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Many-body effects in transport through a quantum-dot cavity system
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We theoretically describe electric transport through an optically active quantum dot embedded in a single-mode
cavity, and coupled to source-drain particle reservoirs. The populations of various many-body configurations
(e.g., excitons, trions, biexciton) and the photon-number occupancies are calculated from a master equation
which is derived in the basis of dressed states. These take into account both the Coulomb and the light-matter
interaction. The former is essential in the description of the transport, while for the latter we identify situations
in which it can be neglected in the expression of tunneling rates. The fermionic nature of the particle reservoirs
plays an important role in the argument. The master equation is numerically solved for the s-shell many-body
configurations of disk-shaped quantum dots. If the cavity is tuned to the biexciton-exciton transition, the most
efficient optical processes take place in a three-level � system. The alternative exciton–ground-state route is
inhibited as nonresonant due to the biexciton binding energy. The steady-state current is analyzed as a function
of the photon frequency and the coupling to the leads. An unexpected feature appears in its dependence on the
cavity loss rate, which turns out to be nonmonotonic.
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I. INTRODUCTION

The radiative recombination of optically pumped or elec-
trically injected electron-hole pairs in self-assembled quantum
dots (QDs) is a certain route to future quantum technologies.
The optical driving is suitable for generation of entangled
photons via biexciton cascade [1,2], whereas the coupling of
the sample to source and drain contacts conduces to polari-
tonic electroluminescence [3]. More promising applications in
quantum lasers and spintronics are expected if the QDs are
embedded in microcavities where photons are more efficiently
collected and directed [4]. A strongly coupled cavity-mode
two-level QD emitter in high-Q cavities has been realized more
than a decade ago [5]. Nowadays, the QD exciton levels can
be electrically tuned to the optical mode of a photonic crystal
membrane [6] and large values of the cooperativity parameter
can be obtained [7]. Recently, Somaschi et al. [8] reported high
photon indistinguishability for InAs dots embedded in a biased
micropillar. The strong exciton-photon coupling was shown to
induce cavity-mediated coupling between two QDs [9], and
Pagliano et al. designed an ultrafast photonic crystal cavity
diode [10].

The tunneling of electrons and holes in cavity QDs has
been on one hand considered as a mere practical tool to supply
biexciton or exciton states from contacts or wetting layers in
view of lasing [11], two-photon turnstile operations [12], or
single-photon pumping [13]. On the other hand, the contact
barriers built within a p-i-n structure are carefully controlled
in photocurrent experiments [14] and spin-polarized charging
operations [15,16] using QD photodiodes.

A lot of theoretical work has been done on photon statistics
and correlations in microcavities hosting self-assembled QDs
whose exciton transition frequency matches one of the cavity
modes. Surprisingly, calculations of input and output currents
through a QD-cavity system are quite rare. Djuric et al. [17]

addressed the problem of spin current in a QD-cavity system
coupled to a single reservoir. Calculations of ground-state
electroluminescence in the strong light-matter coupling regime
and an extensive discussion on the role of the chemical
potential of the contacts have been recently presented [18]
within an open system approach.

In this work, we explore the interplay of transport and
electron-hole pair recombination in a biased quantum-dot
photodiode embedded in a single-mode microcavity. The
analysis of the transport properties in such a system turns out
to be worthwhile, for several reasons: (i) The current passing
through the QD is a measurable quantity and provides relevant
insight on the transient and steady-state populations of various
excitonic states; such hints cannot be traced back from photon
statistics. (ii) Just as the electrical injection rates and QD level
structure strongly affect the emitted light or the efficiency of
the biexciton cascade, the transport properties depend on the
optical recombination, cavity losses, and nonradiative exciton
losses. Such a discussion is interesting in itself and to our
best knowledge has not been done yet. (iii) Last but not least,
electrical injection into the valence and conduction states is
usually spin degenerate so one cannot expect to fully describe
the transport properties within two-level models borrowed
from quantum optics.

The formal tool which describes the dynamics of QD-cavity
systems and conveniently incorporates various dissipation
and recombination processes is the Lindblad form of the
master equation (ME). Benson and Yamamoto [19] initiated
theoretical studies of a single QD laser within a noninteracting
two-level emitter model which describes a single bright exciton
selected by suitably polarized light. Later on, Perea et al. [20]
calculated the first- and second-order coherence functions for
a similar system in which excitons are injected from reser-
voirs via phonon-assisted processes. Steady-state quantities
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describing a two-level QD laser can be derived directly as
a continued fraction within the dissipative Jaynes-Cummings
model [21].

The ME approach was also employed to study of biexciton
cascade and entangled photon pair in a QD-cavity supporting
two modes of different polarizations [22]. A time-dependent
formalism has been implemented to study conduction band
transient transport in single [23] or double [24] lateral QDs
embedded in cavities.

Since optically active QDs are genuine many-body systems,
a description of their lasing and transport properties must
go beyond the exactly solvable two-level Jaynes-Cummings
(JC) model. The photon-probability cluster expansion method
proposed by Richter et al. [25] allows one to treat few-level
interacting QDs strongly coupled to cavity modes. Florian et al.
[26] also developed an equation-of-motion technique for a
four-level QD coupled to both fermionic and bosonic reservoirs
and mostly discussed the population dynamics.

Here, we focus on the steady-state transport properties of
a QD-cavity system by writing a dressed-states picture of the
master equation describing the dynamics of the system. The
paper is organized as follows. In Sec. II we present the open
system approach to our problem and derive a Markovian master
equation for the reduced density matrix of the QD-cavity
system in terms of dressed states. It is also shown that if the
chemical potential of the contacts are tuned away from the
energy required to change the many-body configurations of
the QD by single-electron tunneling, one recovers a master
equation written entirely in terms of “free” states (i.e., the states
of the QD cavity in the absence of the matter-photon coupling).
Analytical results for the s-shell states of a disk-shaped QD
are presented in the Appendix. Our approach consistently
incorporates many-body effects originating from both intradot
Coulomb interaction and electron-hole-photon coupling. Some
of these effects are illustrated by numerical results in Sec. III.
We find that the double occupancy of the s-shell states favors
a �-type dynamics of the system at the biexciton resonant
frequency. Also, the photon-carrier correlations induce a non-
monotonic behavior of the steady-state current as function of
cavity losses. The conclusions are left for Sec. IV.

