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From the SU(2) quantum link model on the honeycomb lattice to the quantum dimer model
on the kagome lattice: Phase transition and fractionalized flux strings
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We consider the (2 + 1)-dimensional SU (2) quantum link model on the honeycomb lattice and show that
it is equivalent to a quantum dimer model on the kagome lattice. The model has crystalline confined phases
with spontaneously broken translation invariance associated with pinwheel order, which is investigated with
either a Metropolis or an efficient cluster algorithm. External half-integer non-Abelian charges [which transform
nontrivially under the Z(2) center of the SU (2) gauge group] are confined to each other by fractionalized strings
with a delocalized Z(2) flux. The strands of the fractionalized flux strings are domain walls that separate distinct
pinwheel phases. A second-order phase transition in the three-dimensional Ising universality class separates two
confining phases: one with correlated pinwheel orientations, and the other with uncorrelated pinwheel orientations.
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I. INTRODUCTION

Quantum link models provide a generalization of Wilson-
type lattice gauge theories, in which the link variables are
not classical parallel transporters but intrinsically quantum
mechanical objects, similar to generalized quantum spins.
Quantum link models are related to Wilson-type lattice gauge
theories in the same way as quantum spin models are related
to their classical counterparts. Just as a classical O(3) spin,
an SU (2) quantum spin is a vector. However, its components
are not real numbers but Hermitian operators. Similarly, just
like Wilson’s SU (N ) parallel transporters, quantum links
are N × N matrices, but their matrix elements are operators
instead of just numbers.

The first quantum link models with gauge groups U (1) and
SU (2) were formulated by Horn in 1981 [1]. These models
were studied in more detail by Orland and Rohrlich under the
name of gauge magnets [2]. In [3] quantum link models were
used as an alternative regularization of non-Abelian gauge the-
ories. Quantum link models with an SU (N ) gauge symmetry
were constructed in [4] and were introduced as an alternative
formulation of lattice quantum chromodynamics (QCD). In
this formulation, 4D continuous gluon fields emerge via dimen-
sional reduction from the collective dynamics of (4 + 1)D dis-
crete quantum link variables, and quarks manifest themselves
as domain-wall fermions at the edge of the extra dimension.

Thanks to their finite-dimensional Hilbert space per link,
quantum link models are well suited for quantum simulation of
dynamical gauge theories with ultracold matter. In particular,
the discrete quantum link degrees of freedom can be embodied
by a few quantum states of ultracold atoms in an optical lattice
[5–7]. Although the ultimate long-term goal is to quantum
simulate QCD in order to address its real-time evolution as well
as its phases at nonzero baryon density, quantum simulation

experiments will have to start with much simpler toy-model
gauge theories.

Digital quantum simulation experiments using trapped cal-
cium ions have already been performed in order to address
particle-antiparticle pair creation in the Schwinger model [8].
Analog quantum simulations of Abelian and non-Abelian
lattice gauge theories, which are more easily scalable to large
system size, are expected to be realized in the foreseeable
future. The SU (2) quantum link model that is addressed in
this paper is also accessible to quantum simulation experiments
following the construction in [6,9]. We will show that the model
has intriguing confining dynamics with fractionalized flux
strings, which motivates its quantum simulation. The real-time
behavior of the strings is impossible to study with classical
computers, but can be addressed in quantum simulation ex-
periments. Here, we use quantum Monte Carlo simulations
(performed on a classical computer) to investigate the static
properties of the confining strings. These calculations can also
be used to validate future realizations of the SU (2) quantum
link model in quantum simulation experiments. As we will
discuss below, the model is also closely related to quantum
dimer models and thus provides a bridge between confining
theories in particle and condensed matter physics.

One of the simplest models is the U (1) quantum link model
in which a single quantum spin 1

2 per link represents the
gauge degrees of freedom. Quantum simulators for this model
have been proposed using ultracold Rydberg atoms in optical
lattices [10], or alternatively systems of superconducting flux
circuits [11]. The (2 + 1)D U (1) quantum link model has
been simulated with an efficient cluster algorithm (applied
in Euclidean time using quantum Monte Carlo simulations
on a classical computer) [12]. Interestingly, the model has
two distinct confined phases, separated by a rather weak first-
order phase transition, which “masquerades” as a deconfined
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quantum critical point [13]. Both phases spontaneously break
translation invariance by one lattice spacing, and thus give
rise to “crystalline confinement.” In one of the two phases,
in addition, charge conjugation is spontaneously broken. In
both phases, the confining electric flux string which connects
an external static charge with an anticharge, fractionalizes
into different strands, each carrying 1

2 unit of electric flux.
The strands play the role of domain walls separating the two
Z(2) realizations of a given type of confined phase, which
coexist due to spontaneous translation symmetry breaking. The
interior of these strands has a remarkable feature: it consists of
the other type of confined phase (which exists in the bulk on
the other side of the phase transition) [12].

The (2 + 1)D U (1) quantum link model on the square
lattice also has interesting connections to condensed matter
physics. In particular, it has the same Hamiltonian as the square
lattice quantum dimer model [14–16], which, however, realizes
a modified Gauss law with staggered background charges.
Again, using quantum Monte Carlo, the controversially dis-
cussed phase structure of the square lattice quantum dimer
model has been clarified [17]. It was found that the columnar
phase extends all the way to the so-called Rokhsar-Kivelson
point, without any intervening plaquette or mixed phases. In
this case, the confining strings connecting an external charge-
anticharge pair fractionalize into strands that carry even just 1

4
unit of electric flux. In this case, the strands represent domain
walls that separate coexisting columnar phases. Interestingly,
their interior consists of plaquette phase, although this phase
is not realized in the bulk.

In this paper, we extend the study of (2 + 1)D quantum link
models from U (1) to the non-Abelian gauge group SU (2),
which has the center Z(2). Interestingly, in its vacuum sector,
the SU (2) quantum link model on the honeycomb lattice
corresponds to the quantum dimer model on the kagome lattice
[18,19]. We present numerical results, partly obtained with an
efficient cluster algorithm, that reveal the phase structure of
the model. Again, we find two types of crystalline confined
phase with spontaneously broken translation symmetry. From
the dimer model perspective, these phases display pinwheel
order. In one type of confined phase, the orientation of the
pinwheels is correlated over infinite distances. In the other
type of confined phase, pinwheel order still persists, but the
orientations of the pinwheels are no longer correlated. In
this case, the phase transition that separates the two types
of confined phases is second order and consistent with the
universality class of the 3D Ising model.

In the SU (2) quantum link model, external static charges are
specified by an SU (2) representation, which characterizes how
the Gauss law is realized at a lattice site x. The non-Abelian
charges fall into two categories: those that are associated
with an integer “color-spin” representation of SU (2) transform
trivially under the Z(2) center, and those associated with a
half-integer “color-spin” (henceforth, the quotes on this word
will be dropped) representation carry nontrivial center electric
flux. While half-integer external charges are confined by un-
breakable strings, integer external charges can be screened by
dynamical gauge fields. In particular, we investigate the strings
connecting external charges in the color-spin 3

2 representation.
Remarkably, the corresponding string again fractionalizes into
two strands with delocalizedZ(2) center electric flux. As in the

Abelian model, the strands play the role of domain walls sepa-
rating different realizations of the same type of confined phase.

