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We study the effective interactions between Dirac fermions on the surface of a three-dimensional topological
insulator due to the proximity coupling to the magnetic fluctuations in a ferromagnetic or antiferromagnetic
insulator. Our results show that the magnetic fluctuations can mediate attractive interactions between Dirac
fermions of both Amperean and BCS types. In the ferromagnetic case, we find pairing between fermions with
parallel momenta, so-called Amperean pairing, whenever the effective Lagrangian for the magnetic fluctuations
does not contain a quadratic term. The pairing interaction also increases with increasing Fermi momentum and
is in agreement with previous studies in the limit of high chemical potential. If a quadratic term is present, the
pairing is instead of BCS type above a certain chemical potential. In the antiferromagnetic case, BCS pairing
occurs when the ferromagnetic coupling between magnons on the same sublattice exceeds the antiferromagnetic
coupling between magnons on different sublattices. Outside this region in parameter space, we again find that
Amperean pairing is realized.
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I. INTRODUCTION

Topological insulators (TIs) have attracted much attention
since their discovery a decade ago [1,2]. Although being
insulating in the bulk, the surface of a three-dimensional TI has
topologically protected metallic surface states. These metallic
surface states are well described by the two-dimensional
(2D) massless Dirac equation, having linear dispersions and
spin-momentum locking, and are therefore often called Dirac
fermions [3]. A gap in the dispersion, analogous to the mass gap
for massive relativistic fermions, can be opened by breaking
the time-reversal symmetry of the system, for instance, by
applying a magnetic field normal to the TI surface or by
proximity coupling to a magnetic insulator [4–8].

Many theoretical works have studied heterostructures con-
sisting of TIs and ferromagnetic (FM) insulators, focusing in
particular on the effects on the magnetization in the magnetic
layer [9–20]. One recent study focused instead on the effective
interactions between Dirac fermions on the surface of a TI
coupled to a FM insulator with mean-field magnetization
perpendicular to the TI surface [21]. It showed that interactions
between the Dirac fermions and the transverse magnons in the
FM lead to an effective attractive pairing between fermions
with parallel momenta, so-called Amperean pairing [22,23].
In the presence of spin-momentum locking, this exotic pairing
also implies that the pairs will form spin triplets. However,
the chemical potential was assumed to be tuned far away
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from the gap thus neglecting the effects of the mass gap
in the Dirac fermion dispersion. This raises the question
how the pairing is affected when the chemical potential is
tuned towards the gap as the pairing must disappear in the
absence of a Fermi surface. Moreover, the pairing mediated by
fluctuations in other magnetic configurations than FM order
have not yet been studied. Bilayer systems of antiferromagnetic
(AFM) insulators and TI films, for instance, are also under
experimental investigation [24].

Rex et al. [20] recently studied the effective theory for the
magnetic moments in a bipartite magnetic insulator (BMI)
coupled to the Dirac fermions on a TI surface. Their model
allows to continously tune the magnet from a FM to an AFM
configuration. In the present paper we will use the same model,
restricted to the limiting FM and AFM cases, to study the
effective interactions between the Dirac fermions induced by
the magnetic fluctuations, including the effects of the mass
gap. Possible material choices for such systems are Bi2Se3 or
Bi2Te3 as the TI, EuS as FM [4,25], and NiO or CoO as AFM
[26–30]. In both cases, we find that pairing between Dirac
fermions is possible in certain regions of parameter space.
For coupling to ferromagnetic fluctuations, the pairing is of
the Amperean type whenever there is no quadratic coupling
term between the magnons, in agreement with Ref. [21] in the
limit of high chemical potential. However, as the Fermi level
is moved towards the gap, the pairing decreases, vanishing
when the chemical potential is tuned inside the gap. We also
find that pairing of the Bardeen-Cooper-Schrieffer (BCS) type,
i.e., where the interacting particles have momenta in opposite
directions, is possible in certain regions of the parameter space.
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FIG. 1. Bilayer heterostructures consisting of ferromagnetic and
antiferromagnetic insulators proximity coupled to a TI are modeled
using a bipartite magnetic insulator with tunable mean-field magne-
tizations [20]. The surface of the TI is placed in the xy plane, and the
mean-field magnetization of the magnetic insulators is perpendicular
to the interface.

In the antiferromagnetic case we again find pairing of both
types, depending on the relative strength between the intra- and
interlattice couplings. Hence, we find that, for both magnetic
configurations, magnon-induced superconductivity due to the
attractive interactions is possible.

