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Splitting efficiency and interference effects in a Cooper pair splitter based on a triple
quantum dot with ferromagnetic contacts
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We theoretically study the spin-resolved subgap transport properties of a Cooper pair splitter based on a
triple quantum dot attached to superconducting and ferromagnetic leads. Using the Keldysh Green’s function
formalism, we analyze the dependence of the Andreev conductance, Cooper pair splitting efficiency, and tunnel
magnetoresistance on the gate and bias voltages applied to the system. We show that the system’s transport
properties are strongly affected by spin dependence of tunneling processes and quantum interference between
different local and nonlocal Andreev reflections. We also study the effects of finite hopping between the side
quantum dots on the Andreev current. This allows for identifying the optimal conditions for enhancing the Cooper
pair splitting efficiency of the device. We find that the splitting efficiency exhibits a nonmonotonic dependence on
the degree of spin polarization of the leads and the magnitude and type of hopping between the dots. An almost
perfect splitting efficiency is predicted in the nonlinear response regime when the energies of the side quantum
dots are tuned to the energies of the corresponding Andreev bound states. In addition, we analyzed features of
the tunnel magnetoresistance (TMR) for a wide range of the gate and bias voltages, as well as for different model
parameters, finding the corresponding sign changes of the TMR in certain transport regimes. The mechanisms
leading to these effects are thoroughly discussed.
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I. INTRODUCTION

Hybrid nanostructures, involving normal and supercon-
ducting parts, have recently become a subject of extensive
studies in the context of generation and manipulation of
pairs of quantum-entangled objects [1–3]. In particular, efforts
stimulated by development of solid-state quantum information
devices have given rise to various realizations of Cooper
pair splitters (CPS) [4–11]. Most of CPS setups consist of a
superconductor, which serves as a source of pairs of entangled
electrons, coupled to two normal metal drain contacts by means
of tunable quantum dots. The advantage of this configuration
is that the process of Cooper pair splitting can be controlled by
appropriate gate voltages attached to the dots. For sufficiently
low temperatures and voltages smaller than the superconduct-
ing energy gap, transport through the system occurs mainly
through Andreev reflection processes [12–15]. Cooper pair
electrons can be transferred either through one arm of the
device in a direct Andreev reflection (DAR) process or through
two arms of the splitter in a crossed Andreev reflection (CAR)
process. The latter processes are in fact the ones that make the
device work as a Cooper pair beam splitter [4]. Therefore, it is
important to optimize the device parameters in such a manner
that CAR processes are maximized [7,8].

The rate of DAR and CAR processes strongly depends
on both the on-dot and interdot Coulomb correlations [4].
In particular, in the case of considered quantum-dot-based
splitters, it is important to have the on-dot correlations much
larger than the intradot ones. Then, CAR processes dominate
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Andreev transport and the device is characterized by a large
Cooper pair splitting efficiency η. The splitting efficiency
also greatly depends on the transport regime and the position
of the levels of the quantum dots. More specifically, the
Andreev reflection processes become generally reduced when
the system is detuned from the particle-hole symmetry point.
In addition, it is also possible to affect the magnitude of
Andreev conductance by changing the ratio of the couplings
to normal leads and to the superconductor [16–20]. All this
clearly demonstrates that there are many tunable parameters,
which allow for optimizing the operation of a CPS device.

The transport properties of quantum-dot-based CPS are
already relatively well understood [13,21–35]. Such systems
can be modeled by a double quantum dot Anderson-type
Hamiltonian, with the two dots coupled to a common super-
conducting lead and each dot attached to a normal electrode.
However, recent experiments of Fülöp at al. [11] have shown
that such modeling may be insufficient to describe certain
subtle effects resulting from the quantum interference between
different Andreev reflection tunneling events. To properly
account for such effects, it has been suggested [11] that one
needs to resort to a three-site model, in which there are
two quantum dots in the arms of the splitter, while a large,
middle quantum dot is formed in a direct proximity of the
superconductor.

The transport properties of quantum-dot-based splitters
modeled by appropriate triple quantum dot Hamiltonian have
been in fact recently considered in the case of three dots
coupled to one superconducting and two normal, nonmagnetic
electrodes [17]. In this paper, we extend these studies and
analyze the quantum interference effects and the splitting
efficiency of CPS based on triple quantum dots attached to

2469-9950/2018/97(19)/195441(17) 195441-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.195441&domain=pdf&date_stamp=2018-05-25
https://doi.org/10.1103/PhysRevB.97.195441


BOCIAN, RUDZIŃSKI, AND WEYMANN PHYSICAL REVIEW B 97, 195441 (2018)

ferromagnetic contacts, the problem which still remains rather
unexplored. Aside from the possibility to tune the ratio of DAR
and CAR processes by spin polarization of the leads [30,32],
ferromagnetic electrodes were shown to be crucial in detection
of entanglement between split Cooper pair electrons [36,37].
Our studies are performed by using the Keldysh Green’s
function approach, which allows for analyzing the impact
of interference effects on Andreev conductance and splitting
efficiency in both the linear and nonlinear response regimes.
In addition, we examine the impact of direct hopping between
the dots forming the arms of the splitter on the spin-resolved
transport properties of the system. Furthermore, the effects of
the Rashba spin-orbit interaction [18,19,38–42] on the splitting
efficiency η of the device are also discussed. We show that η

greatly depends on the arrangement of magnetic moments of
ferromagnetic leads and the positions of the quantum dots’
levels. We also demonstrate a rather detrimental effect of the
spin-orbit coupling on the Cooper pair splitting efficiency.
Finally, we predict that the dependence of η on the degree
of spin polarization of the leads can be strongly modified by
finite amplitude of hopping between the quantum dots located
in the arms of the splitter.

The paper is organized as follows. Section II presents the
theoretical framework of the paper, where the Hamiltonian
(Sec. II A), method (Sec. II B), and quantities of interest (Sec.
II C) are described. Results in the linear response regime
are presented and discussed in Sec. III. First, the Andreev
conductance is analyzed (Sec. III A), then the tunnel mag-
netoresistance (TMR) is studied (Sec. III B), followed by
splitting efficiency (Sec. III C). The nonlinear response regime
is analyzed in Sec. IV, with Secs. IV A, IV B, and IV C
devoted to Andreev conductance, TMR and splitting efficiency,
respectively. The summary and conclusions can be found in
Sec. V.

II. THEORETICAL FORMULATION

A. Model and Hamiltonian

Our investigations are focused on a triple quantum dot
based Cooper pair splitter with ferromagnetic electrodes, as
schematically shown in Fig. 1. Each quantum dot is coupled
to a separate electrode, with the middle dot attached to an
s-wave superconductor and the left (right) dot coupled to
the corresponding left (right) ferromagnetic electrode. The
magnetic moments of the ferromagnets are assumed to form
either parallel or antiparallel magnetic configuration. The two
side dots together with the leads form thus the arms of the
Cooper pair splitter. The entire system can be described by the
following Hamiltonian [11,17]:

H = HF + HS + HQDs + HT. (1)

The first term HF describes the noninteracting electrons in the
left (j = L) and right (j = R) ferromagnetic leads,

HF =
∑

j=L,R

∑
kσ

εjkσ f
†
jkσ fjkσ , (2)

where f
†
jkσ (fjkσ ) stands for the creation (annihilation) opera-

tor of an electron in the j th lead with the wave vector k, spin
σ , and the energy εjkσ . The next term of the total Hamiltonian

S
Δ

ε ,US S

ε ,UR Rε ,UL L
FL
pL

FR
pR

S

RL t /rLR LR

tLS tRS

FIG. 1. The schematic representation of the quantum-dot-based
Cooper pair splitter with ferromagnetic contacts. The system consists
of three quantum dots, where the middle dot (j = S) is attached to
superconducting (S) electrode, while the left (j = L) and right (j =
R) dot is coupled to the corresponding ferromagnetic (F) lead. For
details, see the main text.

HS describes the s-wave superconducting lead modeled by

HS =
∑
pσ

εps†pσ spσ + �
∑

p

(s†−p↑s
†
p↓ + H.c.), (3)

with s
†
pσ (spσ ) creating (annihilating) an electron with the

wave vector p, spin σ and energy εp. The second part of HS

characterizes the superconducting energy gap �. The three
quantum dots are described by

HQDs =
∑

j=L,R,S

(εjnj + Ujnj↑nj↓)

+
∑

σ

⎛
⎝tLRd

†
Lσ dRσ +

∑
j=L,R

tjSd
†
jσ dSσ + H.c.

⎞
⎠

−
∑

σ

(RLRd
†
Lσ̄ (iσ x)σ σ̄ dRσ + H.c.), (4)

where nj = nj↑ + nj↓, with njσ = d
†
jσ djσ and d

†
jσ (djσ ) being

the creation (annihilation) operator of an electron with spin σ

and energy εj in the j th dot. The onsite Coulomb correlations
on the j th dot are described by Uj . The second line accounts
for the hopping between the dots, with tij indicating the
corresponding hopping amplitude. The last term describes the
Rashba spin-orbit type of coupling, which can be understood
as a spin-flip hopping between the left and right dots with
amplitude RLR . The symbol σ x is the Pauli spin matrix along
the x axis. Here, the quantization axis is assumed to coincide
with the magnetic moments of the ferromagnetic electrodes,
which are assumed to be collinear to each other. It is worth
noting that we assume that the hopping amplitudes are real and
symmetric, tij = tj i and RLR = RRL. For the further study we
introduce the complex spin-flip amplitudes, which satisfy the
condition rLR = −iRLR , such that rRL = −rLR .

