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We present a theory to describe the fluctuations of nonequilibrium radiative heat transfer between two bodies
both in the far- and near-field regimes. As predicted by the blackbody theory, in the far field, we show that the
variance of radiative heat flux is of the same order of magnitude as its mean value. However, in the near-field
regime, we demonstrate that the presence of surface polaritons makes this variance more than one order of
magnitude larger than the mean flux. We further show that the correlation time of heat flux in this regime
is comparable to the relaxation time of heat carriers in each medium. This theory could open the way to an
experimental investigation of heat exchanges far from the thermal equilibrium condition.
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Nonequilibrium fluctuations in electronic transport [1] in-
side mesoscopic systems have been investigated in detail since
the beginning of the 1990’s [2,3]. In these systems, fluctuations
of electric currents were found to be of the same order of
magnitude as their mean value. These fluctuations originate
from coherence effects for electronic wave functions. An
analog thermal behavior is well known for heat flux exchanged
in the far-field regime between two objects held at two different
temperatures. This behavior is a direct consequence of black-
body fluctuations as predicted by Einstein [4,5]. Surprisingly
these fluctuations have yet to be investigated at close separation
distances. However, in the last two decades it has been shown
that the properties of thermal radiation in the near-field regime
can radically differ from that observed in the far field. Indeed,
in this case the thermal radiation can be quasimonochromatic
[6], polarized [7], and spatially coherent [8]. As the radiative
heat flux between two thermalized objects is concerned, it
has been shown within the framework of Rytov’s fluctuational
electrodynamics [9] that it can surpass the blackbody limit by
orders of magnitude [10–16], and strong deviations from the
behavior observed in the far-field regime have been predicted in
a variety of configurations [17–39]. Many of these theoretical
predictions have been confirmed experimentally down to few
nanometer distances [40–53]. So far, the investigation of
radiative heat exchanges between two bodies was limited to the
analysis of the statistical average of the Poynting vector (PV)
[10,11]. To go beyond this first-order theory and to investigate
the statistical properties of the near-field thermal radiation, it
is necessary to determine the high-order moments of fields
radiated by the fluctuating sources as well as the heat flux
mediated by photon tunneling. The theoretical analysis of these
moments could open, for instance, the way to the investigation
of the thermodynamical properties of these systems or to the
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study of irreversible dynamical processes related to them far
from equilibrium [54–57].

In this Rapid Communication, within the fluctuational elec-
trodynamics framework introduced by Rytov, we derive the
second-order statistical properties of a thermal field radiated
by a hot body. First, we show that, in the far-field regime,
the standard deviation of the radiative heat flux is of the same
order of magnitude as the mean value, a well-known result from
the blackbody theory [58]. On the contrary, in the near-field
regime, we find that the standard deviation of the radiative
heat flux can be much higher than the mean value, although in
this regime the mean value itself is orders of magnitude larger
than the blackbody value. We demonstrate that this significant
enhancement of the fluctuation amplitude can be observed
when the medium supports surface polaritons [13]. Finally,
we establish that in the presence of such waves the correlation
time (CT) of PV is of the same order as the relaxation time of
atomic vibrations (phonons) that is much larger than the CT
of blackbody radiation. We further show that for metals the
amplitude of fluctuations can also be large, whereas the CT is
in the far- and near-field regime of the same order as that of
blackbody radiation.

Let us start with the z component of the mean PV describing
the thermal radiation of a semi-infinite medium at temperature
T1 into another semi-infinite medium T2 = 0 K as sketched in
Fig. 1. It is given by

〈S1,z〉(rd ) = 〈E1,x(rd ,t)H1,y(rd ,t)〉
−〈E1,y(rd ,t)H1,x(rd ,t)〉. (1)

Here, the index 1 symbolizes the fact that the fields are
generated by the thermal sources in medium 1 and the brackets
denote the ensemble average. The correlation functions (CFs)
are evaluated at the interface of the second medium at rd =
(0,0,d)t , where the energy transfer to the second body really
occurs, and at a given time t . Note that we are here considering
a nonequilibrium steady-state situation so that the above CFs