The remainder of the article is organized as follows: The
model is presented in Sec. II together with the derivation of
the effective action for the TI surface fermions. Subsequently,
the effective pairing interaction on the TI surface is discussed
for the FM and AFM cases in Secs. III and IV, respectively.
The results are summarized in Sec. V. Further details regarding
the derivation of the effective TI action are presented in the
Appendix.

II. MODEL

The bilayer heterostructures are described by taking into
account the surface of the TI and magnetic insulator, the bulk
of the magnetic insulators, and hopping across the interface
due to the proximity [20]. In order to treat heterostructures
with FM and AFM insulators simultaneously, we will consider
a BMI consisting of two FMs with lattice magnetizations m1

and m2 as is illustrated in Fig. 1. We set h̄ = 1 throughout
the paper and work close to zero temperature utilizing the
zero-temperature Matsubara frequency formalism. The bulk
of the magnetic insulator is described by the Lagrangian
LBMI = L1 + L2 + Lex, where

Li = −b(mi) · ∂tmi − κ

2
(∇mi)

2 (1)

amounts to a continuum description of each of the two
sublattices with i = 1,2, whereas

Lex = −λm1 · m2 (2)

describes the exchange interaction. κ > 0 is the ferromagnetic
exchange-coupling constant, whereas the coupling between the
two lattices is ferromagnetic or antiferromagnetic for λ < 0 or
λ > 0, respectively. b denotes the Berry connection, satisfying
∇mi

× b(mi) = mi/m2
i .

The surface of the TI is described by the 2D Dirac
Lagrangian together with a weak quadratic term in the deriva-
tives leading to particle-hole asymmetry [31–34],

LTI = �†[i∂t − ivF(σy∂x − σx∂y) + E0
(
∂2
x + ∂2

y

)+ μ
]
�,

(3)

where � = (ψ↑,ψ↓)T is the spinor of the Dirac fermions, ↑,↓
label the spin in the z direction, vF is the Fermi velocity, and μ is
the chemical potential. The second derivative term is assumed
small compared to the Dirac term. We have not included the
fluctuating Coulomb interactions between the Dirac fermions
since this interaction is screened whenever we have a Fermi
surface. For the ferromagnetic case, there will also be a demag-
netizing field outside the ferromagnet, resulting in a coupling
to a mostly in-plane vector potential in the TI Hamiltonian [35].
This coupling in turn leads to circular orbits with radii of the
order of the magnetic length l ∼ √

eμ0|M|/h̄ [33] where M
is the magnetization, μ0 is the vacuum permeability, and e is
the electron charge. This coupling can only be neglected when
the motion of the TI fermions is unaffected on the relevant
length scale, which for superconductivity is the coherence
length ξ , i.e., we must have l � ξ . Using ξ ∼ h̄vF/kBTc [36]
where Tc is the critical temperature, we get the requirement
that |M| � eμ0k

2
BT 2

c /h̄v2
F. We will assume that this holds in

the following. Since antiferromagnets have close to zero stray
fields [37,38], the coupling to the vector potential can be safely
disregarded in the AFM case.

In order to couple the TI fermions and BMI magnetization,
Rex et al. [20] introduced auxiliary fermionic fields χi =
(χ↑,χ↓)T on the surface of the magnet for the two sublattices
i = 1,2. These fields can be interpreted as electrons in the
magnetic insulator, which are localized in the atomic limit.
Their spins Si = 1

2χ
†
i σχi are coupled to the magnetization

of the corresponding sublattice, and in proximity to the TI,
hopping across the interface is taken into account. Thus, the
Hamiltonian of χ1,χ2 is

Hsurf = −t(χ †
1χ2 + χ

†
2χ1) − J

∑
i=1,2

χ
†
i mi · σχi

−h[�†(χ1 + χ2) + (χ †
1 + χ

†
2 )�]. (4)

Here, t is the coupling between the surface fermions, J and
h are the strengths of the coupling to the magnetization mi

at z = 0 and to the Dirac fermions, respectively, and σ is the
Pauli matrix vector.