Finally, the last term of the total Hamiltonian HT describes
tunneling processes between the corresponding leads and
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quantum dots

HT =
∑

j=L,R

∑
kσ

T
j

kσ f
†
jkσ djσ +

∑
pσ

T S
p s†pσ dSσ + H.c.

(5)

Here, T
j

kσ (T S
p ) denotes the tunneling amplitude between the

j th quantum dot and the corresponding ferromagnetic (super-
conducting) lead. The amplitudes result in the broadening of
the energy levels of the dots, which is described by �jσ =
2πρjσ |T j

kσ |2 for ferromagnetic leads and �S = 2πρS |T S
p |2 for

superconducting lead, where ρjσ and ρS are the densities of
states of the corresponding leads taken at the Fermi energy.
For ferromagnetic leads, one can express the couplings in
terms of spin polarization of given lead pj as, �jσ = �j (1 +
σ̂pj ), where σ̂ = ±1 for σ =↑ , ↓. The spin polarization is
defined as pj = (ρj↑ − ρj↓)/(ρj↑ + ρj↓), where the spin up
in the parallel configuration is considered as belonging to
the majority-spin subband of a given lead. In the antiparallel
magnetic configuration of the device, the magnetization of
the right dot is flipped and the spin-up (spin-down) elec-
trons correspond to the minority- (majority-) spin subband.

B. Method

To calculate the transport characteristics, we employ
the nonequilibrium Green’s function technique in the
12 × 12 Nambu representation. Accordingly, by using
the equation of motion method, we derived the expressions
for the Fourier transform of the retarded Green’s function
Gr (ω) = 〈〈�|�†〉〉, where the Nambu spinor takes the form
� = (d†

L↑,dL↓,d
†
S↑,dS↓,d

†
R↑,dR↓,d

†
L↓,dL↑,d

†
S↓,dS↑,d

†
R↓,dR↑)†.

For example, the equation of motion for 〈〈dLσ |d†
jσ ′ 〉〉 (where

j = L,R,S and σ ′ = ↑,↓) reads as

(ω − εL)〈〈dLσ |d†
jσ ′ 〉〉

= δLj δσσ ′ + UL〈〈dLσ d
†
Lσ̄ dLσ̄ |d†

jσ ′ 〉〉
+

∑
j ′=R,S

tLj ′ 〈〈dj ′σ |d†
jσ ′ 〉〉 + rLR〈〈dRσ̄ |d†

jσ ′ 〉〉

+
∑

k

T L∗
kσ 〈〈fLkσ |d†

jσ ′ 〉〉. (6)

Equation (6) involves new correlation functions, including the
Green’s functions of higher order, for which one needs to write
a new set of equations of motion, accordingly:

(ω − εL − UL)〈〈dLσ d
†
Lσ̄ dLσ̄ |d†

jσ ′ 〉〉
= δLj δσσ ′ 〈d†

Lσ̄ dLσ̄ 〉 − δLj δσ̄σ ′ 〈d†
Lσ̄ dLσ 〉 +

∑
j ′=R,S

[tLj ′ 〈〈d†
Lσ̄ dLσ̄ dj ′σ |d†

jσ ′ 〉〉 + tLj ′ 〈〈dLσ d
†
Lσ̄ dj ′σ̄ |d†

jσ ′ 〉〉 + tLj ′ 〈〈dLσ dLσ̄ d
†
j ′σ̄ |d†

jσ ′ 〉〉]

+ rLR〈〈d†
Lσ̄ dLσ̄ dRσ̄ |d†

jσ ′ 〉〉 + rLR〈〈dLσ d
†
Lσ̄ dRσ |d†

jσ ′ 〉〉 − rLR〈〈dLσ dLσ̄ d
†
Rσ |d†

jσ ′ 〉〉 + T L∗
kσ 〈〈fLkσ d

†
Lσ̄ dLσ̄ |d†

jσ ′ 〉〉
+ T L

kσ̄ 〈〈f †
Lkσ̄ dLσ dLσ̄ |d†

jσ ′ 〉〉 + T L∗
kσ̄ 〈〈fLkσ̄ dLσ d

†
Lσ̄ |d†

jσ ′ 〉〉, (7)

and

(ω − εLkσ )〈〈fLkσ |d†
jσ ′ 〉〉 = T L

kσ 〈〈dLσ |d†
jσ ′ 〉〉, (8)

where 〈. . .〉 denotes the expectation value.
By writing the next equations of motion for the new

Green’s functions appearing in Eq. (7), one again generates
new Green’s functions of even higher order. Therefore, to close
the set of equations, at this stage we make use of the so-called
Hubbard-I approximation [11,43,44], which simplifies the
higher-order Green’s functions. More specifically, we apply
the following general form of the Green’s function decou-
pling scheme 〈〈ABC|D〉〉 = 〈AB〉〈〈C|D〉〉 + 〈BC〉〈〈A|D〉〉 −
〈AC〉〈〈B|D〉〉, with A, B, C , and D denoting the correspond-
ing fermion operators in the model Hamiltonian considered
here. The latter gives rise to the following approximations for
the formula (7). First, we assume that the couplings between
the side dots and the external ferromagnetic leads are relatively
weak, which implies vanishing of the following expectation
values: 〈f (†)

Lkσ d
(†)
Lσ (σ̄ )〉 ≈ 0. Second, we assume that the on-dot

and interdot spin relaxation processes are negligible, such that
〈d†

Lσ dL(R)σ̄ 〉 ≈ 0. Third, since in out setup only the middle
dot is proximitized by the superconductor, we consider the
expectation values 〈dLσ djσ (σ̄ )〉, with j = R,S, to be negligibly
small. Using similar approximations, we set up the equations

of motion for the other correlators, which allows us to close the
set of equations and to obtain the full Green’s function Gr (ω).

The entire retarded Green’s function can be written in the
form of the Dyson’s matrix equation

Gr (ω) = {[gr (ω)]−1 − �r (ω)}−1, (9)

where gr (ω) is the Green’s function of the unperturbed system
and �r (ω) denotes the self-energy matrix. In order to study
the system’s transport properties, one also needs to determine
the lesser correlation function G<(ω), which can be found by
using the Keldysh equation [45,46]

G<(ω) = Gr (ω)�<(ω)Ga(ω), (10)

where Ga(ω) = [Gr (ω)]† is the advanced Green’s function and
�<(ω) stands for the lesser self-energy. This self-energy can
be approximated by the following equation:

�<(ω) = i
∑

j=L,R,S

f j (ω)�j (ω), (11)

where f j (ω) is the appropriate matrix of the Fermi-Dirac
distribution functions, while �j (ω) stands for the coupling
matrix between the j th quantum dot and the corresponding
lead.

We note that the approximations made to decouple the
Green’s functions and close the set of equations for the
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determination of Gr (ω) allow for resolving the effects of
quantum interference on Andreev transport, such as the ones
observed in Ref. [11], which are the main focus of this paper.
They are, however, insufficient to capture the strong electron
correlations leading to the Kondo effect [47], and especially the
competition between Kondo and superconducting correlations
[48–50].

C. Quantities of interest

To calculate the current flowing from the j th lead, one can
use the Meir-Wingreen formula [51]

Ij = ie

h

∫
dω

∑
σ

Tr[�j{ f j (ω)[Gr (ω)−Ga(ω)] + G<(ω)}].

In the above equation, the trace indicates the summation over
the electron component of the Nambu space.

Since in this paper we are mainly interested in the Andreev
reflection processes and the splitting properties of the device,
we assume that the superconducting energy gap is the largest
energy scale in the problem. In practice, we take the limit of
infinite superconducting energy gap � → ∞, which allows
us to focus exclusively on the Andreev reflection processes
[49,52]. Moreover, we assume the same bias voltage applied
to the ferromagnetic leads VL = VR = V , while we leave the
superconducting lead floating VS = 0. In such a situation, the
Andreev current flowing through the ferromagnetic junction
(j = L,R) can be explicitly found from [53–55]

Ij = e

h

∫
dω[f (ω − eV ) − f (ω + eV )]Tj (ω), (12)

where f (ω) = 1/[exp (ω/T ) + 1], with the Boltzmann’s con-
stant kB ≡ 1, and Tj (ω) denotes the Andreev transmission
coefficient

Tj (ω) =
∑

σ

[
T DAR

jσ (ω) + T CAR
jσ (ω)

]
. (13)

Here, T DAR
jσ (ω) [T CAR

jσ (ω)] is the transmission coefficient due
to direct (crossed) Andreev reflection processes. These coeffi-
cients can be found from

T DAR
jσ (ω) = �jσ (�jσ̄ |〈〈djσ |djσ̄ 〉〉|2 + �jσ |〈〈djσ |djσ 〉〉|2),

(14)

T CAR
jσ (ω) = �jσ (�j ′σ̄ |〈〈djσ |dj ′σ̄ 〉〉|2 + �j ′σ |〈〈djσ |dj ′σ 〉〉|2),

(15)

where if j = L(R) then j ′ = R(L). Note that the second parts
of the above equations, proportional to �2

jσ and �jσ�j ′σ ,
respectively, are nonzero only if the spin-orbit interaction is
present.