2469-9950/2018/97(20)/201406(6) 201406-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.201406&domain=pdf&date_stamp=2018-05-14
https://doi.org/10.1103/PhysRevB.97.201406


S.-A. BIEHS AND P. BEN-ABDALLAH PHYSICAL REVIEW B 97, 201406(R) (2018)

<S >z

x

z

SiCSiC

1 2

d

T > 0K T < T1

FIG. 1. Sketch of the considered configuration: A SiC half space
at temperature T1 exchanges heat by heat radiation with a second SiC
half space with T2 < T1 in a distance d .

and the mean PV do not depend on time. In order to determine
the second moment, we can exploit the Gaussian property
of the thermal fields which allows us to express the higher
moments of the fields in terms of the second moments [9].
The main assumption here is that the fluctuational field is
composed of a multitude of microfields created by charge
and current fluctuations from different volume elements of
the medium which give similar and statistically independent
contributions. The Gaussian property then follows from the
central-limit theorem [9,59]. Furthermore, from the rotational
symmetry we have 〈E2

1,x〉 = 〈E2
1,y〉 and 〈H 2

1,x〉 = 〈H 2
1,y〉; some

components of the electric and magnetic fields are uncorrelated
[58] so that 〈H1,xH1,y〉 = 〈E1,xE1,y〉 = 0 and 〈E1,yH1,y〉 =
〈E1,xH1,x〉 = 0. Finally, the mixed CFs have the symmetry
〈E1,xH1,y〉 = −〈E1,yH1,x〉 [60]. With these relations, together
with the Gaussian property of fields, we obtain〈

S2
1,z

〉 = 2
〈
E2

1,x

〉〈
H 2

1,x

〉 + 3
2 〈S1,z〉2, (2)

so that the variance 〈(�S1,z)2〉 ≡ 〈S2
1,z〉 − 〈S1,z〉2 of the normal

component of PV reads

〈(�S1,z)
2〉 = 2

〈
E2

1,x

〉〈
H 2

1,x

〉 + 1
2 〈S1,z〉2. (3)

Obviously, this quantity is of the same order as the mean heat
flux squared and by virtue of the first term on the right-hand
side it contains, in general, contributions from the electric and
magnetic fields as well. As the normalized standard deviation
is concerned, it reads accordingly,

σS ≡
√

〈(�S1,z)2〉
〈S1,z〉2

=
√

1

2
+ 2

〈
E2

1,x

〉〈
H 2

1,x

〉
〈S1,z〉2

. (4)

Hence, we see that the standard deviation of the thermal
emission of a semi-infinite medium is given by the mean value
of PV and the electric and magnetic part of the mean energy
density. Expression (4) can of course also be used to evaluate
the standard deviation of the PV for a half space emitting into
vacuum at 0 K by replacing the permittivity of the right half
space (i.e., z > d) by that of vacuum. In this case, the mean
PV in the expression for the standard deviation will contain
the contribution of propagating waves only, whereas the term
〈E2

x〉〈H 2
x 〉 also contains the contributions of evanescent waves.

A meaningful result for the fluctuations of the PV in the

far-field regime can be obtained by evaluating the term 〈E2
x〉

and 〈H 2
x 〉 in the limit d → ∞ or d � λth.