A. Integration of magnetic moments

By integrating out the χi fermions, an effective theory
for the Dirac fermions and magnetizations was obtained in
Ref. [20], including effective couplings between � and mi . In
the following, we will assume that the length of the magneti-
zations mi is fixed to the mean-field value of |mi | = ±m̄i and
write the magnetization vector as [21]

mi = m̄i ẑ

√
1 − m̃2

i

m̄2
i

+ m̃i , (5)

where m̃i = m̃x
i x̂ + m̃

y

i ŷ. By fixing the length in this way,
the fluctuations in the z direction are of second order in |m̃i |.
Working to second order in m̃

x/y

i , we get the Berry connection,

b(mi) = − m̃
y

i x̂ − m̃x
i ŷ

2m̄i

, (6)
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and the effective Lagrangian for the magnetic fluctuations can
be written as

Lm̃ =
∑
i=1,2

{
−
(

1

2m̄i

− 2D0z
i

)
ẑ · (m̃i × ∂tm̃i) − κ

2
(∇m̃i)

2

+ 1

2

[
m̄3−i

m̄i

λ − 2J 2
(
D00

i − Dzz
i

)]
m̃i · m̃i

+�†Jim̃i · σ�

}
− [λ + 2J 2(T 00 − T zz)]m̃1 · m̃2

+ 2J 2T 0zẑ · (m̃1 × ∂tm̃2 + m̃2 × ∂tm̃1), (7)

where

Ji = h2J

(t2 − J 2m̄1m̄2)2

(
J 2m̄2

3−i − t2
)

(8)

is the effective magnetic coupling of the TI surface states
to mi . The coefficients D00

i , Dzz
i , D0z

i , T 00, T zz, and T 0z

depend only on the model parameters and are described in
detail in Ref. [20]. Since h is assumed small compared to

t and J m̄i [20], we have neglected terms of O(h2|m̃i |2)
in Eq. (7). Note that the exchange couplings between
fluctuations are renormalized in the above Lagrangian,

λ̃i = m̄3−i

2m̄i

λ − J 2
(
D00

i − Dzz
i

)
, (9a)

λeff = λ + 2J 2(T 00 − T zz). (9b)

Integration of the χ fermions also results in an additional
term in the Dirac Lagrangian due to the mean-field magneti-
zations in the BMI,

δLMF = �†(J1m̄1σz + J2m̄2σz)�. (10)

As will be shown in the next section, this term can create a gap
in the Dirac fermion dispersion.

Specializing to the ferromagnetic (m̄2 = m̄1 = m̄) and
antiferromagnetic (m̄2 = −m̄1 = −m̄) cases, we define ν =
m̄2/m̄1 = ±1 for notational simplicity. In both cases the mag-
netic couplings in Eq. (8) are identical on the two sublattices
J1 = J2 ≡ J̄ . Transforming to imaginary time T = it in the
zero-temperature limit and Fourier transforming both the time
and the space variables [44], we arrive at the functional integral
in the magnon fields,

Z =
∫

D[M]e−Smag , (11)

where

Smag =
∫

d3q

(2π )3

{
MT (−q)K(q)M(q) − 1

2
[J T (q)M(q) + MT (−q)J (−q)]

}
. (12)

Here, we have defined the matrix,

K(q) =
(

κ
2 q2 − λν

2 + J 2D − iσy

2m∗ 

λ
2 + J 2T + J 2(1 + ν)T 0ziσy


λ
2 + J 2T + J 2(1 + ν)T 0ziσy


κ
2 q2 − λ

2ν
+ J 2D − iσy

2νm∗ 


)
, (13)

and the four-component fluctuation vectors,

M(q) = [
m̃x

1 (q) m̃y

1 (q) m̃x
2 (q) m̃y

2 (q)
]T

, (14)

and

J (q) =
∫

d3k

(2π )3

⎛
⎜⎜⎜⎜⎝

J̄�†(k)σx�(k − q)

J̄�†(k)σy�(k − q)

J̄�†(k)σx�(k − q)

J̄�†(k)σy�(k − q)

⎞
⎟⎟⎟⎟⎠. (15)

The functions D, T , and m∗ are defined in the Appendix.
We have also used the notation q = (
,q) and k = (ω,k) for
the bosonic and fermionic fields, respectively. Performing the
functional integral, we get the additional contribution to the
Dirac action,

δSTI = −1

4

∫
d3q

(2π )3
J T (q)K−1(q)J (−q). (16)

After calculating K−1, details of which are given in the
Appendix, the effective action in the FM and AFM cases
can be calculated separately. However, the resulting magnon-
mediated interaction between the � fermions is given in the

chirality basis rather than the spin basis. Therefore, we will
derive the corresponding operator transformations for the �

operators entering Eq. (16) through the current vector J in
Eq. (15).