The corresponding differential conductance is defined as
Gj = dIj/dV , which in the special case of the linear response
regime may be written as

Gj = 2e2

h

∫
dω

(
−∂f (ω)

∂ω

)
Tj (ω). (16)

The total current flowing between the ferromagnetic and su-
perconducting leads can be found from I = IL + IR , and con-
sequently the total conductance is G = GL + GR . Note also

that with the formulas for Andreev transmission coefficient,
we can inspect the separate contributions due to both DAR
and CAR processes. We can thus study the direct (crossed)
Andreev current flowing through a given junction for a given
spin IDAR

jσ (ICAR
jσ ), together with the total currents IDAR =∑

j=L,R

∑
σ IDAR

jσ and ICAR = ∑
j=L,R

∑
σ ICAR

jσ , due to di-
rect and crossed Andreev reflections, respectively. In a similar
fashion, one can analyze the corresponding contributions
to the conductance GDAR

jσ and GCAR
jσ , together with the to-

tal conductance due to DAR and CAR processes GDAR =∑
j=L,R

∑
σ GDAR

jσ and GCAR = ∑
j=L,R

∑
σ GCAR

jσ , respec-
tively.

The ratio between the total currents flowing due to DAR
and CAR processes can be used to estimate the efficiency of
the Cooper pair splitter, which can be defined as

η = ICAR

IDAR + ICAR
× 100%. (17)

If the current flows exclusively due to CAR processes, i.e.,
each Cooper pair leaving superconductor is split into two
separate arms, the splitting efficiency is maximum, η = 100%.
On the other hand, if only DAR processes drive the current,
the splitting efficiency vanishes, η = 0.

In our considerations, we assume that the system
is symmetric, pL = pR ≡ p,UL = UR ≡ U, tjS ≡ tS, tLR ≡
t, rLR ≡ r . We also assume that the middle dot is much
larger than the side dots, US � �S , which implies that the
middle dot can be treated as noninteracting. A similar model
and parameter set was in fact used to corroborate recent
experimental results on transport through quantum-dot-based
Cooper pair splitters with nonmagnetic electrodes [11].

The goal of this paper is to analyze the role of spin-
dependent tunneling on the subgap transport behavior of
Cooper pair splitters with ferromagnetic leads. For that we
consider two magnetic configurations of the device: the parallel
(P) configuration, in which magnetic moments of ferromag-
nets point in the same direction, and the antiparallel (AP)
configuration, in which the magnetization of the right lead
is flipped and the corresponding moments are opposite. The
system’s magnetic configuration can be changed by applying
a weak magnetic field (much weaker than the critical field of the
superconductor), provided the two ferromagnets have different
coercive fields. To estimate the change of transport properties
when the magnetic configuration is varied, we define the tunnel
magnetoresistance [32,56,57]

TMR = IAP − IP

IP
× 100%, (18)

where IP (IAP) denotes the current flowing in the paral-
lel (antiparallel) magnetic configuration. Note that because
transferring a Cooper pair involves two electrons of opposite
spins, the Andreev current is usually larger in the antiparallel
configuration compared to the parallel configuration, in which
the minority-spin channel is responsible for the reduction of
tunneling, such that one typically finds IAP > IP [32,56,57].
Moreover, we would also like to notice that the rate of DAR
processes does not depend on magnetic configuration (since
the two electrons of opposite spin tunnel to the same lead),
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while the rate of CAR processes does change when the
configuration is varied. Consequently, the TMR can provide
additional information about the amount of CAR processes
compared to DAR ones. Large values of the TMR can be
considered as a signature of an important role of CAR pro-
cesses [32,56,57]. One, however, needs to keep in mind that
the TMR does not provide an exact quantitative description
of CAR and DAR processes and only together with other
transport quantities sheds more light on the corresponding
Andreev reflection processes. In particular, a negative sign
of TMR is mainly an indication of how the rate of CAR
processes changes when the device’s magnetic configuration is
varied.

For the considered system, we assume the Coulomb repul-
sion to be equal to U = 10�, whereas for the dot coupled
to superconductor the Coulomb repulsions are neglected,
US = 0. The couplings between the ferromagnetic leads and
the corresponding dots are symmetric �L = �R = �, while
for the coupling between the middle dot and superconduc-
tor we assume �S = 2�. Our results are calculated for the
spin polarization of ferromagnets equal to p = 0.5, if not
stated otherwise. The hopping between the middle and left
(right) dot is assumed to be equal to tS = �/4, while all
energies are measured in the unit of the coupling strength
� ≡ 1. The calculations are performed for the temperature
T = 0.001�.

We note that in the studied model only the middle dot is
directly proximitized by the superconductor (see Fig. 1). Thus,
one may expect that the Andreev reflection processes will
strongly depend on the position of the middle dot energy level
εS . This is indeed the case: the Andreev conductance becomes
maximized when εS = 0 and gets decreased with increasing the
detuning of the middle dot level from the Fermi energy [17].
However, it turns out that while the total conductance strongly
depends on εS , the ratio of the contributions due to DAR and
CAR processes does not (not shown). This is almost strictly
obeyed in the linear response regime, while in the nonlinear
response regime it holds for relatively low voltages. The same
happens for the dependence of the total Andreev current on
magnetic configuration of the device, while the currents in
both parallel and antiparallel configurations strongly depend
on the position of εS , their ratio only very weakly does
so. Consequently, the TMR and the Cooper pair splitting
efficiency, the quantities that are of main interest in this paper,
do not exhibit considerable dependence on εS . Therefore, we
assume that the middle dot level is fixed during our analysis and
equal to εS = −�/2. In fact, this choice is also motivated by the
work of Füpöl et al. [11]. In this paper, the three-site model was
introduced to describe the transport properties of quantum-dot-
based Cooper pair splitters and it was shown that the best agree-
ment between theoretical modeling and experimental data was
obtained for slightly detuned level position of the middle
dot.

In the following, we analyze the Andreev reflection trans-
port properties of triple quantum-dot-based Cooper pair split-
ters for various parameters of the model. In particular, we
thoroughly discuss the behavior of the Andreev conductance,
splitting efficiency and the tunnel magnetoresistance, both in
the linear and nonlinear response regimes. Let us start the
discussion with the case of the linear response regime.

FIG. 2. The total linear conductance due to Andreev reflection
processes calculated as a function of the position of the left (εL) and
right (εR) quantum dot levels. The left (right) column corresponds to
the case of the parallel (antiparallel) magnetic configuration. The first
row shows the results for t = r = 0, the second one for t = tS, r =
0, whereas the third one is calculated for t = 0, r = tS . The other
parameters are U = 10�, εS = −�/2, �S = 2�, tS = �/4, with �

used as energy unit, and p = 0.5. The dashed lines in (b) and (e)
mark approximately the energy of the bonding state. Arrows indicate
the cross sections discussed in Fig. 3. All calculations performed
assuming the infinite superconducting gap limit.

III. LINEAR RESPONSE REGIME

A. Andreev linear conductance

The linear conductance calculated as a function of the
position of the left and right quantum dots’ energy levels
is shown in Fig. 2. The left column displays the results for
the parallel magnetic configuration, while the right column
presents the data for the antiparallel configuration. The first
row is calculated for the case when there is no direct coupling
between the left and right dots, while the second and third rows
correspond to the situation when the hopping is finite and it is
either normal or Rashba type of hopping, respectively.

First of all, one can generally observe that the conduc-
tance in the antiparallel configuration is larger than that in
the parallel configuration. This is associated with the fact
that in the latter configuration, the minority-spin channel
results in the suppression of CAR processes, as compared to
the antiparallel configuration where a fast majority nonlocal
channel dominates transport. Although there are quantitative
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FIG. 3. The contributions GDAR and GCAR to the total linear
Andreev conductance due to DAR and CAR processes, respectively,
plotted as a function of the left and right dots’ energy levels εL =
εR ≡ ε. The first row is calculated for t = r = 0, the second one
for t = tS, r = 0, whereas the third row corresponds to the case of
t = 0, r = tS . The left (right) column presents the conductance in the
case of parallel (antiparallel) magnetic configuration of the device.
The other parameters are the same as in Fig. 2. Notice different scales
of the vertical axes in (a) and (d).

differences in the behavior of the total conductance in the
two magnetic configurations, its qualitative behavior rather
weakly depends on alignment of magnetic moments of the
leads (see Fig. 2). Therefore, let us for the moment focus on
the general dependence of the total linear conductance, while
the difference in magnetic configurations will be revealed
when discussing the behavior of specific components to the
total conductance due to DAR and CAR processes, which are
depicted in Fig. 3.

