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Controlled parity switch of persistent currents in quantum ladders
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We investigate the behavior of persistent currents for a fixed number of noninteracting fermions in a periodic
quantum ladder threaded by Aharonov-Bohm and transverse magnetic fluxes � and χ . We show that the coupling
between ladder legs provides a way to effectively change the ground-state fermion-number parity, by varying χ .
Specifically, we demonstrate that varying χ by 2π (one flux quantum) leads to an apparent fermion-number parity
switch. We find that persistent currents exhibit a robust 4π periodicity as a function of χ , despite the fact that
χ → χ + 2π leads to modifications of order 1/N of the energy spectrum, where N is the number of sites in each
ladder leg. We show that these parity-switch and 4π periodicity effects are robust with respect to temperature and
disorder, and outline potential physical realizations using cold atomic gases and photonic lattices, for bosonic
analogs of the effects.
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Persistent currents [1,2] are among the most distinctive
mesoscopic phenomena due to magnetic fields [3]. They
represent a macroscopic manifestation of the electron phase
coherence in metallic rings, and of the nonlocal effect of
magnetic fields in quantum physics: When an Aharonov-Bohm
(AB) flux � threads a ring, electrons acquire a phase � upon
looping around it, responding with a current that persists at
thermal equilibrium.

Recently, the effects of magnetic fields in quantum sys-
tems have been studied in numerous experiments focusing
on bulk topological properties of fermions or bosons in
two-dimensional (2D) lattices. With ultracold atoms [4], 2D
fermionic [5–7] and bosonic [8–10] lattices under large trans-
verse fluxes have been realized via synthetic gauge fields
[11,12]. Analogs have been implemented in photonic lat-
tices [13–17], with recent realizations of magnetic plaquettes
hosting interacting photons in circuit cavity electrodynamics
(circuit QED) [18,19].

Such experiments provide promising settings to investigate
the combined effects of AB and transverse fluxes [20] in the
mesoscopic realm. The minimal setup hybridizing 1D rings
with AB flux and 2D lattices with a transverse field is a
two-leg periodic quantum ladder threaded by both types of
fluxes; see Fig. 1. Extensions to multileg ladders parallel
the celebrated Laughlin’s thought experiment for quantum
Hall systems in cylinder geometry [20,21]. In the mesoscopic
setting, intriguing questions arise such as how transverse fluxes
affect persistent currents.

In this Rapid Communication, we show that the combina-
tion of AB and transverse magnetic fluxes in periodic two-leg
ladders with fixed fermion number enables a controlled “parity
switch” of persistent currents. We demonstrate that changing
the transverse flux χ by a single quantum (χ → χ ± 2π )
modifies persistent currents induced by the AB flux � as if the
fermion-number parity was switched. We find that persistent
currents become 4π instead of 2π periodic, as a function
of χ , due to the coupling between ladder legs. We identify
the conditions required for such phenomena, and discuss
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FIG. 1. Top: One-dimensional periodic quantum ladder threaded
by Aharonov-Bohm flux � and transverse flux χ . Spinless fermion
“hop” between lattice sites along and across ladder legs. This setup
can be realized, e.g., using cold atomic gases or photonic lattices, for
bosonic analogs. Bottom: Parity switch of persistent currents. When
the parity of χ/(2π ) is switched, persistent currents I (�) induced by
� behave as if the fermion-number parity P was switched [I (�) is
in units of the Fermi velocity vF over the number N of sites per leg].

experimental platforms to observe them. The parity switch and
4π periodicity identified here are mesoscopic effects appearing
in conventional quasi-1D quantum Hall systems [22–24], in
particular, as we demonstrate by extensions to multileg ladders.