The rest of the paper is organized as follows. Section II ad-
dresses the connections between the (2 + 1)D SU (2) quantum
link model on the honeycomb lattice and the quantum dimer
model on the kagome lattice. In particular, we construct the
most general SU (2) gauge-invariant ring-exchange Hamilto-
nian associated with elementary hexagons, that respects the
lattice symmetries. In Sec. II we also introduce a dual height
variable representation of the model, which is used in the
numerical simulations discussed in Sec. III. There, we present
results about the phase structure and the nature of the confining
strings. Finally, Sec. IV contains our conclusions. The details
of the cluster algorithm are discussed in an appendix.

II. SU(2) QUANTUM LINK MODEL ON THE
HONEYCOMB AND THE QUANTUM DIMER

MODEL ON THE KAGOME LATTICE

In this section we construct the SU (2) quantum link model
on the honeycomb lattice and relate it to the quantum dimer
model on the kagome lattice. In particular, we construct the
most general hexagon-based SU (2) invariant ring-exchange
Hamiltonian that respects the lattice symmetries. We also
reformulate the model in terms of dual height variables which
will be used in the numerical simulations described in Sec. III.

A. Algebraic structure of the SU(2) quantum link model

As illustrated in Fig. 1, we consider a honeycomb lattice
with specific link orientations that are chosen in this particular
way in order to facilitate the implementation of the Gauss law.

A quantum link operator Uxy resides on each of the links
connecting neighboring lattice sites x and y. Like Wilson’s
parallel transporters, SU (2) quantum link operators are 2 × 2
matrices

Uxy = U 0
xy + iUa

xyσa, a ∈ {1,2,3} (1)

where σa are the Pauli matrices. However, the elements of
the quantum link matrices are no longer complex numbers but
noncommuting operators acting in a finite-dimensional Hilbert

FIG. 1. Honeycomb lattice with a suitable choice of link orienta-
tions. We distinguish four dual triangular sublattices A, B, C, and D,
which arise in the context of pinwheel order and of the corresponding
height variable representation.
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space. In particular, U 0
xy and Ua

xy are represented by four Her-
mitian operators. Just like Wilson’s parallel transporters, under
gauge transformations �x = exp(iωa

xσa) ∈ SU (2) quantum
link operators transform as

U ′
xy = �xUxy�

†
y = V UxyV

†. (2)

In Hilbert space, gauge transformations are represented by
unitary operators

V =
∏
x

exp
(
iωa

xG
a
x

)
. (3)

Here, Ga
x is an infinitesimal generator of SU (2) gauge trans-

formations at the site x, which obeys[
Ga

x,G
b
y

] = 2iδxyεabcG
c
x. (4)

In accordance with Gauss’ law, Ga
x receives contributions from

the links connected to the site x:

Ga
x =

∑
y

La
xy +

∑
z

Ra
zx. (5)

Here, the sum over y extends over those nearest neighbors
of x for which the connecting link is oriented from x to y.
The sum over z, on the other hand, extends over the nearest
neighbors of x for which the connecting link is oriented from
z to x. The Hermitian operators La

xy and Ra
xy generate SU (2)

gauge transformations at the “left” (x) and the “right” (y) end
of the link xy and they obey the standard SU (2) commutation
relations at each end of the link:[

La
xy,L

b
wz

] = 2iδxwδyzεabcL
c
xy,[

Ra
xy,R

b
wz

] = 2iδxwδyzεabcR
c
xy,[

La
xy,R

b
wz

] = 0. (6)

In order to guarantee the correct gauge transformation proper-
ties of the quantum link operators [cf. Eq. (2)], we impose the
commutation relations[

La
xy,Uwz

] = −δxwδyzσaUxy,[
Ra

xy,Uwz

] = δxwδyzUxyσa. (7)

The same relations also hold in Wilson’s lattice gauge theory,
but they are realized in an infinite-dimensional link Hilbert
space. This is unavoidable if one insists that Uxy is an
SU (2) matrix with c-number valued matrix elements. As
described above, the elements of a quantum link operator
are noncommuting objects. In contrast to Wilson’s theory,
in order to realize exact SU (2) gauge symmetry in a finite-
dimensional link Hilbert space, we postulate the following
nontrivial commutation relations:[

U 0
xy,U

0
wz

] = 0,[
U 0

xy,U
a
wz

] = 2iδxwδyz

(
Ra

xy − La
xy

)
,[

Ua
xy,U

b
wz

] = 2iδxwδyzεabc

(
Rc

xy + Lc
xy

)
. (8)

This closes the algebra of the four Hermitian quantum link
operators U 0

xy , Ua
xy and the six Hermitian operators La

xy and
Ra

xy , which turn out to be the generators of an embedding
SO(5) algebra. It is important to note that the commutation
relations of Eq. (8) do not compromise the gauge symmetry. In

FIG. 2. Weight diagrams for the four-dimensional spinor repre-
sentation (left) and the five-dimensional vector representation (right).
The matrix elements Uij of the quantum link operator act as shift
operators between the different states.

fact, lattice gauge theories with exact SU (2) gauge invariance
can now be constructed by choosing any representation of
SO(5) on each link. The embedding algebra SO(5) contains
SO(4) = SU (2)L × SU (2)R as a subalgebra, which gives rise
to the gauge symmetry on each link. In particular, there is no
SO(5) but only an SU (2) gauge symmetry.

States |�〉 that belong to the physical Hilbert space must
obey the Gauss law

Ga
x |�〉 = 0. (9)

An external non-Abelian static charge, which can be charac-
terized by an SU (2) representation, violates the Gauss law at
some lattice site x. If an external charge carries a half-integer
representation of SU (2), an unbreakable centerZ(2) flux string
emanates from it. Such a string can only end in another external
charge also carrying a half-integer representation. External
charges that carry integer representations, on the other hand,
are not confined by an unbreakable string because they can be
screened by dynamical non-Abelian charges associated with
the gauge field.

The above quantum link model construction naturally ex-
tends to Sp(N ) gauge theories with N � 2 [20]. In that case,
the embedding algebra is Sp(2N ). It should be noted that
SU (2) = Sp(1) and Sp(2) = Spin(5), the universal covering
group of SO(5). Similarly, SO(N ) and SU (N ) quantum link
models are realized with SO(2N ) and SU (2N ) embedding
algebras, respectively [20].

In the following, we will choose the smallest nontrivial
representation of the embedding algebra SO(5), namely, the
four-dimensional spinor representation. In that case, the link
Hilbert space is four dimensional. Alternatively, one could
choose the five-dimensional vector representation. The cor-
responding weight diagrams are illustrated in Fig. 2. Under
the SU (2)L × SU (2)R subgroup of SO(5), the fundamental
spinor and the vector representation decompose as

{4} = {1,2} + {2,1},
{5} = {1,1} + {2,2}. (10)

In particular, the vector (but not the spinor) representation
carries the same SU (2) representation, both on the left and
on the right ends of a link. The same feature is also inherent in
Wilson’s lattice gauge theory. In contrast to this, in the spinor
representation one end of the link carries a singlet and the
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other end carries a doublet representation. As we will see, this
feature, which is unique to quantum link models, gives rise
to new non-Abelian confinement phases with crystalline order
and fractionalized confining strings carrying delocalized Z(2)
center electric flux.

