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We study geometric aspects of the Laughlin fractional quantum Hall (FQH) states using a description of these
states in terms of a matrix quantum mechanics model known as the Chern-Simons matrix model (CSMM).
This model was proposed by Polychronakos as a regularization of the noncommutative Chern-Simons theory
description of the Laughlin states proposed earlier by Susskind. Both models can be understood as describing the
electrons in a FQH state as forming a noncommutative fluid, i.e., a fluid occupying a noncommutative space. Here,
we revisit the CSMM in light of recent work on geometric response in the FQH effect, with the goal of determining
whether the CSMM captures this aspect of the physics of the Laughlin states. For this model, we compute the Hall
viscosity, Hall conductance in a nonuniform electric field, and the Hall viscosity in the presence of anisotropy
(or intrinsic geometry). Our calculations show that the CSMM captures the guiding center contribution to the
known values of these quantities in the Laughlin states, but lacks the Landau orbit contribution. The interesting
correlations in a Laughlin state are contained entirely in the guiding center part of the state/wave function, and so
we conclude that the CSMM accurately describes the most important aspects of the physics of the Laughlin FQH
states, including the Hall viscosity and other geometric properties of these states, which are of current interest.
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I. INTRODUCTION

In the past few years there has been tremendous progress
in the understanding of the geometric properties of quantum
Hall states. The role of geometry in the quantum Hall effect
first came to prominence in early work on Hall viscosity [1–3]
(sometimes called odd viscosity), and there has been much
work on Hall viscosity since then [4–13]. Recent work on
geometry in the quantum Hall effect has gone in two separate
directions. First, there is the study of the properties of quantum
Hall states on curved spatial manifolds (Riemann surfaces)
[14–21]. Second, there is the study of intrinsic geometry and
anisotropy in quantum Hall states on flat space [7,8,13,22,23].
In the past year, a very interesting new theory of quantum Hall
states has been proposed, known as the bimetric theory, and
this theory promises to unify the two separate directions of
research on geometry in the quantum Hall effect [24,25].

In a separate line of development, Susskind proposed in
2001 that Laughlin fractional quantum Hall (FQH) states
could be described by noncommutative Chern-Simons (NCCS)
theory [26]. This is a deformation of ordinary Chern-Simons
theory in which the theory is formulated on a noncommutative
analog of the flat space R2 consisting of “coordinates” x̂1 and
x̂2 obeying a nontrivial commutation relation

[x̂1,x̂2] = iθ. (1.1)

Here, θ is a real parameter with dimensions of length squared
that characterizes the degree of noncommutativity of the the-
ory. The original motivation for this proposal was Susskind’s
observation that the gauge symmetry of NCCS theory pro-
vides a discretization of the symmetry under area-preserving
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diffeomorphisms that is present in a description of a FQH
state as a charged fluid in a magnetic field. In particular, this
discretization was argued to capture the “granularity” of a fluid
constructed from electrons, and in the NCCS theory description
each electron is associated with a fundamental area of size
2π |θ |. In addition, in the NCCS theory, a quantization rule
[27] enforces

θ = �2
Bm, m ∈ Z, (1.2)

where �B is the magnetic length, and so one finds (for m > 0)
that the fluid described by the NCCS theory has a number
density ρ0 = 1

2π�2
Bm

, exactly as in the ν = 1/m Laughlin state.
Susskind’s original proposal has been followed up by many

authors [28–37]. Of all of these subsequent works, the work
of Polychronakos is particularly important for this paper. In
Ref. [28], Polychronakos proposed a regularization of the
NCCS theory, which is known as the Chern-Simons matrix
model (CSMM). This is a particular regularization of the NCCS
theory that can be viewed as a quantum mechanics model in
which the degrees of freedom are N × N matrices (we discuss
the model in detail and make this statement precise below). The
quantum ground state of the CSMM having θ = �2

Bm (m > 0)
is known to describe a uniform droplet of “noncommutative
fluid” with a density and area matching that of the ν = 1/m

Laughlin state. Polychronakos has also demonstrated that
excitations in this model carry the appropriate fractional charge
of the quasihole excitations in the Laughlin state.

Despite the successes in describing the basic properties of
the Laughlin FQH states using NCCS theory and the CSMM,
there have not been any attempts to study the geometric
properties of the Laughlin states in the context of these
noncommutative models. Therefore our goal in this article is
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to answer the following question: does the CSMM accurately
describe the geometric properties of the Laughlin states?

The particular geometric properties that we are concerned
with are the Hall viscosity, the Hall conductance in a nonuni-
form electric field, and the Hall viscosity in the presence of
anisotropy (or intrinsic geometry). We compute all of these
quantities in the CSMM and we find that the results in the
CSMM contain only the guiding center contribution to the
known values for these quantities in the Laughlin states. For
example, the full Hall viscosity coefficient for the Laughlin
ν = 1/m state is given by [5]

ηtot = h̄ρ0m

4
, (1.3)

while for the CSMM with θ = �2
Bm we find1 (after

regularization)

ηCSMM,reg = 1

2
h̄ρ0

(
m − 1

2

)
, (1.4)

which is exactly the (regularized) guiding center Hall viscosity
of the ν = 1/m Laughlin state [7,8,13]. The need for regu-
larization of the guiding center part of the Hall viscosity has
been discussed in Refs. [7,8,13]. In this paper, we also give a
fluid interpretation of this regularization in the context of the
CSMM.

Based on our calculations, we conclude quite generally that
the CSMM and NCCS theory descriptions of the Laughlin
FQH states capture the guiding center contribution to the
geometric properties of these states, but lack the Landau orbit
contribution. We argue that this is not surprising since in the
fluid interpretation of the CSMM and NCCS theories, the
cyclotron frequency ωc is sent to infinity by sending the mass
of the particles in the fluid to zero. This is analogous to a
projection into a Landau level (which freezes out the Landau
orbit degrees of freedom), and so it makes sense that only
the guiding center contribution remains. The Landau orbit
contribution is often considered to be less important since
the interesting correlations in a Laughlin state are contained
entirely in the guiding center part of the state/wave function.
Therefore we find that the CSMM description is able to capture
the most important contributions to the geometric properties
of the Laughlin states. We expect that our results will rekindle
interest in noncommutative models of the FQH effect, as these
models clearly have a role to play in the investigation of
geometric properties of FQH states.

This paper is organized as follows. In Sec. II, we review
the notion of Hall viscosity. In Secs. III and IV, we give a
comprehensive review of the NCCS theory and CSMM, the
fluid interpretation of these models, and their relation to the
Laughlin states. In Sec. V, we compute the Hall viscosity in
the CSMM. In Sec. VI, we compute the Hall conductance of
the CSMM in a nonuniform electric field. In Sec. VII, we
give a fluid interpretation of the regularization of the guiding
center part of the Hall viscosity in which one subtracts the

1In the literature, the quantity (m − 1)/2 is referred to either
as the anisospin (Refs. [24,25]) or minus the guiding center spin
(Refs. [7,8,13]) of the ν = 1/m Laughlin state.

extensive contribution to this quantity. Finally, in Sec. VIII,
we present a modified version of the CSMM incorporating
anisotropy, and we compute the Hall viscosity for the modified
model. Section IX presents our conclusions. The paper also
includes two appendices. In Appendix A, we review the form
of the quantum generators of the action of the group U (N )
on the fields of the CSMM, as this information is necessary
for the quantization of this model, which we review in Sec. IV.
In Appendix B, we present the details of the calculation of
the Hall viscosity of the CSMM (which is presented in Sec. V
of the main text), which involves a Kubo formula approach
inspired by Ref. [12].

II. REVIEW OF HALL VISCOSITY

In this section, we review the concept of Hall viscosity
following the derivation and point of view in Ref. [13]. We also
emphasize, again following Ref. [13], the separation of the Hall
viscosity tensor into two parts: the Landau orbit contribution
and the guiding center contribution. Finally, we review the
form of both parts of the Hall viscosity tensor for typical FQH
trial states including the Laughlin states. The example of the
Laughlin states is of particular interest for the rest of the paper
when we compare to the results obtained in the CSMM, which
has been argued to describe the physics of the Laughlin states.

A. Hall viscosity calculation

The Hall viscosity can be computed by studying the
response of a FQH state to time-dependent area-preserving
deformations (APDs). Before we review the calculation of the
Hall viscosity, we briefly recall the setup of the quantum Hall
problem. We consider N electrons on the plane, each with
a charge −e < 0, in the presence of a constant background
magnetic field of strength B > 0 and pointing in the positive z

direction. Let rj be the position coordinates of the N electrons,
where j = 1, . . . ,N is a particle label. We write ra

j with
a = 1,2 for the two components of the vector rj (i.e., a = 1,2
labels the two directions of space). In this situation, the electron
coordinate operators ra

j break up into two parts as

ra
j = Ra

j + R̃a
j , (2.1)

where Ra
j are known as the guiding center coordinates, and R̃a

j

are the Landau orbit coordinates. These coordinates obey the
commutation relations

[
Ra

j ,R
b
k

] = i�2
Bεabδjk, (2.2a)[

R̃a
j ,R̃

b
k

] = −i�2
Bεabδjk, (2.2b)[

Ra
j ,R̃

b
k

] = 0, (2.2c)

where �2
B = h̄/(eB) is the square of the magnetic length �B .

The Hall viscosity is defined as the response of the system
(more precisely, the ground state) to time-dependent APDs
of the electron coordinates. These APDs are generated by
Hermitian operators Λab, which are a linear combination of
guiding center and Landau orbit parts,

Λab = �ab − �̃ab. (2.3)
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The operators �ab generate APDs of the guiding center
coordinates and have the form

�ab = 1

4�2
B

N∑
j=1

{
Ra

j ,R
b
j

}
, (2.4)

where {·,·} denotes an anticommutator, while �̃ab generates
APDs of the Landau orbit coordinates, and �̃ab is defined
like �ab but with the guiding center coordinates Ra

j replaced
by the Landau orbit coordinates R̃a

j . One can show that these
generators obey the Lie algebras

[�ab,�cd ] = i

2
(εbc�ad + εbd�ac + εac�bd + εad�bc),

(2.5a)

[�̃ab,�̃cd ] = − i

2
(εbc�̃ad + εbd�̃ac + εac�̃bd + εad�̃bc).

(2.5b)

In addition, it is clear that [�ab,�̃cd ] = 0. The generators
�ab (and also �̃ab) can be expressed in terms of the generators
of the Lie algebra of the group SU (1,1), and we will use this
fact later.2

Finite (as opposed to infinitesimal) APDs of the electron
coordinates are implemented by conjugation by the unitary
operators3

U (α) = eiαabΛ
ab

, (2.6)

where αab is a constant, symmetric tensor with unit determinant
(thus the APDs are spatially uniform since αab does not depend
on the spatial coordinates). For example, acting on the electron
coordinates gives

U (α)ra
j U (α)† = ra

j + εabαbcr
c
j + . . . , (2.7)

where the ellipses denote higher-order terms in αab.
The APDs that we have been considering so far are closely

related to strains in continuum mechanics. Suppose the vector r
is the location of a point in a solid or fluid before a deformation,
and r′(r) is the location of that same point after the deformation.
Then for small deformations the strain tensor uab is defined in
terms of the displacement vector u(r) = r′(r) − r as

uab = 1

2

(
∂ua

∂rb
+ ∂ub

∂ra

)
, (2.8)

where ua are the components of u(r) and ua = δabu
b. If we

consider small APDs in the quantum Hall problem (i.e., we
work to linear order in αab), then we find a strain tensor

uab = 1
2 (δacε

cdαdb + (a ↔ b)). (2.9)

In particular, we find for the trace
∑2

a=1 uaa = 0, which means
that the APDs are indeed area-preserving (the trace of the

2Physicists can read about the group SU (1,1) in Ref. [38], for
example.

3Here, and in the rest of the paper, we use a summation convention in
which we sum over all indices, which are repeated once as a subscript
and once as a superscript. All other summations will be indicated
explicitly.

strain tensor determines the change in the area of a small
element of the fluid or solid at the location r). The strain
tensor is also spatially uniform since αab does not depend on
the spatial coordinates ra . Therefore the APDs that we have
been considering can be understood as a special case of a
strain in continuum mechanics, namely, a spatially uniform
and area-preserving strain. In what follows, we sometimes use
the terms APD and strain interchangeably although, strictly
speaking, the former is a special case of the latter.

Consider a FQH system described by a Hamiltonian H0.
Under a time-independent APD parametrized by αab, the
Hamiltonian is transformed to

H (α) = U (α)H0U (α)†. (2.10)

We can define the generalized force associated with this
APD as

Fab = −∂H (α)

∂αab

∣∣∣∣
α=0

= −i[Λab,H0]. (2.11)

If we subject the system to a time-dependent APD αab(t), then
we can compute the expectation value of Fab in the time-
dependent ground state |ψ(t)〉 in an expansion in time deriva-
tives of αab(t). In fact, as was argued in Ref. [12], one should
actually compute the expectation value of U (α(t))FabU (α(t))†

instead of Fab. We discuss this point in more detail in the
context of our Kubo formula calculation of the Hall viscosity
for the CSMM in Appendix B, but just mention here that this
replacement corresponds to expressing the generalized force
in terms of the coordinates of the deformed system.

We now compute the expectation value of
U (α(t))FabU (α(t))† in an expansion in time derivatives
of αab(t) as

〈ψ(t)|U (α(t))FabU (α(t))†|ψ(t)〉
= 〈ψ0|Fab|ψ0〉 + �abcd α̇cd (t) + . . . , (2.12)

where |ψ0〉 denotes the initial state of the system, the overdot
on αcd (t) denotes a time derivative, and �abcd is a four
index tensor, which is independent of the parameters αab(t)
[in principle, there could also be an elastic term, which is
proportional to αab(t), but this term is not present for a fluid
state]. Park and Haldane then define the full Hall viscosity
tensor ηabcd

tot (with all indices raised) as

ηabcd
tot = �abcd

A
, (2.13)

where A denotes the area of the quantum Hall droplet (recall
that we are working on the infinite plane, so we must assume
that the quantum Hall droplet occupies a finite area A). The
intuition behind this definition is that ηabcd

tot encodes the linear

response of the “generalized stress” U (α(t))FabU (α(t))†

A
to the “rate

of strain” encoded by the tensor α̇cd (t). We also note here that
for a droplet of quantum Hall fluid the area A of the droplet
can be expressed as A = 2π�2

BNφ , where Nφ is the number of
fundamental flux quanta �0 = h/e piercing the droplet.
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Using adiabatic perturbation theory, Park and Haldane
showed that

ηabcd
tot = ih̄

A
〈ψ0|[Λab,Λcd ]|ψ0〉

= ih̄

A
〈ψ0|[�ab,�cd ]|ψ0〉 + ih̄

A
〈ψ0|[�̃ab,�̃cd ]|ψ0〉

≡ ηabcd
H + η̃abcd

H . (2.14)

Thus, the full Hall viscosity tensor breaks up into two parts:
the guiding center Hall viscosity tensor ηabcd

H , and the Landau
orbit Hall viscosity tensor η̃abcd

H .
The expression for the full Hall viscosity tensor can be

simplified further by using the algebra of APD generators from
Eq. (2.5) to find

ηabcd
tot = 1

2

(
εacηbd

tot + εadηbc
tot + (a ↔ b)

)
, (2.15)

where the symmetric two-index tensor ηab
tot also breaks up into

guiding center and Landau orbit parts as

ηab
tot = ηab

H + η̃ab
H (2.16)

with

ηab
H = − h̄

A
〈ψ0|�ab|ψ0〉, (2.17a)

η̃ab
H = h̄

A
〈ψ0|�̃ab|ψ0〉. (2.17b)

In what follows, we also refer to these two-index tensors as
“Hall viscosity tensors.” Reference [13] emphasized that the
guiding center contribution ηab

H to ηab
tot has a physical interpre-

tation in terms of the intrinsic electric dipole moment along
the edge of a FQH state, and in fact must be proportional to
the symmetric tensor, which determines this dipole moment in
order to balance the force on a FQH edge in an inhomogeneous
electric field (see also Ref. [39] for a complementary discussion
of this boundary dipole moment from a different point of view).
We now review the form of the two parts of the Hall viscosity
tensor for typical FQH trial states including the Laughlin states.

