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We present theoretical results for the radiative rates and doping-dependent photoluminescence spectrum of
interlayer excitonic complexes localized by donor impurities in MoSe, /WSe, twisted heterobilayers, supported
by quantum Monte Carlo calculations of binding energies and wave-function overlap integrals. For closely aligned
layers, radiative decay is made possible by the momentum spread of the localized complexes’ wave functions,
resulting in radiative rates of a few us~!. For strongly misaligned layers, the short-range interaction between
the carriers and impurity provides a finite radiative rate with a strong asymptotic twist angle dependence o 8.
Finally, phonon-assisted recombination is considered, with emission of optical phonons in both layers resulting
in additional, weaker emission lines, redshifted by the phonon energy.
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I. INTRODUCTION

Recent advances in the study of two-dimensional (2D)
materials have allowed the realization of van der Waals (vdW)
heterostructures consisting of vertically stacked 2D layers,
resulting in unique properties and potential novel device
applications [1-5]. The layers forming these heterostructures
are only weakly bound by vdW forces, and largely retain their
individual characteristic properties. Yet, the weak interlayer
coupling allows the different properties of various 2D materials
to be combined.

One such family of vdW heterostructures are heterobilayers
of 2D transition metal dichalcogenides (TMDs), which have
attracted much interest due to their unique optical proper-
ties, dominated by strongly bound excitonic complexes [6,7]
and spin- and valley-dependent optical selection rules [8,9].
The most commonly studied heterobilayers are of the form
Mo X, /W X,, with X = S or Se, due to their type-II (staggered)
band alignment, in which the lowest conduction-band (CB)
edge and the highest valence-band (VB) edge are spatially
confined to different layers [10,11]. In this configuration,
electrostatic interactions between electrons and holes across
the heterostructure result in the formation of interlayer ex-
citonic complexes, whose constituent carriers are spatially
separated in the out-of-plane direction. Optical signatures of
these interlayer complexes have been reported in photolumi-
nescence (PL) experiments [12—14], where new PL peaks are
observed in the spectra of bilayer regions. These signatures
appear at energies below the monolayer photoemission lines,
due to the smaller interlayer band gap in the staggered band
configuration.

Photoemission by free interlayer excitons is limited by the
relative interlayer angle € and the incommensurability of the
two TMD lattices §, resulting in a momentum-space mismatch
AK =~ K+/8% + 62 between the conduction- and valence-band
edges, as shown in Fig. 2(b). Radiative recombination becomes
effectively indirect, and thus suppressed by energy and mo-
mentum conservation [15]. These constraints are relaxed when
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interlayer excitons and larger excitonic complexes localize
about charged defects, such as donor ions, which are commonly
observed as dopants in real samples. Formation of these
complexes is favored by the long interlayer exciton lifetimes
resulting from the spatial separation of their carriers, which
allow for their localization by the deep potential wells provided
by the ions. The spread in momentum space of these localized
complexes opens the possibility for a finite radiative matrix
element M o [ d*r ¥ W(r), where W(r) is the envelope
wave function of the complex.

In this paper, we provide a theory for the radiative re-
combination of localized interlayer complexes in TMD het-
erostructures of the form Mo, X/W X,, where the carriers are
bound to a donor ion in the MoX,, layer. Focusing specifically
on MoSe,/WSe, encapsulated in hexagonal boron nitride
(hBN), we use variational and diffusion quantum Monte Carlo
(VMC and DMC) simulations [16,17] to evaluate the binding
energies and wave-function overlap integrals of complexes
involving one or two holes in the WSe, layer and up to
four electrons in the MoSe; layer, accounting for bilayer and
encapsulation screening effects. We discuss the energetics and
stability of these complexes based on their binding energies,
and the robustness of our results against uncertainty in model
parameters, such as the carrier effective masses and screening
lengths.

Motivated by the binding energies obtained from our quan-
tum Monte Carlo (QMC) calculations and PL experiments
[18], we study the radiative recombination of the two simplest
complexes consisting of MoX; electrons and a single WX,
hole bound to an impurity center: a donor ion and an exciton
(Dg,hv), and a donor-bound trion (D?, X ). We predict the qual-
itative PL spectrum from these complexes for closely aligned
TMD heterobilayers, and estimate the asymptotic behavior of
their PL signals in the regime of strong misalignment based
on general kinematics and perturbation theory. Our results
indicate a rapid decay of the PL signals from the most relevant
donor-bound interlayer complexes with the interlayer twist
angle (6), resulting from the asymptotic behavior I' ~ 68 of
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the radiative rates at strong misalignment. As a consequence,
we expect that optical signatures from these complexes can be
detected only in closely aligned crystals. Our results provide
a new perspective for the interpretation of recently reported
luminescence spectra of closely-aligned TMD heterobilayers,
where the interlayer portion of the spectrum has been attributed
to delocalized interlayer exciton states [12].

The remainder of this paper is organized as follows. In
Sec. II, we discuss the model Hamiltonian for the TMD
heterobilayer, describe our approach to calculating its optical
properties, and present our DMC results for the binding
energies of the main interlayer impurity-bound complexes. In
Sec. III, we address the PL signatures of these complexes,
assuming good alignment between the TMD monolayers in
the heterostructure, and estimate the asymptotic behavior of
their radiative decay with twist angle in Sec. IV. We consider
the effects of electron-phonon interactions in Sec. V, and we
find that longitudinal optical phonon modes can introduce
redshifted replicas to the main PL lines. Finally, we estimate
the evolution of the PL spectrum of the two main donor-bound
interlayer complexes with doping in Sec. VI. Our conclusions
are summarized in Fig. 1, and discussed in Sec. VII.

II. MODEL

A. Electrostatic interactions in a bilayer system

The reduced dimensionality of a monolayer TMD leads to
modified electrostatic interactions between its charge carriers
below a characteristic length scale r, = 27« /€ (in Gaussian
units), determined by the monolayer’s in-plane dielectric
susceptibility «, and the (average) dielectric constant € of its
environment [19,20]. In a TMD heterobilayer, further screen-
ing effects must be considered. The resulting interactions
between same-layer carriers V in one layer and )’ in the other,
and the interlayer interaction W, have Fourier components
(Appendix A)

2n(1+rq — r;qe’zqd)

= 1
Y@= 0+ ) +rg) — e 2y 19
, 27 (1 + req — r*qe‘2"d)
= , (1b
VO = 0ol + g — e Y
27 e94
W(q) = (1c)

€ql(1 +rig)(1 +rig) — rurig?e201)’

where q is the wave vector, d is the interlayer distance, and r,
and r, are the corresponding monolayer screening lengths.

Previous works on monolayer TMDs have focused on
interactions of the Keldysh form [19] to study their excitonic
spectra and optical properties [6,20-23]. For bilayers, this
potential formis obtained from Egs. (1a)—(1¢) in the long-range
limit (¢ < 1/ry,1/r}) as
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FIG. 1. (a) Simulated PL spectrum of donor-bound interlayer
complexes in an aligned (6 = 0) MoSe,/WSe, bilayer encapsulated
in hexagonal boron nitride, for an electron density of n. = 0.9np, with
np being the donor density. Dashed lines indicate PL from phonon-
assisted recombination. Solid lines are taken to have Gaussian shape
with width 20 = 60 meV, and the interlayer gap is E ¢ = 1.5eV.The
vertical gray dashed lines in (a) and (c) indicate the position of the free
interlayer exciton X, . (b) Radiative rates of the D?,hv (perhole) (solid
blue) and D(C),X v (solid red) complexes, and their phonon-assisted
replicas (dashed), in the large and small twist angle (@) limits. The
rates have a strong angular dependence, with asymptotic behavior
~@~8 for radiative decay driven by short-range interactions, and ~6 ~*
for phonon-assisted processes. The gray lines for intermediate twist
angles 6 = 2—6° have been interpolated by hand. (c) Simulated PL
spectrum in the limit of heavy n doping, showing the appearance
of the donor-bound trion (D?,X w') line when n, > np. Parameters:
ny, = 10" ecm~2 and np = 10" cm 2.

By contrast, in the short-range limit (¢ > 1/r,,1/r;) we
obtain for the intralayer interactions

2 2
Vo(q) = L Vi =——, 3)

ryq €r.q

revealing the absence of screening from the opposite layer in
this regime. More strikingly, the short-range interlayer poten-
tial vanishes exponentially as W-.(q) = 27 e 9% /(e r,r.q>).
Neither of these features is captured by extrapolation of
Egs. (2a) and (2b) to large wave numbers.

B. Photon emission by donor-bound complexes

As in the monolayer case [24-27], optical properties of
the heterobilayer are determined by excitonic complexes
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FIG. 2. (a) Schematic of type-II band alignment in a TMD
heterobilayer. The CB and VB of the two layers are shifted relative to
each other by energies A, and A,, respectively, giving an interlayer
gap of Eg. (b) The Brillouin zones (BZs) of the misaligned TMD
monolayers, with G, and G/, their main reciprocal lattice vectors.
Their K valleys are separated by a momentum vector AK, due to
the nonzero misalignment angle 6 and to the difference in lattice
constants.

formed by excess electrons and holes in the sample. Staggered
(type-II) band alignment, in which the main electron and
hole bands belong to opposite layers, is typical of TMD
heterostructures [10]. This is shown schematically in Fig. 2(a)
for a MoX,/W X, structure, where X = S or Se represents
a chalcogen; the main electron and hole bands are labeled ¢’
and v, respectively, and the primed (unprimed) band labels
correspond to the Mo X, (W X)) layer. Given the reduced band
gap E ¢ [Fig. 2(a)], the lowest-energy exciton states are spread
across the heterostructure, formed by ¢’-band electrons and
v-band holes bound by the interaction W(q) [12,13,28].