II. FORMALISM

A. Many-body states and dressed states

We consider an optically active QD embedded in a p-i-n
structure which is also placed in a microcavity supporting
a single radiation mode. In the absence of exciton-photon
coupling, the “free” dot-cavity Hamiltonian reads as

H
(0)
S = HD + h̄ω+a†

σ+aσ+ + h̄ω−a†
σ−aσ− , (1)

where a†
σ± is the photon creation operator associated to σ± po-

larizations with frequencies ω± and HD describes the Coulomb
interacting quantum dot. Its many-body (MB) configurations
{ν} and the associated energies Eν are defined by HD|ν〉 =
Eν |ν〉. Then, by using the Fock states |n+,n−〉 described by
the number of photons for each polarization one can write
H

(0)
S |ν,n+,n−〉 = E (0)

ν,n+,n− |ν,n+,n−〉 where

E (0)
ν,n+,n− = Eν + h̄(ω+n+ + ω−n−). (2)

In this work, we present numerical calculations for disk-
shaped quantum dots whose valence band states are heavy-hole
(HH) like. Then, the corresponding JC, light-matter interaction
Hamiltonian in the rotating-wave approximation is given as
follows (H.c. denotes the Hermitian conjugate):

Hel-ph = −ih̄(g+c
†
↓b

†
⇑aσ+ − g−c

†
↑b

†
⇓aσ− ) + H.c., (3)

where g± are the optical coupling constants, and the carrier
operators have obvious notations. For instance, c

†
↓ creates

a spin-down electron on the conduction band (CB) single-
particle states of the quantum dot and b

†
⇑ creates a heavy

hole (HH) with total angular momentum Jz = 3
2 in the valence

band (VB). If we limit the discussion to the s shell in both
bands, there is no need for another single-state index aside
from the spin. The Hamiltonian (3) can be easily generalized
if one needs to include further state indices as well as Luttinger
spinors with both light-hole (LH) and HH states.

The coupled QD-cavity system is generally described by
dressed states |ϕp〉 and by their energies Ep:

HS |ϕp〉 = (
H

(0)
S + Hel-ph

)|ϕp〉 = Ep|ϕp〉, (4)

where ϕp are linear combinations of free states

|ϕp〉 =
∑

ν,n+,n−

A(p)
ν,n+,n−|ν,n+,n−〉. (5)

Note that p is actually a multi-index collecting relevant
quantum numbers of the QD+cavity system. The coefficients
A

(p)
ν,n+,n− must be calculated by analytical or numerical diago-

nalization.
It is easy to check that for a Hamiltonian describing QD with

rotational symmetry the total spin Fz(ν) = Jz(ν) + Sz(ν) +
M(n+,n−) of its free-state components is conserved, where the
total photon spin is introduced asM(n+,n−) = n+(ν) − n−(ν).
Another conserved quantity is the net charge (in elementary
charge units) q(ν) = nh(ν) − ne(ν), where ne (nh) is the
number of electrons (holes) in the conduction and valence
QD levels. Finally, the optical selection rules lead to the
conservation of n↑− = ne↑ + n− and n↓+ = ne↓ + n+ [27].

Then, the many-body configurations {|ν,n+,n−〉} which are
optically coupled can be organized in invariant orthogonal
subspaces specified by such quantum numbers. In other words,
the Hamiltonian HS becomes block diagonal. If one considers
only the s-shell states, the largest blocks are four dimensional
and contain the neutral states, namely, the ground state, the
biexciton, and the two bright excitons with quantum numbers
Fz, q = 0, n↑−, and n↓+. For practical calculations, one has to
truncate both the photon numbers n+,n− and the many-body
configurations such that the dimension and the number of such
subspaces stay finite.

For further use, let us introduce below the notation for the
16 many-body configurations derived from the s-shell single-
particle conduction and valence band states of an interacting
quantum dot. Then, the dot Hamiltonian HD reads as

HD =
∑

σ

εen̂eσ +
∑
σ ′

εhn̂hσ ′ −
∑
σ,σ ′

Vehn̂eσ n̂hσ ′

+Veen̂e↑n̂e↓ + Vhhn̂h⇑n̂h⇓, (6)
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where we introduced the electron/hole single-particle energies
εe/εh. The electron-number operators are written in terms
of creation and annihilation operators for electrons, n̂eσ =
c†σ cσ and n̂hσ = b†σ bσ . Vee and Vhh stand for the intraband
interaction while Veh denotes the interband (electron-hole)
interaction.

It is convenient to rely on the occupation-number basis
associated to spin-up and -down states. We label the valence
states by their hole occupation. The ground state |G〉 corre-
sponds to empty CB and full VB (the electron-hole vacuum).
The two bright excitons are |X↑〉 = |↑; ⇓〉 and |X↓〉 = |↓; ⇑〉,
whereas the dark excitons are denoted by small letters |x↓〉 =
|↓; ⇓〉 and |x↑〉 = |↑; ⇑〉. The pairs of positively/negatively
charged trion states are |X+

↑ 〉 = |↑; ⇑⇓〉, |X+
↓ 〉 = |↓; ⇑⇓〉 and

|X−
⇓ 〉 = |↑↓; ⇓〉 and |X−

⇑〉 = |↑↓; ⇑〉. Note that the positive
(negative) trions are indexed by their extra electron (hole)
spin. Next, we introduce the single-hole states |h⇑〉 = |⇑〉,
|h⇓〉 = |⇓〉 and one-electron (no hole) states |e↑〉 = |↑〉, |e↓〉 =
|↓〉. Finally, the biexciton and two electron/hole states are
denoted by |XX〉 = |↑↓; ⇑⇓〉, |2e〉 = |↑↓〉, and |2h〉 = |⇑⇓〉.
We emphasize that with the Coulomb interaction expressed in
terms of occupation numbers, there is no configuration mixing,
but only energy renormalizations.

B. Transport setting for the QD-cavity system

The interaction with the environment of the QD-photon
system is described by the coupling to several reservoirs. Our
main interest is in QD electric excitation. The carrier source
and sink are described as noninteracting fermionic particle
reservoirs provided by contacts to the n and p regions, respec-
tively. Considering alternative processes, instead of tunneling,
as carrier capture mechanisms (e.g., Auger processes [28])
would change neither the structure of the master equation nor
the necessity to describe it in the dressed-states basis.