Finally, let us construct a simple quantum link model
Hamiltonian as

H = g2

2

∑
〈xy〉

(
La

xyL
a
xy + Ra

xyR
a
xy

) + 1

2g2

∑
� TrU�, (11)

where U� is the product of quantum link operators along the
oriented boundary of a hexagon visiting the sites x, y, z, u, v,
w in cyclic order, i.e.,

U� = UxyUyzUzuUuvUvwUwx. (12)

The term proportional to g2 represents the electric field energy,
and the hexagon-plaquette term represents the magnetic field
energy. This form of the Hamiltonian is exactly the same
as in Wilson’s lattice gauge theory, except that the link
and electric field operators are represented differently. It is
straightforward to convince oneself that H is indeed gauge
invariant, i.e., [H,Ga

x] = 0, for the local generators Ga
x of

gauge transformations at all sites x [cf. Eq. (5)]. It should be
noted that for the spinor representation {4} the electric field
energy is a trivial constant, while for the vector representation
{5} it distinguishes the nonzero electric flux states 1, 2, 3, 4
from the zero flux state 5 (cf. Fig. 2).

B. Rishon representation of the SU(2) quantum link model

In contrast to Wilson’s lattice gauge theory, quantum link
models allow a factorization of the quantum link operators
into so-called rishon constituents [4]. The term “rishon”
means “first” in Hebrew, and was used to describe fermionic
constituents of gauge bosons in composite models [21]. In con-
densed matter parlance, they are closely related to Schwinger
fermions [22]. For the SU (2) quantum link model, rishons are
color-doublet fermions residing at the ends of a link that obey
standard anticommutation relations

{ci†
xy,+,c

j
wz,+} = {ci†

xy,−,c
j
wz,−} = δxwδyzδij ,

{ci†
xy,+,c

j
wz,−} = {ci†

xy,−,c
j
wz,+} = 0,

{ci†
xy,±,cj †

wz,±} = {ci
xy,±,c

j
wz,±} = 0. (13)

Here, i and j are SU (2) color indices, and − and + refer to
the x and y ends of the link 〈xy〉, respectively. In the rishon
representation, the electric flux operators residing on a link are
given by

La
xy = 1

2ci†
xy,−σa

ij c
j
xy,−,

Ra
xy = 1

2ci†
xy,+σa

ij c
j
xy,+, (14)

and the matrix elements U
ij
xy of a quantum link matrix Uxy take

the form

U 11
xy = c1†

xy,+c1
xy,− + c2†

xy,−c2
xy,+,

U 12
xy = c2†

xy,+c1
xy,− − c2†

xy,−c1
xy,+,

FIG. 3. The Gauss law at a site x is satisfied in the {4}-
representation if either no rishons (left) or two rishons (right) reside
next to the site x.

U 21
xy = c1†

xy,+c2
xy,− − c1†

xy,−c2
xy,+,

U 22
xy = c2†

xy,+c2
xy,− + c1†

xy,−c1
xy,+. (15)

It is straightforward to show that they indeed satisfy the
SO(5) commutation relations of Eqs. (6)–(8). One sees that
the quantum link operator Uxy shuffles a rishon from one end
of the link to the other, keeping the total number of rishons per
link,

Nxy = ci †
xy,+ci

xy,+ + ci†
xy,−ci

xy,−, (16)

fixed.
The spinor representation {4} = {1,2} + {2,1} hasNxy = 1

rishon per link, which resides either on its left or on its right end.
The vector representation {5} = {1,1} + {2,2}, on the other
hand, has Nxy = 2 rishons per link, which reside on opposite
ends of the link for the states 1, 2, 3, 4 in Fig. 2. When
the two rishons sit on the same end of the link, due to their
fermionic nature, they necessarily form a color singlet. The
symmetric superposition of a two-rishon singlet sitting on the
left and on the right end of the link corresponds to the state 5
in Fig. 2. The antisymmetric superposition, on the other hand,
is an SO(5) singlet and thus decouples from the quantum link
model dynamics.

Let us now discuss the realization of the Gauss law in the
rishon representation. Since on the honeycomb lattice three
links emanate from a site, in the {4}-representation up to
three rishons may reside next to a lattice site. The Gauss law
requires that they form a local color singlet. Since every rishon
represents a color doublet, only zero or two (but not one or
three) rishons can meet at a site. This is illustrated in Fig. 3.
The explicit realization of the Gauss law allows us to work
in a manifestly gauge-invariant basis of physical states, which
have an even number of rishons next to each lattice site. In this
basis, the color state of the rishons is implicitly determined
because each rishon pair at a vertex must form a color singlet.
This implies that the dimension of the local link Hilbert space
is effectively reduced from 4 to 2. In particular, in Fig. 3 it
is sufficient to specify whether a rishon resides on the left or
right end of a link. Its color state is determined by the fact
that it forms a color singlet with its rishon partner next to the
same site. The reduced link states for the {4}-representation
are illustrated on the left-hand side of Fig. 4.

A similar situation arises for the {5}-representation. The
states 1, 2, 3, 4 have one rishon at each end of a link, which
must then form a color singlet with another rishon residing on
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FIG. 4. Possible configurations for the color 1
2 rishons on a link

for the {4}-representation (left) and for the {5}-representation (right).

an adjacent link that is also in one of the states 1, 2, 3, 4. In
the state 5, both rishons sit on the same end of a link and form
a color singlet by themselves. Hence, such a link, which does
not carry electric flux, does not contribute to the Gauss law.
The reduced link states of the {5}-representation are illustrated
on the right-hand side of Fig. 4. State 5 carries a color singlet
at both ends of the link and is represented by an empty link.

C. Non-Abelian external charges, Z(2) center symmetry,
and electric flux strings

As in any gauge theory, one can introduce external charges
by violating Gauss’ law at a specific position. In SU (2) gauge
theory, the external charges are characterized by their SU (2)
representation. In particular, there are charges either with
an integer or with a half-integer color-spin representation.
Pairs of non-Abelian external charges that carry a half-integer
representation are connected by an unbreakable Z(2) center
electric flux string. The string that connects charges with
an integer representation, on the other hand, can break by
the pair creation of dynamical charges. Since at most three
color doublets can sit near a site, when one uses the {4}-
or {5}-representation of the SO(5) embedding algebra one is
limited to external charges 1

2 , 1, or 3
2 .

