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Kardar-Parisi-Zhang universality in the phase distributions of one-dimensional exciton-polaritons
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Exciton-polaritons under driven-dissipative conditions exhibit a condensation transition that belongs to a
different universality class from that of equilibrium Bose-Einstein condensates. By numerically solving the
generalized Gross-Pitaevskii equation with realistic experimental parameters, we show that one-dimensional
exciton-polaritons display fine features of Kardar-Parisi-Zhang (KPZ) dynamics. Beyond the scaling exponents,
we show that their phase distribution follows the Tracy-Widom form predicted for KPZ growing interfaces. We
moreover evidence a crossover to the stationary Baik-Rains statistics. We finally show that these features are
unaffected on a certain timescale by the presence of a smooth disorder often present in experimental setups.
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I. INTRODUCTION

Nonequilibrium systems exhibit a large variety of critical
behaviors, some of which have no counterparts in equilibrium
systems. This is the case for generic scale invariance, or
self-organized criticality, which is realized, for instance, in the
celebrated Kardar-Parisi-Zhang (KPZ) equation [1]. Originally
derived to describe the kinetic roughening of growing inter-
faces, it arose in connection with an extremely large class of
nonequilibrium or disordered systems [2,3] and has therefore
become a paradigmatic model in physics for nonequilibrium
scaling and phase transitions, and an archetype in mathematics
of stochastic processes with non-Gaussian statistics [4].

Recently, KPZ dynamics has been unveiled in a condensed-
matter system, namely the exciton-polariton condensate [5–
10]. Exciton-polaritons (EPs) are elementary excitations aris-
ing in a semiconductor microcavity coupled to cavity photons.
Since EPs have a finite lifetime, a stationary state is obtained
under pumping. In these driven-dissipative conditions, the
EP gas exhibits a nonequilibrium Bose-Einstein condensation
transition, whose properties are investigated intensively [11]. It
was shown that in a certain regime, the dynamics of the phase of
the condensate can be mapped onto a KPZ equation. Whereas
this finding was confirmed numerically in one dimension (1D)
for well-chosen parameters [7], it was also suggested that this
regime may not be accessible in current experimental systems.

In this paper, we reexamine the experimental realizability
of KPZ universality in the 1D EP condensate. For this, we
accurately model the system, taking into account realistic
momentum-dependent losses and the quartic part of the
dispersion of the polaritons. From this model, with actual
experimental parameters, we demonstrate numerically that
KPZ physics is observable under current experimental con-
ditions. Moreover, beyond the KPZ scaling, we show that
the exciton-polariton system displays other features that allow
one unequivocally to infer its KPZ nature, in particular non-
Gaussian distributions of the phase fluctuations.

Indeed, a breakthrough in the understanding of the statistical
properties of a 1D KPZ interface was achieved in 2010 with
the derivation of the exact distributions of the fluctuations of
the height of the interface, followed by a wealth of other exact
results [4]. These advances highlighted the remarkable features

of the KPZ universality class: an unexpected connection with
random matrix theory with the appearance of Tracy-Widom
(TW) distributions [12], which are the distributions of the
largest eigenvalues of matrices in the Gaussian orthogonal
(GOE) or unitary ensemble (GUE). It was shown that the
interface is sensitive to the global geometry, or equivalently
to the initial conditions, defining three subclasses differing
by their statistics: TW-GOE for flat [13,14], TW-GUE
for sharp-wedge (i.e., δ-like) [15–17], or Baik-Rains (BR)
distribution for stationary (i.e., Brownian) [18,19] initial
conditions, while sharing the same KPZ scaling exponents.