In the presence of the Coulomb and JC interactions, the
corresponding Lindblad-type dissipative terms in the evolution
of the density operator require a more careful consideration.

In describing the flow of the current, we follow the literature
and use below the conduction-valence terminology rather than
the electron-hole language of the previous subsection. They
are, of course, equivalent.

Excited states in the QD are populated electrically by
injecting electrons from the n region and by depleting the
valence states to the p region (equivalently, by injecting holes).
Thus, the conduction (valence) band states of the dot are
coupled at the initial time t = 0 to a single-particle reservoir
denoted by c (v). This model has been used in other theoretical
studies [29,30]. The corresponding tunneling Hamiltonian
reads as

HT =
∑

α

∑
k,σ

∑
i∈QD

(
V α

i,kσ c
†
i ckασ + H.c.

)
, (7)

where i denotes a single-particle conduction or valence state
within the QD, (k,σ ) stand for the momentum and spin of
electron in the reservoir α = c,v, and V α

i,kσ is the tunneling
strength. In this work, we use V α

i,kσ as phenomenological
parameters. We assume that the tunneling processes conserve
the spin such that V α

i,kσ vanishes unless one has Sz(i) = σ ,
being Sz(i) the electron spin of the state i within the QD.
Moreover, we assume for simplicity that V α

i,kσ does not depend
on k and σ . Our open QD-cavity system is therefore described
by the total Hamiltonian

H = HS + HR + HB + HT + HS-B, (8)

where HR = ∑
α

∑
kσ εkc

†
kασ ckασ describes the two particle

reservoirs feeding the QD and εk is the energy of an incident
electron with momentum k. We denote by μc and μv the
equilibrium chemical potentials of the reservoirs. HB and HS-B

describe bosonic reservoirs (e.g., some leaky modes) and their
coupling to the QD-cavity system. They are responsible for the
cavity losses and for the nonradiative exciton recombination

Now, we follow the standard procedure for open systems
(see, e.g., [31,32]) and derive the master equation for the
reduced density operator ρ(t) of the QD-cavity system. Within
the Born-Markov approximation the master equation reads as

ρ̇(t) = − i

h̄
[HS,ρ(t)] − LR[ρ(t)] − Lκ [ρ(t)] − Lγ [ρ(t)],

(9)

where the contribution of the reservoirs is given by

LR[ρ(t)] = 1

h̄2

∫ ∞

0
ds TrR{[HT ,[H̃T (−s),ρ(t)ρR]]}. (10)

Here, we introduced the partial trace with respect to
the reservoirs TrR , their equilibrium statistical operator
ρR , and the interaction picture with respect to the de-
coupled Hamiltonian HS + HR + HB reads as H̃T (t) =
e

i
h̄
tHS e

i
h̄
tHRHT e− i

h̄
tHS e− i

h̄
tHR . Since we are interested in the

electrically injected carriers, an (external) optical pumping
is not considered. Similar expression can be derived for the
dissipative terms Lκ and Lγ associated to cavity losses (κ
denotes the decay rate) and to nonradiative processes (with
rate γ ). For now, let us concentrate on LR.

Obviously, one has to bring Eq. (10) to a more explicit form.
This is trivial for the HR exponential whereas for the system
Hamiltonian HS can be done rather easily by expanding the
time evolution in terms of its eigenbasis, performing the trace
over the degrees of freedom of the reservoirs and the time inte-
gral by using the principal-value formula. Then, the dissipative
contribution of the reservoirs in the dressed-states basis can be
written in the compact form LR[ρ] = ∑

ασ Lα,σ [ρ] where the
lead and spin-dependent components are found as

Lα,σ [ρ(t)]= π

h̄

∑
p,p′,r,r ′

{[
T

α,σ
rr ′ |ϕr〉〈ϕr ′ |,f α(Ep′−Ep)T

α,σ

p′p|ϕp〉〈ϕp′ |ρ(t)
]+ [

T
α,σ

r ′r |ϕr〉〈ϕr ′ |,fα(Ep−Ep′ )T α,σ
pp′ |ϕp〉〈ϕp′ |ρ(t)

]+H.c.
}
.

(11)
Here, fα is the Fermi function of the reservoir α which appears from the partial trace over the leads’ degrees of freedom, that
is, TrR{c†kασ ck′α′σ ′ρR} = δσσ ′δαα′δ(k − k′)fα(εk). We also introduced the shorthand notation f α = 1 − fα . T

α,σ
pp′ are the matrix
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elements of the “jump” operators between two dressed states of the full Hamiltonian

T
α,σ
pp′ =

√
Dα

∑
i∈QD

V
α,σ
i 〈ϕp|c†i |ϕp′ 〉, (12)

and Dα is the density of states (DOS) in the lead α whose weak
dependence on energy in the window of interest is assumed
here for simplicity. The principal-value terms from the integral
over k induce a Lamb shift on the eigenvalues of HS and were
neglected [33]. Obviously, T α,σ

pp′ collects all addition processes
of an electron with spin σ on the single-particle states i from
the band α. By looking at the dressed-states structure [see
also Eq. (5)] we observe that T

α,σ
pp′ and its complex conjugate

T
α,σ

p′p map a subspace made by dressed states with net charge
q(p) to its “nearest-neighbor” charge q(p′) since the sequential
tunneling imposes the condition |q(p) − q(p′)| = 1.

Let us stress that in the literature (see, e.g., [19,20,26]) it
is quite common to write the dissipative Lindblad part of the
evolution in terms of single-particle “jump” operators ci or
c
†
i , as if all such jumps would require the same energy com-

pensation from the reservoirs. This noninteracting assumption
contrasts with the unitary part [HS,ρ], which contains through
HS the full Coulomb and QD-photon interactions. In fact, the
energies involved in each transition depend on the number of
photons and “spectator” carriers, which do not participate in
the jump themselves. In other words, the proper description
of the dissipative processes is done in terms of dressed states
and their energies, as in Eq. (11). The situation becomes quite
complex, but possible simplifications may occur, as in the cases
discussed below.