The optical activity of interlayer excitons in TMD bilay-
ers is strongly constrained by the interlayer alignment. As
shown in Fig. 2(b), the relative twist angle and lattice incom-
mensurability between the two layers produces a mismatch
between their Brillouin zones (BZs). Thus, bright interlayer
excitons in MoX, /W X, structures, consisting of same-valley
¢’-band electrons and v-band holes, have a finite center-of-mass
momentum AK = K’ — K. Due to energy and momentum
conservation, photon emission by interlayer excitons is only
allowed when [29] AK ~ 0.

The above restrictions are relaxed when excitons and other
excitonic complexes are bound to impurity centers in the sam-
ple, such as charged defects and donor ions. These complexes
are localized within some characteristic length aj, the Bohr
radius of the complex, such that their momentum-space wave
functions are finite up to momenta of order 1/a;. As aresult, the
recombination rates of impurity-bound interlayer complexes
are determined by the large-momentum tail of their wave
function, and thus by the short-range interaction [Eq. (3)].

The Hamiltonian for the heterobilayer in the free-carrier
basis is

ﬁ = I:I() + I:It + Uintra + Uintera (4)

where the zeroth-order Hamiltonian Hy, describing the CB
and VB electrons of the two individual layers, is given in
second quantization as

Hy = Z Z Eq(K)c), , o (K)co r.0(K). 5)

a Kk,1,0

¢!, . o (K) creates an electron of spin projection o = 1, and
momentum k relative to the 7K valley (r = &) of band o =
¢’,v',c,v. The band dispersions are

R2k2
Ey(k)=—-A, — EPwa (6a)
R2k2
Ey(k) = — oy (6b)
v
. R%k2
Eo(k) = E, + Er— (6¢)
. R2k?
E(k) =E, + A+ (6d)

2m,’

where A, (A,) is the spacing between the electron (hole) band
edges [Fig. 2(a)].

The tunneling Hamiltonian, describing electron hopping
between the layers, is given by [30,31]

’y —iGo-r
HtZE E E S K+k+G oK +k+G€ 0T

7,0 G,G' kK
X [tee(k + TK + G)c! (K)coro (K)
+tyo(k + K 4+ G)e!  (K)cyro (k)] 4+ He., (7)

where 7..(K) and t,,(K) represent interlayer hopping strengths
between the CBs and VBs; G and G’ correspond to the
reciprocal lattice vectors of the hole and electron layers; and
the Kronecker delta enforces momentum conservation in the
tunnelling process. ry is a vector within the unit cell repre-
senting the in-plane shift between the metal atoms of the two
TMD monolayers, such that a general stacking configuration
is parameterized by ro and 6. We focus on configurations
with close angular alignment but general ry; this is a type of
pseudo “AA” stacking better suited to describe experimental
situations. Correspondingly, we use the ab initio hopping
terms reported in Ref. [31] for AA stacked (rp = 0,6 =0)
MoS,, for estimation purposes. These values are small (a few
meV) compared to all other scales in the problem, reflecting
the vdW and electrical quadrupole nature of the interlayer
interactions. As a result, I:I[ can be treated within perturbation
theory. Furthermore, since #,,(k) decays rapidly with k, we
truncate the sums over G and G’ to the two main Bragg
vectors [31] [Fig. 2(b)], and set #..(tK) ~ .. = 2.5 meV and
tw(tK) = t,, = 16 meV.

Finally, the direct electrostatic interactions between carri-
ers, and between carriers and a positive donor ion of effective
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charge Zgonor, are given by
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where S is the sample area. The donor ion is treated as a
dispersionless scatterer, and is assumed to be present in the
MoX, (electron) layer. Henceforth, we assume that a donor
yields a single electron to the TMD and set Zgopor = 1.

The radiative recombination of electrons and holes is driven
by the light-matter interaction

A=Yy

q k,7,0

A hc
Vg

¢l ok —qceroKal(@) (9)

in the WX, layer and an analogous term I:Ir’ in the MoX,
layer. Here, y) is given by the in-plane momentum matrix
element between ¢’ and v band states, evaluated at the K
points of the BZ [32]. al(q) creates a photon of momentum
q and in-plane polarization t, determined by the electron’s
valley degree of freedom, where t = + (r = —) represents
right-handed (left-handed) circular polarization. The photon
momentum ¢ = q + ¢ is split into its in-plane and out-
of-plane components, respectively, and V = SL, with L the
height of the optical cavity in which the sample is embedded.

Let |¥) be an interlayer excitonic eigenstate of the Hamil-
tonian I:IO + lA]imm + Uimer of energy Ey. Photon emission
through the term H, requires the recombining carriers to be
in the same TMD layer. This is allowed by the perturbation
I:It, giving the first-order correction to the wave function,

(n| H,| W)
(wy = Z rtEle)a

n

(10)

where the sum runs over the eigenstates |n) of I:IO + Uimm +

Ulnter, With energies E,,. The resulting rate of radiative recom-
bination is then given by Fermi’s golden rule as

2 A g
Py === 3 WA+ ANV O)POE, — Ev), (1)
f
where {| f)} is the set of possible final states, containing one
additional photon. As discussed below, the relevant matrix
elements in Eq. (11) can be evaluated numerically in QMC.

(K +§)ca,r.0(K),
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2
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(8b)

III. RECOMBINATION OF DONOR-BOUND
INTERLAYER COMPLEXES

A. Model parameters

We now discuss the optical emission signatures of the most
relevant donor-bound interlayer excitonic complexes predicted
by VMC and DMC simulations. For concreteness, we will
focus on MoSe,/WSe, heterobilayers (X = Se); parameters
relevant to this pair of materials are shown in Table I. Further-
more, we assume that the heterobilayer is encapsulated in bulk
hBN, and set the dielectric constant to € = 4. Our chosen value
of 4 corresponds to the high-frequency dielectric constant of
hBN, which is reasonable as the exciton binding energy is
considerably larger than the highest optical phonon frequency
of hBN. In principle, the anisotropic nature of the encapsulating
hBN supplies an effective dielectric constant € = /€€ and

renormalizes the interlayer distance d by a factor \/¢j/€,
where €| and €, are the in-plane and out-of-plane dielectric

TABLEI. Model parameters for MoSe, and WSe,, extracted from
Refs. [21,23,32,37,38], and the heterobilayer MoSe, /WSe, extracted
from Refs. [10,12,39]. The interlayer gap Eg was estimated from
the luminescence spectrum reported in Ref. [12], considering the
exciton binding energies of Table II. From left to right, the single-layer
parameters are lattice constant a, VB and CB masses m, and m.,
screening length r, in a vacuum environment, and momentum matrix
element y. The heterobilayer parameters are valence and conduction
interlayer spacing A, and A, interlayer band gap Eg, and interlayer
distance d.

a®)  my/mo  mefmy oA y@EVA)
MoSe, 3.30 0.44 0.38 39.79 2.53
WSe, 3.29 0.34 0.29 45.11 3.17
Ay@V)  AceV)  Eg V) d(A)
MoSe, /WSe, 0.36 0.36 1.5 6.48
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TABLEIL Binding energies £® of some charge-carrier complexes
in a MoSe, monolayer, a WSe, monolayer, and a MoSe,/WSe,
heterobilayer in different dielectric environments including vacuum
on both sides, SiO, on one side and vacuum on the other, bulk hBN
on one side and vacuum on the other, and bulk hBN on both sides. In
the heterobilayer, it is assumed that the donor ion and electrons occur
in the MoSe, layer, while the holes are confined in the WSe, layer.
The material parameters are listed in Table I. The DMC error bars are
everywhere smaller than 0.2 meV.

Binding energy (meV)

System € X X, D% DY%X,.
hBN/MoSe,/hBN 4 194 162 260 21.0
hBN/WSe;/hBN 4 160 136 215 18.1

vac./MoSe,/WSe, /vac. 1 206 6.2 540 40.3
Si0,/MoSe,/WSe,/vac. 245 123 5.1 329 30.1
hBN/MoSe,/WSe,/vac. 2.5 121 52 324 29.9
hBN/MoSe,/WSe,/hBN 4 842 41 229 22.5

constants (see Appendix A). However, taking €;(co) and
€ (co) from various sources we find that 3.1 < ,/€jef < 4.5
and 0.71 < /€ /e, < 0.95[33-36]. This justifies, in part, our
use of € =4 and our use of the unmodified physical layer
separation, but as a check of the robustness of our results, we
have also considered a few other dielectric environments for a
restricted set of charge complexes.

The Hamiltonian of Eq. (4), without H, (i.e., with charges
being fixed in their layers), was solved using DMC for
various numbers of excess electrons and holes, and in the
presence of donor impurities in the MoSe, layer. Our DMC
total energies are statistically exact: we have not considered
any complexes containing indistinguishable fermions, and
therefore the ground-state wave functions are nodeless, so that
no fixed-node error is incurred. The technical details of our
DMC calculations are given in Appendix B 1. Binding energies
for free and impurity-bound excitons and trions, in different
dielectric environments, are reported in Table II. DMC binding
energies for a wider range of charge-carrier complexes in
heterobilayers are reported in Table V in Appendix B2. A
number of donor-bound complexes with up to four electrons
and two holes are predicted to be stable. A detailed account of
the sensitivity of the binding energy of D(C),X ver to our choices
of model parameter (m, m,, ry, r,, d, and €) is given in
Appendix B 3.

The simplest interlayer excitonic complex is a donor-bound
exciton D‘C),hv, where D‘C), represents a positive donor ion that has
been neutralized by binding an electron from band ¢/, and h,, a
hole from band v. (When complex labels appear as subscripts
in formulas, we will suppress the v and ¢ subscripts for clarity.)
DMC simulations predict that this complex is unbound due to
the screening of the interlayer interaction between holes and the
strongly bound neutral donor state Dg,, whose binding energy
is 8]'30 = —229.03 meV (Table II). We therefore consider the
recombination of a neutral donor DY, with delocalized holes in
band v.

