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Spin-one bilinear-biquadratic model on a star lattice
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We study the ground-state phase diagram of the S = 1 bilinear-biquadratic model (BLBQ) on the star lattice
with the state-of-art tensor network algorithms. The system has four phases: the ferromagnetic, antiferromagnetic,
ferroquadrupolar, and spin-liquid phases. The phases and their phase boundaries are determined by examining
various local observables, correlation functions, and transfer matrices exhaustively. The spin-liquid phase, which
is the first quantum disordered phase found in the two-dimensional BLBQ model, is gapped and devoid of
any conventional long-range order. It is also characterized by fixed-parity virtual bonds in the tensor network
formalism, analogous to the Haldane phase, while the parity varies depending on the location of the bond.
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I. INTRODUCTION

After the discovery of the high-temperature superconduc-
tors [1], their parent compounds are conjectured to be in
a spin-liquid (SL) phase which becomes superconducting
when charge carriers are doped [2]. Such SLs are expected
to possess a kind of quantum order [3–5], e.g., Z2 topolog-
ical order in Z2-SLs [3,4], or support fractionalized edge
excitations protected by some symmetries [6], e.g., Haldane
phase [7–10]. Quantum effects or fluctuations are believed to
become stronger as the spin and spatial dimension decrease.
The geometric frustration also plays an important role [11].
Consequently, with the successful realizations of the kagome
lattice in volborthite [12], herbertsmithite [13], and kapell-
asite [14] and the triangular lattice in κ-BEDT(CN)3 [15],
the frustrated S = 1

2 systems have been extensively studied
to find stable SL states. However, the recent discoveries of
SLs in the pnictide family of superconductors [16,17] and
an unconventional quantum disordered state in Ba3NiSb2O9

[18] triggered a burst of investigations on S = 1 quantum
magnets on square [19–29], honeycomb [30,31], kagome [32],
and triangular [33,34] lattices, respectively. Theoretically, such
lattices can be decorated to be so-called star lattices of which
the geometry is distinct from the ones of lattices listed above.
Generally, such decoration may cause nontrivial results on the
state with strong fluctuations. One may, therefore, seek novel
spin-liquid states in such lattices [35–37]. In fact, previous
studies on the star lattice spin-1/2 models found an exact chiral
SL with non-Abelian anyonic excitations [38–40], various
valence-bond-solid (VBS) ground states (GS) [41,42], and
topological order in several SL phases [43,44].

Theoretical and computational studies on the strongly
correlated systems are entering a new phase under the re-
markable development in the tensor network (TN) algorithms.
We refer the readers to Ref. [45] for an exhaustive list of
relevant literature. The TN method does not suffer from the

*hyunyong.rhee@gmail.com
†kawashima@issp.u-tokyo.ac.jp

sign problem for the frustrated models and also allows us
to reach the thermodynamic limit efficiently by employing
the framework of renormalization group [46,47]. Advantage
of the tensor network representation is not only technical
but also conceptual; information on the GS entanglement is
directly accessible by looking at the geometry of TN and gauge
symmetry of local tensors [45,48]. A well-known example is
the Haldane phase (and its generalization to higher dimensions)
that can be characterized very clearly by the fixed parity of the
virtual bonds in their tensor network representations [10]. In
this sense, the TN method is ideal to investigate SL, and a lot
of approaches have been already proposed in recent years [see
Ref. [49] and references therein]. In the present article, we
employ TN algorithms to explore the S = 1 BLBQ model on
the star lattice [Fig. 1(a)].

II. MODEL

Let us begin with defining the BLBQ model:

H =
∑
〈i,j〉

[(
cos φ − sin φ

2

)
Si · Sj + sin φ

2
Qi · Qj

]
, (1)

where 〈i,j 〉 denotes the nearest-neighbor sites, Si is the spin-
one operator, and Qi is the quadrupolar (QD) operator with five
components: (Sx

i )2−(Sy

i )2,
√

3(Sz
i )2−2/

√
3, Sx

i S
y

i + S
y

i Sx
i ,

S
y

i Sz
i + Sz

i S
y

i , and Sz
i S

x
i + Sx

i Sz
i . The quadrupole moment

Q ≡ N−1
s

∑Ns

i

√〈 Qi〉2, where Ns is the total number of lattice
sites, is a fundamental order parameter identifying the phases
in the BLBQ model on various lattices [19,20,31,33,50–52].
Note that at some special values of φ the system possesses
the symmetry higher than the obvious SU(2) symmetry.
At φ = −3π/4,π/4, the Hamiltonian is invariant under
simultaneous SU(3) rotations at all lattice points.