B. Values in quantum Hall trial states

In this section, we consider the form of the guiding center
and Landau orbit Hall viscosity tensors ηab

H and η̃ab
H for typical

FQH trial states including the Laughlin states. In the operator,
or Heisenberg, approach (as opposed to the Schrodinger
approach using wave functions) a state vector for a trial FQH
state is constructed using ladder operators bj and b

†
j defined in

terms of the guiding center coordinates as

bj = 1

�B

√
2

(
R1

j + iR2
j

)
, (2.18)

and also ladder operators aj and a
†
j defined in terms of the

Landau orbit coordinates as

aj = 1

�B

√
2

(
R̃1

j − iR̃2
j

)
. (2.19)

We define |0〉a and |0〉b to be the Fock vacuum states annihi-
lated by the aj and bj operators, respectively. In terms of these,

a typical FQH trial state in the nth Landau level has the form

|ψ0〉 =
⎡
⎣ N∏

j=1

(a†
j )n√
n!

⎤
⎦F (b†1, . . . ,b

†
N )|0〉a ⊗ |0〉b, (2.20)

where F (b†1, . . . ,b
†
N ) is a homogeneous polynomial of N

variables, and which is either symmetric (for bosons) or
antisymmetric (for fermions) under exchange of any two
variables. We use Deg[F ] to denote the total degree of the
polynomial function F . Then if we scale all arguments of F

by a numerical factor λ, we have

F (λb
†
1, . . . ,λb

†
N ) = λDeg[F ]F (b†1, . . . ,b

†
N ). (2.21)

Let Nb = ∑N
j=1 b

†
j bj be the total number operator for the

N guiding center ladder operators. Then the homogeneity
property of F implies that |ψ0〉 is an eigenvalue of Nb with
eigenvalue Deg[F ].

To compute ηab
H for these trial FQH states we use a

connection between the APD generators and the generators
of the group SU (1,1) (see, for example, Ref. [38]). Define the
operators

K0 = 1

2

N∑
j=1

(
b
†
j bj + 1

2

)
, (2.22a)

K+ = 1

2

N∑
j=1

(b†j )2, (2.22b)

K− = 1

2

N∑
j=1

(bj )2. (2.22c)

These operators obey the commutation relations of the Lie
algebra of the group SU (1,1),

[K0,K±] = ±K±, (2.23a)

[K−,K+] = 2K0. (2.23b)

The Fock space of the oscillators bj forms a (reducible)
representation of this algebra, and the generators �ab can be
expressed in terms of the SU (1,1) generators as

�11 = K0 + 1
2K+ + 1

2K−, (2.24)

�22 = K0 − 1
2K+ − 1

2K−, (2.25)

and

�12 = �21 = −i

2
(K− − K+). (2.26)

It is clear that the state |ψ0〉 is an eigenstate of K0 with
eigenvalue 1

2 (Deg[F ] + N
2 ). It then follows that the expectation

values 〈ψ0|K±|ψ0〉 are equal to zero as K±|ψ0〉 is orthogonal
to |ψ0〉. Then, for the trial state parametrized by the function
F, we have

〈ψ0|�ab|ψ0〉 = 1

2

[
Deg[F ] + N

2

]
δab. (2.27)
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A similar computation shows that for a trial state in the nth
Landau level, we have

〈ψ0|�̃ab|ψ0〉 = 1

2

(
nN + N

2

)
δab, (2.28)

which follows since the product
∏N

j=1
(a†

j )n√
n!

is a homogeneous

polynomial in the a
†
j of total degree nN .

For the case of the ν = 1/m Laughlin state (m a positive
integer), we have

F (b†1, . . . ,b
†
N ) =

∏
j<k

(b†j − b
†
k)m, (2.29)

and so

Deg[F ] = 1
2mN (N − 1). (2.30)

If we consider this Laughlin state in the lowest Landau level
(n = 0) then we find that

〈ψ0|�ab|ψ0〉 = 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
δab, (2.31a)

〈ψ0|�̃ab|ψ0〉 = N

4
δab, (2.31b)

and so

ηab
H = − h̄

A

1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
δab, (2.32)

while

η̃ab
H = h̄

4

N

A
δab. (2.33)

Both of these tensors are proportional to the identity matrix (in
this rotation-invariant case), and it is convenient to denote the
constants of proportionality by

ηH = − h̄

A

1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
(2.34)

and

η̃H = h̄

4

N

A
(2.35)

so that we can simply write ηab
H = ηHδab and similarly for η̃ab

H .
For a Laughlin FQH droplet with ν = 1/m, and consisting

of a large numberN of particles, we haveA ≈ 2π�2
BmN . Then,

in its current form, the coefficient ηH in the guiding center Hall
viscosity tensor is the sum of an extensive (order N ) term and
an intensive (order 1) term. Since A itself is proportional to
N , the extensive term in ηH comes from the superextensive
(order N2) term in 〈ψ0|�ab|ψ0〉. This term is associated with a
uniform rotational motion (in fact, it is just the orbital angular
momentum) of the FQH fluid, and so it has been argued that
one should subtract this term when defining the guiding center
Hall viscosity [8,13]. If we make this subtraction then we end
up with the regularized quantities

〈ψ0|�ab|ψ0〉reg = 1

2

[(
1 − m

2

)
N

]
δab, (2.36)

ηH,reg = − h̄

2

(
1 − m

2

)
ρ0, (2.37)

where ρ0 = 1
2π�2

Bm
= N

A
is the density of the ν = 1/m Laughlin

FQH state at large N . We discuss the physical interpretation
of this regularization scheme in the context of the CSMM in
Sec. VII.

The Landau orbit contribution η̃H does not require regular-
ization as it only consists of an intensive term. In terms of the
density ρ0 of the Laughlin state this coefficient has the form

η̃H = h̄ρ0

4
. (2.38)

Then the full Hall viscosity coefficient for the ν = 1/m Laugh-
lin state (in the lowest Landau level and after regularization of
the guiding center part) is

ηtot = η̃H + ηH,reg = h̄ρ0m

4
, (2.39)

as originally found by Read [5]. It is interesting to observe
that since ρ0 = 1

2π�2
Bm

, the full Hall viscosity coefficient ηtot

actually does not depend on the filling fraction of the Laughlin
state (i.e., it does not depend on m).

The coefficient (1 − m)/2 appearing in ηH,reg is what
Haldane has termed the “guiding center spin” of a FQH state.
This coefficient has been denoted as “s” in Ref. [8] and “s” in
Ref. [13]. It is also equal to minus the “anisospin” defined in
Refs. [24,25], and denoted there by ς . We choose to adopt the
notation of Refs. [24,25] and so we write

ηH,reg = h̄

2
ςρ0 (2.40)

with ς = (m − 1)/2. We see that unlike the full Hall viscosity
coefficient ηtot, the guiding center contribution to the Hall
viscosity has a clear dependence on m. It follows that different
Laughlin states cannot be distinguished by their full Hall
viscosity ηtot, but they can be distinguished by their guiding
center Hall viscosity ηH,reg which, moreover, has been argued
to be connected to the physical property of intrinsic electric
dipole moment at the edge of the FQH state [13].

III. NONCOMMUTATIVE CHERN-SIMONS THEORY

In this section, we review Susskind’s noncommutative
Chern-Simons (NCCS) theory description of the Laughlin
FQH states [26]. This will pave the way for the discussion
of the Chern-Simons matrix model in the next section, as the
Chern-Simons matrix model can be thought of as a particular
regularization of the NCCS theory. To prepare the reader for
this discussion in this section, we first make a few remarks
about the two different formulations (“operator” versus “star
product” formulations) of noncommutative field theory. We
then present the NCCS theory in both formulations. Finally,
we discuss the NCCS theory in the limit of weak noncom-
mutativity, and its connection with the dynamics of a fluid of
charged particles in a magnetic field. From this connection
one sees that the full NCCS theory should be understood as
describing a fluid of charged particles in a magnetic field on
a noncommutative space. Our discussion of noncommutative
field theory closely follows that in Refs. [40–42]. For the fluid
picture of the NCCS theory, we follow Refs. [26,43]. Readers
who are already familiar with noncommutative field theory and
the NCCS theory may want to skip this section.
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A. Two formulations of noncommutative field theory

Consider a classical field theory in 2 + 1 dimensions in
which the two-dimensional space is taken to be R2, and
let x = (x1,x2) denote the spatial coordinates. We denote a
general field in this theory as �(t,x). In such a field theory
the fields �(t,x) at a fixed time t are elements of the ordinary
algebra of functions onR2 (the commutative algebra generated
by pointwise addition and multiplication of functions of x).
The noncommutative deformation of the this theory that we
consider consists of replacing the ordinary space R2 with a
“noncommutative plane” whose two spatial coordinates do not
commute with each other. The time direction will always be
commutative in this article, i.e., we consider theories in two
noncommutative spatial dimensions and one commutative (or
ordinary) time direction.

In the noncommutative deformation of the classical field
theory, the fields (again at a fixed time t) instead take values in
the algebra R2

θ which consists of all complex linear combina-
tions of products of position variables x̂a , a = 1,2, satisfying
the commutation relation

[x̂1,x̂2] = iθ. (3.1)

Here, θ is a constant real number with dimensions of length
squared; it controls the “strength” of the noncommutativity
of this theory. The algebra R2

θ comes equipped with a con-
jugation operator “†” (which one can think of as Hermitian
conjugation), and the operators x̂a are assumed to be invariant
under this operation.4 We see that the algebra R2

θ is nothing
but the universal enveloping algebra of the Heisenberg algebra
specified by x̂a and the commutation relation of Eq. (3.1).
The operators x̂a are sometimes said to be coordinates on a
“noncommutative plane.” In the noncommutative theory, the
notion of a point no longer makes sense, and the smallest area
that one can resolve is of order θ .

In the noncommutative field theory, the notion of integration
over space is replaced with a trace in a representation of the
Heisenberg algebra of the noncommutative coordinates x̂a .
Usually, this representation is taken to be the Fock representa-
tion in which the ladder operators

â = 1√
2θ

(x̂1 + ix̂2), (3.2)

â† = 1√
2θ

(x̂1 − ix̂2) (3.3)

act on a Fock space HF generated by the action of the
raising operator â† on a vacuum state |0〉 which is annihilated
by the lowering operator â. The action functional for the
noncommutative field theory then takes the form

S =
∫

dt TrHF
{(· · · )}, (3.4)

where (· · · ) denotes a Lagrangian written in terms of fields
�̂(t), which are operators on the space HF , and whose matrix
elements are functions of time.

4For any complex number c and any y ∈ R2
θ , we have (cy)† = cy†,

where c is the complex conjugate of c.

It is natural to call the formulation of noncommutative field
theory that we have just described the “operator formulation.”
We now describe an alternative formulation, which one might
call the “star-product formulation,” which may be more famil-
iar to some readers. In this formulation one instead works with
fields �(t,x), which are ordinary functions of the coordinates
x on R2, but replaces the ordinary product of functions with
the Groenewold-Moyal star product “�,” which is defined as
follows. For any two functions f (x) and g(x) of x, we have

f (x) � g(x) = e
i
2 θεab ∂

∂ya
∂

∂za f (y)g(z)
∣∣
y=z=x

= f (x)g(x) + i

2
θεab∂af (x)∂bg(x) + . . . ,

(3.5)

and where in the last line the ellipses denote terms of order θ2

and higher. For two functions f (x) and g(x) which vanish at
spatial infinity we have the important property that∫

d2x f (x) � g(x) =
∫

d2x f (x)g(x), (3.6)

which follows after integration by parts on the higher derivative
terms in the star product. There is no analogous result for
integrals of star products of three or more functions.

These two formulations of noncommutative field theory
are related by the Wigner-Weyl mapping of functions and
operators. This mapping is as follows. Let f (x) be an ordinary
function on R2 and let

f̃ (k) =
∫

d2x f (x)e−ikax
a

(3.7)

be its Fourier transform. Then we can define a Weyl-ordered
operator f̂ by taking the inverse Fourier transform but replac-
ing xa with x̂a in the exponential,

f̂ =
∫

d2k
(2π )2

f̃ (k)eika x̂
a

. (3.8)

One can check that this mapping satisfies the following
properties which will be needed later:

f̂ ĝ = ̂f � g, (3.9)

TrHF
{f̂ } = 1

2πθ

∫
d2x f (x). (3.10)

To check the second property, one can express the trace over
HF using a basis {|x1〉} of eigenstates of x̂1 as

TrHF
{f̂ } =

∫ ∞

−∞
dx1 〈x1|f̂ |x1〉 (3.11)

and then plug in the expression Eq. (3.8) for f̂ .
The Chern-Simons matrix model that we study below is a

particular regularization of the NCCS theory in its operator
formulation. Therefore, for our purposes, we generally find
that the operator formulation of the NCCS theory is more
convenient. However, the star product formulation is still
useful for the study of the behavior of the theory near the
commutative limit θ → 0, and so we will have occasion to
use both formulations of the NCCS theory in what follows.
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B. NCCS theory in the operator formulation

We now review the operator formulation of the NCCS
theory. In the operator formulation, the NCCS theory consists
of three fields X̂a(t), a = 1,2, and Â0(t). All fields should
be thought of as operators on the Fock space HF whose
matrix elements are functions of time. In addition, all fields
are Hermitian (i.e., all fields are invariant under the “†”
operation on the algebra R2

θ ). We also consider the theory
on a time interval of length T and assume periodic boundary
conditions in time so that X̂a(0) = X̂a(T ), and likewise for
Â0(t). In addition to the noncommutativity parameter θ, the
theory includes various coupling constants including e > 0,
an electric charge, and B > 0, a constant magnetic field. We
discuss the physical interpretation of this theory as representing
a charged fluid in a magnetic field later in this section (and we
will see that the charge of the particles which make up this
fluid is actually q = −e < 0).

The action for the NCCS theory in the operator formulation
takes the form

SNCCS = −eB

2

∫ T

0
dt TrHF

{εabX̂
aD0X̂

b + 2θÂ0}, (3.12)

where we introduced a covariant derivative

D0X̂
b = ˙̂Xb + i[X̂b,Â0]. (3.13)

and where the dot denotes a time derivative. The field Â0

functions as a Lagrange multiplier and its equation of motion
yields the constraint

[X̂1,X̂2] = iθ. (3.14)

This constraint can only be satisfied by operators X̂a on an
infinite-dimensional space. This is due to the fact that if the
variables X̂a were finite-dimensional matrices, then the trace
of the left-hand side of the equation is zero while the trace
of the right-hand side would be proportional to the size of
the matrices. The CSMM discussed in the next section is a
modification of the NCCS theory, which features a modified
constraint that can be satisfied by operators (matrices) on a
finite-dimensional space.

