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We propose a generic protocol to experimentally measure the quantum metric tensor, a fundamental geometric
property of quantum states. Our method is based on the observation that the excitation rate of a quantum state
directly relates to components of the quantum metric upon applying a proper time-periodic modulation. We
discuss the applicability of this scheme to generic two-level systems, where the Hamiltonian’s parameters can be
externally tuned, and also to the context of Bloch bands associated with lattice systems. As an illustration, we
extract the quantum metric of the multiband Hofstadter model. Moreover, we demonstrate how this method can
be used to directly probe the spread functional, a quantity which sets the lower bound on the spread of Wannier
functions and signals phase transitions. Our proposal offers a universal probe for quantum geometry, which could
be readily applied in a wide range of physical settings, ranging from superconducting quantum circuits to ultracold
atomic gases.
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The geometry of quantum states is at the heart of our
understanding of diverse physical phenomena [1–4], ranging
from the Aharonov-Bohm effect [5–7] to the more recent
topological states of matter [8–10]. In nonrelativistic quan-
tum mechanics, the geometry of quantum states is typically
associated with their parallel transport over the space spanned
by the Hamiltonian’s parameters [4,11]. Upon performing a
closed loop in this parameter space, the state can acquire a
finite geometric (Berry) phase [7], which can be attributed
to the existence of a curvature [4,6]. This so-called Berry
curvature, whose effects were originally identified in the
context of the anomalous Hall effect [12], played a crucial
role in the development of topological band theory [2,9,10].
More recently, the realization of engineered materials [13–
15] allowed for direct measurements of the Berry curvature,
through state tomography [16,17], interferometry [18], and
transport [19].

Closely related to the Berry curvature is the quantum metric
tensor (or Fubini-Study metric), which is a distinct geometric
property of energy eigenstates that reflects the “distance”
between different quantum states [20–22]. The significance of
the quantum metric was recently identified in a wide range of
physical phenomena, including the conductivity in dissipative
systems [23–28], orbital magnetism [29–33], the superfluid
fraction [34–36], quantum information [37–40], entanglement
and many-body properties [41–47], interference in Bloch states
[48], a Lamb-shift-like energy shift in excitons [49], and the
mathematical construction of maximally localized Wannier
functions in crystals [22,50–55]. Despite the importance of
the quantum metric in these various contexts, one still lacks a
direct experimental measurement of this geometric object.

In this Rapid Communication, we propose a versatile
experimental scheme to extract the components of the quantum
metric, which is applicable to any parameter space. Our pro-
posal consists in initially preparing the system in an eigenstate
of a given Hamiltonian, and then monitoring the excitation
rate upon modulating the Hamiltonian periodically in time. As

shown below, the excitation rate is shown to be proportional
to the quantum metric for suitable choices of the periodic
driving. This protocol is inspired by previous works connecting
absorption properties with quantum geometry [54–59], and is
further motivated by the recent development of excitation-rate
measurements in shaken atomic gases [60–62]. It also provides
a practical alternative to previous schemes [24] based on
energy-fluctuation measurements upon an adiabatic variation
of the system’s parameters.

We first discuss the case where the Hamiltonian depends
on a set of parameters, which can be externally tuned and
modulated in time. We consider a generic two-level system
as an example, based on which we numerically demonstrate
the applicability of our method. We then extend the scheme to
the case of lattice systems, where the parameters of the Bloch
Hamiltonian are crystal momenta defined in the Brillouin
zone. We numerically validate our method using the multiband
Harper-Hofstadter model [63,64] and the two-band Haldane
model [65]. Finally, we show how to measure the “spread
functional,” i.e., the trace of the quantum metric averaged
over the Brillouin zone, which is related to the localization of
Wannier functions [22], and which was shown to signal phase
transitions [52]. The protocols and examples discussed in this
Rapid Communication are of direct experimental relevance to
synthetic quantum systems such as superconducting quantum
circuits [66] and ultracold atomic gases [16,62,67–72].