We consider the ladder system in Fig. 1, consisting of two
tunnel-coupled rings of N sites: the “upper” (+) and “lower”
(−) ladder legs, where each site hosts a spinless fermion.
Without disorder and magnetic fluxes, each leg is described
by the same quadratic Hamiltonian,

Hσ =
∑
i,j

c
†
i,σ

(
h‖

)
ij
cj,σ , (1)
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where ci,σ annihilates a fermion on site i of leg σ (with i =
0, . . . ,N − 1 and σ = ±), and h‖ is a σ -independent matrix.
The coupling between ladder legs is described by

H+− =
∑
i,j

c
†
i,+(h⊥)ij cj,− + H.c. (2)

The ladder Hamiltonian H = H+ + H− + H+− is number
conserving, and is invariant under translations i → i + 1 along
the ladder (by a lattice constant a = 1), and under time reversal
(h‖, h⊥ are real matrices).

To induce and control persistent currents, we introduce two
types of (real or synthetic) magnetic fluxes: (i) an AB flux
� threading the entire ladder “loop,” and (ii) a transverse
flux χ threading the area between ladder legs; see Fig. 1.
The flux � breaks time-reversal symmetry, inducing persistent
currents I (�) = −〈∂�H 〉/(2π ) along the ladder [25], where
〈· · · 〉 denotes the expectation value over the relevant system
state (the ground state, at zero temperature). In position space,
� can be described as twisted boundary conditions cN,σ =
ei�c0,σ , shifting the crystal momentum of the ladder globally
(k → k + �/N ). As opposed to �, the transverse flux χ has
no analog in individual or decoupled chains: It induces no
net current around the ladder but provides, as shown below, a
key level of control over persistent currents induced by �. A
natural gauge for χ is the Landau gauge [26], corresponding
to a phase eiχ/N for “hopping” from site i to i + 1 along the
upper ladder leg, or a global momentum shift k → k + χ/N

in the upper leg.
To maintain a degree of symmetry between ladder legs,

we perform the gauge transformation c̃j, σ = eij (χ/2)/Ncj,σ ,
transferring half of the hopping phase eiχ/N onto the lower leg
while imposing modified twisted boundary conditions c̃N,σ =
ei(�+χ/2)c̃0,σ . In this “symmetric gauge,” the flux � threads
“symmetrically” the two “rings” corresponding to individual
ladder legs, while χ threads both rings “antisymmetrically”—
shifting momenta k → k + σ (χ/2)/N with opposite signs in
opposite legs. In momentum space, the flux-dependent ladder
Hamiltonian takes the 2 × 2 matrix form

H (k,χ ) = c̃†k

(
h‖

(
k + χ

2N

)
h⊥(k)

h∗
⊥(k) h‖

(
k − χ

2N

)
)

c̃k, (3)

where the vector c̃k ≡ (c̃k,+,c̃k,−) collects the momentum
analogs of the operators c̃j,±. Twisted boundary conditions lead
to the quantization condition k ∈ {kn = 2πn/N + �/N +
(χ/2)/N}, where n = 0, . . . ,N − 1. Moreover, χ is con-
strained to multiples of 2π to ensure that (i) the Hamiltonian
is periodic, and (ii) χ induces no current along the legs of the
ladder when the interleg coupling is set to zero, as physically
expected [27]. Shifts � → � + 2πm with integer m trivially
shift the Brillouin zone, leaving the system invariant. Although
shifts χ → χ + 4πm leave the set of allowed momenta invari-
ant, shifting χ by 4π leads to modifications of the Hamiltonian
of order 1/N [see Eq. (3)]. We thus expect physical properties
to be invariant under shifts χ → χ + 4π , up to corrections
∼1/N .

Although fluxes break time-reversal (TR) symmetry, the
Hamiltonian matrix in Eq. (3) is invariant under the effective
TR symmetry defined by the antiunitary operator � = σxK,
where K denotes complex conjugation, and σx is the standard
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FIG. 2. Energy spectrum of a two-leg ladder around k = 0, at
integer �/(2π ). The transverse flux χ has two effects: (i) It shifts the
bands corresponding to upper and lower ladder legs (red and blue faint
lines) by χ/N with respect to each other; the interleg coupling h⊥(k)
[Eq. (3)] then open “gaps” at the time-reversal-invariant momenta
k = 0 and π (not shown) where bands cross, leading to hybridized
bands (mixed red and blue lines). (ii) The flux χ controls allowed
momenta (see text). Crucially, single-particle eigenstates are present
at k = 0 when χ/(2π ) is even [solid dots, open dots show allowed
states at odd χ/(2π )]. Therefore, the parity of χ/(2π ) controls the
state-number parity below an arbitrary energy level E (gray horizontal
line) in the gap.