If we ignore the term containing 2θÂ0 for a moment, then
one can check that the action is invariant under the gauge
transformation

X̂a → V̂ X̂aV̂ † (3.15a)

Â0 → V̂ Â0V̂
† + iV̂ ˙̂V †, (3.15b)

where V̂ (t) is an arbitrary time-dependent unitary operator
on the Fock space HF . In particular, this follows from the
fact that, under this transformation, the covariant derivative
transforms as D0X̂

b → V̂ D0X̂
bV̂ †. To understand these gauge

transformations in the presence of the term 2θÂ0, we need to
constrain the allowed V̂ ’s that we consider [27]. To motivate
this restriction, we now briefly discuss some aspects of the
geometry of the noncommutative plane.

Consider the occupation number basis {|n〉}n∈N of the Fock
space HF (|n〉 ∝ (â†)n|0〉). The radius squared operator R̂2 =
δabx̂

ax̂b is diagonal in this basis and we have R̂2|n〉 = 2θ (n +
1
2 )|n〉. Thus the occupation number n can be identified with the
distance squared from the origin in the noncommutative plane.

We now restrict our attention to gauge transformations defined
by unitary operators V̂ (t) which act as the identity on states |n〉
with n sufficiently large, say n > N0. The actual value of N0

is not important for the argument. This is the noncommutative
analog of requiring gauge transformations in a commutative
gauge theory on the space R2 to tend to the identity at spatial
infinity.

With this restriction on possible gauge transformations, the
unitary operator V̂ (t) defines a map from the periodic time in-
terval [0,T ) to U (N0), the group of unitary matrices of size N0.
Large gauge transformations are those V̂ (t) that correspond to
a nontrivial element of the homotopy group π1(U (N0)) = Z.
The full NCCS action is not invariant under these large gauge
transformations because of the presence of the 2θÂ0 term. In
Ref. [27], Polychronakos and Nair have shown that requiring
the exponential ei

SCSMM
h̄ to be invariant under these large gauge

transformations enforces a quantization rule on θ , which states
that

eBθ = h̄m, m ∈ Z, (3.16)

or

θ = �2
Bm, m ∈ Z, (3.17)

where �2
B = h̄/(eB) is the square of the magnetic length

defined earlier. This quantization rule is the noncommutative
analog of the level quantization, which obtains in ordinary [say
SU (N )] Chern-Simons theory on a commutative space.

C. NCCS theory in the star product formulation

We now discuss the NCCS theory in the star product
formulation. In this form the theory looks very similar to the
ordinary Chern-Simons theory (i.e., Chern-Simons theory on
the commutative space R2). We proceed by deriving the star
product formulation of the NCCS theory from the operator
formulation by using the Wigner-Weyl mapping discussed
earlier in this section. To do this, we need to know how spatial
derivatives are represented in the operator formulation of the
theory. Derivative operators ∂̂a in the operator formulation of
noncommutative field theory are defined by

∂̂1 = ix̂2

θ
, ∂̂2 = − ix̂1

θ
(3.18)

and one can check that

[∂̂a,x̂
b] = δb

a, (3.19)

just as one has for ordinary derivatives of functions on R2. In
addition, in the Wigner-Weyl mapping one has

[∂̂a,f̂ ] =̂∂af , (3.20)

so under this mapping the ordinary derivative of a function
f (x) with respect to xa is mapped to the commutator of ∂̂a

with f̂ (i.e., the adjoint action of ∂̂a on f̂ ).
The first step towards deriving the star product formulation

of NCCS theory is to make a change of variables in the operator
formulation by defining two new fields Âa , a = 1,2, which are
related to the fields X̂a by

X̂a = x̂a + θεabÂb. (3.21)
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Under a gauge transformation the new fields transform as5

Âa → V̂ ÂaV̂
† + iV̂ [∂̂a,V̂

†]. (3.22)

This transformation resembles the transformation of an ordi-
nary non-Abelian gauge field. In addition, in the new variables,
the NCCS constraint of Eq. (3.14) becomes

F̂12 = 0, (3.23)

where we defined the field strength for noncommutative gauge
theory as

F̂ab = [∂̂a,Âb] − [∂̂b,Âa] − i[Âa,Âb]. (3.24)

Thus the constraint in NCCS theory is an exact noncom-
mutative analog of the constraint enforced by the temporal
component of the gauge field in ordinary Chern-Simons theory
on a commutative space.

After tedious algebra (including many uses of the cyclic
property of the trace) one can show that after performing this
transformation the NCCS action takes the form

SNCCS = −eBθ2

2

∫ T

0
dt TrHF

{
εabÂa

˙̂Ab − εabÂ0[∂̂a,Âb]

+ εabÂb[∂̂a,Â0] + 2i

3
εμνλÂμÂνÂλ

}
, (3.25)

where the greek indices μ,ν,λ run over the range 0,1,2. There
is one subtle point in the derivation of this equation which
involves a term which is a total time derivative. Specifically,
after the transformation from the X̂a variables to the Âa

variables one finds a term

−eB

2

∫ T

0
dt TrHF

{−θx̂a ˙̂Aa}. (3.26)

Since x̂a has no time dependence this term is a total derivative,
and it evaluates to zero since we assumed periodic boundary
conditions on all fields in the time direction.

Finally, we apply the Wigner-Weyl mapping to write the
NCCS action in the star product formulation as

SNCCS =eBθ

4π

∫ T

0
dt

∫
d2x εμνλ

(
Aμ � ∂νAλ

− 2i

3
Aμ � Aν � Aλ

)
. (3.27)

The quantization condition on θ [Eq. (3.17)] then implies that
the coefficient of the action is

eBθ

4π
= h̄m

4π
. (3.28)

Then, in units where h̄ = 1, we find the NCCS action at level
m ∈ Z. If we take �2

B → 0, which also sends θ → 0, then
we recover the ordinary U (1) Chern-Simons theory at level
m (again with h̄ = 1 for now)

SCS = m

4π

∫ T

0
dt

∫
d2x εμνλAμ∂νAλ. (3.29)

5This is derived by requiring the gauge transformation of x̂a +
θεabÂb to coincide with the gauge transformation of X̂a from
Eq. (3.15).

For completeness, we note here that in the star product
formulation the noncommutative field strength is

Fμν = ∂μAν − ∂νAμ − i(Aμ � Aν − Aν � Aμ), (3.30)

and the equation of motion of the NCCS theory is equivalent
to Fμν = 0, just like in ordinary Chern-Simons theory.

D. Fluid interpretation of the NCCS theory at small θ

We now discuss the behavior of the NCCS theory in the limit
of weak noncommutativity in which θ is assumed to be small.
Note that since θ has units, and since there is no other length
scale in the problem to compare θ to, it is more accurate to say
that in this section we study a truncation of the NCCS theory
at first order in θ . In the star product formulation of the theory
this truncation simply amounts to neglecting terms of order θ2

and higher in the star product of functions. In this limit, we will
see that the NCCS theory has an interpretation as describing
a fluid of charged particles in a constant magnetic field B, as
was discussed by Susskind [26] (see also Refs. [43,44]).

To consider the NCCS theory in the regime of small θ we
start by using the cyclic property of the trace to write the action
in the form

SNCCS = − eB

2

∫ T

0
dt TrHF

{εabX̂
a ˙̂Xb

+ 2Â0(θ + i[X̂1,X̂2])}. (3.31)

We then use the Wigner-Weyl mapping, and keep only the
terms up to order θ in the star product, to find that in the limit
of small θ

SNCCS → − eB

2

1

2πθ

∫ T

0
dt

∫
d2x(εabX

aẊb

+ 2θA0(1 − εab∂aX
1∂bX

2)). (3.32)

Susskind observed that in this limit the NCCS theory
describes the dynamics of a charged fluid at constant density
ρ0 = 1

2πθ
in a constant magnetic field B, and in the limit where

the cyclotron frequency is sent to infinity. In fact, in Susskind’s
original derivation, he starts with the fluid description and then
observes that it coincides with the small θ limit of the NCCS
theory. We now briefly remind the reader of this connection
between the NCCS theory and fluid dynamics.

The starting point is the Lagrange description6 of a fluid
of charged particles moving on the plane R2 in a background
electromagnetic field. In the Lagrange description of a fluid
one keeps track of the motion of the individual particles in the
fluid, and measures their current position with respect to some
reference configuration. In this description, we use coordinates
x to describe the reference configuration of the fluid and
coordinates Xa(t,x), a = 1,2, to describe the configuration of
the fluid at a later time t . Without loss of generality, we may
assume that Xa(0,x) = xa . Thus Xa(t,x) is the position, at time
t , of the fluid particle which was at position xa at t = 0. We
also assign a constant density ρ0 to the fluid in the reference
configuration.

6The relation between noncommutative gauge theory and the La-
grange description of a fluid is discussed in detail in Ref. [44].
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The action for a Lagrange fluid made up of particles
of mass M and charge q in the presence of a background
electromagnetic field takes the form

S =
∫ T

0
dt

∫
d2x ρ0

(
1

2
MδabẊ

aẊb + qAa(t,X)Ẋa

− qϕ(t,X)

)
, (3.33)

where Aa(t,X) and ϕ(t,X) are the vector and scalar potentials,
respectively, for the external electromagnetic field. Intuitively,
this action is just the sum over all particles in the fluid of
the ordinary action for a massive charged particle in a back-
ground electromagnetic field. However, the discrete sum over
particle labels has been replaced with an integration over
the reference coordinates x weighted with the density ρ0

in the reference configuration. The reference coordinates x can
therefore be considered as a set of continuous particle labels.

To see the connection of the fluid model to the NCCS theory,
we first place the system in a uniform background magnetic
field with strength B > 0. This can be accomplished by setting
ϕ(t,X) = 0 and

Aa(t,X) = −B

2
εabX

b, (3.34)

where we have chosen the symmetric gauge for the vector
potential. Next, we set the mass of the particles to zero,
M = 0. This corresponds to taking the cyclotron frequency
ωc = (eB)/M to infinity, which is similar to a projection into
the lowest Landau level (since h̄ωc is the energy gap between
Landau levels). Finally, we take the charge of the particles to
be q = −e with e > 0. Then at this point the action reads as

S = −eB

2
ρ0

∫ T

0
dt

∫
d2x εabX

aẊb. (3.35)

Note that ρ0 can be pulled out of the integral since we assumed
it was constant. We also mention here that our conventions for
the direction of the magnetic field and the charge of the particles
in the fluid exactly matches our conventions for the setup of
the quantum Hall problem from Sec. II.

The next step is to incorporate a Lagrange multiplier which
enforces the constraint that the fluid remains at the constant
density ρ0 at all times. The density ρ(t,X) of the fluid at time t is
related to the initial density ρ0 by the Jacobian εab∂aX

1∂bX
2 of

the map from the reference coordinates to the fluid coordinates
X at time t as

ρ(t,X)εab∂aX
1∂bX

2 = ρ0, (3.36)

where we remind the reader that ∂a is a shorthand for ∂
∂xa , i.e.,

a derivative with respect to the reference coordinates xa . Then
the constraint that ρ(t,X) = ρ0 for all t can be written as

εab∂aX
1∂bX

2 = 1. (3.37)

We denote the Lagrange multiplier enforcing this constraint
by A0(t,x), and write the action with the constraint included
in the form

S = − eB

2
ρ0

∫ T

0
dt

∫
d2x (εabX

aẊb

+ 2θA0(1 − εab∂aX
1∂bX

2)), (3.38)

where we have introduced a parameter θ with units of (length)2.
With this choice, the Lagrange multiplier field A0 has units of
(time)−1.

We can now see that the small θ limit of the NCCS action
from Eq. (3.32) is exactly the action for a fluid of particles
with charge q = −e at the constant density ρ0 = 1/(2πθ ) in a
constant background magnetic field B in the limit in which the
cyclotron frequency is taken to infinity. This limit is analogous
to the projection into the lowest Landau level, and it is the
physical reason why this fluid theory (and the NCCS theory)
is expected to describe FQH physics in the lowest Landau level
[26]. In the full NCCS theory, we should then interpret the fields
X̂a(t) as describing the positions of particles in a fluid on a
noncommutative space, as discussed by Susskind [26] (see also
Ref. [43] for a review of the physics of such noncommutative
fluids).

IV. THE CHERN-SIMONS MATRIX MODEL

In this section, we discuss the Chern-Simons matrix
model (CSMM), which was introduced by Polychronakos
in Ref. [28]. This model can be thought of as a particular
regularization of the operator formulation of the NCCS theory,
in which the fields X̂a(t) (which were operators on the infinite-
dimensional Fock space HF ) are now finite N × N matrices
Xa(t) instead. Note that we do not use a hatted notation for the
finite size matrix variables of the NCCS theory. The parameter
N serves as a regulator, which should be taken to infinity to
recover the NCCS theory discussed in the previous section.
The fluid interpretation of the NCCS theory carries over to
the CSMM, so we still interpret the matrix variables Xa(t)
as representing the coordinates of particles in a fluid on a
noncommutative space, only now the fluid turns out to occupy
a finite area of this space. In other words, the CSMM is a model
of a finite droplet droplet of noncommutative fluid.

Since the CSMM can be difficult to understand, we begin
this section by making a few remarks about our notation and
conventions, and then discuss some subtleties of this model.
We then review the quantization of this model following
Refs. [28,31]. Finally, we review (following the original discus-
sion in Ref. [28]) the calculation of the area A and density ρ0 of
the droplet of noncommutative fluid represented by the ground
state of the CSMM. We will then be able to identify the CSMM
having θ = �2

Bm as describing the ν = 1/m Laughlin state by
comparing the results for ρ0 and A to the known answers for
a droplet of FQH fluid in the ν = 1/m Laughlin state in the
limit of a large number of particles N .

A. Some remarks on notation

The CSMM, and especially the quantization of this model,
can be quite tricky due to two separate noncommutative
structures which appear. First, at the classical level the degrees
of freedom in this model are HermitianN × N matrix variables
X1, X2, A0, as well as a complex vector � of length N . All
of these variables are functions of time. Since some of the
variables are matrix variables, ordinary (i.e., classical) matrix
multiplication of these variables is not commutative. Next,
upon quantization of the model, the matrix elements of X1, X2,
and A0 (and also the components of �) become operators on a
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separate Hilbert space, which is unrelated to the vector space on
which the classical matrix variables act. Thus, in the quantized
matrix model there are two sources of noncommutativity. The
first source is the fact that we are dealing with matrix variables
from the start, and the second source comes from the fact that
the matrix elements of the original matrix variables are now
operators on a second Hilbert space, and so multiplication of
individual matrix elements does not commute either, but for a
different reason.

In an attempt to present this model in as clear a manner as
possible, we will adhere to the following notational conven-
tions. First, we use [·,·]M to denote a matrix commutator of
classical matrices, and use [·,·] (with no subscript) to denote the
commutator of quantum operators. We also reserve the symbol
† to denote Hermitian conjugation of quantum operators. In all
manipulations with classical matrix variables, we instead use
an overline to denote complex conjugation of a matrix and a
superscript “T” to denote a transpose. So if A is an N × N

matrix variable, then A
T

is its transpose conjugate, i.e., if

A has matrix elements Ajk , then the matrix elements of A
T

are (A
T

)jk = Akj (and Hermitian matrices satisfy the relation

A
T = A). As we mentioned before, in the quantum theory, the

matrix elements Ajk are promoted to operators on a Hilbert
space. We denote the Hermitian conjugate (with respect to the
inner product on this Hilbert space) of the operator Ajk by A

†
jk .