III. METHOD

To carve out the GS phase diagram of the model
in Eq. (1), we optimize the inifinite projected entan-
gled pair states (iPEPS) with a rank-four site tensor
T si

xiyi zi
and singular value matrices λαiα

′
i

[53,54]: |ψ〉 =
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FIG. 1. Schematic figures of (a) iPEPS (yellow circle, site tensor;
red square, singular value matrix) on the star lattice (�a1,2, lattice
vector) and (b) environment tensors {Ci,Ei} and double layered
tensors in the unit cell. Here, T s

xyz in the dashed box denotes the site
tensor (see the main text for details).

∑
{αi } Tr

∏
i T

si
xiyizi

λ
1/2
xix

′
i
λ

1/2
yiy

′
i
λ

1/2
ziz

′
i
|si〉, where Tr represents the

trace over the virtual indices (xi,yi,zi) and si is the local
quantum number. Its graphical representation is shown in
Fig. 1(a). For convenience later, we define the bond connecting
two triangle plaquettes as x bond and two bonds forming a
triangle plaquette as y and z bonds in the clockwise direction
as depicted in Fig. 1(a). By applying iteratively the imaginary-
time evolution operator [exp(−τHij )] on every bond, one can
optimize T si

xiyizi
with respect to the energy density. The simple

update (SU) is a popular method to renew the tensors at
every imaginary-time step [54]. Recently, the importance of
preserving symmetries in optimization has been noticed with
a development of so-called symmetric simple update (SSU),
which allows us to keep symmetries throughout the imaginary-
time evolution [49]. In this paper, either SU or SSU is adopted
depending on the initial and target states. To be more precise,
we examine three kinds of ansatz: SU(2) symmetric, time-
reversal (TR) symmetric, and nonconstraint ansatz. We try
several initial conditions for each type of ansataz, e.g., the
ferromagnetic (FM), 120◦ coplanar antiferromagnetic (AFM)
product states and random states for the nonconstraint ansatz.
In order to contract iPEPS without symmetry breaking, we
apply the basic idea of SSU to the corner transfer matrix
renormalization group (CTMRG) method [37,55–59]. Then,
we measure the physical quantities, such as the local order
parameters and correlation functions, using the environment
tensors obtained by CTMRG. The parallel C++ library mpten-
sor [60] is utilized to perform all TN algorithms in the present
work.

IV. IDENTIFICATION OF EACH PHASE

GS phase diagram is presented in Fig. 2, in which four
phases are identified: FM, ferroquadrupolar (FQ), AFM, and
SL. We have determined those phases by analyzing the energy
density, local order parameters, and the connected correlation
functions for the optimized ansatz on a variety of unit-cell
structures [61] with trial initial states. The bond dimension
D for the virtual legs is varied from 1 to 12, and the GSs
are adopted at each φ by the lowest energy density shown

FIG. 2. Phase diagram of the BLBQ model on the star lattice
[Eq. (1)] as a function of the mixing angle φ. Here, FM, FQ, AFM,
and SL represent ferromagnetic, ferroqudrupolar, 120◦ coplanar
antiferromagnetic, and spin-liquid phases, respectively. The model
has the SU(3) symmetry at φ = −0.75π,0.25π which are denoted by
yellow circles.

in Fig. 3(a). A cutoff dimension χ for CTMRG is chosen to
be χ = 2D2. Here, we identify and discuss the properties of
each phase, and then the nature of phase boundaries will be
discussed afterward.