This geometry-dependent universal behavior was first ob-
served experimentally in turbulent liquid crystal [20,21]. How-
ever, despite recent progress, experimental observations of
the KPZ universality are still scarce [22,23]. We show that
the EP system stands as a promising candidate. We study
numerically the fluctuations of the phase of the EP condensate,
and we show that they precisely follow a TW-GOE distribution.
Moreover, we show that a crossover from the TW-GOE to the
BR distribution can be observed. This crossover is expected
in a finite-size system when the correlation length becomes
comparable with the system size but before finite-size effects
begin to dominate, and it is in general difficult to access [24].
We show clear signatures of this crossover in the numerical
distributions. Finally, we investigate the effect of disorder,
which is unavoidable in experimental systems, and we show
that KPZ physics is unaltered on a timescale related to the
typical length scale of the disorder.

II. MODEL

A mean-field description of EPs under incoherent pumping
was introduced in [25]. In this description, the dynamics of the
polariton condensate wave function φ is given by [25]

i∂tφ =
[
F−1[ELP(k)](x) + i

2
(Rnr − γl) + g|φ2|

]
φ, (1)

where the polaritonic reservoir density nr is determined by the
rate equation

∂tnr = P − γrnr − Rnr |φ|2. (2)
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ELP(k) is the lower-polariton dispersion in momentum space,
F−1 denoting the inverse Fourier transform, P is the pump, R

is the amplification term, γl is the polariton loss rate, g is the
polariton-polariton interaction strength, and γr is the reservoir
loss rate. In the phenomenological model (1), the dispersion is
usually approximated by a parabola of effective mass mLP and
a momentum-independent loss rate γl . In this work, in order
to describe more accurately the experimental conditions, we
include a momentum-dependent loss rate γ (k) = γl + γ (2)k2.
The latter originates from localized excitons in the reservoir,
and it is a now established experimental feature; see, e.g.,
[26]. Other types of momentum-dependent linewidths have
also been reported, e.g., in the presence of a lattice [27]. The
momentum-dependent loss rate yields an imaginary diffusion
coefficient in the dynamics of the condensate, whose presence
turns out to be crucial (see below). This excitonic effect is
consistently taken into account in the dispersion relation by
including quartic correction to the parabolic behavior [11]:

ELP(k) � h̄2k2

2mLP
− 1

2�
( h̄2k2

2mLP
)
2
.

In the case in which the timescales in the reservoir and in the
condensate are well separated, one can solve the dynamics of
the reservoir density to obtain an effective stochastic equation
for the polaritonic condensate, taking into account the noise
from both the condensate and the reservoir, which originates
from the driven-dissipative nature of the fluid [7–9,28]. This
effective equation reads in dimensionless form

i∂tφ =[ − (1 − iKd )∇2 − K (2)
c ∇4 − (rc − ird )

+ (uc − iud )|φ|2]φ + √
σξ, (3)

where we rescaled the time in units of t̂ = γ −1
l , the space in

units of x̂ = (h̄/2mLPγl)1/2, and the condensate wave func-
tion in units of φ̂ = [γr (p − 1)/Rp]1/2, with p = PR/(γlγr ).
The parameters in (3) are related to the parameters of the
microscopic model via rd = ud = (p − 1)/2, uc = γrg(p −
1)/(Rγlp), σ = Rp(p + 1)/[2x̂γr (p − 1)], and rc is deter-
mined from the stationary-homogeneous solution of (3). The
stochastic noise ξ (x,t) is Gaussian with 〈ξ (x,t)ξ ∗(x ′,t ′)〉 =
2δ(x − x ′)δ(t − t ′). Equation (3) is a generalized Gross-
Pitaevskii equation (gGPE) with complex coefficients.