B. Diagonalization of the TI Hamiltonian

The operator transformations are derived by diagonalizing
the TI Hamiltonian including the interaction with the mean-
field magnetizations in Eq. (10),

HTI =
∫

d2r �†[ivF(σy∂x − σx∂y) − E0∇2

−μ − J̄ (1 + ν)m̄σz]�,

=
∫

d2r �†HTI�. (17)

Fourier transforming the Hamiltonian and solving the eigen-
value problem HTI�± = E�±, we find the eigenenergies,

E±(k) = E0k2 ±
√

J̄ 2m̄2(1 + ν)2 + v2
Fk2 − μ, (18)
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and eigenvectors,

�±(k) =
(

ψ+(k)
ψ−(k)

)
= 1√

Nk

(
s∗

k rk
−rk sk

)
�(k), (19)

where we have defined the functions,
sk = vF(ky + ikx), (20a)

rk = J̄ m̄(1 + ν) +
√

J̄ 2m̄2(1 + ν)2 + v2
F|k|2, (20b)

Nk = r2
k + |sk|2. (20c)

The subscripts + and − denote Dirac fermions with positive
and negative chiralities, respectively. Note that the eigenvectors
of HTI are unaffected by the value of E0 since this is a
diagonal term. If μ > 0, the conduction band will consist of
ψ+ fermions. Considering only the fermions which are free to
interact, i.e., projecting onto the conduction band, allows us to
make the substitutions,

ψ↑(k) → sk√
Nk

ψ+(k) and ψ↓(k) → rk√
Nk

ψ+(k), (21)

in the effective action δSTI. This results in a momentum-
dependent scattering form factor �kk′(q) characterizing the
interaction between the fermions in the effective action, which
we write as

δSTI =
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3

×Vkk′(q)ψ†(k + q)ψ†(k′ − q)ψ(k′)ψ(k). (22)

with the interaction matrix defined as

Vkk′(q) = −J̄ 2D(q)�kk′(q), (23)

where D(q) is the magnon propagator. We refer to the
Appendix for further details. If the effective action leads to
an attractive interaction, it can be shown that this results in a
superconducting instability, e.g., by performing a mean-field
treatment of the effective theory. We will, however, not perform
such an analysis but rather focus on the type of effective
interaction that arises due to the proximity to the magnetic
layer. In the following two sections, we will analyze the
effective action in the FM and AFM cases separately.

III. FERROMAGNETIC CASE

In the ferromagnetic case, the magnon propagator is given
by

DFM(q) =
κ
2 q2 − J

2a2m̄
�(1 − τ )(



2m

)2 + (
κ
2 q2 − J

2a2m̄
�(1 − τ )

)2 , (24)

where we have used the definitions of Dαα
i and T αα given

in Ref. [20] and m is defined in the Appendix. Here, a is
the lattice constant, introduced when using π/a as a cutoff
in diverging momentum integrals [20], �(x) is the Heaviside
step function, and τ = t2/J̄ 2m̄2 is a dimensionless parameter
signifying the strength of the coupling between χ1 and χ2

relative to the coupling between χi and the magnetic moments,
see Eq. (4). Assuming that the Dirac fermions move at speeds
higher than the ferromagnetic magnons, which certainly holds
for small momentum transfers |q|, we set 
 to zero in the

kx

ky

kF

k

k + q

k − q
φk

FIG. 2. The figure shows parts of the Fermi surface and the
momenta of the interacting particles k = k′, k + q, and k − q. The
figure illustrates that only small momentum transfers |q| compared to
kF are kinematically allowed since the momenta must lie within a thin
shell (red dotted lines) around kF (black line). This also implies that
a process with momentum transfer −q is necessarily kinematically
allowed if the process with q is allowed.

magnon propagator. This yields

DFM(0,|q|) = 1
κ
2 q2 − J

2a2m̄
�(1 − τ )

. (25)

Note that if τ > 1, DFM(0,|q|) is positive for any q. Because
the coupling constants D

αβ

i and T αβ are discontinuous at ν = τ

[20], values of τ ≈ 1 are excluded from the analysis in the
ferromagnetic case.

Kargarian et al. [21] found attractive interactions between
particles with parallel momenta, dubbed Amperean pairing
[22], in the high-doping regime. We expand this analysis to
also include the gap in the Dirac fermion dispersion, i.e., by
not setting m̄ = 0 in the operator transformations, Eqs. (19)
and (20). Since k ≈ k′ for Amperean pairing, a process is only
possible if both k + q and k − q lie within a thin shell of the
Fermi level. This restricts the kinematically allowed values of
q to those with small |q| as illustrated in Fig. 2. Moreover, if
a process with momentum transfer q is possible, the process
with momentum transfer −q is necessarily also possible. Thus,
any term linear in q in the form factor disappears when
performing the q integration in δSTI. Expanding the form factor
in vF|q|/|J̄ m̄| and neglecting linear terms in q, we get to
leading order,