Note that for a generic matrix variable A it is entirely possible

that the operator A
†
jk is not the same as the operator (A

T
)jk . In

what follows, we also make every effort to avoid using “i” as
an index, and instead try to reserve it for the symbol meaning√−1, and occasionally for the differential geometry operation
iv of interior multiplication by a vector field v.

B. Description of the model

In this subsection we describe the CSMM of the Laughlin
quantum Hall states [28]. The degrees of freedom in this model
are two N × N matrices Xa(t), a = 1,2, an N × N matrix
A0(t), and a complex vector �(t) of length N . All degrees of
freedom depend on time. The matrices Xa(t) and A0(t) are all
Hermitian and so they have real eigenvalues. The variables Xa

are to be interpreted as coordinates in the Lagrange description
of a fluid on the noncommutative plane, in accordance with the
physical ideas of Susskind and Polychronakos [26,28] (and as
we reviewed at the end of Sec. III). The number N will later
be identified with the number of electrons in a Landau level.
The action for the CSMM takes the form

SCSMM = −eB

2

∫ T

0
dt Tr{εabX

aD0X
b + 2θA0

+ ω̃δabX
aXb} +

∫ T

0
�

T
(i�̇ + A0�), (4.1)

where

D0X
b := Ẋb + i[Xb,A0]M

= Ẋb − i[A0,X
b]M (4.2)

is a covariant derivative. Here we view � as a column
vector and �

T
denotes the row vector whose elements are

the complex conjugates of the elements of �. In addition, e

and B are the same charge and constant magnetic field from
Sec. III, ω̃ is a frequency (the term with ω̃ is a quadratic
potential for the noncommutative coordinates Xa), and θ is
a parameter with units of length squared. We assume periodic
boundary conditions on all the fields in the time direction,
for example, Xa(0) = Xa(T ), so that the time direction is a
circle of circumference T . Note that the action as written here
differs slightly in the details (signs, etc.) from Ref. [28], but is
consistent with our interpretation of this model and the NCCS
theory as describing a noncommutative fluid of particles with
charge −e < 0.

At this point, we would like to emphasize that the frequency
ω̃ appearing in the parabolic potential term of the CSMM has
no relation to the cyclotron frequency ωc = (eB)/M in the
quantum Hall problem. Indeed, as we discussed in Sec. III, the
NCCS theory (and therefore the CSMM as well) describes a
charged fluid in a magnetic field in the limit in which the mass
M of the particles making up the fluid has been sent to zero.
This sends the cyclotron frequency ωc to infinity. Therefore
the CSMM contains no information related to the cyclotron
frequency or the energy of a Landau level.

We now discuss the gauge symmetry in the CSMM. If we
ignore the term with 2θA0 for a moment, then we can see
that the rest of the action is invariant under a U (N ) gauge
transformation:

Xa → V XaV
T
, (4.3a)

A0 → V A0V
T + iV V̇

T

, (4.3b)

� → V �, (4.3c)

where V (t) is an arbitrary time-dependent U (N ) matrix. The
presence of the term 2θA0 in the action means that the action
is not invariant under large U (N ) gauge transformations,
which are maps from [0,T ) → U (N ), which correspond to
a nontrivial element in the homotopy group π1(U (N )) = Z.
Since we would like ei

SCSMM
h̄ to be invariant under any gauge

transformation, these large gauge transformations enforce
a quantization rule on θ (the argument is identical to the
argument for the full NCCS theory from Sec. III), which states
that

eBθ = h̄m, m ∈ Z, (4.4)

or

θ = �2
Bm, m ∈ Z. (4.5)

The gauge field A0 can be interpreted as a matrix Lagrange
multiplier. If we look at the equation of motion resulting from
a variation of A0, then we find that A0 enforces the constraint

ieB[X1,X2]M + eBθI − ��
T = 0. (4.6)

This constraint should be compared with Eq. (3.14) for the
NCCS theory. In the NCCS case, the contribution from the
vector � is absent and the constraint can only be realized by
infinite-dimensional matrices (i.e., operators on HF ). It is the
presence of the vector � which allows this constraint to be
realized by finite-dimensional matrices, and this is why the
CSMM can be thought of as a regularization of the NCCS
theory. We refer the reader to Ref. [28] for the detailed analysis
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of the constraint in the classical solution of the CSMM (which
is also closely related to the Calogero model of interacting
particles in one spatial dimension). In this paper our main focus
is on the solution of the model in the quantum case.

We now make a few remarks and set up some notation
relating to the transformation properties of the fields under
the action of the group U (N ). The field � transforms in
the fundamental representation of U (N ). We indicate this by
writing the components of � with an upper Latin index, �j ,
j = 1, . . . ,N . Under a U (N ) transformation we have

�j → V j
k�

k, (4.7)

where V j
k are the matrix elements of a unitary matrix V in

U (N ). Next, the transpose conjugate �
T

transforms in the

antifundamental representation of U (N ), �
T → �

T
V

T
. We

indicate this by writing the components of �
T

with a lower
index, �j , j = 1, . . . ,N (and recall that the components of

�
T

are just the complex conjugates of the components of �).
In components we have

�j → �k(V
T

)kj . (4.8)

Finally, the matrix variables Xa transform in the adjoint repre-

sentation of U (N ), Xa → V XaV
T

. Thus the index structure
of Xa is such that it has one upper and one lower index,
(Xa)j k , j,k = 1, . . . ,N . The component form of the U (N )
transformation is then

(Xa)j k → V j
�(Xa)�m(V

T
)mk. (4.9)

These conventions will be extremely useful later when we try
to write down quantum states that respect the constraint of the
CSMM.

We already mentioned that the matrix variables Xa are
Hermitian matrices. Thus their matrix elements (Xa)j k are
generically complex numbers. For the quantization of this
system, it will be more convenient to parametrize Xa in terms
of scalar variables, which are manifestly real. Then, when
we quantize the theory, these real variables will be promoted
to Hermitian operators on the quantum Hilbert space. Our
choice of parametrization is as follows. First, let T A, A =
1, . . . ,N2 − 1, be the N × N generators, in the fundamental
representation, of the Lie algebra of SU (N ). The matrices T A

are all Hermitian and traceless, and can be normalized to obey
the relations

Tr{T AT B} = δAB, (4.10a)

[T A,T B]M = i

N2−1∑
C=1

f ABCT C, (4.10b)

where f ABC are the structure constants for SU (N ). These
structure constants have a very important property, which
is that they are antisymmetric under exchange of any two
indices A,B, or C (typically one only expects antisymmetry
under A ↔ B). We will take advantage of this property later

on. Using the generators T A, we can parametrize Xa (for
a = 1,2) as

Xa(t) = xa
0 (t)

I√
N

+
N2−1∑
A=1

xa
A(t)T A, (4.11)

where xa
0 (t) and xa

A(t), A = 1, . . . ,N2 − 1, are N2 real scalar
variables. In the quantum theory, these variables will be
promoted to Hermitian operators. The factor of

√
N on the

identity matrix term was chosen for convenience.
The Poisson brackets for this system can be obtained from

the corresponding symplectic form, which can in turn be read
off from the action (which is first order in time derivatives).
The full symplectic form on the phase space for this system is

� = �X + �� (4.12)

with

�X = −eB

N2−1∑
A=0

dx1
A ∧ dx2

A (4.13)

and

�� = −i d�j ∧ d�j . (4.14)

Our conventions for Poisson brackets are as follows. To any
function f on phase space, we associate a vector field vf

defined as the solution to the equation df = −ivf
�. Then

the Poisson bracket of any two functions f and g is given by
{f,g} = ivf

ivg
�. Using this convention, we obtain the classical

Poisson brackets (with A,B = 0, . . . ,N2 − 1 now)7

{
x1

A,x2
B

} = 1

eB
δAB, (4.15a)

{�j,�k} = −iδ
j

k . (4.15b)

Upon quantization, in which we replace Poisson brackets
with commutators as {f,g} → − i

h̄
[f,g], we find the commu-

tation relations in the quantum CSMM to be[
x1

A,x2
B

] = i�2
BδAB, (4.16a)

[�j,�k] = h̄δ
j

k , (4.16b)

where �2
B = h̄/(eB) is the magnetic length.

Finally, when the gauge field A0 is set to zero, the Hamil-
tonian for this system is given by

HCSMM = eBω̃

2
Tr{δabX

aXb}. (4.17)

All of the energy in the system is associated with the harmonic
trap, and the only energy scale is associated with frequency ω̃

of the harmonic trap. We now review the quantization of this
model.

7The reader should beware that the symbol B is now being used
for two purposes. It is the strength of the magnetic field felt by the
noncommutative fluid described by the CSMM and NCCS theory,
and it is also (along with the capital latin letters A,C, . . . ) an index
on the SU (N ) generators T A and the variables xA. It should be clear
from the context whether B represents the magnetic field strength or
an index.
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C. Quantization of the CSMM

We now discuss the quantization of the CSMM. Instead
of trying to solve the constraint before quantization, we
follow previous approaches to this model and first quantize,
then impose the constraint on quantum states, i.e., physical
states should be annihilated by the constraint operator. As
we discussed above, upon quantization, the matrix elements
of X1 and X2 and the components of � obey the quantum
commutation relations from Eq. (4.16). In what follows, we
instead work with the oscillator variables

bj = 1√
h̄

�j , (4.18)

with b
†
j = 1√

h̄
�j , and

aA = 1

�B

√
2

(
x1

A + ix2
A

)
, (4.19)

with a
†
A = 1

�B

√
2
(x1

A − ix2
A). These variables obey the commu-

tation relations

[aA,a
†
B] = δAB, (4.20)

[bj ,b
†
k] = δ

j

k . (4.21)

The Hamiltonian for this system has the form

HCSMM = eBω̃

2
δab(Xa)j k(Xb)kj

= eBω̃

2

N2−1∑
A=0

δabx
a
Axb

A. (4.22)

In terms of the oscillator variables aA and a
†
A this becomes

HCSMM = h̄ω̃
N2

2
+ h̄ω̃

N2−1∑
A=0

a
†
AaA. (4.23)

Note that the first term represents the zero point energy of N2

harmonic oscillators.
Next, we turn to an analysis of the constraint. Classically,

and in terms of the variables xa
A, the constraint from Eq. (4.6)

takes the form

−eB

N2−1∑
A,B,C=1

x1
Ax2

Bf ABCT C + eBθI − ��
T = 0. (4.24)

To interpret the constraint in the quantum theory, we study its
j,k matrix element

−eB

N2−1∑
A,B,C=1

x1
Ax2

Bf ABC(T C)j k + eBθδ
j

k − �j�k = 0.

(4.25)

In terms of the oscillator variables, one can show that this
matrix element of the constraint takes the form

i
h̄

2

N2−1∑
A,B,C=1

(a†
AaB + aBa

†
A)f ABC(T C)j k

+ eBθδ
j

k − h̄bj b
†
k = 0. (4.26)

Note that in deriving this expression we needed to use the
antisymmetry of the structure constants f ABC under exchange
of its indices. Finally, we use the commutation relations of the
oscillator variables to rewrite this as

ih̄

N2−1∑
A,B,C=1

a
†
AaBf ABC(T C)j k + (eBθ − h̄)δj

k − h̄b
†
kb

j = 0,

(4.27)

where we used the fact that
∑N2−1

A,B=1 δABf ABC = 0. Note the

shift in the coefficient of the δ
j

k term which resulted from this
manipulation.8 Finally, we define Gj

k to be the j,k matrix
element of the constraint, but divided by a factor of h̄ for
convenience,

Gj
k = i

N2−1∑
A,B,C=1

a
†
AaBf ABC(T C)j k +

(
θ

�2
B

− 1

)
δ

j

k − b
†
kb

j .

(4.28)

In the quantum theory physical states |ψ〉 will be those
states, which satisfy

Gj
k|ψ〉 = 0, ∀ j,k. (4.29)

To understand the form of the physical states |ψ〉 we now
analyze the constraint. First set j = k and sum over all j . Then
the constraint implies that

b
†
j b

j |ψ〉 = N

(
θ

�2
B

− 1

)
|ψ〉. (4.30)

Now we already know that θ is quantized as an integer, θ =
�2

Bm, m ∈ Z. If we take m > 0, then this equation reads as

b
†
j b

j |ψ〉 = N (m − 1)|ψ〉. (4.31)

Thus we find that the total number of bj quanta in physical
states must be equal to N (m − 1).

Next, we consider the off-diagonal components of the
constraint. For this, it is convenient to instead consider

GA := Gj
k(T A)kj , (4.32)

which is the trace of the product of the constraint matrix (with
elements Gj

k) and a generator T A of SU (N ). We find that
these operators take the form

GA = −i(OX(T A) + O�(T A)), (4.33)

8In Ref. [28], Polychronakos instead performs normal-ordering of
the constraint by making the replacement bjb

†
k → b

†
kb

j . There is then
no shift of the coefficient of the δ

j

k term. This difference between
normal ordering the constraint vs treating it as is completely accounts
for the fact that Polychronakos found that the CSMM with θ = �2

Bm

describes the ν = 1
m+1 Laughlin state, while we will find that it

describes the ν = 1/m Laughlin state (if we treated the constraint like
Polychronakos then this would result in a trivial replacement of m →
m + 1 in all results in this article). Our treatment of the constraint
is also identical to the treatment in Ref. [45], which discusses new
Chern-Simons matrix models which can describe non-Abelian FQH
states (our m is equal to their k + 1 for their model with p = 1).
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where OX(T A) and O�(T A) are the quantum operators which
generate the action of the SU (N ) generator T A on the Xa

and � variables, respectively. We define these operators and
demonstrate their properties in Appendix A. Thus the set of
constraints

GA|ψ〉 = 0, A = 1, . . . ,N2 − 1 (4.34)

simply expresses the fact that physical states must be sin-
glets under the total SU (N ) action, as originally noted by
Polychronakos [28].

To summarize, we find that the constraint in the CSMM
breaks up into two separate parts. The first is associated with
the U (1) part of the total U (N ) action and states that physical
states |ψ〉 obey Eq. (4.31). The second part is associated with
the SU (N ) part of U (N ) and states that physical states should
be singlets under the SU (N ) action. Now that we understand
the constraint, we can write down a basis of physical states
satisfying this constraint. To this end, we introduce the matrix-
valued operator9

A† = a
†
0

I√
N

+
N2−1∑
B=1

a
†
BT B (4.35)

with matrix elements

(A†)j k = a
†
0

1√
N

δ
j

k +
N2−1∑
B=1

a
†
B(T B)j k. (4.36)

Then, as was shown by Hellerman and Van Raamsdonk in
Ref. [31], one possible basis for all physical states is given by
states of the form

|{c1, . . . ,cN }〉 = Tr[(A†)N ]cN · · · Tr[A†]c1 |ψ0〉, (4.37)

where each cj ∈ N for j = 1, . . . ,N , and

|ψ0〉 = [
εj1···jN b

†
j1

(b†A†)j2 · · · (b†(A†)N−1)jN

](m−1)|0〉.
(4.38)

Note that all U (N ) indices j,k, etc. are contracted in these
expressions, and so every operator present is a singlet under the
SU (N ) action. The overall power ofm − 1 in |ψ0〉 is required to
satisfy the U (1) part of the constraint coming from Eq. (4.31).