The master equation (9) can be solved numerically either
with respect to the dressed-states basis {|ϕp〉} or in the free
basis {|ν,n+,n−〉}, the latter being more convenient when
discussing the dynamics and transport in terms of populations
and coherences.

Now, it is obvious that it is the presence of the dressed-states
energy differences Ep − Ep′ that prevents us from changing
in Eq. (11) the decomposition of unity as

∑
p |ϕp〉〈ϕp| =∑

ν,n+,n− |ν,n+,n−〉〈ν,n+,n−|, i.e., expressing the result in
terms of states free of JC interaction. The conversion is
exact for the term |ϕr〉T α,σ

rr ′ 〈ϕr ′ | and its Hermitian conju-
gate in Eq. (11) since the summations over r,r ′ do not
involve dressed-states energies. Below we discuss that the
same holds under certain conditions for the p,p′-dependent
factors too.

First, one has to observe that any energy difference Ep − Ep′

equals the tunneling gap (i.e., the charging energy) Wνν ′ =
Eν − Eν ′ between two QD many-body configurations plus
certain JC shifts wpp′ which depend on the matter-photon
coupling gc and on photon numbers n+,n−. In the Appendix we
derive such relations for the s-shell states [see, e.g., Eqs. (A6)
and (A7)]. Second, Lα,σ depends on this energy difference
via the Fermi function, and thus the position of its argument
relative to the chemical potential is essential.

Now, assume that for any pair of dressed states ϕp, ϕp′

whose charges satisfy |q(p) − q(p′)| = 1 one can write

fα(Ep − Ep′ ) = fα(Wνν ′ ), (13)

where |ν,n+,n−〉 and |ν ′,n+,n−〉 are JC-free components of ϕp

and ϕp′ which are coupled either by creation or annihilation
operators on the dot (e.g., c

†
i |ν ′〉 = |ν〉). Then, by using the

decomposition of unity on the subspaces with charge q(p) and
q ′ = q(p′) one can prove the identity (see Appendix)

∑
p,p′

q−q′=1

fα(Ep − Ep′ )T α,σ
pp′ |ϕp〉〈ϕp′ |

=
∑
ν,ν ′

∑
n+,n−

fα(Wνν ′)T α,σ
νν ′ |ν,n+,n−〉〈ν ′,n+,n−|

=
∑
ν,ν ′

fα(Wνν ′ )T α,σ
νν ′ |ν〉〈ν ′|, (14)

where we introduced jump operators associated to a pair
of many-body configurations of the QD only, T

α,σ
νν ′ =√

Dα

∑
i V

α,σ
i 〈ν|c†i |ν ′〉. Note that Eq. (14) is much simpler

and now allows one to rewrite Lα,σ in Eq. (11) in terms of free
states only. The action on the photon degrees of freedom is
reduced to the unit operator. While this form is the starting point
of many theoretical and numerical calculations, its derivation
from the dressed-states picture of the master equation has not
been previously discussed.

The condition (13) emphasizes that the dressed-states-
dependent shifts wpp′ = Ep − Ep′ − Wνν ′ can be neglected as
arguments of the Fermi function. We find that [see Eqs. (A6)
and (A7)] for the photon numbers considered here, these
shifts are less than 1 meV and then at small temperatures
Eq. (13) is fulfilled if μα lies at least a few meV above or
below Wνν ′ + wpp′ . Note also that the condition covers the
very particular case in which fc = f v = 1 for all pairs of
dressed states involved in tunneling processes. On the other
hand, it should be stressed that the condition does not hold
in the nearly resonant regime when one has μα ≈ Wνν ′ . In
particular, if Wνν ′ < μα < Wνν ′ + wpp′ one has fα(Wνν ′ ) = 1
while fα(Wνν ′ + wpp′) = 0, provided wpp′ > 0. Nevertheless,
the electrical injection regime naturally implies that the chem-
ical potentials are set away from the energies of the many-
body configuration one wants to feed, so the condition (13)
holds. In these circumstances, the influence of the matter-
photon interaction on the carrier transport is negligible. On
the contrary, the Coulomb MB effects are important and are
correctly incorporated into the picture.

The dissipative terms Lκ and Lγ from Eq. (9) can be also
expressed in the free-states picture. In this case, the trace
over the bath degrees of freedom generates terms containing
the Bose function nB(Ep − Ep′ ). The main point here is that
Ep − Ep′ ∼ h̄ωc � kBT , so that the Bose function involved is
negligible. Only the nB + 1 downward term survives and one
easily recovers the usual Lindblad form

Lκ = κ

2

∑
s=σ+,σ−

(a†
s asρ + ρa†

s as − 2asρa†
s ). (15)
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Similarly, the term associated to nonradiative exciton losses
reads as

Lγ = γ

2
(c†↓b

†
⇑b⇑c↓ρ + ρc

†
↓b

†
⇑b⇑c↓ − 2b⇑c↓ρc

†
↓b

†
⇑)

+ γ

2
(c†↑b

†
⇓b⇓c↑ρ + ρc

†
↑b

†
⇓b⇓c↑ − 2b⇓c↓ρc

†
↑b

†
⇓).

(16)

The total charge on the QD can be calculated as QS =∑
ν

∑
n+,n−〈ν,n+,n−|QSρ(t)|ν,n+,n−〉. The total charge op-

erator QS = e(Nc + Nv) where Nc (Nv) are the occupation-
number operators of the conduction (valence) QD levels (e.g.,
Nc = ∑

σ n̂eσ ) and e < 0 denotes the electron charge. By
convention, the current in the left contact Jc is positive if
electrons flow from the contact into the QD, while the current
in the right contact Jv is positive if electron leaves the valence
energy levels of the QD. Using the continuity equation we
identify the currents in the two reservoirs

Q̇S = TrS{QSρ̇(t)} = Jc(t) − Jv(t). (17)

By straightforward calculations, one can easily check
that TrS{QSLκ [ρ(t)]} = TrS{QSLγ [ρ(t)]} = 0. Also,
TrS{QS[Hel-ph,ρ(t)]} = TrS{[QS,Hel-ph]ρ(t)} = 0 since the
photon-matter Hamiltonian conserves the total charge. The
time-dependent currents then read as

Jα(t) = e
∑

σ

TrS{N̂αLα,σ [ρ(t)]}. (18)