Adding one more electron we obtain a donor-bound trion.
Alternatively, this complex can be viewed as an interlayer
exciton X, bound by a neutral donor Dg,, leading to the
notation D(C),X v~ Remarkably, this larger complex is stable up

to ~256 K, with binding energy EBOX A 22.52 meV (Table II)
for the most energetically favorable dissociation channel into
a neutral donor D‘C), and an interlayer exciton X,.. In the
following sections, we calculate the photoemission rates of

these two complexes using the formalism described in Sec. II.

B. D‘c), h,: Neutral donor and free hole

The initial state for the recombination process of a neutral
donor and a free hole is given in second quantization by

1
NG

where fx = [ x(r)e '®T d’r is the Fourier transform of the
donor-atom wave function centered at the donor site. Relative
to the neutral vacuum, the state’s energy can be written
as Epo(ky) = Eo(0) — E,(ky) — EY,, with £}, the binding
energy.

In the close-alignment limit and in the absence of intervalley
scattering, the complex described by Eq. (12) can decay
through radiative recombination only if v/ = . Furthermore,
spin-valley locking [37] and the known band ordering of
MoSe,; and WSe, monolayers [32] further require that o =
o’. Considering single-photon final states of the form | f) =
ai(q)|Q), with polarization determined by the valley quantum
number, and assuming a small twist angle 6 ~ 0°, Egs. (10)
and (11) give the radiative decay rate

D% ki) = —= > Fuclrp o Kcurokn)Q),  (12)
k

I 2 2 ’ 2
< _ 4Eg|F(r0)| e_ Y _ tecy
D% = h he| ficA,  he(Ac+ EY)
A 2
X /dzre’AK‘rx(r) nh, (13)

where ny, is the hole density of the sample, and the stacking-
dependent function F(rg) = 14 e 610 4 =627 g intro-
duced by the momentum-conservation rule in Eq. (7) (see also
Fig. 10 in Appendix C). To evaluate Eq. (13), we obtain the
wave function x (r) of the donor-bound electron by solving the
two-body problem with a finite-elements method, as detailed in
Appendix E. Note that a finite amplitude for radiative recombi-
nation depends critically on the electron-hole asymmetry, and
on having different tunneling strengths between the CBs and
the VBs of the two layers, owing to the symmetry properties
of the band states.

C. D% X, : Donor-bound interlayer trion

As discussed above, a donor-bound trion DS,X »e can be
viewed as an interlayer exciton bound to a neutral donor
ion. Defining the interlayer exciton X, and D’ energies as
Ex = E~(0) — E,(0) — 5)"( and Epo = E~(0) — 530, respec-
tively, the energy of a D(C),X v complex can be expressed as
Epox = Epo + Ex — EBOX, where SBOX is the binding energy
defined with respect to the most favorable dissociation channel
into D(C’, + X, . The corresponding eigenstate is given by

1 o
|D0X> = W Z q)khxk]»kl
k. ki, ko

xel o tel o ()ew o (n)lR), (14)
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with its two electrons belonging to opposite valleys, thus
minimizing their mutual repulsion [see Eqgs. (1a) and (1b)].
In this case, we consider decay into states of the form
|f) = ai (q)|D%), which are energetically favorable given the
large binding energies of D?, bound states. The corresponding
radiative rate for close interlayer alignment is given by

< E 2
DOX%TFI_IF(I‘ )|
2

d2 d2 ’ lAKrX*(I‘/)CD(I‘,I‘,I‘/)

2
% Ly _ ccY
hc(AU + €BOX + 5}}) hc(Ac + EIb)OX + E)l’() '
(15)

The donor atom in the final state can be in its ground state, or
in any excited state allowed by angular momentum conserva-
tion. This constitutes a series of radiative subchannels, and in
principle results in a series of lines with energies determined by
the donor atom spectrum. The main subchannel, corresponding
to the ground state x;5(r), produces the main emission line at
E.=E ¢ — (EBOX + E2). The first radially symmetric excited
state, x2(r), will produce an additional line ~167 meV above
the main line. The overlap integrals between the ground-state
donor-bound trion and the 1s and 2s neutral donor states
were evaluated using VMC, and the latter was found to be
two orders of magnitude smaller. We conclude that excited
states can be neglected, and henceforth only the 1s subchannel
will be considered. In the case of AK = 0, the integral in
Eq. (15) is given by | [ d?r [ d*F x*()®(r,r,r))|> = 1.47
(see Appendix B 5 for details).

To summarize Sec. II1, Fig. 1(b) shows the radiative rates of
Dg,hv and DS, X, inan hBN/MoSe,/WSe, /hBN heterostruc-
ture, for small twist angles and using the maximum value
of |[F(0))*> =09. Alternatively, we may average this function
within the unit cell, leading to (| F(rp)|?) & 3. The large-angle
asymptotic behavior of the radiative rate shown in Fig. 1(b) is
discussed next.

IV. ASYMPTOTIC BEHAVIOR FOR LARGE INTERLAYER
TWIST ANGLES

To estimate the quenching of radiative decay as the mis-
alignment angle grows, we evaluate the asymptotic behavior
of the radiative rate for large valley mismatch |AK| 2 1/ag
from a perturbative treatment of the short-range interactions
(3). In this regime, the rate of radiative decay of intralayer
complexes is determined by the tail of the momentum-space
wave function extending toward the opposite layer valley,
and which is governed by the large-momentum portion of
the interaction term (8a). Thus we formally split Ulmra =
Ulztra + Umlra and Umtef - Umter + Unter’ where “large” (>)
momentum corresponds to wave vectors 2>1/ag. Let | W) be
an excitonic state of energy EY,, of the Hamiltonian

FILR = I:]O + Ui;lra + U;{er’ (16)

containing the long-range approximation to the carrier-carrier

and donor-carrier interaction. The interactions U=, and U5,

are given by the expressions (8a) and (8b), respectively, with

(a) (b) (©) $ ()
“5 B “5 B
" 12 g %

FIG. 3. Diagrams for the radiative recombination of neutral
donors D0 with free holes h,. The solid (dashed) line represents a
free hole (electron) the donor impurity center is represented by a “x”
symbol, and the DY, state by “x” in a dashed circle. Horizontal lines
correspond to interlayer tunneling, wavy lines to Coulomb scattering,
and the triangular vertex represents radiative recombination.

the substitutions V(&) — V(&) and W(&) — W_(§)
[see Egs. (2a) and (2b)]. The state |W,) is perturbed by
the interlayer tunneling term H,, as well as the short-range
interaction U, ., obtained by substituting V(&) —> V(&)
in Eq. (8a) [see Eq. (3)]. As shown in Eq. (3), these terms are
inversely proportional to the square of a large wave number,
and thus may be treated perturbatively. Furthermore, the short-
range interlayer term is exponentially suppressed, and can be
ignored altogether. As a consequence, short-range impurity
scattering can take place exclusively in the electron layer,
where the impurity centers are located (see diagrams of Fig. 3).

In second-order perturbation theory, the correction to the
wave function relevant for photon emission is given by

) = Z (n|lH: + U Jlm) (m|[H, + U711 Wo) ).

(Ep — Ev)(E} — Ey)

m,n

a7

where the sums run over the eigenstates |n) of Hig, with
energies E 2 Introducing the light-matter interaction [Eq. (9)],
we focus on the diagrams of Fig. 3 for the D%h, complex, and
those of Fig. 4 for D% X .

In general, all diagrams must be considered when evaluating
the radiative decay rate. For simplicity, however, we assume
that the CB and VB spacings remain the largest scales in the
problem, such that B AK <K A¢, A,. In this approximation,

two out of the four dlagrams for DC h, radiative decay cancel
out approximately, leaving only the contributions from the
diagrams of Figs. 3(a) and 3(b) (see Appendix C). The resulting
radiative decay rate for D%h, in the large twist angle (>)

feyayaNie

_________

___________________________

FIG. 4. Diagrams for the first radiative recombination channel of
the DS,X v complex. The bound hole recombines with the electron
from the nearest valley in the opposite layer, assisted by short-range
Coulomb interactions with the donor impurity. The remaining electron
stays bound to the impurity center, forming a neutral donor atom.
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limit is
- 647T2€4Eg El me 7P teeV twY' 2
Dh T he2r 2 AKA Tic | RPAK? ] LheA.  TieA,
x| x0(0)[*| F (xo)[*np, (18)

where the emitted photon energy is given by E, = E, — £5,.
Finally, xo(r) is the D?_, wave function obtained from the
Keldysh approximation Hamiltonian A, not to be confused
with the full bilayer interaction bound state y (r). As before,

we evaluate the wave function using the finite-element method,

and obtain | xo(0)]> = 2.678 x 10> A~ (Appendix E). We
point out that evaluating the wave function yo(r) with the
Keldysh potential ignores the formal wave vector cutoff that
defines Eq. (16). That is, this solution considers short-range
interactions within the Keldysh approximation, which, as
discussed in Sec. ITA, overestimate the screening length.
Nonetheless, this approximation mainly affects the fast oscil-
lating (large momentum) part of the wave function, whereas
Eq. (18), and Egs. (19) and (20) below, only depend on the
smooth, small momentum part. The error incurred by this
approximation is proportional to the perturbation squared, and
thus beyond our first-order approximation.

With the perturbation U7, ,, there are two possible channels
for radiative recombination of the Dg,chr complex, resulting
in different final states, and thus two separate lines in the PL
spectrum. The first process involves one of the electrons and
the hole scattering from the donor impurity and subsequently
recombining, emitting a photon and leaving behind a neutral
donor as the final state. This is analogous to the decay process
considered in Sec. IIIC, and the corresponding diagrams are
shown in Fig. 4. Similarly to the D%h, complex case, the
leading approximation to the amplitude is the sum of two
diagrams, giving a radiative rate

- 64n2e4Eg &2 my 2 tecy towy’ 2
DX he2r 2 AK* hic | R2AK2 | [ heA.  heA,
2
X /dzrxék(l’)q’o(O,O,r) | F(ro)|*, (19)

where the emitted photon energy is given by E, = Eg —
(ERy + ER), and P (ry,re,re) is the DY X, wave function
in the Keldysh approximation.