Introducing the quantum metric. Let us start by considering
a quantum state |λ〉, which depends on a set of dimensionless
parameters λ = (λ1,λ2, . . . ,λN ), where N is the dimension of
the parameter space. The quantum metric gμν(λ) defined in
this parameter space originates from the so-called quantum
geometric tensor [25]

χμν(λ) ≡ 〈∂μλ|(1 − |λ〉〈λ|)|∂νλ〉, (1)

which defines a gauge-invariant quantity associated with |λ〉.
The tensor χμν can take complex values: The real part defines
the quantum metric gμν(λ) ≡ Re[χμν(λ)], while the imaginary
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part Im[χμν(λ)] = −�μν(λ)/2 is related to the Berry curvature
�μν(λ). The quantum metric is symmetric, gμν(λ) = gνμ(λ),
and it provides a distance [25] between nearby states |λ〉 and
|λ + dλ〉.

General formalism in parameter space. We now consider
a Hamiltonian Ĥ (λ) that depends on a set of dimensionless
parameters λ. The energy eigenstates also depend on λ, and the
quantum metric can be defined for each of them. We assume
that the system is initially prepared at λ = λ0, and in order
to detect the quantum metric at that point, we modulate one
parameter (λ1) as

λ1(t) = λ0
1 + 2(E/h̄ω) cos(ωt). (2)

Assuming that the amplitude of the modulation is small,
(E/h̄ω) � 1, we Taylor-expand the Hamiltonian and obtain

Ĥ [λ(t)] = Ĥ (λ0) + ∂λ1Ĥ (λ0)2(E/h̄ω) cos(ωt). (3)

At time t = 0, the system is assumed to be in the lowest-
energy eigenstate |i〉 of the Hamiltonian Ĥ (λ0)|i〉 = εi |i〉.
Then, according to time-dependent perturbation theory [73],
the probability of observing the system in another eigenstate
|f 〉 at time t is given by [74]

nf (ω,t) = 2πt

h̄

∣∣∣∣ E

h̄ω
〈f |∂λ1Ĥ (λ0)|i〉

∣∣∣∣
2

δ(εf − εi − h̄ω). (4)

In the following, we are interested in the total excitation rate,
which is obtained by summing Eq. (4) over all possible final
states: �(ω) ≡ (1/t)

∑
f nf (ω,t). Inspired by Ref. [57], we

now introduce the integrated rate,

�int ≡
∫

dω �(ω) = 2πE2

h̄2

∑
f

∣∣〈f |∂λ1Ĥ (λ0)|i〉∣∣2

(εf − εi)2
. (5)

Using the identity 〈f |∂λ1Ĥ (λ0)|i〉 = −(εf − εi)〈f |∂λ1 i〉, one
eventually obtains the relation between the integrated rate and
the diagonal components of the quantum metric,

�int = 2πE2

h̄2

∑
f

∣∣〈f ∣∣∂λ1 i
〉∣∣2 = 2πE2

h̄2 gλ1λ1 (λ0). (6)

Similarly, one can relate the off-diagonal components of the
quantum metric to the excitation rate �, by combining two sets
of measurements, as we now explain. Consider modulating two
parameters λ1 and λ2 as

λ1(t) = λ0
1 + 2(E/h̄ω) cos(ωt),

(7)
λ2(t) = λ0

2 ± 2(E/h̄ω) cos(ωt).

The probability of finding the system in a state |f 〉 is

n±
f (ω,t) = E2

(h̄ω)2

∣∣〈f |∂λ1Ĥ (λ0) ± ∂λ2Ĥ (λ0)|i〉∣∣2

×2π
t

h̄
δ(εf − εi − h̄ω), (8)

where ± refers to the sign in Eq. (7). In this scenario, the
integrated rate becomes

�int
± ≡ (1/t)

∫
dω

∑
f

n±
f (ω,t)

= 2πE2

h̄2 [gλ1λ1 (λ0) ± 2gλ1λ2 (λ0) + gλ2λ2 (λ0)].