III. KPZ MAPPING

As shown in [10], by expressing the condensate
wave function in a density-phase representation φ(x,t) =√

ρ(x,t) exp(iθ (x,t)) and performing a mean-field approxima-
tion over the density ρ at the level of the Keldysh action for the
EP, one obtains that the dynamics of the phase field θ is ruled
by the KPZ equation

∂tθ = ν∇2θ + λ

2
(∇θ )2 +

√
Dη , (4)

where η is a white noise with 〈η(x,t)η(x ′,t ′)〉 =
2δ(x − x ′)δ(t − t ′), and ν = (Kcuc/ud + Kd ), λ =
−2(Kc − Kduc/ud ), and D = σud (1 + u2

c/u
2
d )/2rd [8]. The

original KPZ equation describes the dynamics of the height
of a stochastically growing interface. A 1D interface always
roughens: it generically becomes scale-invariant. Its profile is
usually characterized by the roughness, defined in term of θ

as w2(L,t) = 〈θ2(x,t) − θ (x,t)
2〉, where · = 1/L

∫
x
· is the

spatial average and 〈·〉 the average over different realizations
of the noise. The KPZ roughness is known to endow the
Family-Vicsek scaling form [2,29]

w(L,t) ∼ tβF (Lt−1/z) ∼
{

tβ, t < Ts,

Lχ , t > Ts,
(5)

with Ts ∼ Lz, and where the critical exponents take the
exact values χ = 1/2, z = 3/2, and β = χ/z = 1/3 for the
1D KPZ universality class. The phase correlation function
〈θ (x,t)θ (x ′,t ′)〉 takes a similar scaling form and thus contains
the same information about KPZ scaling.

IV. RESULTS

We numerically integrate the gGPE (3) using standard
Monte Carlo sampling of the noise [30,31]. The parameters
in this equation depend on the material. We use values typical
for CdTe, used, e.g., in Grenoble experiments: mLP = 4 ×
10−5me, γl = 0.5 ps−1, g = 7.59 × 102 ms−1, γr = 0.02 ps−1,
R = 400 ms−1, p = 1.6, Kd = 0.45, and K (2)

c = 2.5 × 10−3.
In each simulation, we determine the wave function φ(t,x)
and extract its phase θ (t,x). We work in the low-noise regime,
where the density fluctuations are negligible and topological
defects are absent. In this regime, the phase can be uniquely
unwound to obtain θ ∈ (−∞,∞).

A. KPZ scaling

To assess the presence of KPZ scaling in the system,
we compute the roughness function w2(L,t) for the un-
wound phase θ of EPs and the first-order correlation function
ρ1(x,t ; x ′,t ′) = 〈φ∗(x,t)φ(x ′,t ′)〉, determined directly from
the condensate wave function. For the roughness, we obtain
a perfect collapse onto the expected Family-Vicsek scaling
form (5) using the KPZ exponents [32]. The equal-time and
equal-space correlations show a stretched-exponential decay
in good agreement with the KPZ theoretical properties, as first
predicted in [7]. However, while in [7] KPZ scalings were
observed only for appropriately chosen parameters, our cal-
culations show that KPZ physics is present in current realistic
experimental EP systems. They turn out to display a larger KPZ
effective nonlinearity parameter |g| ≡ |λ|(D/2ν3)1/2 � 0.48
than that used in [7], that facilitates the observation of the KPZ
regime [32]. Let us stress that the inclusion of a momentum-
dependent damping rate is crucial since it stabilizes the solution
[33].

B. Beyond scaling: Tracy-Widom statistics

As emphasized in the introduction, unprecedented theoret-
ical advances have yielded the exact probability distribution
of the fluctuations of the 1D KPZ interface for sharp-wedge
[15–17], flat [13,14], and stationary [18,19] initial conditions.
It was shown that at long times, the interface height h behaves
as h(x,t) � v∞t + (�t)1/3χ (x,t), with � and v∞ nonuniversal
parameters, and χ a random variable whose distribution is
non-Gaussian, and exactly given by the TW-GUE, TW-GOE,
and BR distribution, respectively [4].

To fully assess KPZ universality in EP systems, we
use the gGPE simulations to obtain the probability dis-
tribution of a suitably rescaled, unwound phase θ̃(x,t) =
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FIG. 1. (a) Distribution of θ̃ for L/x̂ = 210, together with the
theoretical centered GOE-TW distribution. (b) Skewness and (c)
excess kurtosis (lower panel) of the phase field in the condensate
for L/x̂ = 29,210, together with the theoretical values for TW-
GOE and BR statistics (green and purple dashed line, respec-
tively). TW-GOE values are reached on a plateau around times
t/t̂ � 104.