A second radiative decay process is possible, where the
recombining electron and hole scatter with the second electron,
at the far valley. The latter electron recoils and is unbound
from the impurity, taking some amount of kinetic energy and
producing a shift in the emission line. The corresponding
diagrams are shown in Fig. 5 and give a recombination rate

I 48n%e*Ey [ my T oty twy' 1
DX he2r2AK4 hic [ R2AK? ] LheA,  heA,
x/d2r|d>0(r,r,r)|2. (20)

The photon energy in this case is given by E, = Eg - 51'30 —

2 . . .
by — EY — AR and the corresponding line in the PL

(b)

_________

FIG. 5. Diagrams for the second radiative recombination channel
of the D‘C’,X v complex. The bound hole recombines with the electron
from the nearest valley in the opposite layer, assisted by short-range
Coulomb interactions with the second electron, at the far valley. The
latter recoils and unbinds from the donor impurity.

spectrum is redshifted with respect to that of the first channel
by ~100 meV. Notice the absence of the interference term
| F(ro)|?. For this decay channel, the three tunneling processes
encoded in Eq. (7) result in different momenta for the recoiling
electron, and consequently in three distinguishable final states
that cannot interfere.

The overlap integrals between the initial- and final-
state wave functions given in Egs. (19) and (20)
were evaluated in VMC for the Hamiltonian ﬂLR.

We obtain | [ d?r x;(X)®o(0,0.r)> = 6.94 x 107 A", and

fd2r |Po(r,r,r)> = 3.22 x 1077 A_4, respectively (see Ap-
pendix B5).

Equations (18)—(20) show that the radiative channels con-
sidered for the two complexes decay with the interlayer twist
angle as 6%, in the limit AK > 1/r,1/r,. This is shown
in Fig. 1(b) for angles larger than 6°. Our analysis indicates
that, even in the case of localized impurity-bound states, the
observation of photoluminescence from interlayer excitonic
complexes in TMD bilayers requires near perfect alignment
between the two layers.

V. PHONON-ASSISTED RECOMBINATION

Electron-phonon (e-ph) interactions introduce yet another
channel for radiative recombination. Similarly to the electron
recoil process discussed above, when phonons are emitted
during the recombination of a given complex, they absorb
part of the energy and produce a red-shifted replica in the PL
spectrum. The following analysis is carried out in terms of the
VMC wave functions |WV) discussed in Sec. III, evaluated with
the exact bilayer interactions VO (&) and W(E).

The e-ph interaction Hamiltonian is given by

ﬁe—ph = Z Z Z guj(gq) (b;[,,vq_q + bh,u,q)

o=v,c T,0 k,q_u

xcl o o (K + @)co.r.0(K)

+ 22 g”j(gq)<b2,v,_q+beﬁv,q>

a=v',¢’ 1,0 k,q,v

xch .o K+ Qca,r.0(K), @1
where bj\’v. q Oavq) is the creation (annihilation) operator for
a phonon of momentum q and mode v in the electron (A = e)
or hole (A = h) layer, which couples to an electron in band
a = ¢ ,v,c,v with strength g, ,(q).
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We consider the longitudinal optical (v = LO), homopolar
(v = HP), and longitudinal acoustic (v = LA) phonon modes
allowed by the lattice symmetry. The e-ph couplings are given

by
@z f 27, é
L0l = U\ 5 oMo/ Moo 1+ qry”

h
gup.a(q) = 7 Dy, (22)
PWHP
h ~
gLA,at(q) = ) Sy 4,
PWLA

where p is the mass density, M, is the metal-and-two-chalcogen
system reduced mass, M is the total mass of the unit cell, and A
is the unit-cell area of the corresponding TMD layer. w, is the
phonon frequency, which we approximate as a constant for the
optical modes, and as wpa = cpa ¢ for the LA mode, with cp 4
being the sound velocity. Z is the Born effective charge, 7, is the
screening length, and D,, and &, are the deformation potentials
of the optical and acoustic modes, respectively. The various
parameters are taken from Refs. [40-43], and summarized in

J

Table ITI. We focus on the low-temperature limit, where phonon

occupation is low and phonon absorption can be neglected.
Perturbative corrections to the interlayer excitonic state |\V)

by the interlayer hopping and e-ph interactions are given by

Wy =3 (n|LA, + Hepnllm) (m| LA + Hepn]|9)
B (En — Ey)(E, — Ey)

|n).

(23)

The relevant diagrams for radiative recombination with phonon
emission are shown in Figs. 6 and 7 for D%h, and D% X,
respectively. In both figures, panels (a)—(d) correspond to
single-phonon emission in the hole layer (WSe,), whereas
panels (e)—(h) correspond to single-phonon emission in the
electron layer (MoSe;). Although, in principle, the two sets
of diagrams give separate lines at energies determined by the
phonon energy in each layer, the parameters reported in Table V
show that these lines are within only a few meV of each other.
For simplicity, we assume that the two layers have the same
optical-phonon energies and the same acoustic-phonon sound
velocities, producing a single line in the PL spectrum. The
resulting radiative rates are given in the limit of large twist
angle (>) by (Appendix D)

>V 485g 62 y/tvv Vice : mvgv,v(AK)
[y & F - Mh 2
ho hic|l hcA, hcA, h*AK?
s y/tvv thC
Poox ~

48Eg 62 g mvgv,v(AK) 2+ mc’gv,c’(AK) g /d2
~ — - —_— r
I kel ficA,  TicA. h*AK? N

2 K 2
me gy U(A )
+ ’ 24
) ( h*AK? ) } 24

2
/ d*r' x*()®(r,r,x)| . (24b)

The VMC estimate of the overlap of x (r') with ®(r,r,r’) is 3.85 x 10~ A72; see Table VII.

In the small-twist-angle limit (<), phonon emission from D%h, complexes is dominated by the diagram of Fig. 6(a). In that
process, the phonon is emitted by a hole in the WSe, layer, which then tunnels to recombine with the electron bound to the donor
impurity. By contrast, all other diagrams shown in Fig. 6 involve ionization of the donor atom, which is suppressed by the large
binding energy of the DY, complex. The radiative rates for D’ h, can thus be approximated by (Appendix D)

[<v=LO/HP 2E, é[ ¥ tow

21 31gu.c(AK)P
D°h wh he| hcA,

2
(ha)v + SBO)

i o 2
<, LA 2Eg é my C‘% V/tvv
D"k he k2 pck, [ heA,

/dzr eiAK'I‘X(r)

o (AK)2|F (1) ; ?
mlges SRR | [ 1 ok o }nh, (259)
o,
2
|F(eo) . (250)

In the DY X, case at small twist angles, the phonon emission process is suppressed by the ionization of the complex in the
intermediate state and the overlap integral between the initial D®, X, and final DY, states. The rates are given by

2

<= 4E; & |F(r)l’ 1200 O +3lgucOP [ ¥t ytee T . /
Ton = Tgh_c (hw, + &5 +5b)’2 hcA,  TficA /dzr /er/X (F)e(rr.r)) . (262)
Wy T Epox T Cx v ¢
E 2 ) . 3/2 /[vv foo 2 F 232 ' 2
Coix = 755 ctme) [t T P05, /dzr/dzr’e”AK'rX*(r’)Q(r,r,r’)
V2R3 epp he m heA,  hcA, P
DX
g2 : 2
+—/Cl /dzr/dzr/e‘AK'rX*(r/)Cb(r,r,r’) :|, (26b)
P
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TABLE III. Electron-phonon coupling parameters for LO, HP, and LA phonon modes. w o and wyp are the LO- and HP-mode frequencies,
cLa is the speed of sound for the LA mode, p is the mass density, D, and E, are the deformation potentials of the optical and acoustic modes,
respectively, M, /M is the ratio of the metal-and-two-chalcogen system reduced mass to the total mass of the unit cell, and Z is the Born effective

charge.

horo (meV)  hwoge (meV)  cia (em/s)  p(g/em?®) D, (eV/A) D, (eV/A) E.(eV) E, (V) M/M Z
MoSe, 37 30 4.8 x 10° 4.5 x 1077 52 4.9 3.4 2.8 0.235 1.8
WSe, 31 31 4.4 x 10° 6.1 x 1077 2.3 3.1 3.2 2.1 0.249 1.08

where p and p’ are the mass densities of WSe; and MoSe;,
respectively (Table V).

In Egs. (24a)—(26b), the electron-layer contributions to
the decay rate contain a factor of three originating from
the tunneling process, which gives three distinct intermediate
states with different emitted phonon wave vectors, related by
C; symmetry. As a result, the interference factor appearing in
the interaction-driven processes of Secs. IIl and IV is absent in
this case. For the hole layer, however, the interference factor
remains due to the momentum spread of the complex wave
function, which lifts the requirement that the hole be scattered
exactly onto the electron-layer valley in order to recombine.

Additional contributions to the LO phonon emission come
from e-ph interaction of a carrier in one layer with an LO
phonon in the other. This is made possible by the long range
of the LO phonon-induced potential. The interlayer separation
results in an exponential suppression of the potential in the
interlayer distance and momentum transfer as e~2Kd which
nonetheless is approximately unity in the limit of close align-
ment. Thus we add this contribution to the LO-phonon-assisted
recombination rates for Dg/hv and D?_,X ve complexes in the
small-twist-angle limit.