Since the Hamiltonian of the CSMM just counts the total
number of aA quanta in a state, we find that |ψ0〉 is the unique
ground state of the CSMM, and that it has an energy

E0 = h̄ω̃

[
N2

2
+ 1

2
(m − 1)N (N − 1)

]

= h̄ω̃

[
1

2
mN2 +

(
1 − m

2

)
N

]
. (4.39)

9Perhaps a more precise notation for this operator would be A† =
a
†
0 ⊗ I√

N
+ ∑N2−1

B=1 a
†
B ⊗ T B , which expresses the fact that A† acts

on the tensor product HQ ⊗ HN of an infinite-dimensional Hilbert
space HQ, which arises upon quantization of the model, and an N -
dimensional vector space HN on which the classical matrix variables
Xa act.

The excited states |{c1, . . . ,cN }〉 then have an energy

E({c1, . . . ,cN }) = E0 + h̄ω̃

N∑
j=1

cj j. (4.40)

It follows that the partition function of the CSMM at an inverse
temperature β is just

Z = TrQ[e−βHCSMM ] = q
1
2 mN2+( 1−m

2 )N
N∏

j=1

1

1 − qj
, (4.41)

where TrQ[·] denotes a trace over the quantum Hilbert space
(consisting of physical states obeying the constraint of the
CSMM), and where we defined q = e−βh̄ω̃. As N → ∞,
the product

∏N
j=1

1
1−qj becomes the partition function for the

oscillator modes of a single chiral boson, which we know is
the edge theory of a Laughlin fractional quantum Hall state.

D. Density of the droplet

Here, we review the calculation of the density of the FQH
droplet described by the CSMM in the large N limit. We
will see from this calculation that the CSMM with θ = �2

Bm

corresponds to the Laughlin state at filling fraction ν = 1/m.
We do not find ν = 1

m+1 as we treated the constraint of Eq. (4.6)
as is instead of normal-ordering it as in Polychronakos’ original
paper [28].

We compute the density of the droplet following the rea-
soning outlined by Polychronakos [28]. The key is to examine
the eigenvalue of the operator

Tr{δabX
aXb} =

N2−1∑
A=0

δabx
a
Axb

A (4.42)

in the ground state |ψ0〉 of the CSMM (the trace here is a
matrix trace). Since this operator is proportional to HCSMM, we
have Tr{δabX

aXb}|ψ0〉 = R2|ψ0〉, where the eigenvalue R2 is
given by

R2 = 2�2
B

(
m

N (N − 1)

2
+ N

2

)
. (4.43)

We interpret this eigenvalue as a sum of contributions from N

different particles at different radial positions by writing it as

R2 =
N∑

j=1

R2
j , (4.44)

where

R2
j = 2�2

B

(
m(j − 1) + 1

2

)
. (4.45)

Indeed, the R2
j can be thought of as the eigenvalues of the

classical matrix δabX
aXb, since the operator R2 is equal to the

trace of this matrix. Thus we think of the ground state of the
droplet as containing N particles at definite radial positions Rj

but with complete uncertainty in their angular position. In addi-
tion, since R2

j is linear in j , the area π (R2
j − R2

j−1) = 2π�2
Bm

of the annulus between consecutive particles is independent of
j . This implies that the particles are distributed uniformly, i.e.,
the density is a constant within the droplet.
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The size of the droplet is given by the largest value of R2
j ,

which is

R2
N = 2�2

B

(
m(N − 1) + 1

2

) ≈ 2�2
BmN (4.46)

for large N . Then at large N we compute the density as being
that of N particles evenly spread out over a disk of radius
R2

N ≈ 2�2
BmN , and so

ρ0 = N

πR2
N

≈ 1

2π�2
Bm

, (4.47)

which is exactly the density of the Laughlin state with filling
fraction ν = 1/m (in the limit of a large number N of
electrons).

V. HALL VISCOSITY OF THE CSMM

We now compute the Hall viscosity in the CSMM following
the calculation of Park and Haldane [13] (which we reviewed
in Sec. II). We find that the Hall viscosity tensor contains
only a single contribution, and that this contribution is equal
to the guiding center Hall viscosity of the Laughlin state. In
other words, the CSMM lacks the Landau orbit contribution to
the Hall viscosity, but does contain the (physically important)
guiding center contribution.

To compute the Hall viscosity in this system, we recall that
in the fluid interpretation of the NCCS theory and the CSMM
(which we reviewed at the end of Sec. III), the variables Xa

represent a noncommutative analog of fluid coordinates in
a Lagrange description of a fluid [26,28,43]. In the case
of the CSMM, this is a finite droplet of noncommutative
fluid. Thus, to compute the Hall viscosity, we first need to
identify the quantum operators Λab, which generate APDs
(or strains) of the noncommutative fluid coordinates Xa .
Since we expand the noncommutative coordinates in terms
of the scalar variables xa

A, A = 0, . . . ,N2 − 1, we can instead
search for operators which implement APDs of these variables.
These operators will then automatically implement the correct
transformations of the Xa coordinates, as the operators do not
act on the matrix indices of the Xa variables.

Since the commutation relations of the variables xa
A are

identical to the commutation relations of the guiding center
coordinates in the quantum Hall problem, we immediately see
that the desired operators are given by

Λab = 1

4�2
B

N2−1∑
A=0

{
xa

A,xb
A

}
. (5.1)

These operators obey the same algebra as in Eq. (2.5a). It
follows that the unitary operators which implement the APDs
are U (α) = eiαabΛ

ab

, with αab a constant symmetric matrix. To
first order in αab, we have (for all A = 0, . . . ,N2 − 1)

U (α)xa
AU (α)† = xa

A + εabαbcx
c
A + · · · , (5.2)

which implies (for all j,k)

U (α)(Xa)j kU (α)† = (Xa)j k + εabαbc(Xc)j k + · · · (5.3)

It is important to note that the APD generators Λab act only
on the physical position indices a of the variables Xa . There is
no action at all on the U (N ) indices j,k of the matrix elements
(Xa)j k . Thus the generators Λab act identically on all matrix

elements of Xa , and so they are indeed the correct quantum
generators of APDs of the noncommutative fluid coordinates
Xa (which we recall are actually N × N Hermitian matrices
in the classical theory).

Now we want to compute the Hall viscosity in the ground
state |ψ0〉 of the CSMM. We compute this using a Kubo
formula approach similar to that of Ref. [12]. We present the
Kubo formula calculation of the Hall viscosity in Appendix B.
Our result is that the Hall viscosity tensor in this model takes
the form (A is the area of the droplet)

ηabcd
CSMM = ih̄

A
〈ψ0|[Λab,Λcd ]|ψ0〉. (5.4)

We note that the tensor ηabcd
CSMM contains only a single contribu-

tion, as opposed to the two separate terms (guiding center and
Landau orbit contributions) appearing in the discussion of the
Hall viscosity tensor from Sec. II. Note that in deriving this
result it was crucial that the CSMM has a unique ground state
and a finite energy gap set by the frequency ω̃ of the harmonic
trap.

Due to the commutation relations of the generators Λab

[which are the same as Eq. (2.5a)], the four index tensor ηabcd
CSMM

can again be expressed in terms of a symmetric two-index
tensor:

ηab
CSMM = − h̄

A
〈ψ0|Λab|ψ0〉. (5.5)

Therefore, to compute the Hall viscosity tensor of the CSMM,
we just need to compute the expectation values 〈ψ0|Λab|ψ0〉.
To compute these, we first note that the CSMM Hamiltonian
can be written as

HCSMM = h̄ω̃δabΛ
ab = h̄ω̃(Λ11 + Λ22). (5.6)

From this we can already deduce that

〈ψ0|δabΛ
ab|ψ0〉 = E0

h̄ω̃
= 1

2
mN2 +

(
1 − m

2

)
N. (5.7)

We can go further and compute the individual expectation
values of Λ11 and Λ22 by deriving a Virial theorem for the
CSMM. To derive this theorem, consider the operator

Q =
N2−1∑
A=0

x1
Ax2

A. (5.8)

A short computation shows that

[Q,δabΛ
ab] = 2i�2

B(−Λ11 + Λ22). (5.9)

If we take the expectation value of this equation in the state
|ψ0〉 (or any eigenstate of δabΛ

ab), then we find that

〈ψ0|Λ11|ψ0〉 = 〈ψ0|Λ22|ψ0〉. (5.10)

Combining this result with Eq. (5.7) gives the result that

〈ψ0|Λ11|ψ0〉 = 〈ψ0|Λ22|ψ0〉 = 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
.

(5.11)

Finally, it remains to compute the expectation value of the
off-diagonal generator Λ12 = Λ21. In terms of the oscillator
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variables aA and a
†
A this operator takes the form

Λ12 = 1

4i

N2−1∑
A=0

(aAaA − a
†
Aa

†
A). (5.12)

Now all eigenstates of HCSMM are eigenstates of the total
number operator for the aA oscillators. Since Λ12 clearly does
not commute with the total number operator, we immediately
conclude that the expectation value of Λ12 in any eigenstate of
HCSMM is zero.

Therefore our final result for the expectation value of the
APD generators Λab in the CSMM ground state is

〈ψ0|Λab|ψ0〉 = 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
δab. (5.13)

This means that we can write ηab
CSMM = ηCSMMδab, where the

coefficient ηCSMM of Hall viscosity in this model is equal to

ηCSMM = − h̄

A

1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
. (5.14)

Now since A = πR2
N ≈ 2π�2

BmN for the CSMM at large N ,
this exactly matches the result (before regularization) for the
guiding center Hall viscosity ηH of the ν = 1/m Laughlin
state. The Landau orbit contribution η̃H is absent in the CSMM.
Finally, as was the case for the ordinary Laughlin state, this
result can be regularized by subtracting off the extensive term in
ηCSMM (or the superextensive term in 〈ψ0|Λab|ψ0〉). We discuss
a fluid interpretation of this regularization of the Hall viscosity
later in Sec. VII.

VI. HALL CONDUCTANCE OF THE CSMM IN A
NONUNIFORM ELECTRIC FIELD

In this section, we study the Hall conductance of the
CSMM when it is subjected to a nonuniform electric field. Our
motivation for studying this setup is the well-known result of
Hoyos and Son, which shows that in a quantum Hall state the
Hall conductance σH (k) at finite wave vector k has a universal
contribution at order k2 (k2 = δabkakb), which is related to
the Hall viscosity [11] (see also Ref. [12] for a Kubo formula
approach to this relation). We find a similar contribution in
the CSMM, but depending only on the guiding center Hall
viscosity as opposed to the full Hall viscosity. Again, this is
not surprising as we only expect the CSMM to describe the
dynamics of the guiding center degrees of freedom in a FQH
state.

In this section, we first review the result of Ref. [11] on the
Hall conductance at finite wave vector. We then warm up by
calculating the Hall conductance of the CSMM subjected to
a uniform electric field. The reason for this is that there are
several subtle points associated with the computation of the
Hall conductance in the CSMM that we want to explain clearly.
Finally, we compute the Hall conductance of the CSMM in
a nonuniform electric field, where we find a result which
resembles the result of Hoyos and Son [11], but with the full
Hall viscosity replaced by the guiding center Hall viscosity. We
note here that the Hall conductance of the NCCS theory in a
uniform electric field was computed previously in Refs. [34,36]
at the classical level by solving the equations of motion for

the NCCS theory in a uniform electric field. We therefore
emphasize that our treatment in this section deals directly with
the quantized CSMM theory as opposed to the classical NCCS
theory.

A. The result of Hoyos and Son

We start by reviewing the result of Ref. [11]. Consider
a quantum Hall system in a nonuniform electric field E =
(E(x),0) pointing in the x1 direction, and where the spatial
dependence is only on the x1 coordinate, so that ∂2E(x) = 0.
The Hall conductance σH (k) at finite wave vector is defined
by the relation

j 2(k) = σH (k)E(k), (6.1)

where j 2(k) is the Fourier transform of the charge current in
the x2 direction, and E(k) is the Fourier transform of E(x).
The result of Ref. [11] is that (recall that E(x) is a function of
only x1)

σH (k)

σH (0)
= 1 + C2(k1�B)2 + · · · , (6.2)

where the Hall conductance at zero wave vector is simply (ν
is the filling fraction)

σH (0) = ν
e2

h
. (6.3)

The coefficient C2 is given by

C2 = ηtot

h̄ρ0
− 2π

ν

�2
B

h̄ωc

B2E ′′(B), (6.4)

where ηtot denotes the full Hall viscosity of the quantum
Hall state (as opposed to just the guiding center part), E(B)
is the energy density of the quantum Hall state viewed as
a function of the external field B, and E ′′(B) denotes the
second derivative of E(B) with respect to B. In addition, ρ0

denotes the number density of the quantum Hall state, and
ωc = (eB)/M is the cyclotron frequency, where M is the mass
of the particles making up the quantum Hall state. As an
example, for a quantum Hall state consisting of N electrons
in the lowest Landau level and occupying an area A, we have
E(B) = h̄ωc

2
N
A

= h̄ωc

2 ρ0, and for a Laughlin ν = 1/m state this
gives E(B) = h̄ωc

4π�2
Bm

.
In the context of the CSMM, the quantity that we actually

compute is the current at the location of the center of mass of
the droplet (we explain the reason for this in the next section).
Therefore we need to Fourier transform the result of Hoyos and
Son back to real space in order to compare with our calculation
in the CSMM later in this section. In real space, we find that

j 2(x) = ν
e2

h

(
E(x) − C2�

2
B∂2

1 E(x) + . . .
)
. (6.5)

In particular, at the origin x = 0 (where the center of mass of
a uniform droplet would be located) we have

j 2(x = 0) = ν
e2

h

(
E(0) − C2�

2
BE(2) + . . .

)
, (6.6)
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where E(0) and E(2) are the coefficients in the Taylor series
expansion of E(x) about the origin,

E(x) = E(0) + E(1)x1 + 1

2!
E(2)(x1)2 + . . . , (6.7)

and where we again remind the reader that we assumed that
E(x) has no x2 dependence.

B. Uniform electric field

We now compute the Hall conductance of the CSMM in a
uniform electric field. Our reason for treating this simple case
first is to highlight a few subtleties in the calculation of the
Hall conductance of the CSMM. The first subtlety is associated
with the fact that one cannot resolve individual points in space
in the CSMM, since the spatial coordinates are actually the
noncommuting matrices X1 and X2. However, in the CSMM
one can still define a notion of the center of mass coordinate
of the FQH droplet, and the expectation value of this center
of mass coordinate can be computed in any state |ψ〉 of the
quantized CSMM. We define the center of mass coordinates
Xa

COM as

Xa
COM = 1

N
Tr{Xa} = xa

0√
N

, (6.8)

where in the second equality we evaluated the trace and found
that Xa

COM is proportional to the variable xa
0 introduced in

Eq. (4.11) of Sec. IV. To motivate this definition we simply
note that if the Xa were diagonal matrices, then their diagonal
elements could be interpreted as the positions of N particles,
and then 1

N
Tr{Xa} would agree with the usual definition of the

center of mass coordinate of N particles (assuming all particles
have equal masses).

Our strategy to compute the Hall conductance in the CSMM
is to compute the drift velocity vdrift of the center of mass
coordinate when the system is placed in an electric field E. We
can then use the fact that the CSMM describes a droplet of
particles with charge −e and density ρ0 = 1

2π�2
Bm

(computed
in Sec. IV) to compute the charge current jCOM at the center of
mass as

jCOM = −eρ0vdrift. (6.9)

The result can then be compared with the result of Hoyos and
Son for the current at the origin (location of the center of mass)
as expressed in Eq. (6.6).