As can be seen in Fig. 2, the Andreev conductance reaches
the highest values when the energy levels of the left and right
dots are around the Fermi energy εL ≈ εR ≈ 0. Then, both
DAR and CAR processes are maximized. In the absence of
direct hopping between the left and right dots, the conductance
exhibits a crosslike structure as a function of the positions
of the corresponding dots’ levels [see Figs. 2(a) and 2(d)].
For εL ≈ εR ≈ 0, DAR processes through the two arms of
the splitter and nonlocal CAR processes are allowed, which
results in an enhancement of the Andreev conductance. When
detuning the system from this special point, the rate of Andreev
reflection processes becomes suppressed, such that both GP

and GAP suddenly drop. This happens in the whole εL − εR

plane considered in Fig. 2, i.e., the larger the detuning the
smaller the conductance, except for the lines given by εL ≈ 0
and εR ≈ 0. Along those lines, an enhanced conductance

comes mostly from DAR contributions through the dot, the
level of which is aligned with the Fermi energy.

The behavior of the conductance changes when there is a
direct coupling between the left and right dots. In the case
of normal hopping, the bonding and antibonding states form
between the two dots, which greatly affects the conductance,
as can be seen in Figs. 2(b) and 2(e). For a two-level system,
the energy of the bonding state crosses the Fermi energy when
εLεR = t2. Although for our proximitized triple quantum dot
system this is a crude approximation, one can see that the
behavior of the conductance can be already quite reasonably
explained by invoking the above energy dependence of the
bonding state, which is marked in Figs. 2(b) and 2(e) with
a dashed line. Clearly, there is a strong asymmetry in GP/AP

with respect to εL + εR = 0: the largest conductance can be
seen along the line given approximately by the energy of the
bonding state εLεR = t2 for εL,εR < 0. We note that the impact
of the formation of bonding and antibonding states on the rate
of Andreev reflection processes is larger for CAR than for DAR
processes since direct Andreev reflection occurs through only
one arm of the device. This can be seen in Figs. 2(b) and 2(e),
where the crosslike structure of the conductance, and especially
the long tails for εL ≈ 0 and εR ≈ 0, which are mainly due to
DAR processes, are still clearly visible.

When the coupling between the left and right dots is of
Rashba type [see Figs. 2(c) and 2(f)], the maximum value of the
total Andreev conductance decreases and it is approximately
two times smaller compared to the other cases discussed.
However, the general qualitative behavior of the linear Andreev
conductance is quite similar to the case in the absence of
direct hopping between the left and right dots. Smaller values
of the total conductance are caused by the suppression of
CAR processes by the Rashba spin-orbit interaction, as can
be explicitly seen in Figs. 3(c) and 3(f).

We also note that a small asymmetry of the conductance
plots with respect to εL + εR = 0 visible in Fig. 2(a) is mainly
caused by the displacement of the middle dot energy level εS

from the Fermi energy. This asymmetry is further enhanced in
the case of finite t [Figs. 2(b) and 2(e)] due to the formation of
bonding and antibonding states.

As already mentioned, the difference between the two
magnetic configurations becomes revealed when studying the
behavior of separate contributions to the total conductance
G = GDAR + GCAR. These contributions are shown in Fig. 3,
where they are plotted as a function of the position of the left
and right dots’ levels εL = εR ≡ ε. The curves correspond to
the cross section of the conductance presented in Fig. 2, which
is marked with an arrow. Consider first the parallel magnetic
configuration. In the absence of hopping between the left and
right quantum dots, all contributions are equal [see Fig. 3(a)],
which results in the splitting efficiency η = 50%. In fact, in
this case one finds GDAR

jσ = GCAR
jσ = G/8. This behavior can

be understood by realizing that the generation of Cooper pairs
is mainly governed by the minority bands of the ferromagnetic
leads. If there is a depletion of minority electron states, the
available majority electrons cannot form new Cooper pairs,
which results in suppression of the Andreev transport. Because
in the case of parallel configuration the majority and minority
bands of both leads are equal, contributions from the local and
nonlocal Cooper pair tunneling processes are also the same.
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If there is a finite hopping between the dots [Fig. 3(b)], the
conductance behavior does not change qualitatively too much.
All contributions to the total conductance are again equal due to
the symmetry of the leads and their bands. The only difference
is associated with the shift of the maximum in G toward lower
energies of about the value of the interdot hopping t , which
is due to the formation of bonding and antibonding states. On
the other hand, in the case of finite Rashba spin-orbit coupling
between the left and right dots [Fig. 3(c)], the CAR and DAR
processes do not contribute equally any more. In this situation,
we find the following relations for the conductance components
G

DAR/CAR
Lσ = G

DAR/CAR
Rσ . However, as can be seen in Fig. 3(c),

there is a large difference between conductances due to DAR
and CAR processes. It turns out that while DAR processes
are weakly dependent on the Rashba spin-orbit coupling [cf.
Figs. 3(a) and 3(c), CAR processes become suppressed by the
Rashba interaction, such that GDAR > GCAR. The suppression
of CAR processes is especially effective for ε ≈ 0. It is seen
that detuning of the dots’ discrete levels from the Fermi energy
of the leads gives rise to a double-peak structure of the CAR
resonance with a local maxima at ε ≈ ±r , separated by a local
minimum at ε = 0 [see Fig. 3(c)]. Note also that for larger
values of ε, i.e., |ε| > r , the DAR and CAR conductances
become comparable.

The right column of Fig. 3 corresponds to the antiparallel
magnetic configuration of the device. In this case, the conduc-
tance contributions fulfill the following relation G

DAR/CAR
Lσ =

G
DAR/CAR
Rσ̄ , which is simply related to the fact that the spin

subbands of the right lead are now flipped. In addition, in the
absence of Rashba spin-orbit coupling, DAR contributions,
which hardly depend on magnetic configuration of the device,
are all equal, i.e., GDAR

jσ = GDAR/4. The conductance in the
case of t = r = 0 plotted as a function of ε is shown in
Fig. 3(d). Clearly, DAR contributions remain independent of
the nonlocal change of polarizations of the leads resulting in
almost unaltered behavior compared to that shown in Fig. 3(a).
Because in the antiparallel configuration the majority bands
of the leads have opposite spin directions, forming of the
Cooper pairs is more efficient. As a result, there is a fast CAR
majority-spin channel, which gives the dominant contribution
to the total conductance. Consequently, the crossed Andreev
conductance around the Fermi level is much enhanced with
respect to the DAR conductance, which gives rise to high
splitting efficiency, as will be discussed later on.

Interestingly, in the presence of direct hopping between
the left and right dots, the ratio of DAR and CAR processes
becomes modified. Now, this ratio strongly depends on the
amplitude of hopping t , contrary to the case of parallel
configuration, where both processes contribute on an equal
footing [cf. Figs. 3(b) and 3(e)]. Increasing the value of hopping
results in the suppression of CAR processes, which leads to a
reduced total conductance. We note that for the selected value
of hopping, the contributions from CAR and DAR processes
are in fact comparable. However, further increase of t causes
the CAR processes to dominate transport again. This implies
that a direct hopping between the dots forming the arms of the
splitter has a relatively strong effect on the splitting efficiency
depending on the value of the hopping, as will be shown in
further sections.

When the coupling between the left and right dots is of
Rashba type, the contribution to the conductance from CAR
processes is much smaller compared to that due to DAR
processes. This situation is similar to the case of parallel
configuration [see Figs. 3(c) and 3(f)]. We note that in addition
to a large difference between DAR and CAR processes, there
is also an imbalance between corresponding spin contributions
flowing through given junctions (not shown). This is quite
counterintuitive as far as DAR processes are concerned since
one could expect that direct Andreev reflection, which occurs
through one arm of the splitter, should not depend on mutual
orientation of magnetic moments of the left and right ferromag-
netic leads. This is exactly the conclusion from the inspection
of the Andreev transport behavior in the absence of hopping
between the dots and in the case of a finite direct hopping
t . In the case of nonzero Rashba spin-orbit coupling r , the
situation is completely different. Spin-orbit interaction allows
for a spin rotation during a hopping process, which in turn has
an impact on the spin dependence of processes through the left
and right arms of the device. In terms of analytical formulas,
finite spin-orbit coupling results in a new term in the Andreev
transmission coefficient, which is proportional to a product
of two couplings corresponding to the same spin orientation
[cf. Eqs. (14) and (15)]. Thus, for DAR processes, the spin
channel proportional to majority-spin subband is favored,
while in the case of CAR processes, the spin-orbit-induced
contribution is always proportional to a product of minority-
and majority-spin-resolved couplings. This also explains the
observed difference between the magnitude of CAR and DAR
processes seen in Fig. 3(f).