In the steady state one must have Jc = Jv := JS . The average
photon number N = Nσ+ + Nσ− is calculated from

Nσ± = TrS{a†
σ±aσ±ρ(t)}. (19)

Other useful quantities are the population of N -photon states
PN (t) and the population Pν of a given many-body configura-
tion ν:

PN (t) =
∑

ν,n+ ,n−
n++n−=N

〈ν,n+,n−|ρ(t)|ν,n+,n−〉, (20)

Pν(t) =
∑
n+,n−

〈ν,n+,n−|ρ(t)|ν,n+,n−〉. (21)

Last but not least, the free-states picture of Lα,σ and Eq. (18)
allow us to write the time-dependent currents in terms of
relevant populations. For our s-shell 16 configurations we find
the incoming current J in

c and the outgoing current J out
c :

J in
c (t) = e�c

h̄

∑
{ν,ν ′}in

Pν(t)fc(Wν ′ν), (22)

J out
v (t) = e�v

h̄

∑
{ν,ν ′}out

Pν(t)f v(Wνν ′), (23)

where we introduced the tunneling coefficients �α = πV 2
α Dα

and {ν,ν ′}in ({ν,ν ′}out) denotes all pairs of many-body configu-
rations connected by tunneling-in (-out) processes. For exam-
ple, the incoming current collects contributions from WX+

↑ ,2h,
WX↑,h⇓ , Wx↑,h⇑ etc. Note that the dark excitons contribute
to the transport so they cannot be disregarded in transport
calculations. In contrast, states with full CB (i.e., the biexciton,
the negative trions, and |2e〉) do not contribute to the incoming

current since tunneling-in processes are no longer allowed.
Therefore, the populations of these states do not appear in
the expression of J in

c . Similar states can be identified for the
outgoing current J out

v .
Let us note that even if the Jaynes-Cummings shifts appear-

ing in the dissipative terms of the master equation are negligible
one cannot disentangle the effects of the intradot interaction
and exciton-photon coupling. On the one hand, the optical
resonant frequencies are fully determined by the Coulomb
many-body effects and on the other hand the JC coupling from
the unitary term [HS,ρ] leads to generation/recombination
processes which inhibit/activate transport channels.

III. RESULTS

In this section, we restrict our calculation to the spin-
degenerate purely heavy-hole (HH) s-shell states which are
known to accurately describe the low-energy states of disk-
shaped QDs. The numerical results were obtained for a InAs
quantum dot. We calculate the single-particle states from the
k · p theory [34] using the Luttinger parameters γ1 = 11.01,
γ2 = 4.18, and γ3 = 4.84. We considered a quantum dot of
radius R = 15 nm and height W = 5 nm. The cavity supports
a single mode, thus, ω+ = ω− = ωc and g+ = g− = gc. Also,
we assume equal tunneling rates �c = �v = �.

The energies of the dot Eν can be written analytically in
terms of the single-particle energies and the Coulomb matrix
elements. We used the following Coulomb interaction param-
eters: Vhh = 18.75 meV, Veh = 18.5 meV, Vee = 15.25 meV.
The differences between the intraband and interband interac-
tion constants generally follow from the stronger confinement
of the holes. In the absence of strain, the electron-hole ex-
change interaction for the s-shell states vanishes due to radial
symmetry [35]. Therefore, the bright and dark exciton states
are degenerate and one has EX↑ = EX↓ = Ex↑ = Ex↓ [36]. The
same degeneracy holds for the pairs of positive and negative
trion states.

Since the cavity mode supports both σ+ and σ− polariza-
tions, the bright excitons |X↑,n+,n− − 1〉 and |X↓,n+ − 1,n−〉
are simultaneously coupled to the ground state |G,n+,n−〉 and
biexciton state |XX,n+ − 1,n− − 1〉. If the biexciton binding
energy is negligible, the ground-state-exciton and exciton-
biexciton resonant frequencies are equal. Then, at resonance
the corresponding dressed states are full mixtures of these four
states. However, in real systems the mixing of the free states
depends on the binding energy Eb = 2Veh − Vee − Vhh. For
our parameters, the resulting binding energy Eb = 3 meV. We
recall that such values of the binding energy were reported by
Narvaez et al. [37] for lens-shaped quantum dots.

Similarly, the matter-photon interaction mixes the positive
trion states and one-hole states on the one hand (the charge of
the corresponding subspaces being q = 1) and the negative
trions and one-electron states (i.e., one electron in the CB
and no holes in the VB) on the other hand (q = −1). One
therefore gets two pairs of dressed states (see Appendix).
The resonant recombination processes correspond to four
frequencies h̄ωXX = EXX − EX, h̄ωX = EX − EG, and ωX± .

We first diagonalize numerically the QD-cavity Hamilto-
nian HS . The weights |Aν,n+,n−|2 associated to three dressed
states from two neutral subspaces with different photon
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FIG. 1. The weights of the ground state and exciton and biexciton
states associated to three dressed states of the QD-cavity system
as function of ωc. Each figure (a)–(c) corresponds to one dressed
state. The mixing of these states also depends on the photon num-
bers n+,n− except for the resonant cases ωc = ωX = 839.2 meV
and ωc = ωXX = 836.15 meV where |Aν,n+,n− |2 = |Aν,n′+,n′− |2. Other
parameters: h̄gc = 0.05 meV.

numbers n± are presented in Fig. 1 as functions of ωc.
The weights of the fourth state are omitted because they
do not depend on frequency and one has |AX↑,n+,n−−1|2 =
|AX↓,n+−1,n− |2 = 1/2 and |AG,n+,n−|2 = |AXX,n+−1,n−−1|2 =
0. It is not difficult to observe that away from ωc = 837.75 meV
the three dressed states describe either a three-level � system
(if ωc < 837.5 meV) or a V system (if ωc > 838 meV). In the
case of the � system, the mixing of the ground state |G,n1,n2〉
is negligible while for the V system the biexciton state is
decoupled from the other states. Note that the weights in Fig. 1
also depend on the photon numbers except for the resonance
points. The dressed states and the associated energies of the
� system at the biexciton resonance ωXX are explicitly given
in the Appendix. In particular if ωc = ωXX one recovers in
Figs. 1(a) and 1(b) the analytical results |AX↑,n+,n−−1|2 =
|AX↓,n+−1,n− |2 = 1/4 and |AXX,n+−1,n−−1|2 = 1/2.