FIG. 1. Extraction of the quantum metric of the two-level system
(10), using the protocol [Eqs. (6) and (9)]. The numerically extracted
values of gθθ (top blue dots), gφφ (middle orange dots), and gθφ (bot-
tom green dots) are plotted together with their ideal values [Eq. (11)]
in solid lines. The full-time-dynamics simulations are performed
with the drive amplitude E = 0.01H0, up to the observation time
t = 20h̄/H0. The required integral over ω has been calculated using
the range h̄ω ∈ [0.5H0,3.5H0], and the discrete step h̄δω = 0.05H0.
In all simulations, we set the initial condition φ0 = π/4.

Then, taking their difference, we obtain

��int = �int
+ − �int

− = 8πE2

h̄2 gλ1λ2 (λ0), (9)

which relates the differential integrated rate to off-diagonal
elements of the quantum metric [75].

Application to two-level systems. We apply the proposed
scheme to a generic two-level system, whose Hamiltonian can
be parametrized by two parameters (θ,φ),

Ĥ (θ,φ) = H0

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
; (10)

see Refs. [3,66] for realizations where (θ,φ) can be tuned. The
eigenenergies of the system are ±H0, and the quantum metric
is found to be independent of the level [25]

gθθ = 1/4, gφφ = (sin2 θ )/4, gθφ = 0. (11)

We now numerically explore the validity of the proposed
scheme [Eqs. (6) and (9)]. In order to extract gθθ , we prepare
a state in the lower-energy eigenstate of the Hamiltonian
Ĥ (θ0,φ0), and then modulate θ in time according to θ (t) =
θ0 + 2(E/h̄ω) cos(ωt). We simulate the full-time evolution of
the driven system and measure the population in the upper
state as a function of time; repeating this procedure for many
values of the drive frequency ω allows one to evaluate gθθ

through Eq. (6). Similarly, we modulate φ(t) to extract gφφ ,
and finally modulate both θ (t) and φ(t) to extract gθφ [Eqs. (7)
and (9)]. The results presented in Fig. 1, which displays the
components of the extracted quantum metric as a function
of the initial condition θ0 (for a fixed φ0), show very good
agreement between the ideal values (solid lines) and those
extracted from numerical simulations (dots). Slight deviations
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are attributed to the finite interval h̄ω ∈ [0.5H0,3.5H0] used
to calculate the integrated rates, and/or to finite observation
times.

Application to lattice systems. We now extend the method to
the case of Bloch states, where the relevant parameter space is
spanned by crystal momentum. Since the latter quantity cannot
be directly modulated in time, using an external drive, we now
build on the proposal [57], where a circular shaking of the
lattice was shown to reveal the Berry curvature and Chern
number of a populated Bloch band. To probe the quantum
metric, we propose to shake the lattice linearly as [76]

Ĥx(t) = Ĥlattice + 2E cos(ωt)x̂, (12)

where Ĥlattice is the lattice Hamiltonian of interest and x̂ is the
position operator. For the sake of clarity, we first assume that
the system is initially prepared in a given Bloch state, |ψini〉 =
eik0·r|un(k0)〉, where k0 is the corresponding quasimomentum
andn is the band index. Considering an initial state in the lowest
band ε1(k), the excitation rate upon linear drive [Eq. (12)] is
given by

�x̂(ω) =
∑

un(k)�=u1(k0)

|〈un(k)|e−ik·rx̂eik0·r|u1(k0)〉|2

×2π

h̄
E2δ(εn(k) − ε1(k0) − h̄ω). (13)