The total phonon emission rates for the two complexes,
combining the three phonon modes, are shown in Fig. 1(b) as
functions of the twist angle. As mentioned above, the phonon
contribution to the recombination rate is most significant for
the D%h, complex, being an order of magnitude larger than

(a) (b) ?‘

-l- (L
(e) (f) ¢
I:X> l:>'<\ lE( I:X\

FIG. 6. Diagrams for the radiative recombination of the Dg/hv
complex with phonon scattering. The top four diagrams correspond
to phonon emission in the WSe, layer and the bottom four diagrams
correspond to phonon emission in the MoSe; layer.

for DS,XUC/. The LO phonon mode in the hole layer (WSe,)
is the dominant phonon-assisted process overall, and gives
a significant decay rate in the small-twist-angle limit. As a
result, we predict additional phonon-replica lines in the PL
spectrum, redshifted by the phonon energy hwr o = 31 meV
with respect to the main D%h, and D X, lines. The D%h,
phonon-replica line gives the most dominant feature, with
decay rates comparable to the main Dg,hu line.

VI. INTENSITY DEPENDENCE ON DOPING

In addition to the decay rates, the relative line intensities
also depend on the distribution of Dg,h and D(C),XUC/ complexes
in the system. At charge neutrality, neutral excitonic complexes
such as D?,hv are energetically favorable, whereas additional
electrons introduced into the sample will bind to existing
neutral donors to form D?,chr complexes. Thus the relative
population of complexes can be controlled through doping.

In this section, we model the evolution of the PL spectrum
with the electron carrier density within the range 0 < ne <
2np, controlled by means of gating [18]. We use a simpli-
fied zero-temperature model for the occupations of the two
complexes, shown in Fig. 8. There are two main regimes
determined by the sample-dependent donor density np. In
the p-doped regime, defined by 0 < n. < np, added electrons
neutralize the excess positive donors, forming DY, complexes
that can recombine with the optically pumped holes. In this
regime, the formation of DB,XUCr complexes is energetically
unfavorable, and thus thermally suppressed until all donors
have been neutralized. By contrast, in the n-doped regime,
defined by np < n. < 2np, it is energetically favorable for
additional electrons to bind with an existing neutral donor

FIG. 7. Diagrams for the radiative recombination of the DS,X ve!
complex with phonon scattering and D(C)/ in the final state. The top four
diagrams correspond to phonon emission in the WSe, layer and the
bottom four diagrams correspond to phonon emission in the MoSe,
layer.
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1.5(

—_— D0

— DX

1.0

n/np

0.5}

FIG. 8. Model for the density of complexes D?, and DS,X v @s a
function of the electron density 7..

to form either a charged donor state D, (Table IV), or a
donor-bound trion DQ,XUC/. For the latter case we must consider
that laser-pumped holes are scarce (n, < np), and thus the
probability of forming a D% X, complex will be proportional
to ny/np. The increase in electron density is accompanied by a
decrease in Dg,hv« numbers, and a much slower increase in the
DS,XUC/ population, until the number of donor-bound trions in
the system equals the number of available holes. This is shown
in Fig. 8, and can be summarized as

e, e < Np
npo = ne—n (27)
{nD[l — °n—DD], np < ne < 2np
and
0, ne < Np
npox = Np Ne—N (28)
{nDﬁen—DD, np < ne < 2np

Equations (27) and (28), together with (13), show the depen-
dence of npo and npox on the hole density. This dependence
is critical for radiative recombination, given the scarcity of
holes by comparison to the donor density. Thus, to give a
realistic estimate of the intensity, we consider the effects of
nonradiative recombination of holes through impurity-driven
processes. The density of holes lost through these processes per
unit time can be written as 1 ny, where 7, 1is the nonradiative
decay rate. Assuming that holes are laser-pumped at a constant
rate 7! ng, where ng is a constant with dimensions of inverse

pump
area, the hole density obeys the rate equation

om0 — 7 ', (29)

nh = Toymp"o

with the steady state solution n = ToTI;“lnpno- In the p-doped
regime, delocalized holes can recombine nonradiatively with
the electrons present in the sample, and the nonradiative
lifetime can be assumed of the form 7y = c/ne, with ¢y a
constant. Thus, writing the D‘C),hv radiative intensity as Ipo, =

I'popnpo, we obtain the expression

- 2
4Eg|F(rO)|2 e’ tvvy/ tecy
Ipo, = — — 5
h hic| hcA, hc(Ac + 5D0)
' 2
x / d’r & 25Ty ()| 1, (30)

TABLE IV. DMC total energies of various charge-carrier com-
plexes in the hBN/MoSe,/WSe,/hBN heterostructure calculated
using the monolayer Keldysh approximation to the bilayer poten-
tial [Eqgs. (A12) and (A15)] and using the full bilayer interaction
[Egs. (1a)—(1c)]. Primes (') indicate that a charge carrier is in the
MoSe, layer; otherwise, the charge carrier is in the WSe; layer. The
subscripts ¢ and v indicate whether charge carriers are electrons (c¢)
or holes (v). Donor ions are always assumed to be in the MoSe; layer,
while acceptor ions are always assumed to be in the WSe, layer.
Interlayer complexes in which all the electrons are in the MoSe; layer
and all the holes are in the WSe; layer are listed in the upper section of
the table; complexes in which some of the electrons are in the WSe,
layer are listed in the lower section of the table.

DMC total energy (meV)
Complex Approx. Keldysh Bilayer potential
X —103.958669(5) —84.232(1)
X, oo —108.1967(4) —88.32(3)
Xt —88.12(2)
Xy Xoer unbound
X X, 0 unbound
D?, —163.2478711(5) —229.03306(1)
D, —176.9426(3) —249.60(2)
Dg,hu —163.4819(8) unbound
DY X, —278.73(2) —335.781(4)
DY X —340.891(6)
D, Xy —292.83(1) —343.26(3)
D% X o Xoer unbound
D, XXy —430.9(1)
A? —205.24083(1)
Al —223.56(1)
Ae, unbound
AX, —309.411(4)
AdX —315.021(8)
Xoe —114.601814(1) —140.4303329(4)
D? —124.890219(9) —102.5996(7)
X, —120.6018(5) unbound
X . —123.7189(5) —152.25(1)
D_, —165.8499(5) unbound
D, —129.3199(9) unbound
Dt X, —133.758(2) —141.716(8)
DS, Xoe —279.776(5) unbound
D, Xy —301.81(1) unbound
DX, —295.00(1) unbound

where ¢ = conorp’u}np is a constant independent of the electron
density.

A similar argument can be made for the n-doped regime. In
this case, the intensity is given by Ipox = I'poxnpox, where
the number of donor-bound trions can be approximated as
npox = ny(ne — np)/np. However, in this regime, the holes
will be localized near the donor-impurity sites forming D% X .
states, where they will be in close proximity to two electrons
with which they can recombine nonradiatively. Thus we may
approximate the nonradiative decay rate as typ = co/2np. This
leads to

(ne — np)

o7l 31)
D

IDOX =
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FIG. 9. Simulated normalized PL spectra for a closely aligned
(6 =~ 0°) MoSe, /WSe, heterobilayer, originating from the D?,h,) and
D?, X, complexes at different electron densities 7., given in terms of
the fixed donor density np. Dashed curves correspond to the phonon
replicas. The lines are assumed to have Gaussian shapes of width
20 = 60 meV, and we use n, = 10'' cm~? and np = 10> cm 2.

The resulting simulated PL spectrum is shown in Fig. 9 for
different doping densities, given in terms of the donor density
in the MoSe; layer. A Gaussian line shape was used for the
lines with an experimentally motivated broadening [18] of
20 = 60 meV. The spectrum shows the three dominant lines,
D?_/hu, D?,X ve'» and the redshifted phonon replica of D?,hv,
with the lines’ peak energies determined by the DMC-obtained
binding energies. The three complexes evolve with doping as
prescribed by Eqgs. (30) and (31). The Dg,hv complex and its
phonon replica dominate for O < n. < np; then, the DB,X v
line grows slowly in intensity in the n-doped regime, with a
simultaneous reduction in the intensity of the D?,hv complex.
For the broadening used in the simulated PL spectrum, the
proximity of the three lines results in an intricate line form,
providing a signature in PL experiments for the intrinsic
structure of the interlayer emission line.

VII. CONCLUSIONS

The momentum mismatch between twisted and incommen-
surate heterobilayer TMDs prevents efficient radiative recom-
bination of interlayer complexes composed of electrons and
holes localized on opposite layers. In this paper we described
mechanisms that bridge the momentum gap involving donor

impurities present in the heterobilayer system, both at small
and large twist angles. The donor impurities were found to
provide deep potential wells (~200 meV), resulting in strongly
bound interlayer complexes, as revealed by DMC calculations.
Focusing on the simplest multiparticle complexes, we estimate
radiative rates of up to a few us~! for the neutral donor
with a free hole Dg,hv and the donor-bound trion D(C),X v
complexes for closely aligned layers, and a strong twist-angle
suppression for large misalignment with the asymptotic form
xf~8. A comparable contribution was found for the D(C),hv
complex from emission of optical phonons, resulting in a
total of three dominant and doping-tunable lines in the PL
spectrum. The D?,hv line and its phonon replica are expected
to dominate the emission spectrum for electron densities below
the sample-dependent donor concentration; conversely, PL
from the D% X .- complex is expected to dominate the interlayer
sector of the spectrum when the electron density exceeds the
density of donors.

Based on QMC simulations, we have shown that our qualita-
tive results are robust against uncertainty in model parameters,
such as the band effective masses, as well as sample-dependent
dielectric properties. Therefore our predictions provide a new
perspective for interpreting recent experimental observations
of interlayer luminescence in heterobilayers of transition-metal
dichalcogenides.