�(φk,φk′) =
v2

Fk
2
F

(
2J̄ m̄ +

√
(2J̄ m̄)2 + k2

F

)2
cos(φk − φk′)

2
[
v2

Fk
2
F + (2J̄ m̄)2 + 2J̄ m̄

√
(2J̄ m̄)2 + v2

Fk
2
F

]2
,

(26)

where we have set |k| = |k′| = kF and introduced the polar
angle φk of each momentum in the xy plane. Setting m̄ =
0, we get � = cos(φk − φk′)/2, which is in agreement with
Ref. [21]. This corresponds to the limit vFkF � |J̄ m̄| for which
the interaction is strongest. The interaction strength decreases
for decreasing kF and disappears at kF = 0, as illustrated in
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FIG. 3. (a) Variation of �(φk = φ′
k) in Eq. (26). The form factor

increases when increasing kF, corresponding to moving the Fermi
level away from the gap in the dispersion. �(φk = φ′

k) approaches
1/2 in the limit vFkF � |J̄ m̄|. (b) A diagram showing the regions in
parameter space where Amperean or BCS pairing is possible for TI
surface states coupled to a ferromagnet. μ = |2J̄ m̄| corresponds to
kF = 0.

Fig. 3(a). This is as expected since there must be a Fermi surface
in the conduction band in order for interactions to be possible.

From the above results of the form factor and integrated
magnon propagator, we see that the overall interaction matrix
Vkk′ is negative for all kinematically allowed q if τ > 1 and k
and k′ are parallel. Hence, superconductivity with Amperean
pairing is possible if τ > 1. This is in agreement with the
results in Ref. [21], which treats an analogous situation. Setting
m̃1 = m̃2 in the magnon Lagrangian Eq. (7), we note that the
ferromagnetic coupling between magnons,

λ̃1 + λ̃2 − λeff = −2J 2
(
D00

1 − Dzz
1 − T 00 + T zz

)
= J

a2m̄
�(1 − τ ) (27)

disappears when τ > 1, which is, again, similar to the situation
discussed in Ref. [21].

For τ < 1, DFM(0,|q|) is negative for |q| <
√

J/a2m̄κ ,
resulting in repulsive interactions, and changes sign as |q| is
increased. Since Amperean pairing is kinematically possible
only for small |q|, Amperean pairing is suppressed for increas-
ing J/m̄κ . However, note that for small |q| and φk − φk′ ≈ π ,
corresponding to normal BCS pairing, the interaction matrix
is attractive. Therefore, the possibility of BCS pairing is
investigated further.

In the BCS case k′ = −k, the length of q is less re-
stricted since |k′ − q| = |k + q| ≈ kF is satisfied for the
same momentum transfer q. Requiring |k| = |k + q| = kF, we
find

|q| =
{−2kF cos(φk − φq), if π � |φk − φq | � π

2 ,

0, otherwise.
(28)

Inserted into the form factor, we find

�BCS(φk,φq)

=
v2

Fk
2
Fe

2i(φk−φq )
[
2J̄ m̄ +

√
v2

Fk
2
F + (2J̄ m̄)2

]2

2
[
v2

Fk
2
F + (2J̄ m̄)2 + 2J̄ m̄

√
v2

Fk
2
F + (2J̄ m̄)2

]2
. (29)

Since the signs of DFM(0,|q|) with kinematically allowed |q|,
and �BCS(φk,φq) both vary with φk − φq , the overall sign of

0.5 0.75 1
0

1

2

3

4

5

(φk −φq)/π

η

−3

0

3

V
k
,−

k
(η

,φ
k
−

φ q
)

[a
.u

.]

FIG. 4. Plot of Vk,−k in Eq. (30) as a function of η and φk − φq ,
showing that the BCS pairing is attractive only for certain scattering
angles φq . The black dotted lines show where the interaction changes
sign. For η > 1, shown by the red dashed line, integrating over the
scattering angle gives a dominantly attractive pairing.

the real part of the interaction matrix will depend on φk − φq

as

Vk,−k ∝ −2a2m̄

J

cos 2(φk − φq)

η2 cos2(φk − φq) − 1
, (30)

if π � |φk − φq | � π
2 , where η ≡ 2kF/

√
J/a2m̄κ . This quan-

tity is plotted in Fig. 4 where it is clear that a BCS-type
interaction is both attractive and repulsive depending on the
scattering angle. Integrating Vk,−k over φq gives a measure to
whether most scattering angles are attractive or repulsive and
in this way gives a conservative estimate of when BCS pairing
is possible. The results show that the overall interaction is
attractive whenever η > 1, i.e., when 2kF >

√
J/a2m̄κ , which

corresponds to chemical potential μ > μc, where

μc = E0J

4a2m̄κ
+
√

(2J̄ m̄)2 + v2
FJ

4a2m̄κ
. (31)

Hence BCS pairing is possible for τ < 1 and μ > μc. The
attractive pairing is most dominant close to μc and decreases
for increasing chemical potential. It is however important to
note that the phase space of the pairing is reduced since not
all scattering angles give attractive interactions, and the overall
pairing is thus weakened compared to a normal BCS pairing.

