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Three-dimensional quantum anomalous Hall effect in hyperhoneycomb lattices
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We address the role of short-range interactions for spinless fermions in the hyperhoneycomb lattice, a three-
dimensional (3D) structure where all sites have a planar trigonal connectivity. For weak interactions, the system
is a node-line semimetal. In the presence of strong interactions, we show that the system can be unstable to a 3D
quantum anomalous Hall phase with loop currents that break time-reversal symmetry, as in the Haldane model.
We find that the low-energy excitations of this state are Weyl fermions connected by surface Fermi arcs. We show
that the 3D anomalous Hall conductivity is e2/(

√
3ah), with a the lattice constant.

DOI: 10.1103/PhysRevB.97.201101

Introduction. The quantum Hall conductivity describes dis-
sipationless transport of electrons in a system that breaks time-
reversal symmetry (TRS) due to an external applied magnetic
field. In two dimensions (2D), the current is carried through the
edges [1], and the Hall conductivity σxy is quantized in units
of e2/h. In three dimensions (3D), the Hall conductivity is not
universal and has an extra unit of inverse length. As shown by
Halperin [2], the 3D conductivity tensor on a lattice has the
form σij = e2/(2πh)εijkGk , where G is a reciprocal lattice
vector (it could be zero). The realization of the 3D quantum
Hall effect has been proposed in systems with very anisotropic
Fermi surfaces [3–5], or else in node-line semimetals [6–9],
where the Fermi surface has the form of a line of Dirac nodes
[10–24].

Equally interesting would be to realize the 3D quantum
anomalous Hall (QAH) effect [25–28], where the anomalous
Hall conductivity emerges from the topology of the 3D band
structure in the absence of Landau levels. The first proposal
for a Chern insulator system was the Haldane model [29]
on the honeycomb lattice, where loop currents break TRS
and can produce a nonzero Chern number in the bulk states.
Hyperhoneycomb lattices have the same planar trigonal con-
nectivity of the honeycomb lattice [see Fig. 1(a)], and hence
could provide a natural system for the emergence of a 3D QAH
conductivity. While we are not aware of a concrete example of
a material that realizes this lattice [30], this system may directly
appeal to experimental groups working in the field of quantum
simulation of topological phases. Very recently, the Haldane
model was simulated with cold atoms [31] and in quantum
circuits [32].

In this Rapid Communication, we describe the 3D QAH
state that emerges from repulsive interactions in a hyperhoney-
comb lattice with spinless fermions. This state competes with
a CDW state, and produces a very anisotropic gap around a
line of Dirac nodes in the semimetallic state. Due to a broken
inversion symmetry, the QAH gap changes sign along the nodal
line, forming Weyl points connected by Fermi arcs [33,34].
We show that the QAH conductivity of the surface states is
e2/(

√
3ah), with a the lattice constant.

Lattice model. We start from the tight-binding model of
the hyperhoneycomb lattice, which has four atoms per unit

cell and planar links spaced by 120◦, as shown in Fig. 1(a).
The lattice has three vector generators a1 = (

√
3,0,0), a2 =

(0,
√

3,0), and a3 = (−√
3/2,

√
3/2,3), and the correspond-

ing reciprocal lattice vectors b1 = (2π/
√

3,0,−π/3), b2 =
(0,−2π/

√
3,π/3), and b3 = (0,0,2π/3). For a model of spin-

less fermions, which could physically result from a strong
Rashba spin-orbit coupling [35], the kinetic energy is H0 =
−t

∑
〈i,j〉(a

†
i aj + H.c.), where ai destroys an electron on site

i, t is the hopping energy, and 〈ij 〉 denotes nearest-neighbor
(NN) sites. In the four-sublattice basis, the Hamiltonian is a
4 × 4 matrix [7]

H0 = −t

⎛
⎜⎜⎝

0 �x 0 eikz

�∗
x 0 e−ikz 0

0 eikz 0 �y

e−ikz 0 �∗
y 0

⎞
⎟⎟⎠, (1)

where �γ ≡ 2eikz/2 cos(
√

3kγ /2), with γ = x, y, and k is
the momentum away from the center of the Brillouin zone
(BZ). The electronic structure has a doubly degenerate zero
energy line of nodes in the form of a Dirac loop at the kz = 0
plane, k0(s) ≡ [kx(s),ky(s),0] in some parametrization that
satisfies the equation 4 cos[

√
3kx(s)/2] cos[

√
3ky(s)/2] = 1,

as schematically depicted in Fig. 1(b). The projected low-
energy Hamiltonian has the form