All relevant data present in this publication can be accessed
at Lancaster University [44].
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APPENDIX A: LONG-RANGE INTERACTION BETWEEN
CHARGE CARRIERS

1. Multilayer Keldysh interaction

Consider a vdW heterostructure of 2D semiconductors
comprised of N parallel layers (labelledi = 1,2, ...,N), each
having in-plane susceptibility k; and z-coordinate d;. Suppose
this heterostructure is immersed in an isotropic medium of
dielectric constant €. In practice the dielectric constant is taken
to be the average of the dielectric constants of the media above
and below the heterobilayer.

Suppose that a test charge density

pir,2) = pl(1)8(z — d)), (A1)
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is present in layer j. The resulting electric displacement field
is

D= —%Wﬁ(r,z) - lZKi[anb(l‘,di)]S(z —d), (A2

where V| is the 2D gradient operator (excluding the z-
component). Gauss’s law yields

P’ (r,2)8(z — d;)
€ 2 2
=— -V - ZK,-[w(r,d,-)w(z —d;). (A3)
Taking the Fourier transform gives
. . € ikd:
Pl @e™ = —(g* +K)o(@k) +q°)_Kid(g.de ",
T i

(A4)
which, after Fourier inversion in the k variable only, gives

(ae—dli—dil — € 2 . Na—qlz—di|
Pl @e " = —q¢(@.2) +q ZK,¢(q,d,)e ale=dil,

(A5)

Evaluating Eq. (AS) at each layer (z = d;, 1 = {1,2,...,N}),
we find

o/ (@e™ 141 = gle/(27) — Kig1p(q.d))

+q7 ) Kip(q.d)e 1 (A6)
il
which is a matrix equation
Pl (@) =) Mi(q)pi(q). (A7)
where
pi (@) = p (@1,
¢i(q) = ¢(q.d;), (A8)
M — qle/2m) +xiq] ifi =1
=) g2k e aldi—dil otherwise

The solution to Eq. (A7) is a set of ¢;(q) = p’(q) x vji(q),
with v;;(q) being the Fourier components of the interaction
potential between layer j and layer i. If j =i, then this is
the intralayer interaction in layer j. This procedure should,
in general, be repeated for j = 1,2, ...,N; however, if there
is sufficient symmetry (e.g., a mirror symmetry about a plane
through the center of the heterostructure) then only a subset of
J values will require explicit solution of Eq. (A7).

The same analysis can be shown to apply in the case that the
surrounding dielectric medium is anisotropic, having dielectric
tensor

€ 0 0
€ = 0 € 0 s (A9)
0 0 €]
provided the substitutions
di - D,‘ = w/€||/€Ldi7 (AIO)
€ > € = VEIELS (All)

are also made.

2. Numerical evaluation of the bilayer Keldysh interaction

In the bilayer case (N = 2), it is straightforward to solve
Eq. (A7) to obtain the intralayer (V) and ') and interlayer (W)
potentials of Egs. (1a)—(1c). Continuum QMC calculations
require the potential energy to be evaluated in real space. We
therefore require the inverse Fourier transforms of Egs. (1a)—
(Ic¢), which reduce to Hankel transforms due to the circular
symmetry of the interaction potentials.

At long range (small g), the intralayer interaction V(q) =
2 /{eql[1 + (r« + r,)ql} + O(g) reduces to the monolayer
Keldysh form [19], with an effective screening length r¢ff =
r« +r,. The inverse Fourier transform can be performed
analytically in this limit, giving

V(r) ~ [Ho(r/(rs + 1)) = Yo(r/(r + 1)))]

2e(ry 4+ 1))

+ 0307, (A12)

where Hj and Y|, are a Struve function and a Bessel function
of the second kind, respectively. Equation (A12) is a good
approximation at long range.

Atshortrange (large g ), the intralayer interaction of Eq. (1a)
again reduces to the monolayer Keldysh form, but this time
with ¢ = r,, i.e., the second layer becomes irrelevant. On
the other hand, at very long range, the monolayer Keldysh
interaction is also valid, since V(q) = 2m/(eq) + O(1) at
small g so that the interaction is of Coulomb form. Thus the
monolayer Keldysh interaction

V)~ 5o Hor /) = Yo(r/rEM] + 067 (AL3)

2e
is a reasonable approximation to the intralayer interaction at
both short and very long range.

To evaluate the “full” intralayer interaction numerically,
we used the quadrature method of Ogata [45] to perform
the Hankel transform of V(q) — 27 /{eq[1 + r.q]}, then added
the result to the monolayer Keldysh interaction of Eq. (A13).
Partitioning the interaction into a long-range part and a numer-
ically evaluated short-range part ensures that the quadrature is
relatively straightforward, and that we can introduce a cutoff
at large r, beyond which the numerical corrective term is
negligible.

At small ¢, the interlayer interaction of Eq. (1c) reduces to
the displaced Coulomb form W(q) = 2me~"=+"+4 /(eq) +
0O(q); hence the long-range interlayer potential in real space
is given by

1

W(r) ~ +00™). (A14)

Az Jr2 + (re + 1. +d)?

At short range in real space the interlayer interaction should be
nondivergent. Equation (A14) satisfies this qualitative require-
ment. To evaluate the “full” interlayer interaction numerically,
we performed the numerical Hankel transform of W(q) —
2me~ "+ *7+ D4 /(¢q), then added the result to Eq. (A14).
There is an alternative long-range approximation to the
interlayer potential, which is more like the intralayer po-
tential. Noting that W(q) = 2 /{eq[l + (r« +r, + d)ql} +
0(q), the long-range interlayer potential reduces to a Keldysh
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potential with r¢ff = r, + 7. + d, giving
bid

2e(r +r, +d)

<[lrrra) i)
re+r,+d re+r,+d

+0307d). (A15)

This introduces unphysical singular behavior into the interlayer
interaction at short range.

W(r) ~

APPENDIX B: QMC CALCULATIONS

1. Technical details

We performed VMC and DMC calculations [16,17] for
complexes of distinguishable charge carriers and fixed ions in-
teracting via the “full” bilayer potential [Eqs. (1a)—(1c)] and the
approximate small-g Keldysh form of the potential [Eqgs. (A12)
and (A15)], as described in Appendix A2. We used trial
wave functions of Jastrow form, where the Jastrow exponents
contained smoothly truncated polynomial particle-particle
terms, ion-particle terms, ion-particle-particle, and particle-
particle-particle terms [46,47]. Additional terms satisfying the
analogs of the Kato cusp conditions [6,20,48] were applied
to the trial wave function between pairs of particles wherever
there was a logarithmic divergence in the interaction between
them, including the unphysical divergences in the approximate
Keldysh interaction. Free parameters were optimized using
VMC with variance [49,50] and energy minimization [51] as
implemented in the CASINO code [52].

In our DMC calculations, we used two DMC time steps
in the ratio 1:4 and the corresponding target populations in
the ratio 4:1, allowing a simultaneous extrapolation to zero
time step and infinite population. Since the charge carriers are
distinguishable, there is no fixed-node error and hence DMC
provides exact ground-state solutions to the effective-mass
model of interacting charge carriers with the chosen model
interaction.

2. Energies of complexes in the hBN/MoSe, /WSe,/hBN
heterostructure

Table IV shows the total energies of charge-carrier com-
plexes in the hBN/MoSe,/WSe,/hBN heterostructure. For
completeness we include results in which the electrons are
found in either layer; however, the results of immediate rel-
evance to this paper are those for which the electrons are
all found in the MoSe, layer. DMC results for two-particle
complexes agree with calculations performed using Mathe-
matica’s finite-element method [53] (see Appendix E). Using
total energies, one can assess the most energetically favorable
dissociations (see Table V) and therefore calculate the binding
energies of the various complexes.

It is clear from Table V that the approximate Keldysh
interaction performs well at calculating binding energies pro-
vided the dissociation does not involve significant changes
to short-range pair distributions. As an extreme case, the
binding energy of an exciton, which is simply equal to its
total energy and hence does not benefit from any cancellation
of errors, is overestimated by 23% when the approximate
Keldysh interaction is used. We are not aware of any published

TABLE V. Dissociations of complexes and the associated binding
energies in hBN/MoSe, /WSe, /hBN. The naming convention for the
carrier complexes is explained in the caption of Table IV.

Binding energy (meV)
Dissociation process Appr. Kel. Bilayer pot.
X — Xy +ey 4.2380(4) 4.09(3)
X — X +hy 3.89(2)
X Xoer — Xy + X unbound
XX o = X + X 0 unbound
D.. — DY +e. 13.6948(3) 20.57(1)
DYh, — DY +h, 0.2340(8) unbound
DY X, — X, +D? 11.52(2) 22.516(4)
DY X’ — DY+ X}, 23.74(2)
D Xy — Xy +D_, 11.93(1) 9.43(4)
D)Xy Xoer — DVXyo 4+ Xoer unbound
D XXy — DL Xy + Xy 3.3(2)
Al — A% +h, 18.32(1)
Ale, — AV +e. unbound
A’X - A+ X, 19.938(4)
AVXo - A+ X, 21.46(3)
X, oo — Xy e 6.0000(5) unbound
X, —- X, +e. 9.1170(5) 11.83(1)
DY X, — X, +D? 1.926(5) unbound
D, Xy — Xoe + D 10.26(1) unbound
D_, — D% +e, 2.6020(5) unbound
DY X, — DY+ X, 8.03(1) unbound
D, — D% +e, 4.4297(9) unbound
D*X,. — DT + X, 19.156(2) 1.286(8)

experimental results on donor-bound interlayer complexes in
heterobilayers, but we discuss the validity of our results for
intralayer complexes in Appendix B 4.