We solve the master equation numerically in the free states
{|ν,n+,n−〉} by suitably truncating the photon number N =
n+ + n− to a maximum value N0, such that the N0-photon
population PN0 (t) is so small that it can be safely neglected for
all values of the cavity losses h̄κ > 5 μeV. The corresponding
numerical results are stable for a photon cutoff N0 = 20. The
steady-state values of various quantities (e.g., the current,
average photon number) are obtained numerically as the long-
time limit of the statistical averages with respect to the reduced
density matrix ρ(t).

As a first characterization of the transport through the QD-
cavity system, we present in Fig. 2(a) the steady-state current
JS as function of the frequency ωc. The chemical potentials of
the reservoirs were chosen such that μc > Wνν ′ and μv < Wνν ′

for all many-body configurations {ν,ν ′}. In this regime, the
electrons enter the QD only from the left contact and tunnel

FIG. 2. (a) The steady-state current JS as a function of the cavity
frequency. The bullets mark the resonance frequencies. (b) The
steady-state populations of relevant MB configurations as function of
ωc at h̄γ = 1.5 μeV. Right inset: the relevant charging energies Wνν′

are located below the chemical potential μc (see also the discussions
in the main text). σ denotes the electronic spin of the s-shell
single-particle state. Other parameters: h̄κ = 0.5 meV, � = 13 μeV,
h̄gc = 0.05 meV, μc = 625 meV, μv = −275 meV.

out only to the right contact. In Fig. 2(b) we schematically
show the charging energies Wνν ′ describing transitions to the
s-shell states in the conduction band. All charging energies
associated to tunneling into the p-shell states are higher than
μc and were not included in the calculation.

Away from resonance frequencies, a background current
around 0.65 nA that passes through the system is mainly due
to the nonradiative losses into the leaky modes; it disappears
if γ = 0. The clear peak around ωc = 836 meV is due to the
transitions XX → Xσ andX−

⇑(⇓) → e↑(↓); note that their corre-
sponding frequencies ωXX and ω−

X are separated by 0.25 meV.
A second much smaller peak appears around ωc = 839 meV
and is associated to the exciton ground state and positive
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FIG. 3. The steady-state current as a function of the tunnel
coupling �. Inset: the steady-state mean number of photons N as
a function of the tunneling parameter �. Other parameters: μc =
625 meV, μv = −275 meV, h̄gc = 0.05 meV, h̄γ = 0.0015 meV.

trion-one-hole recombination. The separation between the two
peaks is roughly given by the biexciton binding energy Eb.

The rather poor transport response of the system at ωc = ωX

is caused by the rapid filling of the biexciton states |XX,n+,n−〉
on the one hand and by their weak recombination on the
other hand (recall that ωXX = ωX − Eb). To confirm this
scenario, we looked at the relevant steady-state populations
[see Fig. 2(b)]. One notices a high steady-state population
of the biexciton state (PXX ∼ 0.85) at ωc = ωX; this also
corresponds to a negligible average photon number N ∼ 0.01
(not shown). In contrast, as ωc sweeps the biexciton resonance,
PXX drops while the populations of the bright exciton PX =
PX↑ + PX↓ and trions PX± increase. The mechanism behind
this behavior when ωc ∼ ωXX is easy to grasp. On the one
hand, the strong biexciton recombination feeds the population
of the bright excitons. On the other hand, the positive/negative
trions are generated from any exciton state (i.e., bright or dark)
by injecting one more electron/hole. The sequence of charging
energies in Fig. 2(b) suggests that the filling of the negative
trions can be reduced if one tunes μc < WX−

⇓ X↑ = WX−
⇑ X↓ .

This also inhibits the biexciton population via the channel
X− → XX. Similarly, eliminating the other biexcitonic chan-
nel X+

σ → XX requires μc < WXX,X+
σ

but also reduces the
recombination processes as the bright excitons are no longer
filled (μc < WX↑h⇓). Therefore, the interplay between the
intraband and interband Coulomb interactions does not allow
us to disregard the biexciton state in transport calculations.

The same features are observed for other values of the
tunneling strength �. In the following, we shall focus on the
resonant regime ωc = ωXX. Next, we investigated the effect
of the tunneling strength � on the steady-state current. The
closed formula of J in

c [see Eq. (22)] naively suggests a linear
dependence on the tunneling rate �/h̄. When looking at Fig. 3
one observes a more complex behavior.

At small or moderate coupling, the steady-state current
indeed increases linearly as function of�. By further increasing

FIG. 4. (a) The steady-state average number of photons N as
a function of the cavity losses. The coupling to reservoirs � is
fixed. The sudden drop of N covers a very narrow range of κ .
The steady-state occupation of the N -photon states at low cavity
losses (b) h̄κ = 0.005 meV and (c) h̄κ = 0.01 meV for two values
of the coupling to reservoirs �. The solid curves are fit to Poisson
distribution. Other parameters: μc = 625 meV, μv = −275 meV,
h̄γ = 0.0015 meV, h̄gc = 0.05 meV.

� the current reaches a maximum and then decreases. The
inset in Fig. 3 establishes the clear correspondence between
the stationary current and the mean photon number, as N (�)
shows the same nonmonotonous dependence on the tunneling
strength. By increasing the coupling � more photons are
generated and stored within the cavity. However, beyond a crit-
ical value N (�) decreases monotonously since the tunneling
processes eventually trigger decoherence between the lasing
levels [19]. This self-quenching clearly induces the transport
features shown in Fig. 3(a). Note that the location of the
maxima associated to different values of κ do not coincide; they
are shifted to lower couplings � as the cavity losses increase.
This happens because both � and κ contribute to dephasing.