H0,p(q) = [vx(s)qx + vy(s)qy]σx + vz(s)qzσy, (2)

where q ≡ k − k0(s) is the momentum away
from the nodal line, σx, σy are Pauli matrices,

with vx(s) =
√

3
2 t sin[

√
3kx(s)/2]/(1 + α2), vy(s) =√

3
2 α2t sin[

√
3ky(s)/2]/(1 + α2), and vz = −3tα/(1 + α2)

the quasiparticle velocities, and α(s) = 2 cos[
√

3kx(s)/2].
Hamiltonian (2) corresponds to the low-energy spectrum

ε0(q) =
√

(vxqx + vyqy)2 + v2
z q

2
z , (3)

which is gapless along the nodal line.
The total Hamiltonian is H = H0 + HI , where

HI = V1

∑
〈i,j〉

(n̂i − 1)(n̂j − 1) + V2

∑
〈〈i,j〉〉

(n̂i − 1)(n̂j − 1) (4)
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FIG. 1. (a) Hyperhoneycomb lattice with four sublattices, indi-
cated by the different color sites. All sites are trigonally connected
with planar links spaced by 120◦. The two planes are rotated by π/2
along the z direction, which has a screw symmetry. (b) 3D Brillouin
zone of the crystal. In the semimetallic state, a closed zero energy
line of Dirac nodes (Dirac loop) is shown in the red curve on the
kz = 0 plane (gray area). The black arrows indicate the reciprocal
lattice vectors.

is the interaction term, with n̂i = a
†
i ai the density operator

on site i, and V1 and V2 are the repulsion between NN and
next-nearest neighbors (NNN) sites, respectively. For spinless
fermions, one possible instability is a charge density wave
(CDW) state that corresponds to a charge imbalance among
the different sublattices. The CDW state is defined by the
four-component order parameter ρα = 〈a†

i ai〉 − ρ0 with i ∈ α

belonging to sublattice α = A,B,C,D, as shown in Fig. 2,
and ρ0 a uniform density. At the neutrality point, the local
densities at the four sites of the unit cell add up to zero,∑

α ρα = 0. The nodal line is protected by a combination of
TRS and mirror symmetry along the z axis. The state where
ρA = −ρB = ρC = −ρD , namely, (ρ,−ρ,ρ,−ρ), breaks the
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FIG. 2. xz (a) and yz (b) planes of the hyperhoneycomb lattice,
with sublattices A, B, C, and D. Complex NNN hopping terms χij

give rise to current loops with flux 
. The lowest-energy state has

1 = −
2, which corresponds to a zero total flux in the unit cell,
with purely imaginary χij .

mirror symmetry and opens the largest gap among all possible
charge neutral configurations of ρα . The more symmetric state
(ρ,ρ,−ρ,−ρ) does not open a gap. Hence, the former state
is the dominant CDW instability. We will not consider other
possible states that enlarge the size of the unit cell [36], such
as an n-site CDW state, with n > 4.

The other dominant instability is the QAH state, where
complex hopping terms between NNN sites lead to loop
currents in the xz and yz planes, as shown in Fig. 2. Each plane
can have loop currents with opposite flux (
), producing zero
magnetic flux in the unit cell, in analogy with the 2D case in the
honeycomb lattice [29]. The QAH order parameter is defined
as χij = 〈a†

i aj 〉, where i and j sites are connected by NNN
vectors [37]. We define the ansatz χij = χeiφij for i,j ∈ {A,C}
sublattices and χij = χeiφ̄ij for i,j ∈ {B,D}, where χ is real.
Due to particle-hole symmetry, χij is purely imaginary and
hence φ,φ̄ = ±π

2 . The state that minimizes the free energy of
the system has total zero flux in the unit cell, 
1 = −
2 (see
Fig. 2), when the magnetic flux lines can more easily close.
The QAH order parameter is χij = ±iχ for NNN sites and
zero otherwise, with the + sign following the convention of
the arrows in Fig. 2.

We perform a mean-field decomposition of the NN interac-
tion in the CDW state (ρ) and of the NNN repulsion in the QAH
order parameter χij . For simplicity, we absorb the couplings
V1 and V2 in the definition of the order parameters, ρV1 → ρ

and χV2 → χ , which have units of energy from now on. The
effective interaction in the four-sublattice basis is

HMF
I =

⎛
⎜⎝

χg − 3ρ 0 −χf 0
0 −χg + 3ρ 0 χf ∗

−χf ∗ 0 χg − 3ρ 0
0 χf 0 −gχ + 3ρ

⎞
⎟⎠,

(5)

where

g(k) = 2[sin(
√

3kx) + sin(
√

3ky)] (6)

and

f (k) = [ei3kz/2 sin(
√

3kx/2) + e−i3kz/2 sin(
√

3ky/2)]. (7)

The mean-field Hamiltonian HMF = H0 + HMF
I has an ad-

ditional constant energy term E0 = 6ρ2/V1 + 16χ2/V2 that
is reminiscent of the decomposition of the interactions to
quadratic form.