To summarize, we find that, for τ > 1, which corresponds
to a disappearing m̃2 term in the magnon Lagrangian, super-
conductivity with Amperean pairing occurs. For τ < 1 and
μ > μc we instead have BCS pairing. The pairing strength
decreases for decreasing kF in the Amperean case, vanishing
when the Fermi level lies inside the mass gap, whereas the BCS
pairing is strongest close to μc. A simplified diagram showing
for which parameter values Amperean and BCS pairings occur
is presented in Fig. 3(b).

IV. ANTIFERROMAGNETIC CASE

In the antiferromagnetic case, the net mean-field mag-
netization is zero, and hence a gap is not opened in the
dispersion. This also gives significantly simplified operator
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transformations, resulting in a scattering form factor,

�kk′(q) = 2k · k′ − i(k × q − k′ × q) · ẑ − k · q + k′ · q
4|k||k′| ,

(32)

where we have used |k + q| ≈ |k|. The magnon propagator in
the antiferromagnetic case is given by

DAFM(q)

=
κ
2 q2 − J

2a2m̄
√

1+τ(



2m

)2 + (
κ
2 q2 − J

2a2m̄
√

1+τ

)(
κ
2 q2 − J

2a2m̄(1+τ )3/2 + λ
) .

(33)

The frequency of antiferromagnetic magnons typically lies in
the microwave range [39] and can therefore also be considered
slow compared to the TI fermions, which have group velocities
vF ∼ 105 m/s (see, e.g., Ref. [40]). Setting 
 = 0 in the above
propagator yields

DAFM(0,|q|) = 1
κ
2 q2 − J

2a2m̄(1+τ )3/2 + λ
. (34)

Plots of DAFM as a function of |q| and τ for λ > J/2a2m̄ and
λ < J/2a2m̄ are shown in Fig. 5. From the figure we see that
the propagator is positive for all |q| and τ when λ > J/2a2m̄.
For λ < J/2a2m̄ the propagator is positive for all |q| if τ > τc,
where

τc =
( |J/2a2m̄|

λ

)2/3

− 1, (35)

and for |q| > qc if τ < τc, where

qc =
√∣∣∣∣ J

2a2m̄κ

∣∣∣∣ 2

(1 + τ )3/2
− 2

λ

κ
, τ < τc. (36)

In the Amperean case we are again restricted to small mo-
mentum transfers, which to lowest order gives the form factor
�Amp = 1/2. Hence magnon-induced Amperean pairing be-
tween Dirac fermions is possible either when λ > J/2a2m̄ or
when λ < J/2a2m̄ and τ > τc.

For BCS pairing, however, we get the form factor �BCS =
e2i(φk−φq )/2, which corresponds to setting m̄ = 0 in Eq. (29).
The real part of the overall interaction can then be written

Vk,−k ∝ −
(

J

2a2m̄(1 + τ )3/2
− λ

)−1 cos 2(φk − φq)

η2 cos2(φk − φq) − 1

(37)

for π/2 < |φk − φq | < π . Here we have used Eq. (28) and de-
fined η = 2kF/

√
J/a2m̄(1 + τ )3/2κ − 2λ/κ . Again, the sign

of the interaction depends on the parameter η and the scat-
tering angle φk − φq in exactly the same way as in the
FM case. Therefore the interaction is dominantly attractive
when η > 1, which corresponds to μ > μc(τ ), where μc(τ ) =
E0qc(τ )2/4 + vFqc(τ )/2. Hence, BCS pairing can be realized
whenλ < J/2a2m̄, τ < τc, andμ > μc. This is a conservative
limit as there are attractive regions of phase space also when
μ < μc. The type of pairing realized for different values of τ

and μ is shown in Fig. 6.
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FIG. 5. Plot of DAFM as a function of |q| and τ for λ > J/2a2m̄

(top) and λ < J/2a2m̄ (bottom). In the former case DAFM � 0 for
all q and τ . In the latter case however, the integrated propagator is
negative in a region around |q| = 0 and τ = 0. This region is bounded
by the curve qc(τ ) (dashed red) given in Eq. (36) and increases for
increasing J/2a2m̄λ. The white region indicates values outside the
color bar range. The propagator for |q| = 0 is plotted in the insets.