In order to evaluate the standard deviation, we need to
introduce the CFs of fields at arbitrary separation distances.
This can be done in the framework of the theory of fluctuational
electrodynamics. To this end, we consider two half spaces
as sketched in Fig. 1 (of permittivity ε1 = ε2) separated by
a vacuum gap of width d having the temperatures T1 �= 0 K
and T2 = 0 K. In this case the mean value of the PV in the
z direction is given by 〈S1,z(rd )〉 = 2〈E1,x(rd ,t)H1,y(rd ,t)〉.
From the relation between the fields and the current density and
using the fluctuation-dissipation theorem, the CFs of electric
and magnetic fields read [60–64]

〈E1,x(t)H1,y(t ′)〉

=
∫ ∞

0

dω

2π
�1(ω)

∫
dκ

2π
κ

γ ′
1e

−2γ ′′
0 d

2|γ1|2

×
( |ts|2|1 + rs|2

|Ds|2 Re(γ ∗
1 e−iωτ )

+ |tp|2|1 − rp|2
|Dp|2

|γ1|2 + κ2

|k1|2|ε1| Re(γ1ε
∗
1e−iωτ )

)
, (5)

〈E1,x(t)E1,x(t ′)〉 =
∫ ∞

0

dω

2π
μ0ω�1(ω) cos(ωτ )

∫
dκ

2π
κ

×γ ′
1e

−2γ ′′
0 d

2|γ1|2
( |ts|2

|Ds|2 |1 + rs |2

+ |tp|2
|Dp|2

|γ1|2 + κ2

|k1|2
|γ1|2
|k1|2 |1 − rp|2

)
, (6)

〈H1,x(t)H1,x(t ′)〉 =
∫ ∞

0

dω

2π
ε0ω�1(ω) cos(ωτ )

∫
dκ

2π
κ

×γ ′
1e

−2γ ′′
0 d

2|γ1|2
( |ts|2

|Ds|2
|γ1|2
k2

0

|1 + rs |2

+ |tp|2
|Dp|2

|γ1|2 + κ2

k2
0

|1 − rp|2
)

, (7)

with τ := t − t ′ and the mean energy of a harmonic oscilla-
tor given by �1(ω) = h̄ω/[exp(h̄ω/kBT1) − 1]. Here, Ds/p =
|1 − r2

s/pe
2iγ0d |2, γ 2

1 = k2
0ε1 − κ2, γ 2

0 = k2
0 − κ2, k1 = √

ε1k0,
and k0 = ω/c; ts/p and rs/p are the Fresnel transmission and
reflection coefficients of the single interface; ε0 and μ0 are the
permittivity and permeability of vacuum.

With these relations we can determine the fluctuations of
PV between any couple of isotropic and homogeneous half
spaces considering only the thermal radiation from a single
half space with T1 �= 0 K. In particular, it is possible to derive
from these expressions the moments of heat flux radiated by a
blackbody of temperature T1 in vacuum. Indeed, in this case,
by setting the permittivity of the materials ε1 to that of vacuum,
i.e., ε1 ≡ 1, so that ts = tp = 1 and γ1 = γ0, then it is easy to
see that [60]

〈Sz〉 ≡ 〈SBB,z〉 = σBBT 4
1 , (8)
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FIG. 2. 〈Sz〉, 〈E2
x〉, and 〈H 2

x 〉 as a function of gap size d for
two (a) SiC and (b) Au half spaces with T1 = 300 K and T2= 0 K;
all quantities are normalized to the blackbody values given in Eqs. (8)–
(10) for T1 = 300 K. The thin lines in (a) are the quasistatic results
showing that 〈Sz〉 ∝ 1/d2, 〈E2

x〉 ∝ 1/d3, and 〈H 2
x 〉 ∝ 1/d in the

strong near-field regime.

and

〈
E2

x (t)
〉 ≡ 〈

E2
BB,x

〉 = cμ0
2
3σBBT 4

1 , (9)〈
H 2

x (t)
〉 ≡ 〈

H 2
BB,x

〉 = cε0
2
3σBBT 4

1 , (10)

introducing the Stefan-Boltzmann constant σBB. It follows that
the normalized standard deviation for the blackbody radiation
reads

σS,BB =
√

25

18
, (11)

showing that the standard deviation of PV is of the same order
as its mean value. This result is obviously consistent with
the well-known deviation σ = 〈I 〉/√2 of unpolarized thermal
radiation, 〈I 〉 being the mean value of the intensity [58].