The phase diagram follows from the numerical minimiza-
tion of the free energy F with respect to ρ and χ at zero
temperature, ∂F/∂χ = ∂F/ρ = 0. The semimetal state is
unstable to a CDW order at the critical coupling V1,c = 0.41t ,
and to a QAH phase at V2,c = 1.51t . The CDW and QAH states
compete with each other, as shown in Fig. 3. Fluctuation effects
are expected to be less dramatic in 3D compared to the more
conventional 2D case [37–39]. Hence, the mean-field phase
diagram is likely a reliable indication of the true instabilities
of the fermionic lattice for the spinless case.

In real crystals, screening and elastic effects lead to a
distortion of the lattice in the CDW state, in order to minimize
the Coulomb energy due to electron-ion coupling, which can be
high [40]. While the CDW appears to be the leading instability
over the QAH state, the elastic energy cost to displace the
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FIG. 3. (a) Mean-field phase diagram for spinless fermions. The
node-line semimetal phase (NLSM) turns into the CDW state at the
critical value V1 = 0.41t and into the QAH phase in 3D at V2 = 1.51t .
The CDW is fully gapped, while the QAH phase has nodes around
the Dirac loop.

ions and equilibrate the charge in the electron-ion system
may hinder the CDW order and favor the QAH phase when
V2 > V2,c.

Low-energy Hamiltonian. Integrating out the two high-
energy bands using perturbation theory, the effective low-
energy Hamiltonian (2) of the nodal line becomes massive,
as expected. The leading correction to Hamiltonian (2) around
the nodal line to lowest order in ρ and χ has the form of a mass
term

HI,p(q) = −[3ρ + m(k0) + v′
xqx + v′

yqy]σ3, (8)

where

m(k0) = χ

(
g(k0) + 2

α + 1
α

f (k0)

)
(9)

gives the QAH mass at the nodal line, with v′
γ (s) =

2χ{cos[
√

3kγ (s)] + 1
α+1/α

cos[
√

3kγ (s)/2]} and α(s) defined
below Eq. (2). The low-energy spectrum is

ε(q) = ±
√

ε2
0 (q) + [3ρ + m(k0) + v′

xqx + v′
yqy]2, (10)

which describes either a uniformly gapped state in the CDW
phase (ρ �= 0, χ = 0) or a nonuniform QAH gap (ρ = 0, χ �=
0) with six nodes at the zeros of m(k0), as indicated in Fig. 4.

The CDW state breaks mirror symmetry along the z axis,
but preserves the screw axis symmetry and hence creates
a fully gapped state that is rotationally symmetric along
the nodal line. The QAH state, on the other hand, breaks
inversion symmetry. The mass term (9) changes sign at six
zeros along the nodal line, as shown in Fig. 4(b). Two zeros
are located along the diagonal direction of the nodal line,
at the points ±Q1 = ±( 2π

3
√

3
,− 2π

3
√

3
,0). The other four zeros

of m(k0) are symmetrically located around that direction, at
±Q2 = ∓(Q+,Q−,0) and ±Q3 = ±(Q−,Q+,0), as shown in
Fig. 4, with Q± = 1√

3
arccos(

√
17−1
4 ) ± 1√

3
arccos( 3−√

17
4 ). The

position of the nodal points extracted from the low-energy
Hamiltonian (8) is in agreement with the values calculated
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FIG. 4. (a) Contour plot of the mass gap of the QAH state (9)
around the Dirac loop (red line). Momenta are in units of π . The
gap vanishes at six points along the nodal line indicated by the blue
dots, where the contours collapse. (b) Schematic picture of the sign
of the QAH gap around the nodal line: blue line (m > 0); orange line
(m < 0). At the nodes, the low-energy excitations are Weyl fermions,
with helicities γ = +1 (white dots) and γ = −1 (black). The Weyl
points are intercepted by four planes oriented in the (11̄0) direction
(diagonal lines). Those planes form domain walls separating slices
of the BZ with distinct Chern numbers. Gray area: ν = 1. Dark gray:
ν = −1. Light blue: ν = 0.

numerically from Hamiltonians (1) and (5) in the regime where
χ  t . For larger values of χ , the nodal points ±Q2 and ±Q3

can move in the kz = 0 plane, as the position of the nodal line
is renormalized by the interactions. The two nodal points in
the diagonal ±Q1 remain fixed.