Pauli matrix. Since �2 = +1, states |ψ(k)〉 and �|ψ(k)〉 with
the same energy but opposite momenta need not belong to
distinct bands (no Kramers’ theorem). In particular, states
at the TR-invariant (TRI) momenta k = 0,π need not be
degenerate, with crucial consequences detailed below. The
system including twisted boundary conditions is invariant
under � when � = πm and χ = 2πm (m integer).

When ladder legs are decoupled [h⊥(k) = 0], Eq. (3)
describes two bands h‖(k) shifted by χ/(2N ) in opposite,
σ -dependent k directions; see Fig. 2. If σ was a spin, χ

would be a Rashba spin-orbit coupling [28–31]. Shifted bands
cross at the TRI points k = 0,π where states are crucially
present or not depending on the parity of χ/(2π ) [as kn =
2πn/N + (χ/2)/N , for integer �/(2π )]. The coupling h⊥(k)
opens “gaps” at the TRI momenta as a Zeeman field, lifting
degeneracies; see Fig. 2. For integer �/(2π ) and χ/(2π ),
the spectrum is twofold degenerate (with states at k and −k

related by �), except at the TRI points k = 0,π where states
are unique; see Fig. 3.

We now examine the effects of the transverse flux χ

on persistent currents I (�) induced by small variations of
�. Spectral degeneracies dictate the main features of I (�):
They lead to a known “parity effect” where I (�) is either
discontinuous or zero depending on the fermion-number parity
[32–35]. The usual parity effect appears at χ = 0 when the
Fermi energy (energy of the highest occupied level) crosses
the lowest band two times; see Fig. 3. The persistent current
then reads I (�) = −(1/N)

∑
n vkn

nkn
, where vk = ∂kεk is the

fermion velocity and nk is the occupation distribution of single-
particle eigenstates with energy εk . At � = 2πm (integer m),
a pair of degenerate states lies at the Fermi energy. For odd
fermion numbers, both states are occupied and the ground state
is unique. Occupied states contribute with opposite fermion
velocities, and I (�) = 0. For even fermion numbers, instead, a
single fermion is shared between degenerate states. The ground
state is degenerate, and this degeneracy is lifted as soon as
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FIG. 3. Left: Single-particle spectrum (lower band in Fig. 2 for
large interleg coupling) as a function of the transverse flux χ . The
effective time-reversal symmetry � present at integer χ/(2π ) (see
text) imposes a twofold degeneracy of the entire spectrum, except
at time-reversal-invariant momenta k = 0,π . Occupied/empty levels
correspond to solid/open dots. Right: Single-particle eigenstates
shown as a function of quasimomentum k, for χ = 0 and 2π . When
χ/(2π ) alternates between even and odd parities, degenerate states at
the Fermi energy EF alternate between double and single occupation.
Half-solid dots indicate states sharing a single particle. The spectrum
is 4π periodic in χ , up to corrections ∼1/N .

� �= 2πm, leading to a discontinuity in I (�). This behavior
“switches” (with “odd”↔“even” above) when � → � ± π ,
leading to the “sawtooth” behavior in the lower left panel of
Fig. 1. For � ∈ (−π,π ], one finds

I (�)odd = −vF

N

�

π
, I (�)even = vF

N
sgn(�)

(
1 − |�|

π

)
.