When one uses the {5}-representation, in the absence of
external charges the Gauss law implies that flux-carrying links
in the states 1, 2, 3, 4 form closed loops. A pair of external non-
Abelian static charges carrying a half-integer representation of
SU (2) is thus connected by an unbreakable Z(2) flux string of
states 1, 2, 3, 4. This is illustrated in Fig. 5 (top). A similar
situation arises in Wilson’s standard lattice gauge theory [23].
In Fig. 5 (top) the closed loops (vertical dotted lines) wrapping
around the periodic volume on the dual lattice are used to
measure theZ(2) flux that goes through them. For this purpose,
one considers all links that cross the corresponding loop. If the
total number of rishons on one side of the loop is even, no net
Z(2) flux goes through the loop. In Fig. 5 (top) this is the case
for the loop on the left. The numbers +1| + 1 indicate that the
rishon count on both sides of the loop is even. If the number of
rishons is odd, on the other hand, one unit of Z(2) flux crosses
the loop. This is the case for the loop on the right, for which
−1| − 1 indicates an odd-odd rishon count. This definition of
the flux is consistent because the total number of rishons is
the same on both sides of the loop. It should be noted that the
closed loop can be deformed arbitrarily (on the dual lattice)
without changing the result, as long as no external half-integer
charges are crossed. As we will discuss in the next subsection,
the Hamiltonian respects the Z(2) center symmetry.

Interestingly, a rather different situation arises when we
formulate the SU (2) quantum link model using the {4} =
{1,2} + {2,1} representation of the embedding algebra SO(5).
Because it has only one rishon per link, unlike the {5} =
{1,1} + {2,2} representation, the {4}-representation does not

FIG. 5. Pairs of external non-Abelian static charges carrying a
3
2 representation of SU (2) (red filled circles) are included in the
{5}-representation (top) and in the {4}-representation (bottom) on a
periodic lattice. Electric flux is identified via the closed loops (vertical
dotted lines) by a change in the center symmetry values from +1| + 1
(no flux) to −1| − 1 (flux).

carry the same SU (2) representation on the left and on the right.
As a consequence,Z(2) center electric flux is then not uniquely
localizable on a given link. Still, the concept of unbreakable
Z(2) flux strings connecting half-integer external charges
applies here as well. However, theZ(2) flux is delocalized. This
is illustrated in Fig. 5 (bottom). The flux is defined as before.
However, in case of the {4}-representation it is important that
the lattice has an even extent. Otherwise, the number of rishons
modulo 2 on the left- and on the right-hand sides of the closed
loop would be different.

Although in the {4}-representation Z(2) flux is no longer
localized, one can determine the totalZ(2) flux flowing through
a closed loop that wraps around the periodic volume. In
Fig. 5 (bottom) there are again two loops (vertical dotted
lines) that are closed over the periodic spatial boundary on
the dual lattice. Net Z(2) flux flows only through the loop
on the right, indicating that Z(2) flux indeed connects the
two external charges, despite the fact that (in contrast to the
{5}-representation case) one cannot tell which links actually
carry the flux. Although the flux itself is delocalized, from
our Monte Carlo results we will conclude that its energy is
carried by two fractionalized strands, which play the role of
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domain walls separating distinct crystalline confined phases.
This situation is unique to quantum link models and does not
arise in Wilson’s formulation of lattice gauge theory.

D. Classification of ring-exchange Hamiltonians

Although the Hamiltonian of Eq. (11) is a natural choice,
it is not the most general one. In this section, we construct the
most general SU (2) gauge-invariant ring-exchange hexagon-
plaquette Hamiltonian that respects the lattice symmetries.
Here, we restrict ourselves to the spinor representation {4} of
the SO(5) embedding algebra.

Let us consider a single hexagon with six internal links
connecting the vertices and with six external links attached to
these vertices from outside. The positions of the rishons on
the external links define an environment in which the hexagon
plaquette is embedded. In particular, in order to satisfy the
Gauss law, the internal rishons must be positioned in such a way
that the total number of rishons at each lattice site is even. Up to
lattice rotations and reflections, this defines eight distinct cases
which are illustrated in Fig. 6. Each of the eight environments
allows two rishon configurations which are related by a ring-
exchange process that moves all six internal rishons from one
end of their link to the other.

Since the gauge-invariant state of each link is specified by
the position of the rishon, either at the left or at the right end
of a link, the hexagon-plaquette Hamiltonian is a 26 × 26 =
64 × 64 matrix, which decomposes into 32 blocks of 2 × 2

FIG. 6. The eight distinct environments (semitransparent rishons)
together with their allowed rishon configurations (black rishons) for
the spinor representation {4}. The corresponding dimer configurations
(bold red bars) are shown on the kagome lattice (dotted links). The
environment E = 8 defines two pinwheel plaquettes with opposite
pinwheel orientations.

matrices. Each 2 × 2 matrix

HE =
(

W 1
E TE

T ∗
E W 2

E

)
(17)

is Hermitian and corresponds to a ring-exchange transition
in a particular environment that is characterized by the type
of ring exchange E ∈ {1,2, . . . ,8} (cf. Fig. 6). The four real
parameters contained in Wa

E ∈ R and TE ∈ C are further
restricted by lattice symmetries. These include 60◦ rotations
around the center of a hexagon and reflections on axes going
through that center. For all environments except E = 3, this
implies that W 1

E = W 2
E and TE ∈ R. For E = 3, no such

restriction arises. Hence, the most general gauge-, rotation-,
and reflection-invariant Hamiltonian has 7 × 2 + 4 = 18 real
parameters (of which one overall additive constant is trivial).
The Hamiltonian of Eq. (11) corresponds to a special case
involving all different ring exchanges. It is interesting to note
that the ring-exchange process associated with the environment
E = 8 is similar to the one in the U (1) quantum link model. In
the absence of other ring-exchange processes, the model then
has an extended U (2) = SU (2) × U (1) gauge symmetry. Later
we will concentrate on the ring exchanges in the environments
E4 and E8 because they allow numerical exploration with an ef-
ficient cluster algorithm, which reveals an intriguing dynamics
of pinwheel phases with fractionalized flux strings. We expect
that the model has other interesting phases, possibly including
spin-liquid phases [22], which are worth investigating in future
studies.

It is now easy to see that the Hamiltonian respects the Z(2)
center symmetry that we discussed in the previous subsection.
The ring-exchange processes shift all rishons that reside on the
six links of a hexagon from one end of a link to the other. Since
the dual dotted lines in Fig. 5, which are used to identify the
Z(2) flux, necessarily cross two links of a given hexagon, the
number of rishons on both sides of the dotted line remains the
same modulo 2.

E. Relation to the quantum dimer model on the kagome lattice

Interestingly, in the absence of external charges, the SU (2)
quantum link model on the honeycomb lattice, with the {4}-
representation on each link, is equivalent to the quantum dimer
model on the kagome lattice. As illustrated in Fig. 7, two
rishons residing on neighboring links, which form a singlet
in order to satisfy the Gauss law at a site, are identified with a
dimer. These dimers are naturally associated with the bonds

FIG. 7. Two rishons on the honeycomb lattice (solid links),
forming a singlet pair, are identified with a corresponding dimer (red
bold line) on the kagome lattice (dotted links).
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that connect the centers of neighboring links. These bonds
then form a kagome lattice. Since in the {4}-representation
each link carries one rishon, there is exactly one dimer that
touches a link center, which corresponds to a site of the
kagome lattice. Hence, a dimer configuration on the kagome
lattice (resulting from the construction described above) auto-
matically satisfies a dimer covering constraint. The relations
between the quantum dimer model on the kagome lattice
and Z(2) lattice gauge theory were explored in [24,25]. Our
investigations extend this relation from Z(2) to SU (2), in
particular, in the presence of external charges, which manifest
themselves as local violations of the dimer covering constraint.
As a consequence, in the quantum dimer model violations that
correspond to half-integer charges are connected by a confining
string.