As follows from the above discussion, the rate of DAR
and CAR processes strongly depends on the position of the
levels of the dots and the magnetic configuration of the device.
The difference between the local and nonlocal transport events
becomes even more enhanced when the spin polarization of
the leads increases. This is explicitly shown in Fig. 4, which
presents the contributions to the conductance due to DAR
and CAR processes plotted as a function of spin polarization
p for selected values of the dots’ levels position. One can
generally expect an enhancement of CAR processes when
the magnetic configuration changes from the parallel to the
antiparallel one since then the nonlocal processes are mainly
determined by a fast majority-spin channel, while the local
processes are slower because they depend on the minority-spin
subband [32,57]. However, it turns out that this rule can
depend on the position of dots’ levels and interference effects
[16,17,30,34,40,58]. Quantum interference can in fact make
the situation quite counterintuitive and reverse the role of CAR
and DAR processes, as we discuss below.

Let us consider the case of parallel magnetic configuration.
For the first set of levels’ position, εL = εR = 0, one can
see that both DAR and CAR contributions are equal, except
for the case when there is Rashba interaction in action. With
increasing the spin polarization, one observes a nonmonotonic
dependence of GCAR/DAR on p for t = r = 0 [Fig. 4(a)] with
the following clearly visible features. First, with raising p

to p ≈ 0.9, the conductance increases, to become suddenly
suppressed with further increase of p. The vanishing of GP

in the limit of half-metallic leads can be easily understood.
When p → 1, there is only one spin species and one of
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FIG. 4. The Andreev conductance due to DAR and CAR pro-
cesses plotted as a function of the spin polarization of the leads p

in the parallel (left column) and antiparallel (right column) magnetic
configuration. The first row is calculated for t = r = 0, the second
one for t = tS, r = 0, and the third row is for t = 0, r = tS . The
conductance is plotted for selected values of εL and εR , as indicated.
The other parameters are the same as in Fig. 2. Notice different scales
of the vertical axes in the corresponding panels in the left and right
columns.

the electrons forming the Cooper pair cannot tunnel to the
leads since there are no available states. To explain such
a spin polarization-dependent behavior of the conductance,
one should note that the magnitude of Andreev conductance
strongly depends on the ratio of the couplings to the normal
electrodes and to the superconductor [16,30,44]. When the spin
polarization increases, this ratio is varied and so is the total
Andreev conductance. For assumed parameters, increasing p

leads first to an enhancement of the conductance. However, for
large values of the spin polarization, the fact that the minority-
spin subband is the bottleneck for Andreev processes becomes
relevant and eventually the dependence is changed, such that
the conductance suddenly drops to get fully suppressed for
p = 1.

A similar dependence can be also observed in the case
of t = 0 and r = tS shown in Fig. 4(c), where additionally
a large difference between DAR and CAR processes occurs
due to the Rashba spin-orbit coupling. On the other hand,
when the normal hopping between the dots is allowed, one
observes a gradual decrease of G with increasing p. This can
be explained by realizing that now the conductance is generally
low since the maximum has been shifted to εL = εR ≈ −t . In
fact, one can observe a similarity between the two cases of
t = r = 0 for εL = εR = 0 (εL = εR = −t) and t = tS (r = 0)
for εL = εR = −t (εL = εR = 0). In the former (latter) case,
a nonmonotonic (monotonic) dependence of conductance on

spin polarization is found [see Figs. 4(a) and 4(b)]. When the
system is detuned in the (εL,εR) parameter space along the
line εL = 0 to εR = −t , a qualitatively similar behavior to that
discussed above can be seen. However, now due to appropriate
detuning, the role of CAR processes is generally diminished,
and the Andreev conductance is mainly due to DAR processes.

A similar spin polarization-dependent behavior of the con-
ductance to that displayed in Fig. 4(a) can be also observed
in the case of antiparallel magnetic configuration, which is
depicted in the right column of Fig. 4. In this configuration
one can expect CAR processes to dominate transport and this is
exactly the case for t = r = 0 and εL = εR = 0 [see Fig. 4(d)].
Note that in this situation GAP exhibits a local maximum
around p ≈ 0.9 and then, for p → 1, drops to a very low but
finite value. The conductance suppression is associated with
destructive quantum interference between local and nonlocal
Andreev processes [30]. This interference can become greatly
affected by the presence of finite hopping between the two
dots. In particular, in the case of t = tS and r = 0 shown in
Fig. 4(e), the CAR conductance increases with p to a local
maximum for p = 1, where Andreev transport is exclusively
due to crossed Andreev reflection. However, the dominant role
of CAR processes in the antiparallel configuration is not always
observed. As can be seen in Fig. 4, the ratio of DAR and CAR
processes strongly depends on the positions of dots’ levels, the
type of hopping between the dots (or its absence) and the value
of spin polarization. Consequently, this ratio can be tuned by
gate voltages applied to the dots. Nevertheless, we would like
to remind that, irrespective of what the ratio between the local
and nonlocal Andreev processes for intermediate values of p

is, in the limit of p → 1 DAR processes are not allowed and the
conductance is exclusively due to crossed Andreev reflection
events.

B. Tunnel magnetoresistance

To illustrate the quantitative differences between the An-
dreev transport behavior in the two magnetic configurations
of the device in Fig. 5 we show the tunnel magnetoresistance
calculated as a function of the quantum dots’ levels εL and εR .
The TMR was in fact obtained from the conductances shown in
Fig. 2 according to Eq. (18). The color scale is chosen in such a
way that the blue (red) color corresponds to negative (positive)
TMR. As already mentioned, from the magnitude and sign of
the TMR one can indirectly obtain some information about
the mutual role of DAR and CAR processes in transport [32].
Large absolute values of TMR indicate that CAR processes are
relevant, while suppressed TMR allows one to conclude that
DAR processes are more important. Note, however, that in the
presence of Rashba spin-orbit coupling one needs to analyze
the data with an even greater care since then DAR processes
can strongly depend on the system’s magnetic configuration
and it is not possible to draw such simple conclusions from the
behavior of TMR about the role of DAR and CAR processes.

Figure 5(a) presents the TMR calculated in the situation
without interdot hopping, t = r = 0. One can see that the
largest TMR occurs around the Fermi level εL ≈ εR ≈ 0,
which confirms that in the antiparallel configuration CAR
processes dominate transport. Along the lines when εL ≈ 0 or
εR ≈ 0 and out of the Fermi level, the TMR becomes negative,
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FIG. 5. The tunnel magnetoresistance as a function of the level
position of the left (εL) and right (εR) quantum dots calculated for
(a) t = r = 0, (b) t = tS, r = 0, and (c) t = 0, r = tS . The other
parameters are the same as in Fig. 2.

which in turn affirms a strong dependence of CAR processes
on magnetic configuration of the device. Interestingly, one
can note that the asymmetry along the line εL + εR = 0 is
now more visible than in the conductance plots shown in
Figs. 2(a) and 2(b). However, contrary to the conductance,
this asymmetry now hardly depends on the position of the
middle dot level, and it mainly results from finite Coulomb
correlations and the fact that the levels of side quantum dots
are around the Fermi energy, i.e., they are detuned from the
particle-hole symmetry point of each dot.

The largest changes in the Andreev conductance when
the magnetic configuration of the device is varied are found
in the case of finite direct hopping amplitude t . The TMR
calculated for t = tS is presented in Fig. 5(b). It can be seen
that for assumed parameters the TMR takes values ranging
from TMR ≈ −23% up to TMR ≈ 66%. The largest values of
the TMR are again observed around the Fermi energy, while
negative TMR occurs for such energies that εLεR ≈ t2, i.e.,
for the energies corresponding to the bonding (for εL,εR < 0)
and antibonding (for εL,εR > 0) states [cf. Figs. 2(b) and
2(e)]. Note that now the most negative TMR occurs for the
antibonding state where, however, the conductance is smaller
as compared to energies corresponding to the bonding state.

On the other hand, in the case of finite Rashba spin-orbit
coupling, the values of the TMR are suppressed as compared
to the case with finite normal hopping [Fig. 5(c)]. One can see
that now the TMR takes values ranging approximately from

FIG. 6. The Cooper pair splitting efficiency as a function of
the position of the left (εL) and right (εR) quantum dots’ energy
levels calculated in the case of the parallel (a)–(c) and antiparallel
(d)–(f) magnetic configuration of ferromagnetic leads. The first row
corresponds to t = r = 0, second row to t = tS and r = 0, while the
third row is for t = 0 and r = tS . Arrows indicate the cross sections
studied in detail in Fig. 7. The parameters are the same as in Fig. 2.

TMR ≈ −13% to TMR ≈ 20%. The suppression of the TMR
as compared to the case shown in Fig. 5(b) is associated with
fact that the spin-orbit coupling between the left and right dots
introduces a spin relaxation mechanism between the different
spin channels through the two arms of the splitter, and it is a
known fact that finite spin relaxation reduces the TMR [59].
In the considered case, the spin-orbit coupling results thus in
a reduction of the change in transport properties when the
magnetic configuration of the system is varied. We also note
that the main maximum around εL ≈ εR ≈ 0, observed for
t = r = 0, is now shifted towards higher energies by about the
value of the hopping amplitude r = tS = �/4.