Expanding the mass term around the zeros of m(k0), the
low-energy quasiparticles around the nodes are Weyl fermions.
Performing a rotation of the quasiparticle momenta into a
new basis px = (qx − qy)/

√
2, py = −qz, and pz = (qx +

qy)/
√

2, the expansion around the nodes at ±Q1 gives the
low-energy Hamiltonian

H±Q1 (p) = h±Q1 (p) · �σ =
∑

i=x,y,z

v
(±)
0,i piσi, (11)

with p the momentum away from the nodes and v
(±)
0,x =

±3
√

2t/4, v0,y = 3t/2, and v0,z = √
3/2χ the correspond-

ing velocities in the rotated basis. The equation above
describes two Weyl points with opposite helicities γ =
(2π )−2

∫
�

d2p ĥ · (∂px
ĥ × ∂py

ĥ) = ±1, and hence broken
TRS, with ĥ = h/|h| a unitary vector and � the surface of
a small sphere enclosing each node. Similarly, the expansion
around the nodes ±Q2 and ±Q3 give Hamiltonians of Weyl
fermions with helicities ±1, as indicated in Fig. 4(b).

Anomalous Hall conductivity. The Weyl points delimit a
topological domain wall between slices of the BZ parallel to
the (11̄0) plane. Each slice in the light-gray region in Fig. 4(b)
crosses the nodal line twice and has a well-defined Chern
number ν = +1. The slices in the dark-gray regions across
the domain walls have opposite Chern number ν = −1, as the
QAH mass changes sign simultaneously at the two Weyl points
(with the same helicity) where each domain wall intersects the
nodal line. The BZ slices in the light-blue region do not cross
the nodal line and have zero Chern number.
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FIG. 5. (a) Fermi arcs on the (001) surface BZ indicated by the blue solid lines. The brown dashes represent the nodal ring in the bulk in
the absence of interactions. The black and white circles are the Weyl nodes in the bulk with positive and negative helicities. (b) Panels showing
the energy dispersions E(kx,ky) along the three-momentum space cuts labeled 1, 2, 3, indicated in panel (a). All momenta are in units of π/

√
3

and energy has units of the hopping energy t . Left: cut 1, with ky = 3π/(4
√

3); center: cut 2, with ky = π/(2
√

3), where there is no Fermi arc;
right: cut 3, with ky = π/(10

√
3). Red arrows indicate the zero energy modes on the surface BZ.

The 3D QAH conductivity is defined as σij =
(e2/h)(2π )−3

∫
BZ

d3k
∑

n∈filled( ∂
∂ki

Aj − ∂
∂kj

Ai), where

Aj = −i〈ψn| ∂
∂kj

|ψn〉 is the Berry connection of the nth
occupied Block band integrated over the entire BZ [41]. For
the hyperhoneycomb lattice in the QAH state,

σij = e2

2πh

∫
C

dkkεijkν(k)(k0) = e2

2πh
εijk(b1 + b2)k, (12)

where b1 + b2 = (2π/
√

3,−2π/
√

3,0)a−1 is a reciprocal lat-
tice vector, restoring the lattice constant a. ν(j )(k0) = 0,±1 is
the Chern number of a slice of the BZ oriented in the j = x,y,z

direction, intersecting the nodal line k0(s) at two points, and
C ∈ [kj,min(s),kj,max(s)]. Therefore, we find that

σyz = σxz = e2/(
√

3ha), (13)

while σxy = 0. In the 3D QAH phase, the bulk of the system is
a semimetal with topologically protected Weyl quasiparticles
[25], while charge currents spontaneously emerge on the [100]
and [010] surfaces of the crystal.

Surface states. The presence of Weyl points in the QAH
state implies the existence of Fermi arcs on the surfaces of the
lattice, connecting nodes with opposite helicities. In Fig. 5(a),
we numerically calculate the Fermi arcs in the (001) surface
Brillouin zone, as shown in the solid blue lines. The nodes
at ±Q2 are connected by a Fermi arc crossing the center of

the BZ, while the pair of nodes at Q1,−Q3 and −Q1,Q3 are
connected by short Fermi arcs directed along the nodal line.

In Fig. 5(b), we scan the energy spectrum of the kz = 0
plane along the kx axis along three paths indicated by the dotted
horizontal lines in panel (a). Line 1 [ky = 3π/(4

√
3)] intersects

a Fermi arc close to the node at Q1, as indicated by the arrow
in the left panel of Fig. 5(b), which has a zero energy crossing
in the vicinity of a node. The scan on line 2, at ky = π/(2

√
3),

does not intercept a Fermi arc, as shown in the center panel of
Fig. 5(b). The third path at ky = π/(10

√
3) crosses the Fermi

arc near the center of the zone, as indicated by the zero energy
mode shown in the right panel of Fig. 5(b).

Conclusions. We have shown that hyperhoneycomb lattices
with spinless fermions may host a 3D QAH effect, which
competes with a CDW state. The 3D anomalous Hall conduc-
tivity is e2/(

√
3ha). Due to the symmetry of the mass term,

which spontaneously breaks inversion symmetry around the
nodal line, the low-energy excitations of the QAH state have
a rich structure, with Weyl fermions in bulk and topologically
protected surface states.

Note added. Recently, we became aware of a related work
[42], which predicted the conditions for the emergence of Weyl
points in nodal-line semimetals from symmetry arguments.
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