(4)

We now show that inserting a full quantum of transverse
flux χ leads to a similar “parity switch” as introducing half a
quantum of AB flux �. This can be understood as follows:
Figure 3 shows that nondegenerate states at TRI momenta
become twofold degenerate when the parity of χ/(2π ) is
modified. Therefore, when a TRI state lies below the Fermi
energy (typically the k = 0 state), higher-lying, twofold de-
generate states at the Fermi energy must switch between single
and double occupation when the parity of χ/(2π ) changes,
irrespective of the (fixed) fermion number. Up to modifications
∼1/N of the spectrum [of vF in Eq. (4)], everything happens
as if the fermion number was changed by ±1, i.e., as if the
fermion-number parity was switched. This parity switch is
illustrated in Fig. 3: When χ/(2π ) is even, the TRI momentum
k = 0 is allowed, the number of states below EF is odd, and
the usual behavior of persistent currents [Eq. (4)] is observed.
When χ is odd, instead, k = 0 is forbidden and the number of
states below EF is even. The behavior of I (�) then changes
as if the fermion-number parity had been switched (lower
right panel of Fig. 1). A quantitative analysis of this effect
in a minimal lattice model [7,36–38] can be found in the
Supplemental Material [39].

The above results imply that persistent currents ex-
hibit a remarkable 4π periodicity in χ : Although changes
χ → χ + 4π lead to O(1/N) modifications of the bands,
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FIG. 4. Density plots of the persistent current as a function of the
AB flux � and the transverse flux χ , for even/odd fermion-number
parity P (left/right). The fermion number is fixed with Fermi energy
in the “gap” at k = 0 (as the level E in Fig. 2). Positive/negative
values are shown in blue/red. Plots correspond to a minimal lattice
model with unit hopping strength between nearest-neighboring sites
along and across ladder legs [39]. The left (right) plot corresponds
to 61 (60) particles with system size N = 150. Changing P causes a
relative shift χ → χ ± 2π and small differences ∼1/N that are not
visible here.

the main features of I (�)—its zeros and discontinuities—are
strictly 4π periodic in χ . These features are dictated by
energy crossings between single-particle eigenstates, which
are strictly enforced by the symmetry � at integer values of
χ/(2π ). Figure 4 shows the current I (�) as a function of �

and χ , for a minimal lattice model [39]. As expected, I (�)
features a robust 4π periodicity in χ .

Next, we comment on the robustness of the parity-switch
and 4π periodicity effects with respect to temperature, disor-
der, and system size. We recall that these effects stem from the
effective TR symmetry � present at integer values of χ/(2π ).
Since temperature does not affect this symmetry, it does
not lift the effects, but affects their visibility: A temperature
T > 0 spreads the occupation distribution of single-particle
eigenstates, thereby decreasing the overall amplitude of I (�);
the patterns in Fig. 4 remain visible as long as T is lower than
the typical energy separation ∼EF /N between states at the
Fermi energy. Disorder has similar effects if it preserves the �

symmetry. If it breaks it, instead, discontinuities of I (�) are
smoothed out [34,40], and parity switches need not occur at
integer values of χ/(2π ) anymore, leading to an approximate
(on average) 4π periodicity of I (�) in χ . Details are provided
in the Supplemental Material [39].

Our results apply to ladders with L > 2 legs where topolog-
ical effects provide enhanced robustness against disorder. For
h⊥ = 0, each leg contributes a single band to the ladder spec-
trum: Each band has a well-defined leg index l = 0, . . . ,L − 1,
and neighboring bands are shifted by (χ/N)/(L − 1) with
respect to each other, as shown in Fig. 2 for L = 2. The
interleg coupling h⊥ mixes bands and opens gaps decreasing
exponentially with |l1 − l2| at crossings between bands l1 and
l2 [39]. One can distinguish two pictures depending on the
value of χ :

(i) For χ/N � 2π , the L minima of the L momentum-
shifted bands all “fit” within the first Brillouin zone, and band
crossings at the nth lowest energy occur between bands with
index difference |
l| = n (for small n). The size of the lowest-
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energy gap (n = 1) is of order |h⊥|, while higher-energy gaps
are exponentially smaller [39]. Hybridized bands can be seen
as “Landau levels,” as in the coupled-wire construction for
quantum Hall systems introduced in Ref. [24]. As we show
in the Supplemental Material [39], parity switches induced
by integer changes of χ/(2π ) are observed whenever the
number ν of occupied hybridized bands (or Landau levels)
is an odd integer. In that case, the multileg ladder exhibits
an odd number ν of chiral edge modes on each side of its
cylinder geometry (around extremal legs) [24]. The integer
ν and the edge modes have a topological nature [26,41]:
The overlap between counterpropagating modes on opposite
edges becomes exponentially small with increasing L, which
suppresses disorder effects.