C. Cooper pair splitting efficiency

Let us now discuss the behavior of one of the most important
quantities describing the ability of the device to split the Cooper
pairs. The splitting efficiency η calculated as a function of the
position of the left and right dot energy levels is shown in Fig. 6
for the corresponding cases as far as the coupling between the
side dots is concerned. The left (right) column corresponds to
the case of parallel (antiparallel) magnetic configuration.

First of all, one can see that in all the cases depicted in
Fig. 6 there is a pattern of enhanced splitting efficiency, which
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resembles a crosslike structure, however, it is now rotated by
π/4 with respect to the pattern visible in the behavior of
the linear conductance shown in Fig. 2. From this follows
that a considerable splitting efficiency does not necessarily
occur in transport regimes where the conductance is large. The
enhanced efficiency occurs along the following two branches:
εL ≈ εR and εL ≈ −εR (see Fig. 6). The reason for this
behavior can be understood as follows. The CAR processes, in
which the Cooper pair electrons are split into side dots, are most
effective when the energy levels are either aligned εL ≈ εR

or their average energy is equal to zero, which happens for
εL ≈ −εR . We also note that the branch along εL ≈ −εR is
slightly shifted toward the higher energies, which is associated
with the Coulomb correlations. The second general observation
is that the splitting efficiency is lower in the case of parallel
magnetic configuration compared to the antiparallel one. The
enhancement of η in the antiparallel configuration can be
easily explained as a result of an increased rate for crossed
Andreev processes involving the spin-majority bands of both
ferromagnetic electrodes.

Let us now discuss the behavior of η in the considered
specific cases. It can be seen that, contrary to the conductance
and TMR, the behavior of the splitting efficiency hardly
depends on the direct hopping t . In both cases, an enhanced
efficiency occurs approximately along the diagonals in the
εL-εR plane. The only difference is the shift of the crosslike
structure, and thus the crossing point of the two branches, to the
energy of antibonding state εL ≈ εR ≈ t . However, in contrast
to the previous cases, when Rashba spin-orbit interaction is in
action, the region of the high efficiency near the Fermi level
vanishes and the branches do not cross [see Figs. 6(c) and 6(f)].
This clearly demonstrates a detrimental impact of the spin-orbit
coupling between the left and right dots on CAR processes and,
consequently, the splitting performance of the device.

In Fig. 7 we present the dependence of the splitting effi-
ciency along the line given by εL = εR = ε, which is marked
with an arrow in Fig. 6. Because the rates of both CAR and
DAR processes depend on the spin-resolved couplings, it is
interesting to analyze how η depends on the spin polarization
of ferromagnetic leads. In the case of parallel magnetic con-
figuration, in the absence of spin-orbit coupling, the splitting
efficiency along the line εL = εR = ε is equal to 50% (not
shown), irrespective of the value of the spin polarization p.
This is because tuning the spin polarization causes the majority
and minority band couplings to change in the same fashion for
both leads, such that the ratio of DAR and CAR processes
stays the same. Note, however, that when p → 1, i.e., for
half-metallic leads, the Andreev reflection processes will be
completely suppressed since there will be only one spin species
in the ferromagnetic leads. In this case, the splitting efficiency
will be an ill-defined quantity.

On the other hand, for the antiparallel magnetic
configuration and for r = 0, the growth of the spin polarization
causes generally an enhancement of the splitting efficiency
[see Figs. 7(b) and 7(c)], which grows from η = 50% to its
maximum value. As already discussed above, enhancement
of η is a direct consequence of the fact that in the antiparallel
configuration the minority-spin channel is the bottleneck for
DAR processes, while for CAR processes there is always
a fast majority–majority-spin channel. Consequently, in the

FIG. 7. The efficiency η of the Cooper pair splitting as a function
of left and right dot energy levels εL = εR = ε calculated for selected
values of leads’ spin polarization p in the case of (a) parallel and
(b)–(d) antiparallel magnetic configuration. The values of the hopping
between the left and right dots are indicated in the figure, while other
parameters are the same as in Fig. 2.

limit of half-metallic leads, the splitting efficiency reaches its
maximum value since then only crossed Andreev reflection
processes are possible. Interestingly, one can note that the
enhancement of η with increasing the spin polarization p

exhibits a strong dependence on the position of the energy
levels of the left and right dots. Fast increase of η with p can
be seen for ε ≈ 0 in the case of r = t = 0 [see Fig. 7(b)],
however, there are also such values of ε for which the
splitting efficiency grows more slowly. In fact, η displays a
nonmonotonic dependence on ε, with a local minimum close to
ε ≈ 0. Such behavior is associated with interference between
Andreev processes involving two arms of the splitter. By
comparing Figs. 7(b) and 7(c) one can see that the dependence
of η is qualitatively very similar in the case of t = 0 and finite
t , with the local maximum shifted approximately to the energy
of the antibonding state [cf. Fig. 6(e)].

The situation, however, changes completely when there is
a finite Rashba spin-orbit coupling between the side dots. For
this case, the splitting efficiency is shown in Figs. 7(a) and
7(d) for the parallel and antiparallel magnetic configurations,
respectively. First of all, one can note that even for nonmagnetic
leads the splitting efficiency is not equal to 50%, but becomes
suppressed around ε ≈ 0 and slowly grows with detuning the
system from the Fermi energy. This clearly demonstrates that
finite spin-orbit coupling has a detrimental effect on the effi-
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ciency of the Cooper pair splitter. The splitting efficiency can
be enhanced by increasing the spin polarization of the leads,
which can be seen for p � 0.5. In the parallel configuration, η
generally grows with p except for ε ≈ 0 where a local mini-
mum forms in the case of large spin polarization [see Fig. 7(a)].
Interestingly, even in the case of p = 1 the conductance is not
fully suppressed. This is because of the spin-orbit coupling
which allows for flipping the spin of one of the split Cooper pair
electrons, such that the two electrons can tunnel either to the
same or to different leads. This mechanism is also responsible
for lowering of η in the case of antiparallel configuration for
large spin polarizations [see Fig. 7(d)]. Now, contrary to the
cases shown in Figs. 7(b) and 7(c), η does not reach 100% for
p = 1, which indicates that the spin-orbit coupling results in
finite DAR processes even for half-metallic leads.

Finally, we study the Cooper pair splitting efficiency by
continuously changing the hopping between the dots and the
spin polarization of the leads in both magnetic configurations.
The numerical results are displayed in Fig. 8, where the
intersections of the dotted lines correspond to η calculated for
typical values of the parameters used throughout this paper,
namely, t = r = tS (tS = �/4) and p = 0.5.

Let us first analyze the dependence of η on the spin
polarization of the leads p and amplitude of direct hopping
between the left and right dots t, η(p,t), for quantum dots’
levels positions set at εL = εR = 0 and εL = εR = −tS , which
is shown in Figs. 8(a) and 8(c), respectively. It can be clearly
seen that, regardless of the values of the parameters t and p,
the splitting efficiency in the case of parallel configuration
equals η ≈ 50%, which follows from equal contributions of
the CAR and DAR processes to the total conductance [see
also the solid curves in Figs. 4(a) and 4(b)]. This is, however,
not the case in the antiparallel configuration when in the case
of εL = εR = 0 one observes a significant enhancement of η

within two areas in the (p,t) plane [see Fig. 8(a)]. One such
area extends approximately for 0 � t � �/4 and 0 � p � 1.
In the presence of weak interdot coupling t , the splitting
efficiency exhibits a maximum for large spin polarization p,
and then it drops for p → 1. As discussed earlier [cf. the solid
curves in Fig. 4(d)], this is due to the interference between
the local and nonlocal Andreev processes. The second area in
the (p,t) plane where η is enhanced can be seen for relatively
large spin polarizations and finite hopping t . The region with
η > 50% emerges for p → 1 and t ≈ �/8 and it spreads with
increasing t towards smaller values of spin polarizations. Thus,
a triangle-shaped area exhibiting large splitting efficiency is
formed in the upper right corner of the (p,t) plane shown in
Fig. 8(a). The observed behavior of η can be explained by
realizing that with increasing the coupling amplitude t , the
hopping processes amplify the CAR processes, thus reducing
the negative interference. The latter occurs for large spin
polarizations 0.8 � p � 1, when the CAR conductance starts
to dominate over the DAR contribution [see the solid curves
in Fig. 4(e)]. On the other hand, the dependence of η on p and
t shown in Fig. 8(c) reveals that even further extension of the
discussed triangle-shaped region with η > 50% is possible if
other tunings of the dots’ discrete levels are taken into account.
In particular, for εL = εR = −tS , a significant reduction of the
Andreev processes when the interdot coupling is weak occurs,
which is accompanied with η ≈ 50%. Only for large enough

FIG. 8. The efficiency of the Cooper pair splitting η as a function
of the spin polarization of the leads p and the coupling strength
between the dots t or r , calculated in the case of parallel and
antiparallel configurations. (a) Shows η calculated for εL = εR = 0,
(b) is determined for εL = 0 and εR = −tS , while (c) is for εL =
εR = −tS . The left (right) side of each panel corresponds to the
parallel (antiparallel) configuration, while the upper (bottom) part
shows the dependence on normal hopping t (Rashba coupling r) and
p. The crossing of the dotted lines specifies the typical values used
in this paper, i.e., t = r = tS , with tS = �/4, and p = 0.5. The other
parameters are the same as in Fig. 2.

spin polarization p the hopping t can significantly enhance
the magnitude of CAR processes [see also the dotted lines in
Fig. 4(e)], leading thus to a large splitting efficiency η ≈ 100%.