As illustrated in Fig. 6, the eight types of ring exchanges,
that contribute to the Hamiltonian of the SU (2) quantum link
model on the honeycomb lattice, are equivalent to the eight
dimer moves that are usually considered on the kagome lattice
[16,26–30]. These are sometimes referred to as resonance
moves. In particular, the environment E = 8 gives rise to a
dimer pinwheel with two possible orientations.

F. Pinwheel phases

We will not explore the entire 18-dimensional parameter
space of the quantum link model. Instead, we focus on
investigating the phase diagram as a function of λ = T4/T8,
while setting all other TE = 0. In addition, we set Wa

E = 0 for
all environments E. These restrictions put us in phases with
pinwheel order, which are illustrated in Fig. 8. The pinwheels
reside on one of the four sublattices A, B, C, or D. As we
will see later, for T4/T8 > λc = 0.7185(5) there is a correlated
pinwheel phase in which all pinwheels are oriented in the same
direction. For T4/T8 < λc, on the other hand, pinwheels still
persist on a given sublattice, but their orientations are no longer
correlated. As we will demonstrate, the phase transition that
separates the correlated from the uncorrelated pinwheel phase
is second order in the universality class of the 3D Ising model.

Since pinwheels exist on one of the four sublattices, both
pinwheel phases spontaneously break lattice translation in-
variance and thus represent non-Abelian crystalline confined
phases. In addition, the correlated pinwheel phase also breaks
reflection symmetry. This Z(2) symmetry is restored in the
uncorrelated pinwheel phase. Hence, it is not surprising that the
corresponding phase transition is in the 3D Ising universality
class.

Although we will not discuss this further, we have also
explored the parameter space fixing T4 = T8 and varying T1 =
T7 (while setting all other parameters to zero). For sufficiently
large T1 = T7, the correlated pinwheels exist only on one third
of the plaquettes of a given sublattice. As illustrated in Fig. 9,
one can then distinguish 12 sublattices Xα , Xβ , Xγ , where X

refers to any of the sublattices A, B, C, or D. Hence, translation
invariance is now spontaneously broken in a different way.
As one would expect, the transition that separates this phase
from the previously discussed correlated pinwheel phase is first
order.

FIG. 8. “Cartoon” states of the correlated (top) and uncorrelated
(bottom) pinwheel phase residing on sublattice A. The corresponding
height variable configurations (defined in Sec. II G) are denoted by
± signs associated with the hexagon centers. For the correlated
pinwheel phase, all pinwheels are oriented in the same direction
and all height variables are +. For the uncorrelated pinwheel phase,
pinwheel plaquettes marked with a bold boundary carry a negative
height variable and are oriented in the opposite direction.

G. Height model representation of the SU(2)
quantum link model

Because they will play an important role in our Monte Carlo
algorithm, we now introduce Z(2)-valued height variables that
are associated with the four sublattices A, B, C, and D. In
particular, the peculiar choice of link orientations, illustrated
in Fig. 1, facilitates the following definition of height variables.
If the single rishon, which resides on a given link that separates
two hexagons, is ahead of the orientation arrow located in the
middle of that link, the height variables associated with the
two adjacent hexagons are the same. On the other hand, if
the rishon sits behind the orientation arrow, the corresponding
height variables are different. If all height variables are changed
simultaneously, the rishon configuration remains unchanged.
Hence, the height variable representation is redundant. Up to
this global redundancy, there is a one-to-one correspondence
between the height variable configurations and the rishon
configurations. In particular, the height variables guarantee that
the Gauss law is automatically satisfied.
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FIG. 9. Illustration of a pinwheel phase with 12 distinct sublat-
tices with additional subscripts (α, β, and γ ). Here, the pinwheels
reside on Aα plaquettes, with the order parameters MXα

= −MXβ
=

−MXγ
(cf. Sec. II G), where X is any of the sublattices A, B, C, or

D.

In the Monte Carlo calculations (to be discussed in the next
section), we will also consider external non-Abelian charges
in the 3

2 representation of SU (2). Obviously, the Gauss law is
violated at the lattice sites where the charges are located. In
order to incorporate configurations with external charges into
the height variable description, we introduce a Dirac string that
connects a pair of external 3

2 charges. The rule for assigning
height variables is reversed when a link that separates two
adjacent hexagons is traversed by a Dirac string. Based on
the resulting height variable configuration, the Gauss law is
automatically violated at the two ends of a Dirac string, i.e., at
the location of the external charges. The Dirac string itself can
be deformed arbitrarily (with its ends fixed) without changing
the physics.

TABLE I. Order-parameter signatures for the eight correlated
pinwheel phases. The arrow denotes the orientation of the pinwheels.
The height variables are affected by an overall sign redundancy, not
included here.

MA MB MC MD Pinwheel

+ + + + A �
− + + + A �
− + − + B �
− − − + B �
− + + − C �
− + − − C �
− − + + D �
− − + − D �

TABLE II. Order-parameter signatures for the four uncorrelated
pinwheel phases. The height variables are affected by an overall sign
ambiguity, not included here.

MA MB MC MD Pinwheel

0 + + + A

− 0 − + B

− + 0 − C

− − + 0 D

In order to distinguish the various pinwheel phases, we now
introduce four order parameters MA, MB , MC , and MD , using
the height variables that are associated with the four sublattices
A, B, C, and D. The order parameter MX is defined as the
sum of all height variables ±1 on sublattice X. In a correlated
pinwheel phase, all four sublattices order, i.e., 〈MX〉 �= 0 for all
X. The order-parameter signatures for the eight realizations of
the correlated pinwheel phase are summarized in Table I. In the
uncorrelated pinwheel phase, on the other hand, the sublattice
X, on which the pinwheels reside, does not order, i.e., 〈MX〉 =
0, but the other three sublattices still order. The order-parameter
signatures for the four realizations of the uncorrelated pinwheel
phase are summarized in Table II.

H. Fractionalization of Z(2) flux strings

As discussed before, in contrast to the {5}-representation
case, in the {4}-representation case it is not possible to localize
theZ(2) center electric flux. As we will see in our Monte Carlo
simulations, a Z(2) flux string connecting half-integer external
charges then fractionalizes into two strands. Indeed, the flux
strands represent interfaces separating distinct realizations of
pinwheel phases. The interface tension then manifests itself as
a string tension. In the simulations we identify the flux strands
by their energy density. Since the Z(2) flux is delocalized,
it is not obvious whether only the energy or also the flux
itself fractionalizes. Indeed, it seems difficult to imagine that
something as elementary as a single unit of Z(2) flux could be
divided into two halves. However, this is exactly what happens
in the {4}-representation case.