δθ (x,t)/(�t)1/3, where δθ (x,t) = [θ (x,t) − 〈θ〉], thus sub-
tracting the v∞t term, and the parameter � is extracted from
the numerical data according to the following procedure.
First, we identify which probability distribution is realized
in EP systems. This is assessed by computing universal
ratios of cumulants of δθ (x,t), namely the skewness and the
excess kurtosis, defined as Skew(δθ ) = 〈δθ3〉/〈δθ2〉3/2 and
eKurt(δθ ) = 〈δθ4〉/〈δθ2〉2 − 3, respectively, where 〈δθn〉 =
〈(θ − 〈θ〉)n〉 [34]. These quantities are exactly zero for a
Gaussian distribution and their universal ratios are known
numerically at arbitrary precision for the distributions asso-
ciated with the 1D KPZ equation [35,36]. Then, � is obtained

from the relation � = limt→∞ (〈δθ2〉/varχ )
3/2

/t , where varχ

is the theoretical value of the variance of the identified
distribution [21,37].

In our data, we find that the cumulants reach stationary
values on plateaus depending on the system size but roughly
extending between t = 103 and 104 in units of t̂ . The values
of these plateaus are compatible with TW-GOE distribution
[see Fig. 1(b)]. We thus use the exact value of varTW-GOE

to extract �, and we record the probability distribution of
θ̃ accumulated during the plateaus, which is represented in
Fig. 1(a) [38]. We find that it is in excellent agreement with the
TW-GOE distribution, thus providing convincing confirmation
that KPZ dynamics is relevant in EP systems. We stress that,
in the process of data treatment, the (space and time) phase
unwinding is crucial in order to obtain unbounded fluctuations
δθ , which can acquire a t1/3 scaling, as well as to eliminate
unphysical 2π phase slips that may arise in the extraction of the
phase from the condensate field. Furthermore, it is interesting
to notice that the TW-GOE distribution is associated with a
flat (i.e., spatially constant) initial condition for the KPZ height
field, whereas in EP systems the initial phase of the condensate
is essentially random, and not controllable, and moreover KPZ
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FIG. 2. Distribution of �q(x,t0,�t) for �t/t0 = 103 (light-green
symbols) and �t/t0 = 5 × 10−3 (purple symbols) for L/x̂ = 210,
together with the theoretical centered TW-GOE (green solid line)
and BR (purple solid line) distributions [35]. Inset (same color
code): numerical and theoretical values of var(�q) for different
initial times t0/t̂ = 102,2 × 104 (blue and brown color-scale, re-
spectively) and sizes L/x̂ = 28,29,210 (increasing from lighter to
darker).

behavior sets in after a nonuniversal transient dynamics of the
condensate.

C. Beyond scaling: Baik-Rains statistics

The TW distribution is associated with the growth regime
of KPZ dynamics. In a finite-size system, a crossover to
the stationary KPZ regime, characterized by the Baik-Rains
distribution, is expected at sufficiently long times, but before
finite-size effects dominate [21]. Indications of a change of
regime are manifest in Fig. 1 since the skewness and excess
Kurtosis depart from the plateaus at large times. However,
this change is hindered by the noise and finite-size effects,
which become more and more relevant as the correlation length
becomes comparable to the system size.

To reduce finite-size effects and study this crossover, we fol-
low Takeuchi [21] and introduce a new variable�q(x,t0,�t) =
[δθ (x,t0 + �t) − δθ (x,t0)]/(�t)1/3. Since this variable in-
volves a phase difference, it does not require one to know
the absolute phase, and is hence accessible in EP experiments.
This variable is expected to display a TW-GOE distribution for
t0 → 0,�t → ∞ and a BR distribution for t0 → ∞,�t → 0,
with this precise ordering of the limits. The distribution of �q

is plotted in Fig. 2 for different ratios �t/t0. Both TW and BR
distributions are clearly identified. Our analysis hence shows
that the homogeneous EP condensate is an ideal playground
to observe nontrivial out-of-equilibrium behavior associated
with KPZ universality subclasses.