τc corresponds to the value where λ̃1 + λ̃2 − λeff , see
Eq. (9), changes sign from positive to negative, i.e., the point
where the ferromagnetic coupling between spins on each of
the two sublattices becomes weaker than the antiferromagnetic
coupling between spins on different sublattices. Thus, for both
the FM and the AFM cases, BCS pairing seems to be possible

0
τ

µ

BCS

Amperean

τc

µ
c (τ)

λ < J/2a2m̄

0
τ

µ
λ > J/2a2m̄

Amperean

FIG. 6. Diagram showing the regions in parameter space where
BCS or Amperean pairing is possible for TI surface states coupled to
an antiferromagnet. BCS pairing is possible only when λ < J/2a2m̄

when τ < τc and μ > μc(τ ).
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when the quadratic m̃2 term dominates over the interlattice
coupling.

V. SUMMARY

We have studied the possible electron pairing due to mag-
netic fluctuations at the interface of a TI and a FM or AFM
insulator. In the FM case, we have expanded the results of
Ref. [21] to be valid also for chemical potentials close to the
gap in the TI fermion dispersion. We find that for τ > 1, which
corresponds to a vanishing quadratic term ∝m̃2 in the magnon
Lagrangian, Amperean pairing occurs. The pairing strength
decreases for decreasing kF and vanishes when the chemical
potential lies inside the mass gap. For τ < 1, Amperean
pairing is suppressed for increasing J/m̄κ , and instead BCS
pairing occurs above a critical chemical potential. In the AFM
case BCS pairing is realized only when the ferromagnetic
coupling between magnons on the same sublattice exceeds
the antiferromagnetic coupling between magnons on different
sublattices. For other parameter values, Amperean pairing
is realized with an interaction strength independent of the
chemical potential. In both the FM and the AFM cases, the BCS
pairing has a limited phase space compared to the regular BCS

interaction and could therefore be a weak effect depending on
the chemical potential of the system.

In conclusion, magnetic fluctuations at the interface be-
tween a TI and a magnetic insulator can mediate attractive in-
teractions between Dirac fermions, giving pairing of both BCS
and Amperean types, depending on the degree of anisotropy
of the magnetic fluctuations in the system. Investigating other
magnetic configurations, such as ferrimagnetic insulators,
would be an interesting further development. We also leave it
for future work to consider bilayers involving magnetic metals
where a similar pairing mechanism is likely to remain in effect.
For the metallic FM case, non-s-wave pairing has already
been reported in recent experiments on superconducting Ni-Bi
bilayers [41–43].
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APPENDIX: CALCULATION OF EFFECTIVE TI ACTION

In the cases m̄2/m̄1 = ν = ±1, we have the relations D00
1 = D00

2 , Dzz
1 = Dzz

2 , and D0z
1 = νD0z

2 , whereas T zz and T 0z are
zero in the antiferromagnetic case. To handle this, we write T zz = (1 + ν)T zz/2 and T 0z = (1 + ν)T 0z/2. Inserting this into the
magnon action and rewriting in vector form, we defined the matrix K in Eq. (13) using the functions,

D = D00
1 − Dzz

1 , (A1a)

T = T 00 − 1 + ν

2
T zz, (A1b)

1

2m∗ = 1

2m̄
− 2J 2D0z

1 (A1c)

for notational simplicity.
The inverse of K can be written in the form

K−1 = 1

det K

(
A0 + Ayiσy B0 + Byiσy

B0 + Byiσy A0 + νAyiσy

)
, (A2)

where

det K =
(κ

2
q2 + J 2D

)2
{[(κ

2
q2 + J 2D

)
− νλ

]2
+ 2

[(



2m∗

)2

+ (1 + ν)2(T 0z
)2

]
− 2λT − 2T 2

}

+ 2
(κ

2
q2 + J 2D

)[
νλT (λ + T ) + 4T (1 + ν)

T 0z
2

2m∗ − λν

(



2m∗ − (1 + ν)T 0z


)2]

+ T 2

[
(T + λ)2 + 2ν

(



2m∗

)2

+ 2(1 + ν)2(T 0z
)2

]
+ (1 + ν)2 λ2

22

(



2m∗ − 2T 0z


)2

+ 2λνT

(



2m∗ − (1 + ν)T 0z


)2

+
[(




2m∗

)2

− (1 + ν)2(T 0z
)2

]2

, (A3)