Regardless of the spatial dimension or the lattice geometry,
the BLBQ model exhibits FM phase in 0.5π < φ < 1.25π

[32,33,51,54,62] as we also found. In this phase, the imaginary
time evolution with SU leads the tensors to a trivial tensor
with D = 1, i.e., a product state. Throughout this phase, the
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FIG. 3. Plots of the (a) energy density, (b) magnetization and
quadrupole moments of GS wave function, and (c) the quantity R

defined in Eq. (2) as a function of φ, respectively.
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magnetization M ≡ N−1
s

∑Ns

i

√
〈Si〉2 is always 1, and Q =

1/
√

3 indicating fully aligned spins.
The FQ phase occurs right next to FM phase at φ = −0.75π

and disappears at φ 	 −0.23π where the GS enters into
AFM phase. Since BQ interaction with negative sign favors
parallel alignment of the quadrupole moments, the FQ state
becomes stable immediately after BQ wins BL exchange (φ >

−0.75π ). The FQ order parameter gradually decreases from
the largest value Q(φ = −0.75π ) = 2/

√
3 as φ approaches

to −0.23π , while the magnetization is always zero up to
the machine precision. The TR-symmetric initial state with
SSU flows into the lowest energy state resulting in M = 0
all through this phase. We find that λαiα

′
i

are rotationally
symmetric (i.e., λxix

′
i
= λyiy

′
i
= λziz

′
i
) and carry nondegenerate

and doubly degenerate values. It denotes that the site tensor
accommodates the Kramers singlets and doublets on the virtual
legs to form a TR-symmetric tensor.

As φ passes through −0.23π , the magnetization jumps
from zero [Fig. 3(b)], and spins form the 120◦ coplanar
configuration. The FQ order parameter remains finite due
to the finite magnetization. The magnetization reaches the
maximum at φ = 0 where BQ exchange is turned off, and this
is similar to the triangular and honeycomb models [31,33]. The
AFM phase, which is obtained by SU with the 120◦ coplanar
initial configuration, seems to extend to φ 	 0.02π . However,
it is not exactly determined as the iPEPS optimization does
not converge well and thus shows some fluctuations in the
energy density and order parameters over 0 < φ � 0.02π .
Nevertheless, AFM state gives still the lowest energy of all.

In 0.02π � φ<0.5π , the SU(2)-symmetric SSU on (1×1)
unit cell provides the best ansatz, and therefore the GS is SL
throughout this region. By virtue of SSU, we find that only the
integer spins are accommodated on the x bond while only the
half-integer spins on the y and z bonds. In order to show this
interesting feature, we define a quantity

R ≡
∑

i(di − 1)(−1)di−1λi∑
i λi

, (2)

where di is the degeneracy of the ith singular value λi . The
R at each bond is presented in Fig. 3(c). Because of the lack
of any symmetry, the λi does not degenerate, and therefore R

is zero throughout the FM and AFM phases. It is finite and
changes continuously in the FQ phase because of the double
degeneracy of some of the singular values guaranteed by TR
symmetry. In the SL phase, the R becomes integer either +1
or −1 depending on the bond, which shows that each bond
accommodates either only even- or odd-parity multiplets. This
is analogous to the Haldane phase, where the virtual bonds
carry only the odd-parity multiplets [10].

The positive BQ exchange favors a perpendicular orienta-
tion of neighboring quadrupole moments. It induces the antifer-
roquadrupolar phases on the triangular [33] and kagome [32]
lattices, on which spins on a triangle plaquette are shared by
neighboring plaquettes. Instead, on the star lattice, spins are
not shared but entangled with others on neighboring plaquttes.
As a result, it may give rise to configurational fluctuations
of quadrupole moments and subsequently the recovery of
symmetry.
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FIG. 4. Spin-spin and quadrupole-quadrupole correlations at
(a) φ = 0.125 and (b) φ = 0.375π , respectively. Here, Rij is the
distance between ith and j th sites in units of |�a1| defined in Fig. 1.

In order to explore the physical property of the SL phase, we
evaluate the connected spin CS

ij ≡ 〈Si · Sj 〉con and quadrupole

C
Q
ij ≡ 〈 Qi · Qj 〉con correlators as a function of distance be-

tween ith and j th sites, which are shown in Figs. 4(a)–4(c). As
one can see, both correlators decay exponentially in the entire
SL phase, and especially C

Q
ij = 5

3CS
ij at φ = 0.25π [Fig. 4(b)],

where the SU(3) symmetry emerges. In addition, the dimer and
chirality correlators are found to be suppressed exponentially
as well. Therefore, we may conclude that there is no long-range
order in this phase.