Noting that the position operator is diagonal and acts as
a derivative in k space [12], 〈un(k)|e−ik·rx̂eik0·r|u1(k0)〉 =
iδk,k0〈un(k)|∂kx

u1(k)〉, and integrating the rate �x̂(ω) over ω,
we obtain

�int
x̂ ≡

∫
dω �x̂(ω) = 2πE2

h̄2

∑
n�=1

∣∣〈un(k0)
∣∣∂kx

u1(k0)
〉∣∣2

= 2πE2

h̄2 g1
xx(k0), (14)

where g1
xx is the xx component of the quantum metric asso-

ciated with the lowest band. Similarly, the yy component is
related to the integrated rate upon linear shaking along the y

direction.
In order to obtain the xy component of the quantum geo-

metric tensor, we apply the linear shaking along the diagonal
directions x̂ ± ŷ,

Ĥx±y(t) = Ĥlattice + 2E cos(ωt)(x̂ ± ŷ), (15)

which results in the integrated rate

�int
x̂±ŷ = 2π

h̄2 E2(g1
xx(k0) ± 2g1

xy(k0) + g1
yy(k0)

)
. (16)

Upon taking their difference, we find the relation between g1
xy

and the differential integrated rate,

��int ≡ �int
x̂+ŷ − �int

x̂−ŷ = 8π

h̄2 E2g1
xy(k0). (17)

We stress that the relation (17) only involves linearly polarized
modulations [Eq. (15)], which is in contrast to analogous
Berry-curvature measurements obtained from circularly po-
larized modulations [57]. We also note that

��int ≡ �int
x̂+ŷ + �int

x̂−ŷ = 4π

h̄2 E2Tr
[
g1

μν(k0)
]

(18)

offers a direct probe for the quantum metric trace.

So far, we have assumed that the initial state corresponds
to a single eigenstate of the lattice Hamiltonian. However, the
results above directly generalize to the case where the initial
state is made of a superposition of states in the lowest band,
|ψini〉 = ∑

k c(k)eik·r|u1(k)〉. For instance, upon adding a lin-
ear shaking along x [Eq. (12)], the integrated rate in Eq. (14)
is now given by the weighted average of the quantum metric,

�int
x̂ = 2π

h̄2 E2
∑

k

|c(k)|2g1
xx(k). (19)

A similar relation holds for noninteracting fermions (partially)
filling the lowest band, in which case the weight |c(k)|2 in
Eq. (19) should be replaced by the density of fermions ρ(k)
in this band.

Example: Harper-Hofstadter model. We numerically ex-
plore the validity of this method by considering the Harper-
Hofstadter model [63,64], and setting the flux per plaquette
α = π/2 as in recent cold-atom experiments [62,69]. In order
to extract g1

xx(k0), around a given quasimomentum, we initially
prepare a Gaussian wave packet of the form ψini(x; k0) ∝
eik0

xx+ik0
yy−(x2+y2)/2σ 2

, which we then project unto the lowest
band; experimentally, this would correspond to adiabatically
loading a wave packet into the lowest (Floquet) band [62], and
setting k0 through Bloch oscillation. Here,σ denotes the spread
of the wave packet in real space, and the lattice spacing is unity.
As discussed above [Eq. (19)], measuring the integrated rate
�int

x̂ upon linear shaking along x then provides an estimation of
the quantum metric g1

xx(k0), with a resolution that improves as
one reduces the spread 1/σ in k space. We have implemented
this protocol through a full-time-dynamics simulation of the
driven Harper-Hofstadter model. The results are shown in
Fig. 2, which displays the quantum metric g1

xx(k0) extracted
from the simulated dynamics and using the relation in Eq. (14).
Here, we fixed k0

y = π/4, and measured g1
xx for various k0

x ; see
the blue dots in Fig. 2. These numerical results are compared to
the ideal values of g1

xx(k) (solid orange line), together with the
weighted average of g1

xx(k) using the Gaussian profile (dashed
green line). The perfect agreement between the numerical
simulation and the weighted-average prediction (19) validates
the approach. As discussed above, the extracted values of g1

xx

can be made closer to the ideal theory prediction [Eq. (14)] by
improving the localization of the wave packet in momentum
space.

