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Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2
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Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation
of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac
semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect.
The relative anisotropic magnetoresistance is negative and up to −68% at 2 K and 10 T. The high anisotropy and
the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the
magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only
reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures
of Weyl and Dirac fermions other than negative magnetoresistance.
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Anisotropic magnetoresistance (AMR) was first discovered
by Thomson in 1857 and was observed in many ferromagnetic
metals [1]. It is closely associated with changes of magneti-
zation relative to the current. Its transverse version shows a
transverse current or voltage in response to the longitudinal
current flow and an applied in-plane magnetic field, called
the planar Hall effect (PHE) [2,3]. Usually, the relative AMR
is weak, less than 1% or at most up to a few percent in
some ferromagnetic metals and half-metallic ferromagnets [4].
Recently, negative longitudinal magnetoresistance and non-
saturated linear out-of-plane perpendicular magnetoresistance
and in-plane transverse magnetoresistance were reported in
a series of newly discovered topological semimetals [5–16].
While negative magnetoresistance is possibly associated with
the chiral anomaly of the Weyl fermions in an electric field
and a magnetic field [17–20], linear out-of-plane perpendicular
magnetoresistance and in-plane transverse magnetoresistance
illustrate the high anisotropy of magnetotransport in topolog-
ical semimetals. This is a rare property for a paramagnetic
metal. The AMR and PHE have started to attract a lot of
theoretical studies in topological semimetals [21,22] and other
topological materials [23–25].

We denote transverse resistivity by ρ⊥(B) when the mag-
netic field B is perpendicular to the electric current density j,
i.e., j · B = 0, and longitudinal resistivity by ρ‖(B) when the
magnetic field is parallel to the electric current density, i.e.,
B ‖ j. Usually, transverse resistivity is larger than longitudinal
resistivity, i.e., ρ⊥(B) � ρ‖(B), in Weyl and Dirac semimetals.
The equality holds only for B = 0. Thus, the resistivity is very
sensitive to the angle between the electric current density and
the magnetic field. In general, the AMR and PHE can be well
described by a formula between the electric field E and the
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electric current density in a vector form as below,

E = ρ⊥j + (ρ‖ − ρ⊥)
BB · j
B2

+ ρ⊥χB × j, (1)

where χ is the mobility of the charge carriers. Assuming j
and B construct an x−y plane [see Fig. 1(a)], the in-plane
field-dependent resistivity ρij = ρ⊥δij + (ρ‖ − ρ⊥)BiBj/B

2,
with i,j = x,y. In-plane diagonal or longitudinal resistiv-
ity is highly anisotropic as a function of the angle ϕ be-
tween the magnetic field and electric current density, ρxx =
ρ‖+ρ⊥

2 + ρ‖−ρ⊥
2 cos 2ϕ. In-plane off-diagonal resistivity leads

to a nonzero electric field that is normal to the electric current
density but parallel to the magnetic field. In-plane off-diagonal
resistivity is called planar Hall resistivity, ρxy = ρ‖−ρ⊥

2 sin 2ϕ.
It is worth emphasizing that ρxx(ϕ) and ρxy(ϕ) have identical
forms to that for ferromagnetic metals [1].

In our previous magnetotransport study of Dirac semimetal
Cd3As2 microribbons [8], we have successfully observed the
carrier density dependence of nonsaturating positive magne-
toresistance in out-of-plane perpendicular magnetic fields and
negative longitudinal magnetoresistance in parallel magnetic
fields. Here, we present further in-plane magnetotransport
results on the AMR and PHE in Dirac semimetal Cd3As2

microribbons. Our experimental results are in excellent agree-
ment with the relation between the magnetic field and electric
current density in Eq. (1), which can be derived from the
field-dependent current induced by the chiral anomaly of Weyl
and Dirac fermions, or the Berry curvature in conventional and
topological metals in the semiclassical theory. This implies that
the observed AMR and PHE in our Cd3As2 microribbons is
associated with the physics of Berry curvature intrinsic to the
Dirac semimetal Cd3As2.