In Sec. II C we showed how to identify center electric flux
that flows through a closed loop (the vertical dotted lines
in Fig. 5) wrapping around the periodic boundary. If the
total number of rishons residing on the left side of the links
intersected by the loop is odd, there is one unit of Z(2) flux
flowing through the loop. If the number is even, on the other
hand, there is no net Z(2) flux. When we count the rishons
on the right side of the intersected links, we obtain the same
result, at least if the extent of the lattice is even.

In order to show that a single unit of Z(2) flux can indeed
be divided into two halves, we now consider a periodic lattice
with an odd extent, as illustrated in Fig. 10. The wrapping loop
now intersects an odd number of links, such that the difference
of the number of rishons on the left and on the right is odd.
This gives rise to even-odd or odd-even rishon counts, which
are indicated as +1| − 1 or −1| + 1. The fat dashed line in
Fig. 10 represents a domain wall that separates two realizations
of the pinwheel phase. Above the domain wall, the pinwheels
reside on the A sublattice, and below the domain wall they
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FIG. 10. An odd-sized lattice in a pinwheel phase, periodic over
the green dashed box, always contains half a unit of Z(2) flux
measured via a closed loop (vertical dotted line), together with a
single associated domain wall (fat dashed links), separating two
realizations of a pinwheel phase. Note that the sublattice structure
is incommensurate with the odd-sized lattice.

reside on sublattice B. It should, however, be noted that the
four-sublattice structure is incommensurate with the odd lattice
extent. This is no problem. It just means that the odd extent
forces at least one domain wall into the system. The fact that
the rishon count on the left and on the right side of the wrapping
loop produces only one odd result shows that indeed one half
of a Z(2) flux has been trapped in this volume of odd extent.
As before, the fractionalized flux is still not localizable on
individual links, but it is clear that it resides somewhere in the
finite periodic volume.

It is interesting to note that there are two distinct types of half
Z(2) flux states: those for which the rishon count on the left of
the wrapping loop is even and thus odd on the right (+1| − 1),
and those for which the count on the left is odd and thus even
on the right (−1| + 1). In Fig. 10 the two states are related to
each other by shifting all rishons that reside on the domain wall
from one end of the link to the other. This maintains Gauss’
law but interchanges the rishon count between even and odd,
on both sides of the wrapping loop. It should be noted that
the rishon count depends on the choice of the location of the
wrapping loop. In Fig. 10 the loop extends along the sublattices
C and D and provides the rishon count +1| − 1. A shifted loop
extending along the sublattices A and B would yield −1| + 1.
Still, what matters is that two distinct sectors exist.

To summarize, on a lattice of even extent a net flux is
characterized by an odd-odd rishon count (−1| − 1 on the
two sides of the wrapping loop), while the absence of net flux

corresponds to an even-even count (+1| + 1). On a lattice of
odd extent, on the other hand, there is always one half of a
Z(2) flux, characterized either by an even-odd (+1| − 1) or
by an odd-even (−1| + 1) rishon count. Hence, for lattices
of both even and odd extents, there are two different Z(2)
symmetry sectors, for each of the two spatial directions. The
fact that a single unit of Z(2) flux can be divided into two
halves is a unique feature of quantum link models, which does
not arise in ordinary Wilson-type lattice gauge theories. It is
possible only because in the {4}-representation a link carries a
different SU (2) representation on the left and on the right (one
singlet and one doublet). When one uses the {5}-representation,
on the other hand, the ends of a link carry the same SU (2)
representation (either both a singlet or both a doublet) (cf.
Fig. 4). This situation also arises in Wilson’s lattice gauge
theory, except that the representation, which is again the same
on both ends of a link, can be arbitrarily large.

FIG. 11. On an even-sized lattice, the inclusion of a single Dirac
string (hashed links) gives rise to two domain walls (fat dashed links),
with one unit of Z(2) flux detected by the closed loop (vertical dotted
line). The green dashed box is endowed with periodic boundary
conditions. The configuration of Fig. 10 is included inside the red
dotted box.
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In Fig. 11 we have increased the lattice of Fig. 10 to be of
even extent in the y direction and we have enforced one unit of
Z(2) flux to wrap around the x direction by inserting a Dirac
string (the hashed links). This gives rise to two domain walls
(the fat dashed lines) that separate distinct correlated pinwheel
phases. Although it is again impossible to localize the flux,
it is natural to assume that it fractionalizes into two strands,
each carrying half of the Z(2) flux, associated with the two
domain walls. Indeed, the dotted line encircles a region that
corresponds exactly to Fig. 10, which contains half a unit of
Z(2) flux. In Fig. 10 we did not insert any height variables
because a lattice of odd extent is incommensurate with the
four-sublattice structure. The even-extent lattice of Fig. 11, on
the other hand, allows for the inclusion of height variables. The
correlated pinwheel phase at the top and at the bottom of Fig. 11
is characterized by the order-parameter pattern + + ++ for
the four sublattices A, B, C, D. According to Table I, this
phase has pinwheels on sublattice A, which are oriented
counterclockwise. The phase between the two domain walls, on
the other hand, is characterized by the order-parameter pattern
+ − +−. Note that below the Dirac string, this pattern changes
to the equivalent pattern − + −+. According to Table I, this
phase has pinwheels on sublattice B, which are again oriented
counterclockwise. As our numerical simulations will reveal,
configurations in which the pinwheels are oriented in the same
direction on both sides of a domain wall are energetically
favored. In that case, two of the four order parameters MX

change sign as we cross the domain wall.
Figure 12 illustrates a situation with two external 3

2 charges
in the background of a correlated pinwheel phase with order-
parameter pattern + + ++ (and thus with pinwheels on
sublattice A that are oriented counterclockwise). As before,
closed loops (the vertical dotted lines wrapping around the y

direction) are used to detect the Z(2) flux that flows through
them. The loop that passes between the charges has an odd-odd
rishon count (−1| − 1), thus indicating one unit of Z(2) flux.
The other loop (to the right of both charges), on the other
hand, yields an even-even rishon count (+1| + 1), and thus
indicates the absence of flux. The situation is similar to Fig. 11.
Again, there are two domain walls, however, they are no
longer wrapping around the periodic x direction, but instead
end on the external charges. As before, the region between
the domain walls is filled with a realization of the correlated
pinwheel phase that is distinct from the one in the bulk, here
with pinwheels on sublattice C, still oriented in the same
counterclockwise direction as in the bulk. In order to be able
to define height variables, despite the fact that Gauss’ law is
violated at the location of the charges, they are connected by
a Dirac string (across which the rules for assigning height
variables are reversed). Above the Dirac string, the order-
parameter pattern is − + +−, and below it is + − −+ (which
is physically equivalent). Although theZ(2) flux is delocalized,
it is again natural to associate one half of it with each domain
wall.

III. MONTE CARLO SIMULATIONS OF THE HEIGHT
MODEL REPRESENTATION

In this section we present results of numerical simulations,
concerning both the nature of the confining flux strings and

FIG. 12. The inclusion of two 3
2 charges (red filled circles)

connected by a Dirac string (hashed links) gives rise to two domain
walls (fat dashed links) with a different pinwheel realization between
the domain walls compared to the bulk (see Fig. 11). One unit of Z(2)
flux is detected by a closed loop (vertical dotted line) between the
charges, and no flux is present in the bulk (to the right of the charges).
The green dashed box is endowed with periodic boundary conditions.

the phase transition that separates correlated from uncorrelated
pinwheel phases.