Next, we need to discuss the issue of how to couple the
CSMM to an external electric field. This can be done using
the fluid interpretation of this theory from Sec. III. First, recall
from Sec. III that an ordinary charged fluid on commutative flat
spaceR2 can be coupled to a background electromagnetic field
by including vector and scalar potentials Aa(t,X) and ϕ(t,X),
respectively, in the action for the Lagrange description of this
fluid, Eq. (3.33). In our case, we are only interested in adding
a scalar potential ϕ(t,X) for the external electric field. Using
the fluid interpretation, we can incorporate this potential into
the NCCS theory by adding a term to the NCCS action of the
form

SEM = e

∫ T

0
dt TrHF

{ϕ̂(X̂,t)}, (6.10)

where the operator ϕ̂(X̂,t) is the operator representing the
scalar potential for the external electromagnetic field (and
recall that the charge of the particles is q = −e).

In defining the operator ϕ̂(X̂,t) we encounter an ordering
ambiguity. For example, if the scalar potential for the electric
field configuration on a commutative space is ϕ(t,X) = X1X2,
then we could define ϕ̂(X̂,t) = X̂1X̂2, ϕ̂(X̂,t) = X̂2X̂1, or
the symmetric Weyl ordering ϕ̂(X̂,t) = 1

2 (X̂1X̂2 + X̂2X̂1),
for example. We choose to use Weyl ordering since this is
consistent with our use of Weyl ordering to go between star
product and operator formulations of noncommutative field
theory [recall Eq. (3.8)], however, in the examples of this
section we do not actually encounter this ordering ambiguity.
Weyl-ordering for the external field was also adopted by the
authors of Ref. [34], who also considered the NCCS theory in
the presence of external fields.

Finally, to couple the CSMM to the external electromagnetic
field, we use the same action SEM as above but replace the
operators X̂a on the infinite-dimensional space HF with the
finite N × N matrix variables of the CSMM. From this action,
we can then read off the new Hamiltonian for the CSMM
coupled to the external electric field.

There is one more subtlety with the calculation of the Hall
conductance of the CSMM that we need to address before
we can proceed. The issue is that the parabolic potential
in the CSMM competes with the applied electric field to
determine the long time behavior of the CSMM in the presence
of the electric field. This is best illustrated for the case of
the CSMM in a constant electric field E(0) pointing in the x1

direction. The Hamiltonian describing this system is

H ′ = HCSMM + eE(0)Tr{X1}
= HCSMM + eE(0)NX1

COM, (6.11)

and where the trace is a classical matrix trace. To derive this
Hamiltonian, we used the fluid interpretation of the CSMM
theory and incorporated a scalar potential ϕ(t,X) = −E(0)X1

to describe the coupling to a constant electric field in the x1

direction. This Hamiltonian can be immediately diagonalized
by noting that

H ′ = T (R)HCSMMT (R)† − eN (E(0))2

2Bω̃
, (6.12)

where T (R) is a unitary translation operator10 (similar to a
magnetic translation) of the form

T (R) = exp

(
− iεabNXa

COMRb

�2
B

)
, (6.13)

and where in this case

R =
(

E(0)

Bω̃
,0

)
. (6.14)

The ground state of this Hamiltonian is |ψ ′
0〉 = T (R)|ψ0〉

and represents a stationary state with 〈ψ ′
0|X1

COM|ψ ′
0〉 = −E(0)

Bω̃

10We have [Xa
COM,Xb

COM] = i�2
B

N
εab and T (R)Xa

COMT (R)† =
Xa

COM + Ra .
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and 〈ψ ′
0|X2

COM|ψ ′
0〉 = 0, which corresponds to the equilibrium

position in the total potential

V = eBNω̃

2
δabX

a
COMXb

COM + eE(0)NX1
COM (6.15)

felt by the center of mass.
We see that if we simply diagonalize the Hamiltonian H ′

for the CSMM in the presence of the external field, we find no
time dependence and, in the ground state, the center of mass of
the droplet just sits at its equilibrium position (−E(0)

Bω̃
,0) under

the influence of the combined forces of the parabolic potential
and the applied electric field.

To compute the Hall conductance of this model, we instead
need to consider a nonequilibrium situation in which we start
with the system in the ground state |ψ0〉 of the unperturbed
CSMM (which we will now assume is properly normalized)
and then suddenly turn on the electric field. We then study the
time evolution of the center of mass coordinate at small times
t � 1

ω̃
, where 1

ω̃
is the time scale set by the parabolic potential.

Therefore we consider the “quantum quench” problem in
which the state of the system at time t is given by

|ψ(t)〉 = e−i H ′ t
h̄ |ψ0〉, (6.16)

where |ψ0〉 is the ground state of the unperturbed CSMM
Hamiltonian HCSMM, and H ′ is the perturbed CSMM Hamil-
tonian including the applied electric field. We then compute

〈ψ(t)|Xa
COM|ψ(t)〉 =〈ψ0|Xa

COM|ψ0〉

+ it

h̄
〈ψ0|

[
H ′,Xa

COM

]|ψ0〉 + . . .

(6.17)

and identify the drift velocity vdrift of the center of mass with
the term linear in t in this expansion,

va
drift = i

h̄
〈ψ0|

[
H ′,Xa

COM

]|ψ0〉. (6.18)

We now consider the case of a uniform electric field E(0)

pointing in the x1 direction so that H ′ takes the form shown in
Eq. (6.11). In this case, the drift velocity evaluates to

vdrift =
(

0,−E(0)

B

)
. (6.19)

Then the nonzero part of the charge current at the center of
mass of the droplet, at times t � 1

ω̃
, is

j 2
COM = eρ0

E(0)

B
= ν

e2

h
E(0), (6.20)

with ν = 1/m, and where we used ρ0 = 1
2π�2

Bm
. Therefore we

find that the Hall conductance of the CSMM with θ = �2
Bm is

given by

σH = 1

m

e2

h
, (6.21)

exactly as in the ν = 1/m Laughlin state.
For the case of a uniform electric field we can actually go

further and compute the full time dependence of the center of

mass coordinate. We find that

〈ψ(t)|X1
COM|ψ(t)〉 = E(0)

Bω̃
(−1 + cos(ω̃t)), (6.22)

〈ψ(t)|X2
COM|ψ(t)〉 = −E(0)

Bω̃
sin(ω̃t). (6.23)

We see that the center of mass moves in a large circle about
its equilibrium position (−E(0)

Bω̃
,0), but that at early times t �

1
ω̃

the droplet drifts in the x2 direction with velocity vector

vdrift = (0,−E(0)

B
).

C. Nonuniform electric field

We now compute the Hall conductance of the CSMM in
a nonuniform electric field. We consider an electric field,
which points in the x1 direction and which depends only on
the x1 coordinate. Since we are interested in contributions
to the current, which depend on the second derivative of the
electric field, it is sufficient to consider an electric field, which
depends at most quadratically on the x1 coordinate. Thus, for
an ordinary classical charged fluid described by the action of
Eq. (3.33), we would add a scalar potential of the form

ϕ(t,X) = −E(0)X1 − 1

2
E(1)(X1)2 − 1

3!
E(2)(X1)3, (6.24)

which corresponds, after computing minus the spatial gradient,
to an electric field E = (E(X),0) with

E(X) = E(0) + E(1)X1 + 1
2E(2)(X1)2. (6.25)

The coefficients E(j ), j = 0,1,2 in this expression (which are
all fixed real numbers) can be understood as the coefficients in
the Taylor expansion of E(X) about the origin.

This form of the scalar potential for the ordinary classical
fluid, combined with the considerations from earlier in this
section on how to couple the CSMM to external fields, leads
to a Hamiltonian

H ′ = HCSMM + H1 (6.26)

with

H1 = eTr

{
E(0)X1 + 1

2
E(1)(X1)2 + 1

3!
E(2)(X1)3

}
, (6.27)

where the trace denotes a matrix trace. This Hamiltonian then
describes the CSMM in the presence of a nonuniform electric
field in the x1 direction. To compute the Hall conductance, we
again consider a time-dependent problem where the state at

time t is given by |ψ(t)〉 = e−i H ′ t
h̄ |ψ0〉 with |ψ0〉 the ground

state of HCSMM. The drift velocity is again given by Eq. (6.18)
and since 〈ψ0|[HCSMM,Xa

COM]|ψ0〉 = 0 (since |ψ0〉 is an eigen-
state of HCSMM), this reduces to

va
drift = i

h̄
〈ψ0|

[
H1,X

a
COM

]|ψ0〉. (6.28)

It remains to actually compute the matrix element
〈ψ0|[H1,X

a
COM]|ψ0〉.

To compute this matrix element, we first note that we
already know the answer for the term in H1 proportional to
E(0) from the previous subsection. Next, we can immediately
see that the term proportional to E(1) will vanish since the
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commutator of Tr{(X1)2} with Xa
COM is linear in the center of

mass coordinate and we know that 〈ψ0|Xa
COM|ψ0〉 = 0 in the

unperturbed ground state of the CSMM. To handle the term
proportional to E(2), we use Eq. (4.11) to find that

Tr{(X1)3} =
(
x1

0

)3

√
N

+ 3√
N

x1
0

N2−1∑
A=1

x1
Ax1

A

+
N2−1∑

A,B,C=1

x1
Ax1

Bx1
CTr{T AT BT C}. (6.29)

Then we have [Tr{(X1)3},X1
COM] = 0 and

[
Tr{(X1)3},X2

COM

] = 3i�2
B

N

N2−1∑
A=0

x1
Ax1

A. (6.30)

We find that v1
drift = 0, while

v2
drift = −E(0)

B
+ i

h̄

(
e
E(2)

3!

)
3i�2

B

N
〈ψ0|

N2−1∑
A=0

x1
Ax1

A|ψ0〉

= −E(0)

B
− eE(2)�4

B

h̄N
〈ψ0|Λ11|ψ0〉

= −E(0)

B
+ E(2)�2

B

B

ηCSMM

h̄ρ0
, (6.31)

where we used the fact that 〈ψ0|Λ11|ψ0〉 = −A
h̄
ηCSMM and

ρ0 = N
A

. If we now compute j 2
COM = −eρ0v

2
drift then we find

that

j 2
COM = ν

e2

h

(
E(0) − E(2)�2

B

ηCSMM

h̄ρ0

)

= ν
e2

h

(
E(0) − E(2)�2

B

ηH

h̄ρ0

)
, (6.32)

where the second line follows from the fact that ηCSMM = ηH ,
whereηH was the guiding center Hall viscosity for the Laughlin
state. Finally, we should regularize this expression to obtain
a finite answer for the current in the N → ∞ limit. This just
amounts to the replacementηH → ηH,reg in the final expression
(we discuss the physical interpretation of this regularization in
Sec. VII). Therefore our final expression for the center of mass
current in a nonuniform electric field is

j 2
COM = ν

e2

h

(
E(0) − E(2)�2

B

ηH,reg

h̄ρ0

)
. (6.33)

Equation (6.33) is the main result of this section.
It is interesting to compare Eq. (6.33) with the result of

Hoyos and Son, Eq. (6.6), where the coefficient C2 was given in
Eq. (6.4). We see that the CSMM result contains a contribution
like the first term in C2, but with the total Hall viscosity ηtot

replaced with the guiding center Hall viscosity ηH,reg. As we
remarked earlier, this makes sense because we only expect the
CSMM to describe the dynamics of the guiding center degrees
of freedom in the quantum Hall problem. We also find that the
CSMM result does not contain any contribution resembling
the second term in C2 which is proportional to E ′′(B). This is
also not surprising since the CSMM itself does not contain any
information about the energy associated with electrons filling

a Landau level. Indeed, we can see from the fluid interpretation
of the NCCS theory from Sec. III that the NCCS theory (and
therefore the CSMM theory, which is a regularization of it), is
obtained by sending the energy scale h̄ωc to infinity. Therefore
we find that the CSMM accurately captures the guiding center
contribution to the response of a FQH state to a nonuniform
electric field.

VII. N → ∞ LIMIT, REGULARIZATION OF THE HALL
VISCOSITY, AND FLUID INTERPRETATION

In Ref. [13], Park and Haldane argued that one should
regularize the guiding center Hall viscosity by subtracting
the extensive term in ηH = − h̄

A
1
2 [ 1

2mN2 + ( 1−m
2 )N ], which

amounts to subtracting the term 1
2mN2 from

1

2
mN2 +

(
1 − m

2

)
N. (7.1)

In the quantum Hall problem, this regularization (or something
similar to it) is necessary to obtain a finite value for the guiding
center Hall viscosity in the thermodynamic limit N → ∞.

In this section we give an interpretation of this regularization
scheme in the context of the fluid interpretation (reviewed in the
last subsection of Sec. III) of the NCCS theory and CSMM. Our
starting point is to note that the expectation value 〈ψ0|Λab|ψ0〉
in the CSMM is actually proportional to the total angular
momentum of the state |ψ0〉. The fact that the Hall viscosity is
related to angular momentum has been discussed extensively
in Ref. [9], so this is not a new observation. However, this
observation will allow us to understand the origin of the
superextensive term 1

2mN2 in 〈ψ0|Λab|ψ0〉, and to explain why
it should be subtracted when computing the Hall viscosity of
the CSMM.

We start by deriving an expression for the angular mo-
mentum in the CSMM theory. To do this we use the fluid
interpretation of the NCCS theory and CSMM from the last
part of Sec. III. Our derivation of the expression for the
angular momentum consists of several steps. First, we derive
an expression for the angular momentum of a classical fluid
of charged particles on a commutative space R2 and in the
presence of a constant background magnetic field. Next, we
take the limit in which the mass of the particles making up
the fluid goes to zero. We then perform the noncommutative
deformation of the expression for the angular momentum to
obtain an expression for the angular momentum in NCCS
theory. Finally, the expression for the angular momentum in
NCCS theory can also be used for the CSMM, after we replace
the infinite-dimensional operator variables in the NCCS theory
with the N × N matrix variables of the CSMM.

We start with the action for a fluid of particles of mass M ,
charge q = −e, and constant (initial) density ρ0 in a constant
magnetic field B (see the discussion in the last subsection of
Sec. III),

S =
∫ T

0
dt

∫
d2x ρ0

(
1

2
MδabẊ

aẊb − eB

2
εabX

aẊb

)
,

(7.2)

where we remind the reader that for the classical fluid the fields
Xa(t,x) are ordinary functions of time t and spatial coordinates
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x ∈ R2. For now we omit the Lagrange multiplier field A0(t,x)
which keeps the density fixed to ρ0 at all times, as this term
plays no role in the definition of the angular momentum of the
theory. The momentum variables Pa(t,x) canonically conju-
gate to Xa(t,x) are obtained by differentiating the Lagrangian11

with respect to Ẋa , and we have

P1 = MẊ1 + eB

2
X2, (7.3)

P2 = MẊ2 − eB

2
X1. (7.4)

The expression for the angular momentum of this fluid is then

Lz =
∫

d2x ρ0(X1P2 − X2P1)

=
∫

d2x ρ0

{
MεabX

aẊb − eB

2
δabX

aXb

}
, (7.5)

and the limit M → 0 gives

Lz = −
∫

d2x ρ0
eB

2
δabX

aXb. (7.6)

Next, we set ρ0 = 1
2πθ

as is appropriate for the fluid inter-
pretation of NCCS theory, and we perform the noncommu-
tative deformation of this expression (see Sec. III) by re-
placing 1

2πθ

∫
d2x (· · · ) → TrHF

{· · · } and Xa(t,x) → X̂a(t).
This gives an expression for the angular momentum in NCCS
theory,

Lz = −eB

2
TrHF

{δabX̂
aX̂b}. (7.7)

Finally, we obtain an expression for the angular momentum of
the CSMM by replacing the operators X̂a(t) with the N × N

matrix variables Xa(t) of the CSMM, and by replacing the
trace over the infinite-dimensional space HF by the trace for
N × N matrices,

Lz,CSMM = −eB

2
Tr{δabX

aXb}. (7.8)

We now compute the angular momentum in the quantum
ground state |ψ0〉 of the CSMM. We first use the expansion of
Eq. (4.11) to write Lz,CSMM as

Lz,CSMM = −eB

2

N2−1∑
A=0

δabx
a
Axb

A = −h̄δabΛ
ab, (7.9)

where Λab are the strain generators for the CSMM introduced
in Sec. V. We see that our derivation of the angular momentum
for the CSMM theory makes sense since δabΛ

ab is exactly
the operator which generates rotations of the noncommutative
coordinates Xa in the CSMM.