Detailed growth and structural charaterizations of Cd3As2

microribbons can be found in our earlier work [8]. In brief,
a Cd3As2 microribbon was grown by the chemical vapor
deposition method on Si (001) substrates and Ar gas was
used as a carrier gas. The furnace was gradually heated up to
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FIG. 1. Cd3As2 microribbon devices and magnetotransport char-
acteristics. (a) The optical image of the Cd3As2 microribbon device.
The current probes I and voltage probes Vxx and Vxy are labeled in
orange, green, and purple colors, respectively. The current is applied
along the x direction as indicated, and the microribbon is rotated in the
x−y plane. (b) AFM image and (c) the height profile of the Cd3As2

microribbon in (a). (d) The in-plane longitudinal magnetoresistance
(MRxx) measured at 2 K with the applied magnetic field (B) direction
changing from parallel (ϕ = 0◦) to transverse (ϕ = 90◦) to the applied
current (I) direction in the x−y plane. (e) In-plane longitudinal
magnetoresistance (MRxx) measured at the different temperatures
indicated in parallel fields in the x−y plane.

750 °C in 20 min and the Ar flow was kept as 100 sccm (sccm
denotes cubic centimeter per minute at standard temperature
and pressure) during the growth process. The duration of the
growth is 60 min, and then it cools down to room temperature
naturally. To study the magnetotransport properties, a Hall
bar structure was fabricated with standard e-beam lithography
and lift-off processes. Al/Au/Cr electrodes with thicknesses
of 500 nm/175 nm/25 nm were deposited using thermal
evaporation and e-beam evaporation methods. The transport
properties of the devices were then measured in a Quantum
Design physical properties measurement system (PPMS) with
the highest magnetic field up to 14 T.

Figure 1(a) shows the optical image of a typical Cd3As2

device studied in this work. The width w is about 5 μm,
and the intervoltage-probe distance for Vxx and Vxy is about
10 and 2 μm, respectively. The ribbon thickness t is about
592 nm according to the atomic force microscopy measurement
shown in Fig. 1(b) and the measured height profile in Fig. 1(c).
The current I is applied along the longitudinal direction (x
direction) of the Cd3As2 microribbon, as indicated in Fig. 1(a).
The carrier concentration and mobility is in the order of
1017/cm3 and 104 cm2/V s, respectively, for temperatures
below 50 K. The Fermi energy EF , defined as the energy
difference between the Fermi level and the Dirac point, is
estimated to be about 88 meV above the Dirac point based
on the known Fermi velocity vF ∼ 106 m/s for Cd3As2 [26]

FIG. 2. Planar Hall effect (PHE) in the Cd3As2 microribbon.
(a) Schematic of the PHE in the Cd3As2 microribbon devices. (b)
The magnetic field dependence of the Rxy measured at 2 K with
the applied B-field direction changing from parallel (ϕ = 0◦) to
transverse (ϕ = 90◦) to the applied current direction in the x−y plane.
(c) The symmetrized angular dependence of the Rxy (top panel) and
Rxx (bottom panel) measured at 2 K and 5 T. The red lines are the
fitting curves using the inset equations, where ϕ is the angle between
the I and B field in the x−y plane; R‖ and R⊥ are the resistance when
ϕ is equal to 0° and 90°, respectively; γ is the ratio of the width to
the length of the Cd3As2 microribbon device.

(see Sec. A in the Supplemental Material [27] for details).
Figure 1(d) shows the in-plane longitudinal magentoresistance
(MRxx = Rxx (B)−Rxx (0)

Rxx (0) × 100%) measured at T = 2 K with
various anglesϕ between the applied magnetic field and current
directions in the x−y plane (see the inset). When the magnetic
field (B field) is parallel to the applied current (I), i.e., ϕ = 0◦, a
pronounced negative MRxx is observed in low magnetic fields.
When ϕ increases, negative MRxx vanishes and an evident
positive MRxx is observed. It reaches the maximum value of
∼275% at 14 T when the B field is transverse to I (ϕ = 90°).
Figure 1(e) shows the MRxx curves measured at ϕ = 0◦ at
the indicated temperatures. Negative MRxx has been observed
in a wide temperature range, and the largest negative MRxx

of ∼−21% is observed at T = 50 K and B = 7 T. However,
negative MRxx is not observable when the temperature further
increases to above 200 K. Similar MRxx behaviors have been
observed in other Cd3As2 microribbon devices. Such negative
MRxx has been studied in detail and attributed to the chiral
anomaly in our previous work [8]. Similar observations of
negative MRxx with B ‖ I have also been reported and are
considered as a signature of the chiral anomaly of topological
semimetals [5–7,9–12].