3. Sensitivity to model parameters

We have performed test calculations to determine the
sensitivity of the DMC-evaluated D% X, binding energy to
the model parameters m., m,, ry, r,, and d in the hBN-
encapsulated heterobilayer. Note that r, and r, are here the
screening-length parameters in vacuum, so that the screening
lengths in a dielectric environment are r,/e and r,/e. We
find that, upon variation of each of the parameters in turn by
+10% from the values listed in Table I, the DY X, binding
energy never varies by more than 8% (1.8 meV), as shown in
Table VI. The derivatives of the binding energy with respect
to the parameters were evaluated numerically by the central
difference approximation. Nondimensionalizing lengths by the
exciton Bohr radius and energies by the exciton Rydberg [23],
it is easy to show that the derivative of a binding energy £°
with respect to the dielectric constant is

aE® 1 aE® L0E>  9EP b

(Zr* o + 2r, or +d o + 2& ), (B1)
allowing us to evaluate the sensitivity of the binding energy
with respect to the dielectric constant. We find that the binding
energies are most sensitive to the screening parameter r,,
followed by the dielectric constant €, followed by the electron
and hole masses m. and m,, and that the sensitivity to the layer

de €
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TABLE VI. Derivatives of DMC binding energies 51';0 ., of the

interlayer donor-bound trion under variations § P of diffecrell{t model
parameters P. With the exception of the dielectric constant €, the
parameters are varied by £10% about the values listed in Table |
and the central difference approximation is used to estimate the
derivative with respect to the parameter value. The binding energy
when all the parameters take the values listed in Table I is E]‘;O, X, =

22.516(4) meV. Note that r, and r| are here the screening lengths for
a monolayer in vacuum. The derivative of the binding energy with
respect to the dielectric constant € was evaluated by the chain rule, as
described in the text.

P 5P 51';?%, (meV) 851';?,Xw/ JoP

me +10% 23.27(1) 20.7 meV/my
—10% 21.70(1)

n, +10% 22.71(1) 6.20 meV /my
—10% 22.29(1)

Ty +10% 20.96(1) —0.421 meV/A
—10% 24.31(1)

rl +10% 22.46(1) —0.00691 meV/A
—10% 22.52(1)

d +10% 22.93(1) 0.705 meV /A
—10% 22.02(1)

€ +10% ~20.97 —3.87 meV
—10% ~24.06

separation d is relatively weak. The sensitivity to the screening
parameter r, is very weak in the present case, because only one
hole resides in the WSe, layer.

We have also performed DMC calculations with € = 4.5
(instead of € = 4), finding that the X/, X .., DY, and D X,
binding energies are 76, 3.8, 207, and 20.7 meV, respectively.
This directly confirms that the sensitivity to the precise value
of the dielectric constant of the environment is relatively weak.

The value of BSBO y ,/0€¢ found by the forward difference

approximation is —3.63 meV, whichis in reasonable agreement
with the value obtained using the chain rule, reported in
Table VI.

4. Comparison of intralayer binding energies
with experimental results

For TMD monolayers, experimental agreement with QMC
calculations of the binding energies of charge-carrier com-
plexes employing the Keldysh interaction has previously been
addressed in Refs. [6,23]. Trion binding energies are found to
be in excellent agreement with experimental results.

Relatively few experimental studies of charge-carrier
complexes in heterobilayers have been performed to date.
Ceballos et al. studied a SiO, /MoSe, /MoS,;/vacuum sample
[54], performing PL measurements on monolayer MoSe,,
monolayer MoS,, and heterobilayer MoSe, /MoS, regions of
their sample. Gong ef al. studied a SiO, /MoS, /WS, /vacuum
sample [55], again performing PL measurements on each
of the three distinct surface regions. Both experiments, al-
though studying different TMD bilayers prepared by different
means, observed only small shifts in the dominant intralayer
exciton lines on moving from monolayer regions to bilayer
regions. Our heterobilayer results of Table V, in conjunction

with monolayer binding-energy fitting formulas presented in
Ref. [23] provide further support for this claim. The intralayer
exciton energy reported in Table IV for an exciton X, in the
WSe, layer of a hBN/MoSe;/WSe,/hBN heterostructure is
—140.4 meV, whereas the exciton total energy in monolayer
WSe, encapsulated in hBN is —159.7 meV, according to the
monolayer fitting formula. The intralayer negative trion X,
binding energy reported in Table V is 11.8 meV, whereas
the fitted negative-trion binding energy in monolayer WSe;
encapsulated in hBN is 13.6 meV. Thus the intralayer exciton
energy differs by about 19 meV from the monolayer exciton
energy, while the intralayer trion binding energy differs by
about 2 meV from the monolayer result.

In summary, intralayer binding energies in a heterobilayer
are very similar to monolayer binding energies, and hence the
validity of our model may be judged by examining previously
reported results for TMD monolayers [6,23].

5. Calculation of the overlap integrals

a. VMC evaluation of the normalization integral
of a many-body wave function

Consider a complex of N quantum particles with unnor-
malized wave function ®(R), where R = (ry, ... ,ry) is the
2N-dimensional vector of all particle coordinates. Let W(R)
be a normalized, bound-state sampling wave function, which
ideally has a large overlap with ® and the same asymptotic
behavior. Then

2 2Np _ 2
/I‘D(R)I d R—fl‘lJ(R)l TR

2>
[

Hence we can evaluate the normalization of ® by VMC
sampling of | (R)|?. We used the simple Jastrow form

N2
U(R) = ]—[ <\/;ce>

i=1

CD(R) : dZNR

- < OR) (B2)

W(R)

(B3)

for the sampling wave function, where the exponent c is a
positive, adjustable parameter that was chosen to maximize
the efficiency of the calculation.

b. Evaluation of overlap integrals

Numerical estimates of the various overlap integrals in the
expressions for the radiative recombination rates of donor-
bound trions in a hBN/MoSe,/WSe,/hBN system are re-
ported in Table VII. The ground state xs(r.) and the first
excited state xos(r.) of the neutral donor atom (DS,) were
calculated using a finite-element method (see Appendix E).
Using a VMC-optimized trial wave function ®(ry,re,,r.,) for
the ground state of the donor-bound negative trion (D% X ),
we employed a grid-based method to evaluate those overlap
integrals in Table VII that can be reduced to one-dimensional
radial integrals. The remaining integrals were evaluated by a
VMC method, as described below.

Let W be a sampling wave function, as defined in Ap-
pendix B 5a. The overlap of the trion wave function with the
donor-atom wave function when an electron and a hole are
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TABLE VII. Overlap integrals required for calculations of
radiative recombination rates. Calculations are performed for a
hBN/MoSe,/WSe,/hBN system. ®(ry,r.;,¥e2) is the ground-state
wave function of the donor-bound negative trion, with both donor
and electrons in the MoSe, layer and the hole in the WSe, layer
(D?,,X ve')- X1s(re) and xo(re) are the ground-state and first-excited-
state (rotationally invariant) wave functions of the neutral donor atom
in the MoSe, layer (DS,).

Overlap Approx. Keldysh Bilayer pot.

o 129x 10°A7°  275x10°4"°
AL }’j;jfjgﬁ“ 8.09x 10°A°  6.08x103A "
% 128 x 1004~ 138 x 1064
% 3.22x 10747 237 x 1074

I 100,05 x|
192 dORx [ (15> d°r
LS x1s@) @@ e ) drd?e |
J1®2dRx [ [x151? d*r
If xis)b(r,r,r) a2 FdPr
[
[1®92 dSRx [ [x152 d’r
If 225@®O,0,1) Prf’

T 12 dRx [ [x252 d%r
Iff)(?s(r )P(r,r,r )dzrd r |
[19P dRx [ 15
S 1S x5 (x,r,x a2 P dPr
J192 dSRx [ [x25]> d°r

6.94x 107A~" 121 x 1063 "
3.54

590 x 10*A

1.47

385x 10°4A

201 x 108A~" 1L13x107A™"
0.0379

104 x 1058

0.0254

189 x 105 A"

pinned vertically above one another is

f/ x*(r)D(r2,12,11) dry drs

:/|W(R)|2X*(r2)¢(rlvr2»rl) IR

The last expression can readily be evaluated by VMC sam-
pling of |W|?, using accurate numerical representations of
the donor-atom wave function x(r.) obtained in the finite-
element calculations. The overlap integrals are precise to
at least three significant figures; however, there is an un-
known error arising from the fact that the trial wave
function ®(ry,r.,.r.,) only approximates the exact ground
state.

APPENDIX C: RADIATIVE RECOMBINATION ASSISTED
BY SHORT-RANGE COULOMB INTERACTIONS

Consider the wave function y(r) for DS, complexes in the
long-range (Keldysh) approximation described in Sec. IV.
The complex state can be written in the form of Eq. (12),
with the substitution jx —> 7(]? , and short-range electrostatic
interactions and interlayer tunneling can be treated as per-
turbations to this initial state. Setting ' =7t and ¢’ = 0o
in Eq. (12), radiative decay is determined by the matrix
element (7,q| A, D% k,)®, where |7,q) = al(q)|Q) is the final
state in which a photon of momentum q and the appro-
priate polarization 7 has been emitted after recombination
of the bound electron with the delocalized hole. The nota-
tion |A)® indicates that the state includes corrections up to
second order in perturbation theory, in this case from the
interlayer tunneling (Ht) and short-range interaction (U]mra)
terms.