(ii) When χ/N � 2π , bands corresponding to individual
ladder legs can shift beyond the first Brillouin zone and
“backfold” into it. When χ becomes of the order of one flux
quantum per unit cell, the system enters the Harper-Hofstadter
quantum Hall regime [22,23], where gaps are determined
by the fraction p/q of flux quantum per unit cell (q being
a prime integer, and p taking values between 1 and q).
As in the low-flux case (i), topological chiral edge modes
typically appear in these gaps, and robust parity switches are
observed when the number ν of occupied modes per edge is
odd. Disorder-induced scattering is similarly suppressed with
increasing L [39].

Generalizations to multileg ladders show that the parity
switch and 4π periodicity are mesoscopic analogs of Landau
quantization effects [42], where additional quanta of transverse
flux χ introduce additional states (“cyclotron orbitals”) for free
fermions in Landau levels. While fluxes of the order of one
flux quantum per unit cell are required to observe such effects
[43], the phenomena identified here are accessible at arbitrarily
low flux χ . They crucially differ from the well-established
generation of persistent currents via χ in Landau systems,
through the nonvanishing Hall conductivity.

Cold atoms in optical lattices are prime candidates to
realize periodic ladders with AB and transverse fluxes. An
implementation of our setup (Fig. 1) was recently proposed
in cylindrical lattices generated by Laguerre-Gauss beams
(rotated to induce a synthetic flux �) [20]. Periodic ladders
with synthetic fluxes� andχ can also be realized using internal
degrees of freedom to simulate one or both spatial dimensions
[6,44,45]. In particular, periodicity along synthetic dimensions
can be obtained by coupling extremal internal states [46,47].

The effects studied in this work can be observed in short ladders
with few lattice sites [39], in any system with Hamiltonians
similar to Eq. (3), with effective TR symmetry �. The details
of our simplified tight-binding model are irrelevant. The
underlying lattice structure is not even required: Our results
would similarly apply to coupled one-dimensional continuum
rings realized, e.g., with bosonic superfluids [48–52] coupled
to each other [53]. To observe the parity-switch and 4π peri-
odicity effects in cold-atom experiments, one challenge is to
suppress particle-number fluctuations between measurements:
Measuring I (�) for different � and χ with parity fluctuations
leads to a statistical average between patterns in Fig. 4 [54].
The average fermion-number parity determines the visibility
of the effects, and vice versa. In particular, the periodicity of
I (�) in χ is reduced from 4π to 2π when the average parity
vanishes [39].

Periodic ladders with synthetic fluxes can also be realized
with bosons in photonic lattices [17,55,56]. Though there is
no Pauli blocking to suppress photon-number fluctuations,
strong interactions may lead to analogs of persistent currents
[19], and to effective chemical potentials [57]. Regardless,
noninteracting photons described by the ladder Hamiltonian
in Eq. (3) (with bosonic operators) exhibit the same approx-
imate 4π periodicity in χ , leading to a similar periodicity of
physical observables. Decoherence due to photon losses can be
suppressed in short ladders as in Ref. [19], e.g., where currents
were probed in a circuit-QED system [39].

We have shown that the insertion of transverse-flux quanta
χ/(2π ) in quantum systems with a ladder or, equivalently,
Corbino disk geometry provides a robust way to perform
controlled parity switches revealed by mesoscopic quantities
such as persistent currents. Such effects are accompanied by
a remarkable 4π periodicity of physical observables in χ , up
to corrections of order 1/N . These phenomena are robust to
local interactions: As long as the Fermi wave vector kF is not
commensurate with the lattice, weak interactions renormalize
the Fermi velocity vF → u (see, e.g., Refs. [37,38]), and
parity switches survive, with renormalized persistent currents
in Eq. (4) [58].
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