For the ground state of the CSMM, we have Lz,CSMM|ψ0〉 =
L0|ψ0〉 with

L0 = −h̄

[
1

2
mN2 +

(
1 − m

2

)
N

]
, (7.10)

11We define the Lagrangian L by S = ∫
dt

∫
d2x ρ0 L.

and our previous results for 〈ψ0|Λab|ψ0〉 and ηCSMM can be
rewritten in the form

〈ψ0|Λab|ψ0〉 = − 1

2h̄
L0δ

ab (7.11)

ηCSMM = 1

2

L0

A
. (7.12)

Thus we see that the Hall viscosity coefficient ηCSMM (before
regularization) is equal to one half the angular momentum
density L0

A
in the ground state of the CSMM (compare with

the angular momentum interpretation of the Hall viscosity
from Ref. [9]). Finally, we also note that L0 is exactly the
guiding center part of the angular momentum of the Laughlin
ν = 1/m state. In the lowest Landau level the Landau orbit
contribution to the angular momentum is simply h̄N

2 , which
leads to the total angular momentum of the Laughlin state
Lz,ν= 1

m
= h̄[− 1

2mN2 + mN
2 ].

We now give a fluid interpretation of the superextensive
(order N2) term in L0, which is equal to − 1

2 h̄mN2. This can
be rewritten in terms of the density ρ0 = 1

2π�2
Bm

and radius

R2
N ≈ 2�2

BmN of the droplet described by the CSMM as

−π

4
eBρ0R

4
N . (7.13)

This is exactly the angular momentum of a droplet of radius RN

of the classical fluid described by the small θ limit of the NCCS
action in the presence of an additional parabolic potential, as
we now describe.

Recall that in the small θ limit the NCCS theory is described
by the fluid action of Eq. (3.32). Let us add to this action a
parabolic potential term which is the commutative analog of
the potential term in the CSMM action,

Spara = −eBω̃

2
ρ0

∫ T

0
dt

∫
d2x δabX

aXb, (7.14)

where ρ0 = 1
2πθ

. The equations of motion which result from
Eq. (3.32) plus Spara are Ẋ1 = ω̃X2 and Ẋ2 = −ω̃X1, as well
as the constant density constraint enforced by A0. For the initial
condition Xa(0,x) = xa the solution to these equations can be
expressed concisely as

X1(t,x) + iX2(t,x) = (x1 + ix2)e−iω̃t . (7.15)

Finally, using Eq. (7.6) for the angular momentum, we find
that a droplet of radius R has angular momentum

Lorb = −
∫

|x|�R
d2x ρ0

eB

2
δabX

aXb

= −π

4
eBρ0R4, (7.16)

where “orb” stands for “orbital” since this angular momentum
is associated with an overall rotation of the fluid.

We see that the superextensive term in L0 is exactly the
orbital angular momentum of a classical fluid on a commuta-
tive space in a magnetic field undergoing uniform rotational
motion. Based on this observation, and using the anisospin
ς = (m − 1)/2 defined earlier, the full angular momentum in
the ground state of the CSMM can be written as

L0 = Lorb + h̄ςN. (7.17)
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Now that we have identified the orbital contribution to the
total angular momentum the remaining extensive term, which
has a coefficient ς , can be interpreted as a spin angular
momentum for the N particles in the fluid, in keeping with
the interpretations of Hall viscosity of Refs. [5,7–9,13].

Now that we understand the connection between the ex-
pectation value 〈ψ0|Λab|ψ0〉 and the total angular momentum
L0 of the state |ψ0〉, we can give a fluid interpretation of the
regularization scheme for the guiding center Hall viscosity
proposed in Ref. [13]. Specifically, the regularization scheme
of Ref. [13] corresponds to subtracting the orbital contribution
to L0,

ηCSMM,reg = 1

2

(
L0 − Lorb

A

)
= 1

2
h̄ςρ0. (7.18)

This can be justified by noting that the classical charged fluid in
a constant magnetic field and on ordinary commutative space
does not exhibit a Hall viscosity,12 and so the Hall viscosity
in the fluid described by the CSMM must only be due to the
remaining terms in L0, which do not have an interpretation in
terms of the classical fluid on a commutative space.

VIII. HALL VISCOSITY IN THE PRESENCE OF
ANISOTROPY

In this section, we introduce a simple modification of the
CSMM which incorporates a constant unimodular metric gab

(i.e., a constant metric with determinant equal to 1). This metric
parametrizes an anisotropy or intrinsic geometry of a FQH
state, as discussed in the works of Haldane and collaborators
[7,8,13,23]. As emphasized by Haldane [7,8], introducing a
unimodular metric gab into the guiding center part of a FQH
state enables one to see the clear separation of the full Hall
viscosity tensor ηabcd

tot into Landau orbit and guiding center
contributions. When such a metric is used in the construction
of the guiding center part of a FQH state, the guiding center Hall
viscosity tensor ηab

H is modified to be proportional to gab (the
inverse metric of gab with gabgbc = δa

c ) instead of δab. In this
section we show that for our modified CSMM, the two-index
Hall viscosity tensor ηab

CSMM is also modified to be proportional
to gab. This confirms that our modification of the CSMM does
indeed correspond to incorporating a nontrivial metric gab into
the definition of the guiding center part of a FQH state. We also
note here that the introduction of a second metric (in addition
to the metric of space) into the quantum Hall problem is exactly
the starting point for the construction of the bi-metric theory
of FQH states of Refs. [24,25].

The action for our modified CSMM takes the form

SCSMM = − eB

2

∫ T

0
dt Tr{εabX

aD0X
b + 2θA0

+ ω̃gabX
aXb} +

∫ T

0
�

T
(i�̇ + A0�). (8.1)

12This can be seen directly by writing down the equations of motion
for this classical fluid in the Euler description (i.e., in terms of mass
density and velocity fields), and then noting that no viscosity term is
present. The Euler equations for a charged fluid in a magnetic field
and a general external potential appear, for example, in Eqs. (46) and
(47) of Ref. [46].

Note that the only change is the replacement of δab with gab in
the quadratic potential term. This is the only part of the action
which could conceivably depend on a metric, since the time
derivative term already uses the epsilon symbol εab to contract
indices. To quantize this system, we make a change to a new
set of variables X̃ã , which diagonalize the potential term but,
crucially, obey the same commutation relations as the original
variables. In other words, the symplectic form on the phase
space of this model takes the same form in the new variables
as in the old ones. Therefore the Poisson brackets and quantum
commutation relations of the new variables will be identical to
those for the old variables.

To describe this change of variables, we decompose the
metric and inverse metric in terms of coframes eã

a and frames
Ea

ã as

gab = eã
aδãb̃e

b̃
b, (8.2a)

gab = Ea
ã δabEb

b̃
. (8.2b)

Note that we use new indices ã,b̃ = 1,2 for the internal
indices of the frames and coframes. The frames and coframes
satisfy the relations Ea

ã eã
b = δa

b and Ea
ã eb̃

a = δb̃
ã , which just

express the fact that the matrices e and E (with entries eã
a

and Ea
ã , respectively) are inverses of each other. In addition,

it is possible to choose det(e) = det(E) = 1. This can be seen
as follows. First, note that the relation between gab and eã

a can
be expressed in matrix form as g = eT e, where g is the matrix
with entries gab. This implies that det(e)2 = det(g) = 1, so that
det(e) = ±1. However, the parametrization of g in terms of e

is invariant under the transformation e → Se for any matrix
S ∈ O(2), i.e., any S such that ST S = I. Then if for some
reason we found a decomposition of g with det(e) = −1, we
can always switch to a new parametrization with det(e) = 1 by
replacing e with Se for any S ∈ O(2) with det(S) = −1. Then,
since E = e−1 as matrices, we also guarantee that det(E) = 1.

Using the frames and coframes we introduce new matrix
variables X̃ã as

X̃ã = eã
aX

a, (8.3a)

Xa = Ea
ã X̃ã . (8.3b)

In terms of these variables, we have

gabX
aXb = δãb̃X̃

ãX̃b̃ (8.4)

and, crucially,

εabX
aD0X

b = εabE
a
ãEb

b̃
X̃ãD0X̃

b̃

= det(E)εãb̃X̃
ãD0X̃

b̃

= εãb̃X̃
ãD0X̃

b̃. (8.5)

We can then carry out the quantization of this modified
CSMM using the X̃ã variables in exactly the same way that
we quantized the original CSMM in Sec. IV. For example,
we would start by expanding the X̃ã in terms of a new set
of real scalar variables x̃ã

A (A = 0, . . . ,N2 − 1) exactly as
in Eq. (4.11). This procedure results in a new ground state
|ψ̃0〉 for the modified CSMM depending on the unimodular
metric gab.
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We can now calculate the Hall viscosity in this modified
CSMM. The setup for this calculation is the same as in Sec. V
and, in particular, we still apply an APD (or strain) to the
physical position variables Xa and not the new variables X̃ã .
The final expression for the two-index Hall viscosity tensor
ηab

CSMM is now proportional to the expectation value of the strain
generators Λab in the ground state |ψ̃0〉 of the modified CSMM,

ηab
CSMM = − h̄

A
〈ψ̃0|Λab|ψ̃0〉. (8.6)

The expectation value 〈ψ̃0|Λab|ψ̃0〉 is easily computed by

writing Λab = Ea
ãEb

b̃
Λ̃

ãb̃
, where

Λ̃
ãb̃ = 1

4�2
B

N2−1∑
A=0

{
x̃ã

A,x̃b̃
A

}
(8.7)

are the strain generators for the new variables, and by noting
that

〈ψ̃0|Λ̃ãb̃|ψ̃0〉 = 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
δãb̃, (8.8)

which follows since all quantities here are in terms of the new
“tilde” variables. Then the original expectation value of interest
evaluates to

〈ψ̃0|Λab|ψ̃0〉 = 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
δãb̃Ea

ãEb

b̃

= 1

2

[
1

2
mN2 +

(
1 − m

2

)
N

]
gab. (8.9)

After regularization, which consists of subtracting off the order
N2 term in this expectation value, the Hall viscosity tensor for
the modified CSMM takes the form

ηab
CSMM,reg = − h̄

A

1

2

(
1 − m

2

)
Ngab = ηCSMM,regg

ab, (8.10)

where ηCSMM,reg = 1
2 h̄ςρ0 as before, and where we defined

ρ0 = N
A

. We find that the Hall viscosity tensor for the modified
CSMM is exactly the guiding center part of the Hall viscosity
tensor of the Laughlin state with nontrivial guiding center
metric gab [8,13].

We close this section by calculating the area A and the
shape of the droplet of fluid described by the ground state |ψ̃0〉
of the modified CSMM. To do this, we follow the method
from the end of Sec. IV and consider the eigenvalue of
Tr{gabX

aXb} when acting on the state |ψ̃0〉. We again find
that Tr{gabX

aXb}|ψ̃0〉 = R2|ψ̃0〉 with the same eigenvalue
R2 from Eq. (4.43), and we can again interpret R2 as a
sum of contributions from N particles, R2 = ∑N

j=1 R2
j with

R2
j = 2�2

B(m(j − 1) + 1
2 ). However, the interpretation of the

shape of the droplet is different now since gabX
aXb is a general

quadratic form of the noncommutative position coordinates. In
the simple case wheregab = δab, we argued that the droplet was
circular, with the j th particle located somewhere on a circle of
radius Rj . In this case, we will argue that the droplet has the
shape of an ellipse, with the particular geometry of the ellipse
determined by the eigenvectors and eigenvalues of the metric
gab considered as a matrix, and where the j th particle is now

located somewhere on an ellipse whose size is determined by
Rj .

To facilitate this analysis, we use a convenient parametriza-
tion [23] of the unimodular metric gab in terms of a single
complex parameter γ ∈ C, |γ | < 1, and write

g = 1

1 − |γ |2
(

(1 + γ )(1 + γ ) i(γ − γ )

i(γ − γ ) (1 − γ )(1 − γ )

)
. (8.11)

If we also write γ = tanh( α
2 )eiβ for real α > 0 and a real phase

β, then we find that the matrix g has the decomposition

g = SDST (8.12)

with

S =
(

cos
(

β

2

)
sin

(
β

2

)
− sin

(
β

2

)
cos

(
β

2

)
)

(8.13)

and

D =
(

eα 0

0 e−α

)
. (8.14)

Here, e±α are the eigenvalues of g and the columns of the
matrix S are the normalized eigenvectors of g. In component
form we can also write

gab = Sã
a Dãb̃S

b̃
b , (8.15)

where for Sã
a , a indexes the rows of the matrix S and ã indexes

the columns.
We now introduce new noncommutative coordinates (i.e.,

matrices) Y ã defined as

Y ã = Sã
aXa, (8.16)

and in terms of these, we have

gabX
aXb = Dãb̃Y

ãY b̃

= eα(Y 1)2 + e−α(Y 2)2. (8.17)

We now see that in the modified CSMM with metric gab, we
can interpret the j th particle as residing on an ellipse with
the lengths of the minor and major axes of that ellipse given
by r1,j = e− α

2 Rj and r2,j = e
α
2 Rj

13. Furthermore, this ellipse
has its minor and major axes lined up with the axes of the Y ã

coordinate system, which is rotated from the Xa coordinate
system by an angle of β

2 as shown in Fig. 1. The area of the
ellipse where the j th particle is located is πr1,j r2,j = πR2

j ,
and since R2

j is linear in j , we again find that the particle
density is constant inside the droplet. Finally, the area of the
droplet is equal to the area of the ellipse for particle N , which
is A = πR2

N ≈ 2π�2
BmN , just as in the ordinary CSMM.

We conclude that the modified CSMM incorporating the
unimodular metric gab describes an elliptical droplet of fluid
with the same area A and constant density ρ0 as the ordinary
CSMM, and where the details of the shape of the ellipse are
determined by the eigenvalues and eigenvectors of the metric

13Recall that the equation a2x2 + b2y2 = R2 describes an ellipse in
the (x,y) plane with the lengths of the two axes of the ellipse given
by R

a
and R

b
.
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X1

X2

Y1

Y2

/2

FIG. 1. The shape and orientation of the droplet of fluid, which
is described by the ground state |ψ̃0〉 of the modified CSMM
incorporating the unimodular spatial metric gab.

gab. In addition, since the density ρ0 is the same as for the orig-
inal CSMM, we find that the coefficient ηCSMM,reg = 1

2 h̄ςρ0 of
Hall viscosity for the CSMM with gab �= δab is numerically
equal to the coefficient for the case where gab = δab. The
only difference between these two cases is the structure of the
Hall viscosity tensor, since for gab �= δab the two index tensor
ηab

CSMM,reg is proportional to gab instead of δab.