Figure 4(a) presents the steady-state mean photon number
as function of the cavity losses parameter κ for several values
of �. As long as � is very small, the recombination processes

195442-7



I. V. DINU, V. MOLDOVEANU, AND P. GARTNER PHYSICAL REVIEW B 97, 195442 (2018)

FIG. 5. The steady-state current JS as function of cavity losses
κ at several values of the tunneling strength �. As � decreases,
JS displays a nonmonotonous behavior. The frequency of the cavity
mode matches ωXX. The inset shows the same behavior of JS and the
output power (see the discussion in the text). Other parameters: h̄gc =
0.05 meV, μc = 625 meV, μv = −275 meV, h̄γ = 0.0015 meV.

are less effective because of very slow tunneling processes and
N (κ) does not exceed 3 even for high-quality cavities. One
observes that in the strong optical coupling regime gc > κ

the steady-state average N (κ) drops very fast especially for
� > 30 μeV. In particular, the cavity accommodates up to
13.5 photons for � = 70 μeV and h̄κ = 0.005 meV. At h̄κ =
0.02 meV, most of the photons are lost through leaky modes
such thatN ∼ 3. The decrease ofN slows down as h̄κ > 0.02
meV. As expected, in the weak coupling regime gc < κ the
cavity does not accumulate photons anymore and we find that
N < 0.1 for h̄κ > 0.2 meV.

Since the average number N does not provide detailed
information on the photon statistics, it is useful to analyze
the occupation of the N -photon states in the steady-state
regime. We observe in Fig. 4(b) that for � = 13 μeV, the
states with more than five photons are poorly populated, while
for � = 20 μeV the one- and two-photon states are nearly
depleted although they substantially contribute to the transient
regime (not shown). The system is mostly described by states
with a number of photons close to the average number N ;
more precisely, at � = 20 μ eV the N -photon states whose
population is larger that 0.1 correspond to 3 � N � 7. For
h̄κ = 0.01 meV, the states with only few photons are more
likely to be populated. Indeed, at � = 13 μeV one observes
in Fig. 4(c) that the steady-state is mostly described by one-,
two-, and three-photon configurations. The comparison with
the Poisson distribution [see Figs. 4(b) and 4(c)] shows that
the system is driven close to coherent light.

We finally investigate the dependence of the current JS as
a function of the cavity losses κ . Figure 5 shows JS(κ) for
several values of the tunneling strength �. At fixed coupling to
the reservoirs, the steady-state curves of JS(κ) clearly resemble
van der Waals–type “isotherms.”

If � > 60 μeV, the current decreases almost uniformly as
κ increases. Rather surprisingly, as the coupling to the contacts
decreases below � = 60 μeV, a nonmonotonous behavior
emerges. Indeed, the inset in Fig. 5 allows us to distinguish
three transport regimes at � = 20 μeV. Although JS still
drops rapidly for h̄κ ∈ [0.005,0.025] meV (first regime), then
it increases until h̄κ ∼ 0.1 meV (second regime) meV, and
eventually uniformly decreases (third regime). Also, the local
minimum of JS(κ) shifts to lower κ as � decreases. At first
glance, this complex behavior of the steady-state current is
not easy to predict, especially in view of the fact that N is a
monotonously decreasing function of κ [see Fig. 4(a)].

A quite similar complex dependence is found for the output
power Pout = κN which follows closely the shape of the JS

(see inset in Fig. 5). This is not surprising since the power
supplied to the system by the current injection is essentially
recovered in the field coming out from the cavity. Small
differences arise from unimportant power losses by emission
into nonlasing modes (γ is small), and from nonresonant
optical processes, which have a low efficiency. On the other
hand, in the steady state Pout is equal to the net photon
generation in the cavity and, therefore, the explanation of its
behavior should rely on the interplay between photon emission
and absorption processes. Initially, the strong drop in the
photon number with increasing κ leads to a decrease of Pout.
Later, with N leveling off to small values [see Fig. 4(a)],
the photon generation decrease continues, due to the strong
dephasing associated with large cavity losses.

The surprising effect is the intermediate interval of increas-
ing behavior. It is clear from Pout being the product of the
increasing κ and the decreasing N that the whole picture is
the result of competing tendencies. In the case of this middle
interval, the careful examination of different contributions
shows that photon emission (stimulated and spontaneous) and
absorption are to a great extent compensating each other, so
that the net result depends on finer contributions to their leading
terms. Such corrections contain carrier-photon correlation
effects, which turn out to play an important role. For instance,
the term describing stimulated emission from the biexciton
state Tr{ρ ∑

n+,n− |XX,N〉〈XX,N |} differs significantly from
the factorized form PXX N . As a consequence, the increasing
behavior remains beyond simple, intuitive explanations in
terms of carrier and photon populations.

IV. CONCLUSIONS

We presented an open system approach to the photon-
assisted transport in self-assembled quantum dots embedded
in a single-mode cavity. It is argued that the Lindblad terms
responsible for the system-lead tunneling cannot be evaluated
in terms of the noninteracting states, as it is often found
in the literature. We specify the conditions under which the
renormalization of the tunneling energies due to matter-photon
coupling can be neglected, but we find that the Coulomb
intradot interaction is essential. As a result, the transport
Lindblad terms are expressed in terms of jump operators
associated to pairs of tunnel-coupled many-body states.

Our numerical results are obtained by taking into ac-
count all many-body configurations associated to the lowest-
energy s-shell single-particle states. We find that the largest
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steady-state current passing through the system is achieved
when the frequency of the cavity mode matches the biexciton
resonant frequency. In contrast, around the exciton resonance
the current does not differ much from the off-resonant back-
ground value because the biexciton state is continuously fed
by the source reservoir and its decay into bright excitons is
an off-resonant process. Under electrical injection trions and
dark excitons are easily populated and contribute to the current,
hence, one cannot disregard them as it is safely done in the
optically pumped systems.

Unexpected features of the steady-state current as a function
of the cavity losses are explained by the delicate interplay of the
emission and absorption processes in the presence of carrier-
photon correlations.
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APPENDIX: THE � SYSTEM

Here, we derive analytical expressions for the dressed states
and energies of the � system introduced in Sec. III. We also
discuss in more detail how to achieve condition (A8) in order
rewrite the master equation in the free-states basis.