A. Fractionalized confining strings in the two pinwheel phases

In Sec. II H, we have already familiarized ourselves with
the properties of domain walls separating distinct pinwheel
phases. In particular, they correspond to strands of confining
strings carrying half a unit of fractionalizedZ(2) center electric
flux. This qualitative picture is confirmed quantitatively by our
numerical simulations. Deep in the correlated pinwheel phase
(for T4 = T8) we apply an efficient cluster algorithm that is
described in the Appendix. In the rest of the parameter space,
where the cluster algorithm is not applicable, we employ a
standard Metropolis algorithm. Although it is less efficient than
the cluster algorithm (by about a factor of 2), it is capable of
extracting the physics of the model even close to its phase
transition.

Figure 13 shows a pair of domain walls (representing one
unit of Z(2) flux) wrapping around the periodic x direction,
deep in the correlated pinwheel phase at T4 = T8. The plot
shows the energy density averaged over all Euclidean time
slices. Away from the domain walls (on the top, bottom, and
in the middle of the plot) there are correlated pinwheel phases.
The domain walls are characterized by rows of hexagonal
plaquettes with alternating energies. Although this is not
visible in the energy density itself, we have confirmed that
the pinwheels on the two sides of a domain wall reside on
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FIG. 13. Energy density on a 24 × 24 honeycomb lattice in the
correlated pinwheel phase. A pair of domain walls is induced by an
invisible Dirac string wrapping around the lattice in the x direction.
Here, λ = T4/T8 = 1 and βT8 = 15. The data are produced using the
cluster algorithm.

different sublattices, but are oriented in the same direction. We
have not investigated whether the domain walls correspond to
rigid or rough interfaces (separating distinct pinwheel phases).
Deep in the correlated pinwheel phase, it is plausible that the
interfaces are rigid. Near the phase transition we expect them
to be rough.

Figure 14 illustrates the energy density corresponding to one
unit of Z(2) flux that wraps around the periodic x direction
in the uncorrelated pinwheel phase. Similar to Fig. 13, the
flux fractionalizes into two strands that manifest themselves
as a pair of domain walls. In contrast to Fig. 13 (which
corresponds to T4 = T8), here the energy density explicitly
shows the spontaneous breakdown of translation invariance.
In the top part of Fig. 14 (above the upper domain wall) the

FIG. 14. Energy density on a 24 × 24 honeycomb lattice in the
uncorrelated pinwheel phase. A pair of domain walls is induced by an
invisible Dirac string wrapping around the lattice in the x direction.
Here, λ = T4/T8 = 1

2 and βT8 = 15. The data are produced using the
Metropolis algorithm.

FIG. 15. Energy density for a 48 × 48 lattice in the correlated
pinwheel phase with two external 3

2 charges (red triangles) separated
by 16 plaquettes. Here, λ = T4/T8 = 1 and βT8 = 15. The data are
generated with the cluster algorithm.

pinwheels are on sublattice C, and between the domain walls
they are on sublattice B.

We have also inserted pairs of external 3/2 charges in order
to investigate the confining strings that connect them. Figure 15
illustrates the situation in the correlated pinwheel phase, which
resembles the “cartoon” Fig. 12. In particular, one again sees
that the flux fractionalizes into two strands that emanate from
the charges. Although it is not obvious from the figure, we
have verified that the bulk and the region between the flux
strands are in distinct pinwheel phases. Figure 16 illustrates the
corresponding situation in the uncorrelated pinwheel phase. In
this particular case, deep in the uncorrelated pinwheel phase,
the strands have coalesced to a single string.

FIG. 16. Energy density for a 24 × 24 lattice in the uncorrelated
pinwheel phase with two 3

2 charges (red triangles) separated by
12 plaquettes. Here, λ = T4/T8 = 1

2 and βT8 = 15. The data are
generated with the Metropolis algorithm.

205108-11



BANERJEE, JIANG, OLESEN, ORLAND, AND WIESE PHYSICAL REVIEW B 97, 205108 (2018)

FIG. 17. Determination of the critical value λc = (T4/T8)c =
0.7185(5) using the Binder ratio 〈|MA|〉2/〈M2

A〉 for different lattice
sizes L. The data are generated using the Metropolis algorithm with
βT8 = 3

2 L. Each data point is obtained from at least a few million
Monte Carlo sweeps.

B. Phase transition between two crystalline confining phases

Let us now investigate the nature of the phase transition
that separates the correlated from the uncorrelated pinwheel
phase. In both phases, translation invariance is spontaneously
broken. In the correlated pinwheel phase, in addition, reflection
symmetry is spontaneously broken. This symmetry is restored
in the uncorrelated pinwheel phase. If the phase transition is
second order, the spontaneous breakdown of theZ(2) reflection
symmetry suggests that it should be in the 3D Ising universality
class. Since translation invariance is spontaneously broken on
both sides of the phase transition, this argument is not entirely
straightforward.

In order to study the nature of the phase transition, we
investigate the finite-size scaling of the magnetization 〈|MA|〉
and the Binder ratio 〈|MA|〉2/〈M2

A〉 [31,32] for various values
of the system size L. The deviation from the critical point
is parametrized by λ̄ = (λ − λc)/λc. Figure 17 shows the
finite-size scaling behavior of the Binder ratio

〈|MA|〉2/
〈
M2

A

〉 ∝ f (λ̄L1/ν), (18)

where f is a smooth function and ν is the critical exponent
associated with the correlation length. The fact that the various
finite-volume curves intersect in one point indicates a second-
order quantum phase transition at λc = (T4/T8)c = 0.7185(5).
This value of the critical coupling λc and the value of the critical
exponent ν = 0.629(15) are extracted from a bootstrap fit to the
above finite-size scaling formula. The fit has a χ2/d.o.f. ∼ 1.6
and results in a value of ν consistent with the known value ν =
0.629 971(4) for the 3D Ising universality class [33]. Figure 18
shows 〈|MA|〉 at the critical coupling as a function of the system
size. The expected finite-size scaling behavior

〈|MA|〉 ∝ L−β/ν (19)

is again confirmed. The value of the critical exponent β (not to
be confused with the inverse temperature) follows from β/ν =
0.514(5). The percent level accuracy of the critical exponents
results from high statistics of at least 5 × 107 Monte Carlo
sweeps combined with a careful error analysis. This result is

FIG. 18. Determination of the critical exponent β from β/ν =
0.514(5) by calculations of the magnetization 〈|MA|〉 as a function
of the lattice size L, at the critical point λc = (T4/T8)c = 0.7185(5).
Each data point is determined from at least 5 × 107 Monte Carlo
sweeps. The dashed line results from a fit to Eq. (19) using L � 12.

again consistent with the known value β/ν = 0.518 149(3) for
the 3D Ising universality class [33].