Now let us pay attention to heat exchanges between two bulk
samples made of silicon carbide (SiC) a polar material whose
permittivity at frequency ω can be described by the Drude-
Lorentz model and two samples made of gold (Au) described
by the Drude model [65] (see also Ref. [60]). We first show
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FIG. 3. Normalized standard deviation σS from Eqs. (4) and (14)
as a function of the gap size d for two (a) SiC and (b) Au half spaces
with T1 = 300 K and T2 = 0 K and T1 = 320 K and T2 = 300 K.
The standard deviation is normalized to the blackbody results σS,BB

≈ 1.18 from Eq. (11) and σ 12
S,BB ≈ 6.25 from Eq. (14), respectively.

The vertical lines are the quasistatic limits [60] and the blackbody
value.

in Fig. 2 plots of CFs as derived above and normalized by
the CFs for a blackbody. For SiC it can be seen that in the
quasistatic limit, 〈Sz〉 ∝ 1/d2, 〈E2

x〉 ∝ 1/d3, and 〈H 2
x 〉 ∝ 1/d

due to the near-field contribution. These distance dependences
are universal features in the quasistatic limit. For Au all the
curves would have the corresponding distance dependences
for d → 0 (see Ref. [60]), but for the shown values of d the
quasistatic regime is not yet fully reached. Note that here we do
not consider nonlocal effects which in general need to be taken
into account for distances much smaller than 10 nm [41,66–68].

The standard deviation σS shown in Fig. 3(a) for SiC and in
Fig. 3(b) for Au is d independent in the far-field regime (i.e.,
d � λth), as can be expected from the fact that the CFs are d

independent in this case. Since SiC is a very good absorber
in the infrared it is not surprising that σS is very close to
the σS,BB. In the near-field regime σS increases and converges
to a constant value in the quasistatic limit [60]. On the other
hand, for Au, σS is relatively large in the far-field regime and
first decreases when making d smaller and then increases for
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FIG. 4. Normalized temporal CFs �(τ ) = 〈Sz(t)Sz(t + τ )〉 for two SiC and Au half spaces as a function of τ normalized to τth = h̄/kBT1 ≈
2.5 × 10−14 s at T1 = 300 K and T2 = 0 K in the far-field (10 μm) and near-field (d = 10 nm) regimes.

very small distances. The value of σS would converge to its
quasistatic limit [60] for d → 0. Note that this convergence to
a distance-independent value for d → 0 is a universal feature,
whereas the value to which σS converges depends on the
material properties and in particular on the losses [60]. For
SiC we find the quasistatic limit σS ≈ 16.7 × σS,BB ≈ 20 and
for Au we find σS ≈ 2274 × σS,BB ≈ 2683. The fluctuational
amplitude is therefore for metals potentially higher. However,
at d = 10 nm for SiC the standard deviation is about 20〈Sz〉,
whereas for Au it is about 5〈Sz〉. The fluctuations do therefore
rapidly increase due to the near-field enhanced heat flux and
local density of states, which is a result of the contribution of
the surface phonon polaritons in SiC and eddy currents in Au
[13].

Finally, in the general situation where T2 �= 0 K, which
means that also the thermal sources in the second half space
need to be taken into account, one can again in a simi-
lar way derive the variance 〈(�S12

z )2〉 ≡ 〈(S1,z − S2,z)2〉 −
〈(S1,z − S2,z)〉2 of the heat flux. Furthermore, assuming that the
fluctuational sources in the two bodies and also the generated
fluctuating fields are uncorrelated, we obtain the general
expression

〈(
�S12

z

)2〉 = 1
2 〈S1,z〉2 + 2

〈
E2

1,x

〉〈
H 2

1,x

〉
+ 1

2 〈S2,z〉2 + 2
〈
E2

2,x

〉〈
H 2

2,x

〉
, (12)

where 〈S2,z〉, 〈E2
2,x〉, and 〈H 2

2,x〉 take a similar form as 〈S1,z〉,
〈E2

1,x〉, and 〈H 2
1,x〉 but with T2 instead of T1. Since we assume

the absence of correlation between the sources of two different
media, we find that the fluctuations are additive. The relative
standard deviation is