According to Eq. (1), the longitudinal resistance (diagonal)
Rxx and the planar Hall resistance (off-diagonal) Rxy , defined
as Rxy = Vxy

I
, change systematically as a function of the

rotating angle ϕ. Figure 2(a) is a schematic illustration of
the PHE in the Cd3As2 microribbon devices, the current I
is applied along the longitudinal direction of the Cd3As2

microribbon, and the B field is rotated in the x−y plane. In
the experiment, a misalignment between the actual rotation
plane and the Cd3As2 microribbon plane may exist. This could
result in a finite ordinary Hall resistivity component in the
measured planar Hall resistivity Rxy . Fortunately, the ordinary
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Hall component is antisymmetric to the B-field directions and
can be readily eliminated by summing the measured Rxy in
both positive and negative B-field directions. Figure 2(b) shows
the symmetrized B-field dependence of the Rxy measured at
different rotating angles ϕ at 2 K. When ϕ varies from 0° to
90°, the magnitude of Rxy increases first and then decreases,
as expected in the PHE discussions of Eq. (1).

Figure 2(c) shows the symmetrized angular-dependent Rxy

and Rxx measured at 2 K and 5 T. Both the measured Rxy

and Rxx show a 180° periodic angular dependence, which is
not expected for a nonmagnetic and isotropic solid but is in
agreement with Eq. (1). We fit the Rxy using the equation
Rxy = γ

R‖−R⊥
2 sin 2ϕ derived from Eq. (1), where R‖ and

R⊥ is the longitudinal resistance when ϕ is equal to 0° and
90°, respectively, and γ is the geometric ratio of the width to
the length of the Hall bar device. Remarkably, as indicated
by the red line in the top panel in Fig. 2(c), the measured
Rxy can be well fitted by the equation, demonstrating the
existence of the PHE in this nonmagnetic material. Moreover,
the measured Rxx can also be well fitted by the equation
Rxx(B,ϕ) = R‖+R⊥

2 + R‖−R⊥
2 cos 2ϕ, as indicated by the red

line in the bottom panel in Fig. 2(c). Such a periodic resistance
oscillation is a peculiar characteristic of the AMR, as will be
discussed below. The same PHE and AMR features have been
observed in other Cd3As2 microribbon devices, as can be seen
in Sec. B in the Supplemental Material [27].

Prior to discussing the AMR effect, we revisit the Rxx−B
curves at different rotating angles ϕ, as shown in Fig. 3(a).
According to Eq. (1), the longitudinal resistance Rxx follows
Rxx(B,ϕ). Theoretically, we can calculate the Rxx value at any
arbitrary angle ϕ if the Rxx values at ϕ = 0◦ (R‖) and 90°
(R⊥) are known. As shown in Fig. 3(a), the measured Rxx−B
curves at ϕ = 0◦, 30°, 60°, and 90° in a magnetic field range
of ±5 T are plotted. The red lines are the calculated results
of Rxx(B,ϕ) using the measured curves at ϕ = 0◦ and 90°.
The yielded ϕ is 27° and 55°, respectively, which is very close
to the experimental set values of 30° and 60°. The difference
may be caused by the misalignment between the actual rotation
plane and the Cd3As2 microribbon plane. Figure 3(b) shows the
symmetrized angular-dependent Rxx at the B fields indicated
and 2 K. The AMR effect can be seen clearly at different B
fields and can be well described by Rxx(B,ϕ) [red lines in
Fig. 3(b)].