Regarding a quantum liquid phase, the fact of existence
or nonexistence of the gap is one of the most important
questions. The exponential decaying of correlators in Fig. 4
intimates the gapped nature of the SL phase. In order to confirm
this quantitatively, we propose a method for constructing the
transfer matrix (X):

(3)

where E0 and E2 are the edge tensors depicted in Fig. 1(b).
Generally, the transfer matrix X is supposed to contain infor-
mation on the long-range properties of the iPEPS ansatz such
as the correlation length [63]: ξ−1 = log(λ0/λ1), where λ0 (1) is
the largest (second largest) eigenvalue of X. The advantage of
this method of obtaining ξ over the one based on the two-point
correlator of certain quantities is that we do not have to know
the quantity that shows the slowest decay. Figure 4(d) shows
the extracted ξ at φ = 0.125π,0.25π,0.375π which converge
to finite values as D increases and thus clarify the existence
of gap in the SL phase. Another transfer matrix made of E1

and E3 gives the same correlation length due to the rotational
symmetry.

V. PHASE BOUNDARIES

Both the boundaries of the FM phase can be fixed exactly:
φ = −0.75π and 0.5π . The boundary to the FQ phase, φ =
−0.75π , can be fixed as the point at which the system possesses
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FIG. 5. An exemplary ground-state configuration at the pure
biquadratic point (φ = 0.5π ), where the empty circle denotes Sz = 0
and the filled one stands for Sz = +1 or −1.

the SU(3) symmetry and the FM state, and thus the FQ state
can be mapped into each other by the SU(3) transformation.
The cusp in the energy density and discontinuities in the
derivative of energy density and order parameters atφ = 0.75π

in Fig. 3 are in good agreement with the expectation and
suggest the first-order phase transition. At this phase boundary,
the FM state from SU and the FQ state from TR-symmetric
SSU come to exactly the same energy density. This is the
“state-switching” phase transition at the transition point with
enhanced symmetry. Its classical example is the transition of
U(1)-symmetric XXZ model from the easy-axis phase to the
easy-plane phase at the SU(2)-symmetric point. The cusp and
discontinuity in the energy and its derivative are also observed
at the other boundary, φ = 0.5π , suggesting the first-order
transition here. However, we need to note that, in contrast to the
BLBQ models defined on bipartite lattices, the present system
does not possess the SU(3) symmetry at this phase boundary.
Therefore, the mechanism of the transition must be somewhat
different from the one at φ = −0.75π . Nevertheless, this
transition can still be located exactly. To see this, we note
that there is a macroscopic GS degeneracy at φ = 0.5π . More
specifically, all product states containing no (+1,−1) or (0,0)
nearest-neighbor pairs, where ±1 or 0 are eigenvalues of Sz, are
eigenstates of the Hamiltonian [63]. Thus, the transition point is
located exactly at φ = 0.5π as the point where the entropy per
spin becomes finite. A crude estimate of the lower bound for the
GS entropy can be derived in the following way. Let us consider
the following configurations: spins on the upward triangles
form (empty: Sz = 0, filled: Sz = +1 or −1) while or

on the downward triangles. An example is shown in Fig. 5.
The number of such configurations is simply Z0 = 2N�+N�

where N� (�) is the number of upward (downward) triangle
plaquettes. The factor 2N� comes from the fact that there areN�
clusters bounded by the 0 spins, whereas 2N� from the choice
between or for each downward triangle. Consequently,
the entropy per spin is SZ0/(6N ) = 1

3 log 2, where N is the
total number of unit-cell. In addition, we found that total
number of all degenerate product states (Z) is equivalent
to the number of muti-species dimer configurations with a
particular constraint on the same lattice. Using a simple tensor
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1/N
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g 
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fit: 2.822 + 0.284 N
x
-4.05

FIG. 6. The number of degenerate GS at φ = 0.5π . The red solid
line is the fitting curve. Here, the system is on the long cylinder with
size N = NxNy and Ny 
 1.

network, we have counted such dimer configurations (Fig. 6)
and obtained a much better lower-bound for the entropy per
spin SZ/(6N ) = 0.4703 (see Appendix for details).