We assume for simplicity that frequency of the cavity is set
to the biexciton resonance, that is ωc = ωXX; the effect of a
detuning could be equally included and would only complicate
the notation. As stated in Sec. III, the biexciton binding energy
inhibits the mixing of the ground state in a dressed state. In this
case, the optically coupled bright excitons and the biexciton can
be seen as an effective three-level � system. The associated
dressed states can be obtained by diagonalizing the matrix:

Ĥ� =
⎛
⎝
E0

X↓,n+−1,n− 0 −ih̄gc
√

n−
0 E0

X↑,n+,n−−1 ih̄gc
√

n+
ih̄gc

√
n− −ih̄gc

√
n+ E0

XX,n+−1,n−−1

⎞
⎠. (A1)

The three dressed states of the � system and the associated
energies can be calculated analytically (see, e.g., [38]). For
further use, we give explicit expressions for the energies:

E0,n+,n− = E0
X↓,n+−1,n− = E0

X↑,n+,n−−1, (A2)

E±,n+,n− = EX↓ + h̄ω(n+ + n− − 1) ± �, (A3)

where we introduced the Rabi splitting � = h̄gc

√
n+ + n−.

The dressed states within the neutral subspace (i.e., q = 0) are

as follows:

|ϕG,n+,n−〉 = |G,n+,n−〉,
|ϕ0,n+,n−〉 = α|X↓,n+ − 1,n−〉 + β|X↑,n+,n− − 1〉,

|ϕ+,n+,n−〉 = 1√
2
{|XX,n+ − 1,n− − 1〉 − iβ|X↓,n+ − 1,n−〉

+ iα|X↑,n+,n− − 1〉},

|ϕ−,n+,n−〉 = 1√
2
{|XX,n+ − 1,n− − 1〉

+ iβ|X↓,n+ − 1,n−〉 − iα|X↑,n+,n− − 1〉},

where we introduced the coefficients α = √
n−/(n+ + n−) and

β = √
n+/(n+ + n−). For the simplicity of writing we tacitly

dropped out the dependence of these parameters on the photon
numbers n+ and n−.

On the other hand, the subspace withq = −1 contains linear
combinations of negative trionsX−

⇑ ,X−
⇓ and one-electron states

e↑,e↓. Two of these dressed states are

|ϕ↑
+,n+,n−〉 = cos θ |e↑,n+,n−〉 + i sin θ |X−

⇑ ,n+ − 1,n−〉,
|ϕ↑

−,n+,n−〉 = − sin θ |e↑,n+,n−〉 + i cos θ |X−
⇑ ,n+ − 1,n−〉,

(A4)

where θ = arctan
√

(�′ − δ′)/(�′ + δ′) and the detuning δ′ =
E0

X−
⇑ ,n+−1,n−

− E0
e↑,n+,n− . Also, �′ =

√
4h̄2g2

c n+ + (δ′)2. For

further use, let us also write the energy of these dressed
states:

E↑
±,n+,n− = EX−

⇑ + h̄ωXX(n+ + n− − 1) ± �′

2
− δ′

2
. (A5)

By noticing that EX−
⇑ − Ee↑ = h̄ωXX + Eb + Vee − Veh one

finds that the detuning with respect to the biexciton resonance
δ′ = Veh − Vhh depends on the Coulomb interaction.

To see how condition (13) explicitly works, let us select
from Eq. (11) the term proportional to fc(Ep − Ep′ )T c,↑

pp′ . If p′

spans the neutral subspace q(p′) = 0, it follows from the def-
inition of T

c,↑
pp′ that the tunneling-in processes contributing to

the master equation are formally given by c
†
↑|X↓〉 = |X−

⇑ 〉 and

c
†
↑|G〉 = |e↑〉. Moreover, ϕp runs over the states |ϕ↑

±,n+,n−〉 [see
Eq. (A4)] which belong to the subspace q = −1. When writing
the dressed states in terms of bare states, the contributions of
the transition X↓ → X−

⇑ to Eq. (11) can be written as follows:

MX−
⇑ X↓ :=

∑
ν ′,λ′

∑
{ph} #

|ν ′,n′
+,n′

−〉〈λ′,m′
+,m′

−|
∑
p,p′

fc(Ep − Ep′ )A(p)
ν ′,n′+,n′−

A
(p)
X−

⇑ ,n+,n−A
(p′)
X↓,n+,n−A

(p′)
λ′,m′+,m′− ,

where {ph #} is a shorthand notation for the various photon numbers and p and p′ run over the subspaces mentioned above. Now,
we notice that from (A2) and (A5) one obtains

E↑
±,n+,n− − E0,n+,n− = WX−

⇑ X↓ ± �′

2
− δ′

2
, (A6)

E↑
±,n+,n− − E±,n+,n− = WX−

⇑ X↓ ∓ � ± �′

2
− δ′

2
. (A7)
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We notice that the interaction with the cavity mode induces
dressed-states-dependent shifts of the transition energy WX−

⇑ X↓
between the exciton and trion states. In particular, � and
�′ contain the Rabi splittings associated to different photon
numbers. These shifts are much smaller than WX−

⇑ X↓ which
roughly equals the energy of the single-particle state involved
in the tunneling processes. By using the realistic parameters
introduced in Sec. III (i.e., the Coulomb parameters, the many-
body energies and the coupling strength gc) we have checked
that it suffices to set the chemical potential μc just few meV
away from WX−

⇑ X↓ such that

fc(E↑
±,n+,n− − E0,n+,n− ) = fc(E↑

±,n+,n− − E±,n+,n− )

= fc(WX−
⇑ X↓), (A8)

which is nothing but a particular case of the condition given
in Eq. (13). Then, fc(WX−

⇑ X↓) can be factored out, and by

using the unitarity of the transformations ν ↔ ϕp on the sub-
spaces {ϕ↑

±,n+,n−} and {ϕ±,n+,n− ,ϕ0,n+,n−} we find that MX−
⇑ X↓

simplifies to

MX−
⇑ X↓ = fc(WX−

⇑ X↓ )|X−
⇑〉〈X↓|. (A9)

In the same way one can show that the terms arising from
the pair {|e↑〉,|G〉} reduce to Me↑G = fc(We↑G)|e↑〉〈G|. By
collecting similar conditions for all pairs of subspaces coupled
by the tunneling Hamiltonian, one recovers Eq. (14).

The validity of the off-resonant master equation does not
depend on the exactly solvable � system we used here, as
it is clear that there always exists a unitary transformation
switching between the dressed and free states. If analytical
expressions of the dressed-states energies are not available,
the conditions required for the off-resonant master equation
can only be checked numerically after calculating Ep.
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