More remarkably, the observed AMR here shows anoma-
lously larger R⊥ than R‖. Thus, the AMR ratio, defined as
R‖−R⊥

R⊥
× 100% [4], is negative for the Cd3As2 microribbon

device at 2 K, as shown in Fig. 3(c). With increasing B fields,
the magnitude of the AMR ratio increases monotonically and
saturates at ∼68% around B = 10 T. In Fig. 3(c), indicated
as solid symbols, the saturated AMR ratios for ferromagnetic
metals CoMnAl, NiFe, and Fe4N and half-metallic ferromag-
net La0.7Sr0.3MnO3 are replotted from Ref. [4] for comparison.
As can be seen, the saturated AMR ratio for the Cd3As2

microribbon device is one or two orders of magnitude larger
than that for ordinary ferromagnetic metals and half-metallic
ferromagnets. This giant and negative AMR is a striking feature
in topological Weyl and Dirac semimetals. Moreover, the AMR
amplitude follows a quadratic B-field dependence at a small
B-field regime (B < 1.0 T), as theoretically expected (see

FIG. 3. Anisotropic magnetoresistance (AMR) in the Cd3As2

microribbon. (a) The symmetrized longitudinal resistance (Rxx)
measured at 2 K at ϕ indicated, where ϕ is the angle between the
I and B field in the x−y plane. (b) The angular dependence of
the Rxx at 2 K and B fields indicated. The red lines in (a) and (b)
are fitting curves using Rxx = R‖+R⊥

2 + R‖−R⊥
2 cos 2ϕ. (c) The AMR

ratio of the Cd3As2 microribbon devices at 2 K as a function of
the B fields. The black line is a guide to the eyes. The AMR ratio
of ferromagnetic metals CoMnAl, NiFe, Fe4N, and half-metallic
ferromagnet La0.7Sr0.3MnO3 from Ref. [23] is also indicated for
comparison. (d) The angular dependence of the in-plane longitudinal
conductance Gxx at 2 K and B fields indicated. The red lines are the
fitting curves using Eq. (3).

Sec. C in the Supplemental Material [27] for details). However,
the AMR amplitude deviates from the quadratic function at a
higher B field above 3.5 T, which may be caused for multiple
reasons and is still under theoretical investigation.

Figure 3(d) shows the angular-dependent magnetoconduc-
tance. The longitudinal magnetoconductance is not simply
proportional to cos2ϕ. The nonsinusoidal feature becomes
more evident when increasing the B field from 1 to 10 T,
demonstrating that the measured AMR increased with the
magnetic field. This effect can be well understood from the
AMR and PHE [21]. In this case, the conductance G is given
as R−1, and the relative longitudinal magnetoconductance is
then given by

G − G⊥
G⊥

= cos2ϕ
R‖

R⊥−R‖
+ sin2ϕ

. (2)

The correction of sin2ϕ in the denominator reflects the in-
plane transverse voltage induced by the applied B field or
the PHE. This is another peculiar feature of the AMR. We
plug the experimental value of R‖ and R⊥ into Eq. (2) to
reproduce the angular-dependent magnetoconductance [red
lines in Fig. 3(d)], which shows very good agreement with the
experimentally measured ones [open circles in Fig. 3(d)]. Thus
the PHE is attributed to this angle narrowing effect. This angle
narrowing effect was also observed in a previous experiment
[6], which implies the existence of PHE in Na3Bi.
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The AMR and PHE can be attributed to a B-field-dependent
current given by

jB = α(B · E)B. (3)

The key feature of Eq. (3) is that the current density is
parallel to the magnetic field instead of the electric field.
Several mechanisms may produce this type of current: (1)
The chiral magnetic effect of Weyl fermions gives a nonzero
current density which is proportional to the magnetic field B,
jCME = e2

4π2 h̄2 μ5B, where μ5 is the chemical potential differ-
ence between the two Weyl nodes according to the quantum
field theory [28,29]. However, when the Weyl fermions are
subject to both an electric field E and a magnetic field B, the
chiral anomaly equations for Weyl fermions induce a nonzero

value μ5 ≈ e2 h̄v3
F E·Bτv

μ2 , where τv is the relaxation time, vF is the
Fermi velocity, and μ is the chemical potential. Substituting
μ5 into the current equation of the chiral magnetic effect,
one obtains α = e2

4π2 h̄
e2v3τv

μ2 . α is anticipated to be a constant
in weak magnetic fields [18] and become field dependent at
strong fields [30]. (2) In the second-order semiclassical theory
[31], the Berry curvature in a conventional metal without
chiral anomaly can also produce a current along the direction
of the B field. It is attributed to the Fermi surface property
that highly depends on the geometric quantities such as the
orbital magnetic moment. For nonmagnetic metals in the
semiclassical regime, the leading-order magnetoresistivity is
quadratic of B due to the constraint of time-reversal symmetry
and the Onsager’s relation [32]. (3) Other possible mechanisms
are also proposed in conventional and topological conductors.
For example, the electric and magnetic field can produce a
helicity imbalance leading to the field-dependent current in a
Dirac-like material [33].