Not only such simple product states but also some entangled
states, e.g., the spin-singlet state, can be GS at φ = 0.5π . By
diagonalizing the Hamiltonian of 6- and 12-site systems, we
find that a spin-singlet state is degenerate at the transition
point, but becomes a unique GS with a finite BL interaction.
On the other hand, our SU(2)-symmetric iPEPS at φ = 0.5π

ansatz gives E = 1.5026, which deviates only 0.17% from the
exact one E = 1.5. Therefore, we believe reasonably that
the BL interaction lifts the macroscopic degeneracy such that
the singlet state gains an advantage (lower energy) over the
product states.

As for the transition around φ 	 −0.23π , after passing
it from the FQ side to the AFM side, the order parameters
(M , Q) and the derivative of energy density exhibit disconti-
nuities around the transition (Fig. 3). Those evidences strongly
suggest the first-order phase transition between the FQ and
AFM phases.

VI. DISCUSSION

We have explored the GS phase diagram of the S = 1 BLBQ
model on the star lattice with the state-of-art TN algorithms. In
addition to FM, AFM, and FQ, gapped SL phases are identified
by analyzing the local observables, various correlators, and
transfer matrix. In the SL phase, the spin, dimer, quadrupole,
and chirality correlators decay exponentially, and the correla-
tion length converges to finite even at large bond dimensions
of iPEPS ansatz. However, this phase has been characterized
most clearly by the fact that it is represented by a PEPS with
all the virtual legs of fixed parity: integer spins for intertriangle
bonds and half-integer spins for the ones forming the triangles.
While the state has something in common with the Haldane
phase, in which all virtual bonds have odd parity, we are not
aware of the cases where integer spins appear together with
half-integer ones. A direct implication of this feature is that we
may obtain different kinds of boundary excitations depending
on the way we cut the system. Further investigation is desirable
here. The nature of phase boundaries in the model are also
investigated. We confirm the first-order phase transitions at
φ = −0.75π and 0.5π by observing the phase coexistence
and a finite correlation length, respectively. Particularly, the
macroscopic degeneracy at φ = 0.5π is shown by counting the

205123-4



SPIN-ONE BILINEAR-BIQUADRATIC MODEL ON A STAR … PHYSICAL REVIEW B 97, 205123 (2018)

partial number of degenerate GS by using the transfer matrix
method (see the Appendix). The transition between FQ and
AFM is also found to be the first order exhibiting the jumps in
the order parameters and the derivative of energy. We believe
that some of our work may be relevant for the star lattice
antiferromagnet which has been synthesized with an iron(III)
acetate hybrid material and its family [64]. We also expect to
realize much of the discussed physics in optical lattices [65,66].
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APPENDIX: MACROSCOPIC DEGENERACY
AT PURE BIQUADRATIC POINT

The biquadratic Hamiltonian with positive coupling reads

HBQ =
∑
〈i,j〉

(Si · Sj )2, (A1)

where 〈i,j 〉 denotes the nearest-neighbor sites. Each (Si · Sj )2

operator has degenerate ground states, of which the total spin
S total

ij equals 1 and 2, with the eigenvalue E = 1. Therefore,
configurations where all neighboring spins fuse to S total

ij = 1
and 2 are the ground state of Eq. (A1). One can easily construct
such states by avoiding the nearest-neighbor singlet pairs, i.e.,
|+1, −1〉 and |0,0〉, where ±1,0 are the Sz quantum number,
in the whole lattice. An example on the star lattice is shown
in Fig. 7(a). In one-dimensional chain, the total number of
such configurations (Z) scales Z 	 2N and therefore the lower
bound of the entropy density is S/N = log 2 [67]. On the other
hand, counting Z on the star lattice is not trivial because of the
loops formed by the lattice sites. We first prove the macroscopic
degeneracy and extract a crude estimate for the lower bound
of the entropy density by counting exactly a part of Z. Then,
the complete Z will be obtained numerically by employing a
tensor network.