D. Influence of the system size

Most of the results are illustrated for systems of size L/x̂ =
210, i.e., about 1 mm. We have checked that KPZ features
(both the scaling exponents and the phase distributions) are
observable down to system sizes of the order of 50 microns
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FIG. 3. Distribution of �q(x,t0,�t) for different disorder cor-
relation lengths �d/L = 0.02,0.07,0.15 (from lighter to darker) for
�t/t0 � 102 (blue symbols) and �t/t0 � 10−1 (purple symbols),
with L/x̂ = 210. The solid lines correspond to centered TW-GOE
(cyan) and BR (violet) theoretical distributions [35]. Inset (same
parameters and color code): numerical and theoretical values for
var(�q).

[32]. This is remarkable since critical behaviors are generically
expected in the limit of infinite system size.

E. Influence of the disorder

In experimental setups, the inhomogeneities due to cavity
imperfections give rise to a static [39] disorder potential.
We now investigate how this affects the KPZ physics. To
model this disorder, we introduce a random-potential Vd (x) =
|F−1[Vd (p)](x)| with 〈Vd (x)Vd (x ′)〉 = G(x − x ′), Vd (p) =
V0e

iϕe−p2�2
d , and ϕ a uniformly distributed random variable

in the range [0,2π ). By changing the correlation length �d ,
this describes any intermediate condition between a uniform
potential for �d → ∞ and a white-noise disorder in the �d → 0
limit. We focus on finite values �d , corresponding to a smooth
disorder typical of experiments. By means of the Keldysh
formalism, one can show [40] that the inclusion of a static
disorder in the Keldysh action leads to a nonlocal shift of the
KPZ noise strength.

In the white-noise limit �d → 0 the presence of a disorder
potential simply gives rise to a constant shift. However, in the
case of a finite correlation length, the system is characterized by

an additional microscopic length scale, which affects the phase
fluctuations for times longer than the time scale td ∼ �

2/3
d . We

hence expect that for t < td , KPZ physics is still observable,
while for t > td the features of the disorder become dominant.
The roughness and correlation functions computed in the
presence of the disorder indeed confirm this picture [40]. We
determined the distribution of the variable �q in both regimes
of large and small �t/t0. The results, presented in Fig. 3, show
that for large �t/t0, the TW-GOE distribution is still accurately
reproduced. Increasing t0, the approach to the BR distribution
is also clearly visible even if it cannot be fully attained, since
t0 is limited to td by the presence of the disorder.

V. CONCLUSIONS

We have shown that universal KPZ features can be observed
under realistic experimental conditions in the dynamics of
the phase of one-dimensional exciton polaritons. Our analysis
shows that the full probability distributions of the phase
fluctuations display universal KPZ properties, in particular its
non-Gaussian nature, characterized by nonzero higher-order
cumulants. We also observed a crossover between TW-GOE
and BR distributions, allowing one to probe two well-known
subclasses of 1D KPZ universality. Furthermore, we have
shown that the presence of static disorder does not destroy
KPZ physics on sufficiently small timescales. Even if the
time-resolved measurement of the phase for the determination
of the full distribution seems to be currently out of experimental
reach, it would be enough to determine the first few cumulants
to evidence KPZ distributions, exploiting for instance four-
wave mixing processes, which have already been demonstrated
in EPs [41]. In the context of ultracold atoms, higher-order
cumulants of the phase have already been investigated exper-
imentally [42,43]. The present analysis could stimulate new
experimental protocols for the observation of KPZ properties
in exciton-polaritons.
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