near-edge features due to localized
electronic states bound by the core hole are not sensitive
to k-point sampling. We may illustrate this point by the
simulated O K edge of TiO2 as in Fig. 9. It can be seen
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the two peaks in the near-edge part are not altered signifi-
cantly by k-point sampling, but the humps between 535 and
545 eV are smoothened out, making a better comparison with
experiment.

Secondly, the supercell with k-point sampling over its BZ is
no longer the actual system with one core hole that is of interest
in x-ray excitations. In the presence of k-point sampling,
the full physical system is a “grand cell” with duplicates
of the supercell, namely, the core hole. Imagine we extend
the determinant formalism to this grand-cell system. Within
the single-determinant picture, the overall wave function is a
product state: |	〉 = ⊗nk

k=1 |	k〉, and this applies to both the
initial and final state. Assume the transitions allowed by the
dipole operator O are still vertical. From Appendix C, the total

transition amplitude is

〈	f |O|	i〉 =
nk∑

k=1

⎡
⎣〈

	
f

k

∣∣Ô∣∣	i
k

〉 ∏
k′ �=k

〈
	

f

k′
∣∣	i

k′
〉⎤⎦. (D1)

Note that 〈	f

k′ |	i
k′ 〉 is always smaller than 1.0 and hence the

overall amplitude vanishes exponentially as the number of
k points nk increases. The reason is that the probability for
simultaneously creating many core holes in the grand cell
is indeed very small. However, this system is no longer the
single-core-hole system that we are interested in. Therefore
we only view k-point sampling as a better means for sampling
high-energy continuum states, and just take the k-weight-
averaged spectrum as the final spectrum.
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