Spread functional in the Haldane model. As a final example,
we show how our protocol can be used to directly extract the
spread functional [22], which characterizes the localization of
Wannier functions in a given Bloch band. First, recall that the
quadratic spread of Wannier functions is lower bounded by the
trace of the quantum metric according to [22,51–54]

〈r2〉 − 〈r〉2 � Tr[gμν(k)] ≡ �I, (20)

where Tr[gμν(k)] = 1
AFBZ

∫
FBZ d2k(gxx(k) + gyy(k)) is the av-

erage of the trace of the quantum metric over the first Brillouin
zone (FBZ) and AFBZ is the area of the FBZ. As suggested
in Eqs. (14), (18), and (19), the quantity �I could be directly
extracted from our protocol upon filling a given Bloch band
uniformly over the Brillouin zone [77]. Interestingly, this could
offer an experimental detection of this abstract quantity, which
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FIG. 2. The quantum metric g1
xx associated with the lowest band

of the Harper-Hofstadter model, with flux α = π/2 per plaquette,
as extracted by linearly shaking the lattice along x [Eq. (14)]. Dots
are extracted values of g1

xx , comparing numerical dynamics with
Eq. (14), the orange line is the ideal value of g1

xx , and the green line
is the weighted average

∑
k |c(k)|2g1

xx(k), where |c(k)|2 reflects the
Gaussian profile of the initial wave packet. The simulations are done
on a lattice of size 45 × 45, up to the final time of t = 10h̄/|J |, and
the drive strength is E = 0.01|J |, where J is the hopping amplitude.
We integrate the rates over ω, using the range h̄ω ∈ [0.5|J |,5.5|J |],
and a discrete step h̄δω = 0.05|J |.

played such a crucial role in constructing maximally localized
Wannier functions [22,51–54].

We demonstrate this scheme by considering the Haldane
lattice model [65,68], which is characterized by the staggered
potential strength M and the second-neighbor hopping ma-
trix elements ±iJ ′. This model exhibits a topological phase
transition at M = 3

√
3J ′, which is associated with a change

in the Chern number. In order to access the components
g1

xx and g1
yy , we numerically shake the lattice along the x̂

and ŷ directions, respectively. Furthermore, the average of
these components over the Brillouin zone is readily obtained
by preparing an initial state that is evenly distributed over
the entire lowest band. In our numerical simulations, this is
achieved by considering a state in a single lattice site and
projecting the latter unto the desired band; see Ref. [79] for
details. In experiments, the uniform filling is directly achieved
through Pauli statistics.

Figure 3 shows �I as extracted from our simulations of the
shaken Haldane model, and compared with their ideal values
(solid line). As noted in Ref. [52], �I diverges logarithmically

FIG. 3. Values of the spread functional �I, as extracted from the
protocol applied to the shaken Haldane model (dots). The solid line
shows the ideal values of �I. The simulations are done on a lattice
with 45 × 45 unit cell withJ ′ = 0.1J , whereJ is the nearest-neighbor
hopping amplitude. The amplitude of the modulation is E = 0.01J

and the simulation is performed up to the time of t = 10h̄/J . We
integrate the rates over ω, using the range h̄ω ∈ [0.05J,5.0J ], and a
discrete step h̄δω = 0.05J .

at the topological phase transition, which signals the crossing
through a metallic regime. Away from this phase transition, we
find that the numerical values �I associated with our protocol
well capture the behavior of the ideal spread functional.
However, the divergent feature of this quantity at the transition
is difficult to probe, which is due to the limitation of the method
when dealing with arbitrarily small frequencies.

We stress that the relation between �I and the localization
of Wannier functions [Eq. (20)] is only meaningful in the
trivial regime (M/3

√
3J ′ > 1); see Ref. [52]. In this regime,

the protocol described above could be used to experimentally
measure the localization of Wannier states, which could then
be used to validate the numerical construction of Wannier
functions for systems of interest.

Note added in proof. An experimental implementation of
our scheme, which revealed the Wannier-spread functional �I,
was recently reported in Ref. [80].
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P. Hauke, M. Kolodrubetz, B. Mera, G. Palumbo, G. Salerno,
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