IV. CONCLUSIONS

We have investigated the SU (2) quantum link model on the
honeycomb lattice using the {4}-representation of the SO(5)
embedding algebra. Interestingly, this model is equivalent
to the quantum dimer model on the kagome lattice. We
constructed the most general gauge-invariant single-plaquette
ring-exchange Hamiltonian that respects the lattice symme-
tries. We then concentrated on the ring exchanges of types
4 and 8 and investigated the phase diagram as a function of
λ = T4/T8. We found a second-order quantum phase transition
in the 3D Ising universality class, which separates a correlated
from an uncorrelated pinwheel phase. Both phases break lat-
tice translation invariance spontaneously, with four emergent
sublattices. In the correlated pinwheel phase, in which the
orientation of the pinwheel dimers is coherent throughout the
lattice, reflection symmetry is also spontaneously broken. This
symmetry is restored in the uncorrelated pinwheel phase.

Although the phase transition itself is not unusual, the
center electric Z(2) flux strings behave in a qualitatively new
way. In contrast to Wilson-type lattice gauge theories, a string
that carries a single unit of Z(2) flux fractionalizes into two
separate strands. Although the flux is delocalized, we have
constructed a finite system of odd extent that indeed traps half
a unit of Z(2) flux which wraps around the periodic volume.
Interestingly, the flux strands correspond to domain walls that
separate different realizations of either the correlated or the
uncorrelated pinwheel phase. Aside from strings that wrap
around the periodic volume, we have also investigated strings
that connect a pair of external 3

2 charges. Again, the flux
fractionalizes (unless one moves deep into the uncorrelated
pinwheel phase). The region between the flux strands again
corresponds to a different realization of a pinwheel phase
compared to the bulk.
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Our investigation demonstrates that quantum link models
display qualitatively new phenomena that are absent in Wil-
son’s lattice gauge theory. In particular, there are crystalline
confined phases with spontaneously broken translation sym-
metry, which give rise to fractionalized electric flux strings.
Crystalline confinement as well as the fractionalization of
electric flux had already been observed in (2 + 1)D U (1)
quantum link and quantum dimer models [12,17]. This work
extends these observations to the non-Abelian SU (2) quantum
link model. Although a single unit of Z(2) center electric
flux may have seemed indivisible before, we have explicitly
demonstrated that it can break up into two pieces. It is an
interesting challenge to realize these intriguing quantum link
dynamics in ultracold atom experiments.
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APPENDIX: CLUSTER ALGORITHM

Our numerical methods, either a standard Metropolis al-
gorithm or a more efficient cluster algorithm, operate in the
height variable representation. The cluster algorithm is applied
in discrete Euclidean time, but has a continuous time limit,
and could thus be implemented directly in the Euclidean
time continuum. To ease the implementation, here we restrict
ourselves to discrete time, working sufficiently close to the
time-continuum limit. The Hamiltonian is decomposed into
four pieces associated with the four sublattices, which results

FIG. 19. A plaquette on sublattice A (with dashed boundary)
evolving over one discrete Euclidean time step. Pairs of B, C, and
D plaquettes in the three intervening Trotter slices determine the
corresponding Boltzmann weight. A spatial cluster bond (fat dashed
line) connects the height variables belonging to C plaquettes (bold
boundary) in the same Trotter slice. Left: if the A height variables
undergo a transition (here from − to +), a spatial cluster bond is placed
with probability 1. Right: if the A height variables remain constant in
time, a spatial cluster bond is put with a smaller probability.

in a Trotter decomposition with four Trotter slices per discrete
Euclidean time step of size ε. As a result, the height variables
that are associated with different sublattices are residing in
different Trotter slices. This gives rise to an eight-height-
variable interaction. Three pairs of height variables residing
on three different sublattices (e.g., B, C, and D) in three
intermediate Trotter slices control the transition of a height
variable on the fourth sublattice (A in this case) over a single
Euclidean time step. This is illustrated in Figs. 19 and 20.

We have constructed a multicluster algorithm that operates
in the height representation. It updates the height variables on
one sublattice at a time, while keeping the height variables on
the other sublattices fixed. The algorithm identifies clusters of
height variables. Only height variables of the same sign are put
together in one cluster. This reflects the order of the correlated
pinwheel phase. Once identified, the height variables in a
single cluster are flipped with 50% probability. The rules
for assigning height variables to a cluster are described
below. In order to allow for an overall flip of the height
variables on an individual sublattice (which is essential for the
efficiency of the cluster algorithm), we restrict ourselves to a
region in parameter space with additional Z(2) symmetries.
These additional symmetries are obtained by restricting the
18-dimensional parameter space to

W1 = W7, W2 = W6, W3 = W5, W4 = W8,

T1 = T7, T2 = T6, T3 = T5, T4 = T8. (A1)

In order to ensure the efficiency of the cluster algorithm,
it must respect the correlated pinwheel order. This further
restricts the parameters to

W1,7 � W2,6 � W3,5 � W4,8,

T1,7 = T2,6 = T3,5 = 0, T4,8 �= 0. (A2)

FIG. 20. A plaquette on sublattice A (with bold boundary)
evolving over one discrete Euclidean time step. Pairs of B, C, and
D plaquettes in the three intervening Trotter slices determine the
corresponding Boltzmann weight. A temporal cluster bond (fat dashed
line) connects the height variables belonging to A plaquettes (bold
boundary) separated by one Euclidean time step. Left: if the B, C,
and D height variables in the three intervening Trotter slices are not
all pairwise equal, a temporal cluster bond is placed with probability
1. Right: if they are all pairwise equal, a temporal cluster bond is put
with a smaller probability.
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Clusters are constructed by binding neighboring height
variables on the same sublattice with cluster bonds. Two height
variables may be connected by a cluster bond only if they have
the same value. There are two types of cluster bonds: those
that connect spatial and those that connect temporal neighbors
on the same sublattice. As illustrated in Fig. 19, spatial cluster
bonds (in this case on sublattice C) are put with probability
Pbond = 1 if the height variables (in this case on sublattice A)
undergo a transition (here from − to +) in the corresponding
Euclidean time step. This prevents the generation of forbidden
configurations (with zero Boltzmann weight). On the other
hand, if the height variables on sublattice A are constant in
time, the spatial cluster bond that connects height variables on
sublattice C is put with probability

Pbond = 1 − e−εWE′ cosh(εTE′)

e−εWE cosh(εTE)
. (A3)

Here, E is the current environment and E′ is the environment
that results if a single height variable on sublattice C changes
sign. The same rules apply to the other intervening sublattices
(B and D in this case).

The rules for putting temporal cluster bonds between height
variables (in this case on sublattice A) are illustrated in
Fig. 20. If the height variables in the intervening three Trotter
slices (residing on the sublattices B, C, and D) are not all
pairwise equal, a temporal cluster bond is put with probability
Pbond = 1. This again prevents the generation of forbidden
configurations. On the other hand, if the height variables in
the intervening three Trotter slices are all pairwise equal, a
temporal cluster bond is put with probability

Pbond = 1 − sinh(εT4,8)

cosh(εT4,8)
. (A4)
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