FIG. 7. (a) An exemplary ground-state configuration of the
Hamiltonian in Eq. (A1), and (b) a proposed tensor network, made of
plaquette and bond tensors, counting such configurations.

FIG. 8. Nonzero elements of the plaquette tensor Pijk to count the
configurations with only Sz = 0,+1 states.

One can map counting Z into a dimer packing problem with
a particular constraint. The basic idea is the following. Let us
regard the neighboring pair |0, ±1〉 connecting two triangles
as a directed (from 0 to ±1) dimer, e.g.,

Here, the direction is necessary to distinguish the configu-
ration |0, ±1〉 and | ±1,0〉. Therefore, we assign four species
of dimers on every bond and then count the number of all
dimer configurations allowing the hole with an equal weight.
An additional constraint is that only a single outgoing dimer
is permitted on every triangle plaquette at most. Now, one
can count the total number of such dimer configurations by
employing a simple tensor network composed of rank-three
plaquette tensors (Pijk) on the center of the triangle loop
and bond matrices (Bij ) connecting P tensors as depicted in
Fig. 7(b). For simplicity, let us first consider the configurations
with only Sz = 0,+1 excluding the Sz = −1 state. Then, the
bond dimension D = 3 is required, and each state on the leg
can be defined as follows:

(1) |0〉: start point of dimer on the vertex,
(2) |1〉: end point of dimer on the vertex, and
(3) |2〉: hole on the vertex.
Because of the constraint allowing only a single outgoing

dimer at most on each triangle plaquette, the configurations in
Fig. 8 and their cyclic permutation partners are only nonzero
elements of the tensor Pijk while the bond matrix is

B =
⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠. (A2)

205123-5



HYUN-YONG LEE AND NAOKI KAWASHIMA PHYSICAL REVIEW B 97, 205123 (2018)

1/Nx

2.88

2.885

2.89

2.895

2.9

N
-1

lo
g 

Z

fit: 2.822 + 0.284 Nx
-4.05

0 0.1 0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5
1/Nx

2.54558

2.54559

2.5456

2.54561

2.54562
N

-1
lo

g 
Z

(a)

(b)

FIG. 9. The scaling of the number of GS configurations made of
(a) Sz = 0,+1 and (b) Sz = 0, ±1, respectively.

We set the weight of each configuration in Fig. 8 to be 1,
and then the contraction of the tensor network gives the total
number of the ground states made of only Sz = 0,+1 states.
Similarly, one may count the configurations even including
Sz = −1 state by enlarging the bond dimension to D = 5.

Now, we contract two plaquette tensors and three bond
tensors to have a translationally invariant tensor network on

the square lattice. The efficient calculation of Z proceeds
on a cylinder geometry with the periodic boundary condition
imposed along the x direction of length Nx and open ends along
the y direction of length Ny . By contracting the tensors along
the x direction, one obtains the so-called row-to-row transfer
matrix as schematically depicted below:

Assuming Ny 
 1, the total number of configurations Z

scales like ZNx
	 (λNx

)Ny , where λNx
is the largest eigenvalue

of the transfer matrix with a length Nx . Even though the transfer
matrix is not Hermitian (or symmetric), the largest eigenvalue
is unique and real by the Perron-Frobenius theorem [68]. In
order to obtain the scaling behavior of Z in terms of the
system size N = NxNy , we plot N−1 log ZNx

= N−1
x log λNx

.
The result is presented in Fig. 9(a). As one can see, the entropy
density with Nx = 3 is already very close to the one in the
thermodynamic limit, which is N−1 log ZNx=∞ 	 2.54587.
We therefore conclude that the number of degenerate GS made
of only Sz = 0, + 1 states scales Z ∼ (e2.545587)N = 12.75N .

By enlarging the bond dimension toD = 5, one can evaluate
the degeneracy including Sz = −1 configurations. It is easy to
find the nonzero elements of tensor, which is a straightforward
extension from the elements in Fig. 8. The entropy density is
shown in Fig. 9(b). Here, we extrapolate the data to obtain
the one in the thermodynamic limit. Now, the number of
degenerate states scales Z ∼ (e2.822)N = 16.81N , and this can
be regarded as the lower bound for the true entropy density of
pure biquadratic model on the star lattice.
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