195438-7



HUGDAL, REX, NOGUEIRA, AND SUDBØ PHYSICAL REVIEW B 97, 195438 (2018)

and

A0 =
(κ

2
q2 + J 2D

)3
− 3νλ

2

(κ

2
q2 + J 2D

)2
+
(κ

2
q2 + J 2D

)[λ2

2
− λT − T 2 +

(



2m∗

)2

+ (1 + ν)2(T 0z
)2

]

+ ν

2
λT (λ + T ) + 2(1 + ν)T

T 0z
2

2m∗ − νλ

2

(



2m∗ − (1 + ν)T 0z


)2

, (A4a)

Ay =
(κ

2
q2 + J 2D

)2 


2m∗ +
(κ

2
q2 + J 2D

)[
(1 + ν)(2T + λ)T 0z
 − νλ




2m∗

]

+ 


2m∗

[(



2m∗

)2

− (1 + ν)2(T 0z
)2 + νT 2 + (1 + ν)
λ2

4
+ νλT

]
− (1 + ν)

λ

2
(λ + 2T )T 0z
, (A4b)

B0 = −1

2

(κ

2
q2 + J 2D

)2
(λ + 2T ) +

(κ

2
q2 + J 2D

)[λ

2
(λ + 2T ) + (1 + ν)2 T 0z
2

2m∗

]
+ 1

2
λ2T

+ νT

[(



2m∗

)2

+ (1 + ν)2(T 0z
)2

]
+ T 2

(
T + 3

2
λ

)
+ ν

λ

2

[



2m∗ − (1 + ν)T 0z


]2

, (A4c)

By = − 


2m∗ (1 + ν)

(
λ

2
+ T

)(
κ

2
q2 + J 2D − λ

2

)
− (1 + ν)T 0z


×
[

(1 + ν)2(T 0z
)2 +
(

κ

2
q2 + J 2D − λ

2

)2

+
(

λ

2
+ T

)2

−
(




2m∗

)2
]
. (A4d)

The above equations have been simplified using ν2 = 1 and 1/ν = ν and are therefore valid only when m̄2 = ±m̄1.
Performing the matrix multiplication in Eq. (16) using the above form of K−1 and the definition of J (q) in Eq. (15), we get

δSTI = −J̄ 2
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3

{
A0 + B0

det K [ψ†
↑(k)ψ†

↓(k′)ψ↑(k′ + q)ψ↓(k − q) + ψ
†
↓(k)ψ†

↑(k′)ψ↓(k′ + q)ψ↑(k − q)]

+ i
Ay(1 + ν) + 2By

2 det K [ψ†
↑(k)ψ†

↓(k′)ψ↑(k′ + q)ψ↓(k − q) − ψ
†
↓(k)ψ†

↑(k′)ψ↓(k′ + q)ψ↑(k − q)]

}
. (A5)

In the antiferromagnetic case, Ay(1 + ν) + 2By is exactly equal to zero. In the ferromagnetic case however, this term has an
overall factor of 
, making it less divergent in the low-frequency limit. We will therefore neglect this term [21].

Projecting onto the conduction band using Eq. (21), we get the effective action,

δSTI = −J̄ 2
∫

d3q

(2π )3

∫
d3k

(2π )3

∫
d3k′

(2π )3
D(q)�kk′(q)ψ†(k + q)ψ†(k′ − q)ψ(k′)ψ(k), (A6)

where we have dropped the subscript + for notational simplicity and defined the magnon propagator,

D(q) = A0(q) + B0(q)

det K(q)
, (A7)

and the scattering form factor,

�kk′(q) = s∗
k+qrk′−qsk′rk + rk+qs

∗
k′−qrk′sk√

NkNk′Nk−qNk′+q
. (A8)

Defining the parameter m such that

1

2m
= 1

2m̄
− 2J 2D0z

1 − J 2(1 + ν)T 0z, (A9)

and using the results in Eqs. (A4a) and (A4c), we get the ferromagnetic propagator (ν = 1),

DFM(q) =
κ
2 q2 + J 2(D + T )(



2m

)2 + (
κ
2 q2 + J 2(D + T )

)2
, (A10)

and the antiferromagnetic propagator (ν = −1),

DAFM(q) =
κ
2 q2 + J 2(D − T )(



2m

)2 + (
κ
2 q2 + J 2(D − T )

)(
κ
2 q2 + J 2(D + T ) + λ

) . (A11)
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