IX. CONCLUSION

In this paper, we investigated the geometric properties of
the Laughlin FQH states within the CSMM description of
these states which, roughly speaking, models these states
as a charged fluid in a magnetic field and propagating on
a noncommutative space. We focused our attention on the
specific properties of Hall viscosity, Hall conductance in
a nonuniform electric field, and the Hall viscosity in the
presence of anisotropy. We found that the answers for these
quantities calculated from the CSMM description contain only
the guiding center contribution to the known answers for these
quantities in the Laughlin states.

These results lead us to the general conclusion that the
CSMM description of the Laughlin FQH states accurately
captures the guiding center contribution to the geometric prop-
erties of these states, but lacks the Landau orbit contribution. As
we remarked in Introduction, the Landau orbit contribution is
often considered to be a trivial contribution since the interesting
correlations in the Laughlin state are contained in the guiding
center part of its wave function/state vector. Therefore we
find that the CSMM description captures the most important
contribution, namely the guiding center contribution, to the
physics of the Laughlin FQH states. However, any attempt
to completely describe the Laughlin states using the CSMM
or NCCS theory must also include some auxiliary degrees
of freedom which account for the missing Landau orbit
contributions to the geometric properties of these states.

There are several possible directions for future work in
this area. One direction would be to continue to develop the
fluid interpretation of the CSMM. One goal of this work
would be to find an appropriate definition of a density operator

ρ(x), which is a function of a commutative two-dimensional
coordinate x ∈ R2 and which is defined on length scales much
larger than the scale set by θ in the noncommutative theory.
One could then check whether this density operator satisfies
the Girvin-Macdonald-Plaztman algebra, and also attempt to
compute the static structure factor and compare to the known
answer for the Laughlin states [47]. Another goal of this work
would be to connect the CSMM description of the Laughlin
states with a different fluid description of these states, which is
Wiegmann’s vortex fluid description [48]. In this description,
the Laughlin FQH state with N electrons is modeled as a
rotating incompressible fluid containing N point vortices each
carrying a quantized circulation �, which depends on the
filling fraction of the Laughlin state. On this topic we note
that Bettelheim has recently introduced a method for defining
density and velocity fields in the CSMM, which are functions
of a commutative coordinate x in Ref. [49], and it would
be interesting to develop his approach further and to use
it to connect with Wiegmann’s vortex fluid description. We
also note that the problem of defining density operators in
NCCS theory and the CSMM has been considered before in
Refs. [34,36].

A second direction for future work would be to investigate
the Hall viscosity and other geometric response properties in
matrix models which describe other more complicated FQH
states. For example, a matrix model for the Jain states [50]
has been proposed in Ref. [51]. More recently, the authors
of Ref. [45] proposed a class of matrix models for the Blok-
Wen series of non-Abelian FQH states [52]. It would also be
interesting to search for new matrix models which can describe
other FQH states of interest.
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APPENDIX A: QUANTUM GENERATORS
OF THE U(N) ACTION

In this appendix, we consider the form of the quantum
generators of the U (N ) transformations of the matrix model
variables Xa and �. We use this result in Sec. IV to show that
the constraint of Eq. (4.6) simply forces physical states in the
CSMM to be singlets under the SU (N ) action, and to carry
a certain total charge under the U (1) action. This information
is sufficient to write down a basis of physical states (states
respecting the constraint) for the model following Ref. [31].
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We start with the generators for the U (N ) transformation of
the complex vector variable �. Under a U (N ) transformation
by a matrix V we have � → V � or in components

�j → V j
k�

k. (A1)

We are interested in the infinitesimal form of this transforma-
tion, so we take V = eiT for a Hermitian matrix T [the Lie
algebra of the group U (N ) consists of the N × N Hermitian
matrices]. Then, to first order in T , we have � → � + iT �.
In components, the first-order change in �j generated by T is

δT �j = iT j
k�

k. (A2)

We now look for a quantum operator O�(T ) such that

[O�(T ),�j ] = iT j
k�

k, (A3)

i.e., the quantum commutator of O�(T ) with �j implements
the infinitesimal U (N ) action generated by T (this is what we
mean when we say that a quantum operator generates the U (N )
action). The correct operator is (in terms of bj instead of �j )

O�(T ) = −ib
†
j T

j
kb

k. (A4)

ThusO� (T ) is the quantum operator which generates theU (N )
transformation V = eiT acting on �. One can also check that
the operators O�(T ) obey the Lie algebra of U (N ). To check
this it is sufficient to check that the map T �→ O�(T ) is a Lie
algebra homomorphism, i.e., that

[O�(T1),O�(T2)] = O�(−i[T1,T2]M ), (A5)

and it is straightforward to verify that this relation holds for
our generators O�(T ).

Next, we consider the matrix variables Xa . Under a U (N )
transformation, we have Xa → V XaV

T
. Writing V = eiT as

before, we find that to first order in T we have Xa → Xa +
i[T ,Xa]M . Note that for T = αI, i.e., for U (1) transformations,
the matrix variables Xa are invariant. Therefore we can restrict
our attention to SU (N ) transformations for the Xa variables.
We then choose T to be one of the generators T A of SU (N ),
and examine the infinitesimal action of V = eiT A

on the scalar
variables xa

0 and xa
A, A = 1, . . . ,N2 − 1, which appear in the

expansion of Xa from Eq. (4.11). We have

δT AXa = i[T A,Xa]M = i

N2−1∑
B=1

xa
B[T A,T B]M

= −
N2−1∑
B,C=1

xa
Bf ABCT C. (A6)

From this we read off that δT Axa
0 = 0 (reflecting the invariance

under U (1) transformations), and

δT Axa
B = −

N2−1∑
C=1

xa
Cf ACB, B = 1, . . . ,N2 − 1. (A7)

We now look for a quantum operatorOX(T A), which generates
this action on the variables xa

A (A = 1, . . . ,N2 − 1), i.e., an
operator which commutes with xa

0 and satisfies

[
OX(T A),xa

B

] = −
N2−1∑
C=1

xa
Cf ACB (A8)

for B = 1, . . . ,N2 − 1. One can check that the correct operator
is (in terms of the oscillator variables aA)

OX(T A) =
N2−1∑
B,C=1

f ACBa
†
BaC. (A9)

This completes the construction of the quantum generators
of the U (N ) action on the Xa and � variables in the CSMM.
This is all the information which is needed to analyze the j �= k

elements of the CSMM constraint Gj
k from Eq. (4.28).

APPENDIX B: KUBO FORMULA APPROACH TO HALL
VISCOSITY IN THE CSMM

In this appendix, we use a Kubo formula approach inspired
by Ref. [12] to compute the Hall viscosity in the ground state
of the CSMM. For this computation we subject the CSMM
to a time-dependent APD (or strain) parametrized by αab(t)
such that the dynamics of the system is described by the time-
dependent Hamiltonian

H (α(t)) = U (α(t))HCSMMU (α(t))†. (B1)

Here the operator U (α(t)) is the APD generator for the CSMM,
which we derive in Sec. V of the main text. We also assume
that at the time t0 we have αab(t0) = 0 so that |ψ(t0)〉 = |ψ0〉,
which is the ground state of the CSMM from Eq. (4.38). As
we discussed in Sec. II, the generalized force associated with
the APD parametrized by the coefficients αab is

Fab = −∂H (α)

∂αab

∣∣∣∣
α=0

= −i[Λab,HCSMM]. (B2)

To calculate the Hall viscosity, we need to compute the
expectation value of the generalized force Fab in the state
|ψ(t)〉 of the system, where |ψ(t)〉 is the solution to the
time-dependent Schrodinger equation

H (α(t))|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉. (B3)

We now discuss the details of this computation.
First, to set up this problem in a form which is amenable

to perturbation theory and the Kubo formula, we make a time-
dependent change of states by writing

|ψ(t)〉 = U (α(t))|φ(t)〉. (B4)

The state |φ(t)〉 is then the solution to a time-dependent
Schrodinger equation with a new Hamiltonian H ′(t) given by

H ′(t) = HCSMM + V (t) (B5)

with

V (t) = −ih̄U (α(t))†
∂U (α(t))

∂t

≈ h̄
∂αab(t)

∂t
Λab + . . . , (B6)

where in the second line we expanded the perturbation
V (t) to first order in αab(t). The new Hamiltonian H ′(t) is
now expressed as a time-independent term HCSMM plus a
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time-dependent perturbation V (t), and is therefore in a form14

which is amenable to an application of standard linear response
theory.

To compute the Hall viscosity, we naively want to compute
the expectation value of Fab in the state |ψ(t)〉. However,
in Ref. [12], the authors argued that one should instead
compute the expectation value of U (α(t))FabU (α(t))†, which
is equivalent to expressing the generalized force Fab in terms
of the strained coordinates U (α(t))xa

AU (α(t))† instead of the
original coordinates xa

A of the CSMM (in the language of
Ref. [12], we express the generalized force in terms of the
“X” variables as opposed to the unstrained “x” variables). The
reason for this is as follows. We view the APD parametrized by
αab(t) as an active transformation (i.e., we physically deform
the fluid/CSMM), and so in the computation of the response
to this APD we should use the generalized force expressed in
terms of the coordinates of the deformed system. Now we have

〈ψ(t)|U (α(t))FabU (α(t))†|ψ(t)〉 = 〈φ(t)|Fab|φ(t)〉, (B7)

and so it remains to compute the expectation value
〈φ(t)|Fab|φ(t)〉.

In interaction picture perturbation theory in the strength
of the potential V (t), the expectation value of any time-
independent operator A in the state |φ(t)〉 is given by the
standard Kubo formula as

〈φ(t)|A|φ(t)〉 − 〈φ(t0)|A|φ(t0)〉

= − i

h̄

∫ t

t0

dt ′ 〈φ(t0)|[AI (t),VI (t ′)]|φ(t0)〉 + . . . ,

(B8)

where AI (t) = ei
HCSMM(t−t0)

h̄ Ae−i
HCSMM(t−t0)

h̄ is in the interaction
picture defined by evolution with HCSMM, and likewise for

VI (t ′) = ei
HCSMM(t ′−t0)

h̄ V (t ′)e−i
HCSMM(t ′−t0)

h̄ . Note also that for any
time-independent A we have AI (t0) = A, and we also have
|φ(t0)〉 = |ψ(t0)〉 = |ψ0〉.

For the application to the calculation of the Hall viscosity,
we set A = Fab and keep only the term in V (t), which is linear
in the parameters αab(t). This yields the expression

〈Fab〉t − 〈Fab〉t0 = −i

∫ t

t0

dt ′
〈[
Fab

I (t),Λcd
I (t ′)

]〉
t0

∂αcd (t ′)
∂t ′

,

(B9)

where we used the shorthand notation 〈Fab〉t ≡
〈φ(t)|Fab|φ(t)〉, etc. Next, since 〈[Fab

I (t),Λcd
I (t ′)]〉t0 =

〈[Fab
I (t − t ′ + t0),Λcd

I (t0)]〉t0 , this can be rewritten as

〈Fab〉t − 〈Fab〉t0 = −
∫ ∞

−∞
dt ′ X abcd (t − t ′)

∂αcd (t ′)
∂t ′

,

(B10)

where we defined the response function

X abcd (t) = lim
ε→0+

i�(t)
〈[
Fab

I (t + t0),Λcd
I (t0)

]〉
t0
e−εt , (B11)

14The change of basis from |ψ(t)〉 to |φ(t)〉 is equivalent to the
change from the “x” to the “X” variables in Ref. [12]. We thank Barry
Bradlyn for helpful discussions on this point.

and where we also sent t0 → −∞ in Eq. (B10). Note that in
Eq. (B10) the Heaviside function �(t − t ′) allows us to extend
the upper limit of the integral over t ′ to +∞, while the presence
of the factor e−ε(t−t ′) allows us to send t0 → −∞.

Next, we perform a Fourier transform15 and consider the
frequency-dependent response function

X abcd (ω) =
∫ ∞

−∞
dt X abcd (t)eiωt

= lim
ε→0+

i

∫ ∞

0
dt eiω+t

〈[
Fab

I (t + t0),Λcd
I (t0)

]〉
t0
,

(B12)

where ω+ = ω + iε. Now we note that

Fab
I (t + t0) = −i

[
Λab

I (t + t0),HCSMM
] = h̄

dΛab
I (t + t0)

dt
,

(B13)

where we used the equation of motion for Λab
I (t + t0) in the

interaction picture. Then an integration by parts with respect
to t in the expression forX abcd (ω) yields a “strain-strain” form
of the response function X abcd (ω) analogous to Eq. (3.5) of
Ref. [12],

X abcd (ω) = −ih̄〈[Λab(t0),Λcd (t0)]〉t0
+ lim

ε→0+
h̄ω+

∫ ∞

0
dt eiω+t 〈[Λab(t+t0),Λcd (t0)]〉t0 .

(B14)

In the case where the unperturbed Hamiltonian has a unique
ground state and a finite energy gap, one finds that

lim
ω→0

X abcd (ω) = −ih̄〈[Λab(t0),Λcd (t0)]〉t0
= −ih̄〈ψ0|[Λab,Λcd ]|ψ0〉, (B15)

i.e., the first term in Eq. (B14) gives the full response at ω = 0
[12]. These assumptions (unique ground state and finite energy
gap) hold for the CSMM for any finite value of ω̃, and so
this formula for the response at ω = 0 can be applied to the
CSMM.16 We note that this form of the response at ω = 0
is what one obtains from a Hall viscosity calculation using
adiabatic perturbation theory [1,5,9,13].

Finally, we can complete the calculation of 〈Fab〉t ≡
〈φ(t)|Fab|φ(t)〉 to lowest order in time derivatives of αcd (t).
First, after a Fourier transformation (taking t0 → −∞ in order
to do the integration over t ′), we can write

〈Fab〉t − 〈Fab〉t0 =
∫ ∞

−∞

dω

2π
iωX abcd (ω)αcd (ω)e−iωt .

(B16)

15Our convention for Fourier transforms is f (ω) = ∫ ∞
−∞ dt f (t)eiωt ,

f (t) = ∫ ∞
−∞

dω

2π
f (ω)e−iωt .

16One should not confuse ω, the frequency appearing in the Fourier
transform of the response function, with ω̃, which sets the strength of
the parabolic potential in the CSMM.
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Next, we expand X abcd (ω) about ω = 0 as

X abcd (ω) = −ih̄〈ψ0|[Λab,Λcd ]|ψ0〉 + . . . (B17)

and invert the Fourier transformation to find

〈Fab〉t − 〈Fab〉t0 = ih̄〈ψ0|[Λab,Λcd ]|ψ0〉∂αcd (t)

∂t
+ . . . .

(B18)

For a system with an area A (A = 2π�2
BmN for the CSMM

with θ = �2
Bm), we then find that the Hall viscosity tensor is

given by

ηabcd
CSMM = ih̄

A
〈ψ0|[Λab,Λcd ]|ψ0〉, (B19)

and this tensor encodes the linear response of the “generalized
stress” Fab

A
to the “rate of strain” given by ∂αcd (t)

∂t
.
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