The diagrams of Fig. 3 correspond to those corrections to the

wave function that are relevant for radiative rzecombination in
B AK

W (R)[2 the large-twist-angle regime, where & bo < . Following
. the order of the diagrams in the ﬁgure and assuming that
_[x (r))®(ry,rp,11) (B4) kn, ¢ < AK, the optical matrix element for D% h, recombina-
|P(R)|? Mz' tion is given in terms of the real-space impurity wave function
by
2 6rele Gy (0) [ 4nh
(el A Dk @ = 3 8T K i
n=0 erSC3AK) L/qi—l—qﬁ
Viee/he Y'tow/he
b B2(Cy AK)? b R*(Cy AK)? R*(Cy AK)? b R2(CI AK)?

o T A Ep + 5 ) (EpH A+ S ) (G )

Y tw/he Y'tw/he 1
#*(Cy AK)? b 7*(Cy AK)? 1*(Cy AK)? 7*(Cy AK)? ’
AU(AU + 2m.y ) (SDO + Ay + 2:”c’ + Z:nv/ )(Av + Z:nv/ )

where the Bragg vectors G, and valley mismatch momenta
CiAK = AK + (G}, — G,) are shown in Fig. 10. The ma-
trix element in Eq. (C1) can be written in terms of the
stacking-dependent function F(rg) = 14 e /610 4 g=iG2To
(see Fig. 10). We additionally assume that the CB and VB
spacings remain a large scale in the problem, such that
thK & A, A,. In this approximation, the third and fourth
terms in Eq. (C1) cancel out, corresponding to the diagrams in
Figs. 3(c) and 3(d). Substituting the resulting expression into

(

Eq. (11) gives Eq. (18), where the probability that the hole state
is occupied is introduced through the hole density N (ky). This
analysis can be carried out for D(C),X ve complexes, yielding
Egs. (19) and (20).

The large momentum components introduced by the short-
range interaction terms are irrelevant in the small-twist-angle
regime, which is dominated by the small momentum sector
of the wave function. In this case, the optical matrix element
is obtained from the perturbed state |D%;k;)", including
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C2AK

FIG. 10. (a) Reciprocal lattice vectors G, and G/, of the two
layers, and valley mismatch vectors C5AK (n =0, 1, 2), with the
convention Gy = Gj = 0. (b) The vectors C; AK are connected by
G, —G,.

first-order tunneling corrections [Eq. (10)]. The optical matrix
element is

(t,q|H;|ID"; Ky)

2 i (C4 AK+kn+q)-r

= X_:/derx(r)

47 fice? | tyy' fec ,
y 7 hce v Y . e—iGnTo (C2)
SLq | hcA, FlC(AC + EDO)

Substituting into Eq. (11) leads to Eq. (13), and similar
procedures are used to obtain Eq. (15) for DS,X ve: complexes.

J

(T,q;v,€| A, D% ky,) ~

N ¥k, +& — C%
<r,q;v,§|Hr|D°;kh>f~v«X( ntE -G

7 (kn + & — CIAK 4rhe vty [ 2m, me 7
Ko b8 - GOK) | (aky (e Ve [ 2w 2me e,
S ’ SLqg hc Ay, | i*AK? Fh°AK?

AK) Amhc Yt [ 6my 6m, G
gc/.v(AK) ) ) e .
S : SLq hc A | BPAK?  HB*AK?

Notice that the second radiative channel for D(C),X v discussed
in the main text does not apply to this regime. The small-twist-
angle analogue to the recoil process due to electron-electron
interactions involves a small momentum transfer, and is thus
already contained in the unperturbed state [D°X).

APPENDIX D: PHONON EFFECTS ON RADIATIVE
RECOMBINATION

The discussion of Appendix C can easily be adapted to e-ph
interactions, I:Ie_ph [Eq. (21)]. In the following we adopt the
assumptions introduced in Appendix C; namely, % zﬁl K s Epo 0
A, Ay. In addition, we use fiwp (§) K A, Av, Wthh is
always valid in our cases of interest.

In the large-twist-angle regime, consider the process
whereby the electron in a Dg, bridges the valley mismatch by
emitting a phonon in mode v and momentum &, with & ~ AK,
in either the electron (A =e) or hole (A = h) layer. The
electron recombines with a delocalized hole of momentum k,,
emitting a photon of momentum q and polarization u, leading
to the final state

T.q:v.6), = al(@b) , _|9). (D1)

Considering the phonon energies presented in Table V, in

. . 2 2 .. .
this regime we have hz,AnK > hw, ), and the radiative matrix

elements with phonon emission can be approximated by

(D2a)

(D2b)

For large twist angle, finite values of the wave function are obtained only if § ~ C5 AK, resulting in three final phonon states
distinguishable by the direction of their momenta, and interference effects are lost. Furthermore, when substituting Eqgs. (D2a)
and (D2b) into the golden rule [Eq. (11)], the stacking-dependent phases also disappear. The result is Eq. (24a), and a similar
procedure leads to Eq. (24b) for the phonon-assisted decay of D(C),X ver complexes.

The situation is more subtle in the small-twist-angle regime, where interference effects are restored in processes within the
hole layer, and fiwy , < A2AK?/(2m,), such that the phonon dispersion becomes important. The optical matrix elements are

2~
k-‘r CnAK 4 h /t v th v [
’q E I)|H|D k) ~ X E ) 572 Cc Y vugv (S) h]; 8v, (§) - e_IG"'rU,
e V SLa | hea, ( +hwv(§)) he A (5 + hw, () + E5,)

2my,
(D3)
2~
~ k —CnAK 4 Fl cceSv,c
| DKy = 3 KK E— CAK) Jarhel  yregne®)
—~ s SLq | hc Ac(hw, (&) + E)

Following Ref. [31], we use t.. < t,, to simplify these expressions. Using Fermi’s golden rule and integrating over the photon
momentum, we obtain the decay rates

DOh z :

y,tvvgu,c’(s)
hic Av(ha),,(é) + SBU

e iGiT  (D4)
]

|F(ro)?|gv,v(0)] 31ge v(0)?
(Bt ho)  (hout &)

24E nh V/tvv
cm hS hic A,

/dzrfdzr/ ei(’;‘—AK)-(r’—r)X(r)X*(r/)

} ; v=LO, HP, (D5a)
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|F(ro)*1gu,a®)I?

3lgeLa®)I?

< LA ~
DUh hz 2

&> AE nh )//lm,
hc hS hcAU

for optical and acoustic phonon modes, respectively.

The divergence at £ = 0 in Eq. (D5b) makes the first term
dominant in the sum over &, and we can neglect the second. The
sum can be evaluated exactly in the continuous limit. Defining
F(x) = —x[Y1(x) + H_1(x)], where H,(x) and Y, (x) are the
nth Struve function and Bessel function of the second kind,
respectively, we obtain

2 =2
e B Eqmyn t
F];L‘A%h v2é2vh|:yvvi||F(r)|2/d2 /dZ/
¢ Rhpciy

2mvthA|r’ — r‘
K2 )

x ei&'(‘/‘)x(r)x*(r/)F<
(D6)

From the values reported in Table V, we find that the function
F in the integrand decays over a characteristic length scale of
100 nm, much greater than the spread of the localized wave
function yx(r). Therefore, to a good approximation, we can
substitute F(0) = 2/x to evaluate the integral. The final results
for all phonon modes considered in Eqgs. (25a) and (25b), and
Egs. (26a) and (26b) are obtained by a similar procedure.

APPENDIX E: FINITE-ELEMENT CALCULATION OF
TWO BODY STATES IN HETEROBILAYER SYSTEM

The Schrodinger equation for two particles interacting
through a radially symmetric potential {/(r) is given by [6]

h2 hZ
——— Vi — — Vi —U(rp) |V = EV, El
[ 2 Ve T 2y v (r12) (ED)
where the form of the interaction I/ between charge carriers is
explained in Appendix A2, depending on the layer in which
each particle is found.

Transforming the coordinates to the relative motion r =
r; — r; and the center-of-mass motion R = % allows
separation of the Schrodinger equation to the center-of -mass

part whose solution is glven by the plane wave ¢(R) = \/3, L /KR
and the energy E = m, and the relative-motion part
given by

2
[_h_v2 - e2u(r)]qz =EV, (E2)
2u

where u = mm,/(m; 4+ my) is the reduced mass.

Transforming the equation into dimensionless quantities
* eh?

[6,23] using the excitonic Bohr radlus ay = Lz and the
excitonic Rydberg energy Ry = W gives
<5 1 e -
-V — Fu(%’") v =FEV. (E3)
y

-+ hc A%') Epy?

/d2r/d2r/ei§<(r’—r)x(r)x*(r/)

(D5b)

(

where 7 = r/aj and E=E/ R{. Using separation of variables
the general solution is given by
Y(r) = R(r)P(¢), (E4)

where the angular-part solution is

O(¢) = ! e, (E5)
V2r

I =0,£1,£2, ... isthe azimuthal quantum number with ®(¢)
being an eigenfunction of the angular momentum operator

L,=—i h% with eigenvalue %l. The equation for the radial
part is
P ? -
—R°(F) — —R (F) + 5 R(F) = 5(F)R(F) = ER(), (E6)
where () = U(agF)/ R;f. To solve Eq. (E6) numerically, we

use the substitution u(7) = R(7)7, allowing us to impose
Dirichlet boundary conditions: u(#) = 0 at # = 0 and 7 = oo.
The equation can be solved using the finite-element method
implemented in MATHEMATICA [53]. For the charged donor
interacting with an electron in the MoSe, layer, we have u =
m,., and we solve Eq. (E6) using both the approximate Keldysh
interaction and the full bilayer potential for the intralayer
interaction between the donor and electron. The normalized
probability distributions for the first two radially symmetric
states (1s,2s) obtained using both potentials are plotted in
Fig. 11.

0.005¢
1s (Full)

_0.004; 2s (Full)
N
L el N s 1s (Approx.)
= 0.003; 2s (Approx.)
= 0.002}
=

0.001¢

0.000%
0 30 40 50 60

r[A]

FIG. 11. Probability distributions (| x (r)|?) of the first two radially
symmetric donor atom states in hBN/MoSe, /WSe, /hBN. The solid
lines were obtained using the full bilayer potential Eq. (1a), and
correspond to states with binding energies £P = —229.03 meV
and £ = —61.73 meV. The dashed lines were obtained using the
approximate intralayer Keldysh form (A12).
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