It is also worth to note that the influence of the interdot
hopping on the Cooper pair splitting efficiency in the antipar-
allel magnetic configuration is still crucial when the levels
of the dots are detuned as εL = 0,εR = −tS . This is the case
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shown in Fig. 8(b), where it can be seen that even though an
overall suppression of the splitting efficiency occurs in both
magnetic configurations, there is a certain region in the (p,t)
plane, where η > 50% for the antiparallel configuration case.

The impact of finite Rashba spin-orbit coupling r between
the left and right dots and the spin polarization p on the splitting
efficiency is presented in the bottom parts of the panels shown
in Fig. 8. It is visible that in the case of parallel magnetic config-
uration the splitting efficiency becomes generally suppressed
η < 50% for all the level positions considered in the figure.
Only when the spin polarization becomes relatively large
(0.8 � p � 1) one can identify regions with η > 50% in the
(p,r) plane. More specifically, the largest such region is found
for εL = εR = −tS and it is seen in the left lower corner of the
(p,r) plane in Fig. 8(c). The origin of this enhancement can be
understood if one realizes that the spin-flip processes during
hopping between the dots effectively increase the number of
spin states that can be occupied by the reflected carriers. As a
consequence, this increases the number of tunneling events that
transfer entangled electrons into different external leads with
parallel aligned magnetizations. By detuning the energy levels
to εL = 0 and εR = −tS [Fig. 8(b)], the DAR-type Andreev
transmission dominates the current [see also the dashed lines
in Fig. 4(c)], which suppresses the splitting efficiency of the
system. This tendency is even stronger if one tunes the dots’
levels closer to the Fermi energy. In particular, for the case of
εL = εR = 0 shown in Fig. 8(a), one can see that the spin-orbit
coupling completely suppresses CAR processes, and also the
region of enhanced splitting efficiency for p → 1 vanishes
almost entirely for the parallel magnetic configuration.

The spin-orbit coupling also strongly affects the CAR
processes in the case of antiparallel alignment between the
magnetizations of the ferromagnetic leads. Its largest impact
on the behavior of η can be noticed for εL = εR = 0. As
can be seen in the lower right panel of Fig. 8(a), one region
of enhanced splitting efficiency in the (p,r) plane is located
for 0.25 � p � 1 and for weak spin-orbit couplings, 0 �
r � �/16. Enhanced efficiency develops due to that fact that
rare hoppings between the dots accompanied by spin rotation
stimulate the CAR contribution to the total conductance,
especially when p → 1. Moreover, an even larger area of
enhanced splitting efficiency occurs for 0.5 � p � 1 and r �
�/16. This enhancement can be understood if one compares the
conductance characteristics with the corresponding splitting
efficiency along the horizontal dotted line in Fig. 4(f), from
which it follows that for large enough polarizations p � 0.8
the interplay between the CAR and DAR processes enhances
significantly the splitting efficiency. This effect is, however,
diminished if a finite detuning of the level of one of the dots
occurs [see Fig. 8(b)], and finally vanishes entirely in case when
the levels of the both side quantum dots are shifted away from
the Fermi level [see Fig. 8(c)]. However, it is also interesting
to note that, simultaneously, for weak spin-orbit couplings,
a small area with perfect splitting efficiency η ≈ 100% may
develop, provided that p ≈ 1.

IV. NONEQUILIBRIUM REGIME

In this section, we discuss the nonequilibrium Andreev
transport properties of the considered device. We recall that

FIG. 9. The differential Andreev conductance in the antiparallel
magnetic configuration, without hopping between the dots (t = r =
0), calculated as a function of the left and right quantum dots’ levels
ε = εL = −εR and applied bias voltage V . The left column shows the
map of (a) the total conductance, as well as (b) DAR and (c) CAR
contributions. The right column shows the differential conductance as
a function of the applied bias voltage for selected values of the dots’
levels positions, as indicated in the legend. The other parameters are
the same as in Fig. 2.

the voltage is applied in such a way that the superconductor is
grounded, while the chemical potentials of both ferromagnetic
leads are kept equal, μL = μR = eV .

A. Differential Andreev conductance

In Fig. 9 we present the differential Andreev conductance
(the total one as well as CAR and DAR contributions) plotted as
a function of the applied bias voltage V and the level position
ε with ε = εL = −εR . For clarity, we present here only the
results calculated for the antiparallel magnetic configuration
and for a specific case of t = r = 0, i.e., in the absence of
hopping between the dots. In fact, the conductances obtained
for the parallel and antiparallel configurations exhibit rather
subtle qualitative and quantitative differences, even if the
interdot hopping or the Rashba coupling is switched on. The
phenomena arising due to the change of magnetic configuration
of the device are better revealed when examining the tunnel
magnetoresistance and the splitting efficiency, which will be
discussed in the next sections.

The results presented in Fig. 9 show that, due to the
proximity effect, the Andreev bound states enhance both the
local and nonlocal transmissions through the junction, giving
rise to the conductance maxima. The main resonance peaks
appear for eV ≈ ±εA, with εA =

√
ε2
S + �2

S/4 describing ap-
proximately the Andreev bound-state energies [57]. Moreover,
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one can note that the height of the resonance peaks strongly
depends on the relation between the energies of the dots’
discrete levels relative to the energies of the Andreev bound
states. It is also found that to obtain the best transmission at
the resonances, the condition εL = −εR should be satisfied.
This can be explicitly seen in Figs. 9(d)–9(f), where the
respective cross sections of the maps presented in Figs. 9(a)–
9(c) are displayed. The bias-voltage dependence in the case
of εL = εR = 0 and εL = εR = −1.15� ≈ −εA, representing
the cross sections along the dashed lines in Fig. 9(a), clearly
exhibits higher resonance peaks as compared to those found
for other dot-level positions, such as εL = 0, εR = −tS , or
εL = εR = −tS , represented in Fig. 9 by the green and blue
lines, respectively. Furthermore, it can be also seen in Fig. 9
that in the vicinity of the threshold bias voltage, eV ≈ ±εA,
the nonlocal Andreev processes are more effective compared
to the local ones, and that the largest difference between the
CAR and DAR contributions occurs for ε ≈ ±εA.

Another interesting feature visible in Fig. 9 is the asymmetry
of the transport characteristics with respect to the bias reversal
[19,32]. This asymmetry follows from the interplay between
the Coulomb correlations on the side quantum dots and the
transport processes that occur for positive and negative bias
voltages. For the assumed value of onsite Coulomb repulsion
on the side dots U = 10�, these dots may be either empty
or singly occupied in the range of bias voltages taken into
account. When eV > 0, then around the threshold voltage,
eV ≈ εA, the Andreev energy level becomes activated and
thus the extracted Cooper pairs give rise to an enhancement
of the Andreev current and to the resonance maximum in
the differential conductance. However, upon the bias-voltage
reversal, eV < 0, the situation changes such that now the
Andreev level of energy −εA enters the transport window
and the carrier transmission into the superconductor ampli-
fies creation of Cooper pairs. Simultaneously, negative bias
voltage enhances the occupancy of the side dots by electrons
tunneling from ferromagnetic leads. These processes suppress
the Andreev backward transmission, thus giving rise to a lower
resonance maximum of the differential Andreev conductance
at eV ≈ −εA [see Fig. 9(a)].

B. Tunnel magnetoresistance

The dependence of the TMR on the bias voltage and
the position of the dots’ levels ε = εL = −εR is shown in
the left column of Fig. 10, while the right column displays
the corresponding bias dependence of the TMR for selected
values of εL and εR . As a first general observation, one can
consider a strong dependence of the TMR on the magnitude
of hopping between the dots for low voltages and its absence
when the applied voltage is larger than the hopping ampli-
tude. The second observation is that the TMR is positive in
almost the whole parameter space considered in the figure,
except for small regions where it can become negative (see
Fig. 10).