In the presence of a magnetic field, the Lorentz force, which
deflects the motion of charged particles in a magnetic field, is
also one of the main sources to produce magnetotransport in
a solid. Considering the drift velocity of charge carriers in a
magnetic field and the field-dependent correction to the charge
current, the charge current density j can be expressed as

j − χ j × B = σDE + α(E · B)B, (4)

where σD is the isotropic conductivity, and χ is the mobility.
The resulting resistivity is a tensor instead of a scalar after
jB is included. When the magnetic field is transverse to the
electric current density, i.e., j · B = 0, the transverse resis-
tivity is ρ⊥ = 1

σD
. When the magnetic field is parallel to the

electric current density, i.e., B ‖ j, the longitudinal resistivity
is ρ‖(B) = 1

σD+αB2 . The parameter α can then be expressed in

terms of ρ‖ and ρ⊥ as α = (ρ−1
‖ − ρ−1

⊥ )/B2. In practice, ρ‖ and
ρ⊥ are two physical quantities to be measured experimentally.
As a result, αB2 may give rise to a negative magnetoresistivity
defined as δρ‖ = ρ‖(B) − ρ‖(0). In addition, Eq. (1) can be
explicitly derived from Eq. (4) by the vector calculation. All
the parameters in Eq. (1) are measurable experimentally.

The excellent agreement between the measured AMR and
PHE and that described by Eqs. (1) and (4) reveals the existence
of the field-dependent current [given by Eq. (3)] in our Cd3As2

devices. For the Dirac semimetal Cd3As2, the conduction and
valence bands are inverted near the � point to form Dirac
points and the Lifshitz point, but a linear dispersion persists
even when the Fermi energy EF moves up to 250 meV above
the Dirac point [26]. Since the Lifshitz energy is relatively
small [34], it is believed that a strong coupling between the
conduction and valence bands produces the Berry curvature,
which can induce the field-dependent current according to the
semiclassical theory [31,33]. If the two bands just touch at
one point [35], the chiral anomaly could provide a reasonable
mechanism to produce the AMR and PHE [22].

Large in-plane transverse magnetoresistance has not been
well understood up to now. In this case, the effect of chiral
anomaly is ruled out as the current is normal to the magnetic
field. Although Abrisokov found a linear magnetoresistance at
a screened Coulomb potential in the quantum limit [36], a linear
magnetoresistance was observed even at relatively weak fields
in many Weyl and Dirac semimetals, especially those with high
mobility [37]. Therefore, the true physical mechanism is still
unclear [38]. In this work, a quadratic in-plane transverse mag-
netoresistance is only measured in very weak fields B < 1T as
shown in Fig. 1(d). Large positive in-plane transverse magne-
toresistance clearly deviates from the quadratic behaviors when
B > 2 T. This cannot be simply explained in the framework of
the Drude theory assuming that the relaxation time is indepen-
dent of field. However, the observed large magnetoresistance
indicates that the relaxation time has a large correction in a
finite magnetic field. Negative longitudinal magnetoresistance
has been discussed in the previous paper [8]. It is worth
noting that negative magnetoresistance can be also induced
by some mechanisms other than chiral anomaly [31,33,39–43].
Whether these mechanisms can also induce the AMR and PHE
is still an open question and deserves further study.

To conclude, we have observed giant and negative
anisotropic magnetoresistance and the planar Hall effect in
nonmagnetic Cd3As2 microribbons. Our experimental results
are in excellent agreement with the theoretical descriptions
and formulas of AMR and PHE. The puzzle of the angle
narrowing effect which was first observed in Na3Bi is also
resolved according to the theory of AMR and PHE. Therefore,
our work not only reveals unusual physical phenomena in
Weyl and Dirac semimetals, but also finds additional transport
signatures of Weyl and Dirac fermions other than negative
magnetoresistance. The observed giant AMR and PHE in
topological semimetals might also have potential applications
in magnetic sensors.

Recently, we became aware of a work on the measurement
of the planar Hall effect by Wu et al. [44].
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