σ 12
S =

√〈(
�S12

z

)2〉
〈S1,z〉 − 〈S2,z〉 . (13)

From this expression it becomes clear that this deviation is
larger than in the case where T2 = 0 K. As before we can derive
the result for two blackbodies in interaction,

σ 12
S,BB =

√
T 8

1

T 8
2

+ 1

T 4
1

T 4
2

− 1

√
25

18
. (14)

Furthermore, it should be noted that in the limit �T =
T1 − T2 → 0, the variance in (12) converges to a constant
which is, due to the additivity, just twice the value given by
Eq. (3) corresponding to the deviation for a single semi-infinite
medium. That means, although the mean heat flux becomes
zero in this limit, the fluctuations of heat flux persist. Therefore,
the relative standard deviation σ 12

S can be very large for small
temperature differences and even diverges when �T → 0,
as can be nicely seen from expression for the blackbody
case where σ 12

S,BB = 5
12

T1
�T

for small �T . In Fig. 3 we find
at d = 10 nm for the heat flux between two SiC (Au) half
spaces a relative standard deviation of σ 12

S ≈ 65 (81) times
the measured heat flux value, which is large and should be
measurable in existing near-field heat flux experiments.

We have seen that the heat flux fluctuations are large. But, in
order to assess to what extent these fluctuation are measurable,
it is important to evaluate on which timescale these fluctuations
happen. From the blackbody theory it is well known that the
CT of thermal field is on the order of τth = h̄/kBT that is about
2.5 × 10−14 s at T = 300 K. This timescale is very similar to
the CT we observe in Fig. 4(a) by plotting the temporal CF,
�(τ ) = 〈Sz(t)Sz(t + τ )〉, given by [60]

�(τ ) = 2〈Ex(t)Ex(t + τ )〉〈Hx(t)Hx(t + τ )〉
+ 2〈Ex(t)Hy(t + τ )〉2 + 〈Sz(t)〉2, (15)

of the heat flux between two SiC and Au half spaces as a
function of τ = t ′ − t in the far-field at a distance of d =
10 μm. Although the timescale of τth is extremely small,
this temporal correlation has been measured in the context of
photon bunching [69,70]. In contrast, if we plot �(τ ) for a near-
field distance of d = 10 nm, in Fig. 4(b) we can observe that
the timescale on which the heat flux is temporarily correlated is
about 50τth = 1.25 × 10−12 s due to the quasimonochromatic
contribution of the surface-phonon polariton [71]. On the other
hand, for Au the CT does not change much in the near-field
regime, as can be seen in Fig. 4(a). Hence, the timescale of
fluctuations of the radiative heat flux in the near field can be
on the same order of magnitude as that of relaxations of the
phonons in a medium [72].

In conclusion, we have introduced a general theory to
describe fluctuations of radiative heat flux exchanged between
two bodies. We have shown that at subwavelength distances
large fluctuations of heat flux can be observed when heat
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exchanges result from surface-polariton coupling. This is in
huge contrast to the findings of the zero-point fluctuations of
the Casimir force [73,74]. We think that this theory should
allow for testing the Crook fluctuation theorem [54,55,75–77].
Hence, by measuring the time evolution of heat flux exchanged
between two nanostructures, it is in principle possible to
calculate the probability to observe an instantaneous negative
flux transferred from a cold body to a hot one and to compare
this value with the probability of a transfer in the opposite

direction. Beyond this fundamental test, this theory can be
used to investigate the irreversibility mechanisms associated
with thermal photon exchanges [75,76,78] or to explore the
performances of nanomachines such as Brownian motors.

S.-A.B. acknowledges discussions with Andreas Engel,
Achim Kittel (Oldenburg University), and Riccardo Messina
(CNRS). P.B.-A. acknowledges discussions with Miguel Rubi
(Barcelona University).
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