Let us now discuss in somewhat greater detail the nonequi-
librium TMR behavior. In the case of t = r = 0, which is
displayed in Figs. 10(a) and 10(d), one can see that when
the dots’ levels are tuned to the energies corresponding to the
Andreev bound states εL = −εR = −1.15� ≈ −εA, the TMR

FIG. 10. The tunnel magnetoresistance as a function of the po-
sition of the left and right quantum dot levels ε = εL = −εR and
the applied bias voltage V (left column). The right column presents
the bias dependence of the TMR for different dot level positions,
as indicated. The first row corresponds to the case without hopping
between the dots, while the second (third) row is calculated for t = tS
and r = 0 (t = 0 and r = tS). The other parameters are the same as
in Fig. 2.

oscillates as a function of eV with a rather small amplitude that
ranges from TMR ≈ −5% to TMR ≈ 15% [see the red solid
line in Fig. 10(d) corresponding to the vertical dashed lines
in Fig. 10(a)]. We have found that for negative bias voltage,
the TMR changes sign for eV � −εA, which is due to the fact
that when the Andreev bound state energy level −εA enters
the transport window, parallel alignment of magnetizations
of external leads gives rise to a significant amplification of
the nonlocal transport processes. Moreover, as follows from
Figs. 10(b), 10(c), 10(e), and 10(f), direct hopping or Rashba
type of coupling very weakly affects the transmission in both
magnetic configurations as long as the dots’ energy levels are
tuned to the Andreev bound-state energies εL = −εR ≈ ±εA.
This can be explained by realizing that there are two different
energy scales that can influence the Andreev reflection. The
first one is associated with the formation of Andreev bound
states and depends on �S , whereas the second one is the
hopping amplitude, either t or r . Since in our analysis we
consider �S to be larger than the interdot hopping amplitudes,
the Andreev bound states are hardly affected by the magnitude
of t and r quantities. As a consequence, when the energies of
the dots are tuned to εL = −εR ≈ ±εA, the nonequilibrium
transport characteristics remain unmodified, regardless of the
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strength of direct coupling between the dots (provided that �S

is larger than the corresponding hoppings).
On the contrary, if the dots’ levels are tuned to the Fermi

energy, the Andreev transmission for low bias voltages exhibits
a strong dependence on the strength and type of coupling
between the left and right dots. The bias dependence of the
TMR for ε = 0 is represented by the gray curves in Figs. 10(d)–
10(f). One can clearly see that for t = r = 0 TMR displays a
local maximum with TMR ≈ 25% around the zero bias. This
value can be further enhanced up to TMR ≈ 40% when the
interdot coupling amplitude t becomes finite [see Fig. 10(e)].
Furthermore, the TMR modification is even more prominent
in the case of hopping accompanied by a spin flip. However,
in such a case DAR processes dominate transmission, so that
the Andreev current in the parallel magnetic configuration
becomes larger than the current flowing in the antiparallel
configuration. As a result, the Rashba coupling gives rise to a
sign change of the TMR, such that its bias-dependent variation
ranges from TMR ≈ −15% to TMR ≈ 20% [see Fig. 10(f)].

We have also analyzed the bias-voltage dependence of
the TMR for other values of the dots’ levels positions, not
satisfying the condition ε = εL = −εR . As can be seen in
Figs. 10(d)–10(f), these cases generally exhibit combinations
of the effects discussed above. In particular, for both considered
tunings, i.e., εL = εR = −tS (see the blue curves in Fig. 10)
and ε = 0, εR = −tS (see the green curves in Fig. 10), the TMR
oscillates as a function of applied bias voltage and may exhibit
sign changes, with local maxima or minima that appear in the
vicinity of the zero bias voltage.

C. Cooper pair splitting efficiency

In Fig. 11 we present the nonequilibrium behavior of
the splitting efficiency, which allows for obtaining a deeper
insight into different types of processes responsible for the
Andreev transmission through the studied CPS setup. Be-
cause the behavior of the splitting efficiency in the parallel
configuration, especially for voltages larger than the interdot
hopping amplitudes, is qualitatively very similar to that in the
antiparallel configuration, here we only show η calculated for
the latter situation. As follows from the examination of density
plots of η(ε,V ) in Figs. 11(a)–11(c), the splitting efficiency in
nonequilibrium situation may acquire very large values for a
wide range of bias voltages, provided that the dots’ discrete
levels are tuned according to ε = εL = −εR . In particular,
when ε ≈ ±εA [see the red cross sections in Figs. 11(d)–11(f)
taken along the dashed line in Fig. 11(a)], with increasing the
transport voltage the Andreev bound states at ±εA become
gradually activated, leading to an amplification of the nonlocal
Andreev reflection processes. This gives rise to a significant
enhancement of the Cooper pair splitting efficiency, which
reaches its maximum value η → 100% above some threshold
bias voltage. The same scenario also holds for finite couplings
t and r , where it can be seen that once ε ≈ ±εA, then the
splitting efficiency is practically insensitive to the variations
of the amplitudes t and r (see Fig. 11). Nevertheless, some
slight differences can still be observed around the zero bias
voltage, which demonstrates that the interdot hoppings can
increase the number of DAR processes, suppressing thus the
splitting efficiency within the range of a few percent.

FIG. 11. The efficiency of the Cooper pair splitting η calculated
as a function of the left and right quantum dot energy levels ε =
εL = −εR and the applied bias voltage V (left column). The right
column shows the bias dependence of η for indicated values of the dot
level positions. The first row corresponds to the case without hopping
between the dots, while the second (third) row is calculated for t = tS
and r = 0 (t = 0 and r = tS). This figure is calculated in the case of
the antiparallel magnetic configuration and for other parameters the
same as in Fig. 2.

Interestingly, when the dot levels are either not detuned at
all (ε = 0) or detuned such that the condition εL = −εR is
not fulfilled any more, the bias-dependent splitting efficiency
becomes drastically suppressed. This can be clearly seen in
Figs. 11(d)–11(f), where the gray (ε = 0), blue (εL = εR =
−tS), and green (εL = 0, εR = −tS) lines show that for |eV | �
εA, regardless of the value of the coupling strength t and
r , the nonlocal transmission is approximately comparable
to the local one, such that the splitting efficiency oscillates
around 50%. On the other hand, when |eV | � εA, then an
interplay between DAR and CAR contributions in the presence
of interdot hopping results in more changes of the splitting
efficiency behavior. The most significant modification of η is
its Rashba-driven reduction to η ≈ 18%.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the transport properties of
a Cooper pair splitter based on triple quantum dots attached
to two ferromagnetic contacts and to one superconducting
electrode. In such a setup, the Cooper pairs are extracted by
tunneling processes and split into the two arms containing
embedded tunable quantum dots with finite onsite Coulomb
correlations, while a large, middle quantum dot is formed in a
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direct proximity of the superconductor. The system is assumed
to work at sufficiently low temperatures and at voltages smaller
than the superconducting energy gap, such that the current
is exclusively due to Andreev reflection processes. Our main
focus was on optimizing the parameters of the device to
maximize its splitting efficiency, namely, to make the nonlocal
crossed Andreev processes through the both arms of the splitter
dominate over the direct Andreev reflections that occur through
the same arm of the CPS device. For that, we thoroughly
analyzed the effects of spin-resolved processes, as well as
direct and Rashba hopping between the side dots, on the
splitting properties of the system, depending on its magnetic
configuration. From the methodological side, we used the
Keldysh Green’s function approach to study the system’s
transport properties in both the linear and nonlinear response
regimes.

First of all, we have shown that the Andreev transport
strongly depends on the alignment of magnetic moments of
external ferromagnetic leads and the degree of their spin
polarization. In addition, Andreev reflection processes can
be also strongly modified by the quantum interference be-
tween the local and nonlocal processes. In fact, destructive
quantum interference deteriorates the operation of the CPS
by suppressing the transmission of entangled carriers. A
significant manifestation of this effect is observed in the case of
antiparallel magnetic configuration, especially for electrodes
with large spin polarizations. We have also studied the effects
of direct hopping between the side quantum dots and shown
that the quantum interference may be greatly affected by finite
hopping amplitude. All this provides a possibility for control-
ling and optimizing the desired properties of the CPS device by
appropriately tuning the interplay between spin polarization of
the leads and the strength of the interdot coupling.

Our main findings encompass among others a nonmono-
tonic dependence of the splitting efficiency η on the spin
polarization of the leads, which can be strongly modified by
finite amplitude of hopping between the two side quantum
dots. The results revealed a general detrimental impact of the

interdot hopping on the splitting efficiency, with Rashba-type
interdot interactions r suppressing η more as compared to the
direct hopping t . However, contrary to this general observation,
by carefully analyzing the splitting efficiency as a function
of both t and r , we have also identified certain parameter
regions where η can be greatly enhanced, reaching η ≈ 100%.
In addition, we have considered the dependence of the splitting
efficiency in the nonequilibrium transport regime. It turned out
that η becomes enhanced in the case when the dots’ energy
levels are tuned to the position of the Andreev bound states,
εL = −εR ≈ εA, i.e., when the level of one of the side dots
coincides with the Andreev bound state energy εA, while the
other level is aligned at −εA. In this case, almost perfect
splitting efficiency was found.

Finally, we have also thoroughly analyzed the behavior of
the tunnel magnetoresistance, which is an important quantity in
estimating the CAR and DAR contributions to the total conduc-
tance. This is because mainly CAR processes become affected
when the magnetic configuration of the system is varied. In
fact, the sign of the tunnel magnetoresistance as well as the
magnitude of its local maxima and minima provide an insight
into the types of processes that dominate the total transmission.
We have shown that the magnetoresistive properties of the
Andreev current strongly depend on the parameters of the
device and, especially, on the magnitude and type of hopping
between the side quantum dots. In particular, in equilibrium
situations, direct hopping was shown to enhance the effect of
negative TMR. Moreover, in the nonlinear response regime,
we have found small regions of negative TMR that develop for
voltages larger than the energies of Andreev bound states and
are hardly affected by finite hopping between the dots.
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