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We study the topology of two-dimensional open systems in terms of the Green’s function. The Ishikawa-
Matsuyama formula for the integer topological invariant is applied in open systems, which indicates the number
difference of gapless edge bands arising from the poles and zeros of the Green’s function. Meanwhile, we define
another topological invariant via the single-particle density matrix, which works for general gapped systems and
is equivalent to the former for the case of weak coupling to an environment. We also discuss two applications.
For time-reversal-invariant insulators, the Z2 index can be expressed by the invariant of each spin subsystem.
As a second application, we consider the proximity effect when an ordinary insulator is coupled to a topological
insulator.
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I. INTRODUCTION

The study of the quantum Hall effect has led to the new
classification paradigm of quantum phases based on topologi-
cal properties [1–4]. The corresponding topological invariants
have been constructed for various systems with interaction
[4–8], with disorder [5], and with time-reversal symmetry
[9–11]. For the noninteracting case, the topological index is
given by the integral of the Berry curvature determined by
single-particle wave functions of the system [4,7]. For the
interacting case, it is more convenient to use the expression
in terms of the single-particle Green’s function [6] instead
of the many-body wave function [5]. In combination with
(dynamical) mean-field theory [12], it is feasible to obtain
the topological index by calculating multiple integrals of the
interacting Green’s function [13]. Meanwhile, two new devel-
opments have allowed us to simplify the calculation: (1) the
topological Hamiltonian method, which captures topological
properties of the original interacting Hamiltonian [14], and
(2) the quasiparticle Berry curvature method, where the Berry
curvature is determined by the quasiparticle states if these
states have a long lifetime [15].

However, all of these methods are valid only for closed
quantum systems. A realistic system, inevitably, is coupled
to an environment. Especially for the noninteracting case, the
ground state of an open system is expected to be a reduced den-
sity matrix (a mixed state) rather than a pure state. An extension
of the Berry phase to mixed states in one-dimensional systems
[16,17] and related observables (e.g., Thouless pumping)
[18,19] has been proposed. For two-dimensional (2D) systems,
there are several different versions of topological invariants
for a general density matrix [20–25], and only one of them
corresponds to the U (1) holonomy [24]. To include interaction
effects, like for closed systems, the best option is to express
the topological invariant in terms of the Green’s function.

For a general system A immersed in an environment E, the
effective partition function can be obtained by integrating out
the degrees of freedom of E. The resulting effective action
retains the U (1) symmetry [26]. Accordingly, the first Chern
number of the system A can be defined by the Ishikawa-

Matsuyama formula,

ChA = εμνρ

24π2

∫
d3kTr

[
GA∂μG−1

A GA∂νG
−1
A GA∂ρG

−1
A

]
, (1)

where μ, ν, and ρ run through k0, k1, and k2, with k0 = iω

being the imaginary frequency, and the Matsubara Green’s
function is Gσσ ′

A (k,τ − τ ′) = −〈Tτ ĉA,kσ (τ )ĉ†A,kσ ′(τ ′)〉. Here,
σ and σ ′ represent the internal degrees of freedom of A. The
translational symmetry is assumed for both A and E. The index
(1) is a well-defined topological invariant [27] iff there are
neither poles nor zeros for GA(k,iω) for all k and imaginary
frequency iω.

We develop both the topological Hamiltonian method and
the Berry curvature method to evaluate Eq. (1). The topological
Hamiltonian gives an effective single-particle description of
the open system. On the other hand, the Berry curvature method
shows that for an open system, besides the bands determined
by the poles of the Green’s function (energy spectrum), the
“bands” ω(k) from the zeros (denoted as blind bands here), i.e.,
detGA(k,ω(k)) = 0, appear and contribute to the topological
properties. The value of ChA indicates the number difference
of gapless edge modes and gapless edge blind bands.

When the coupling to the environment becomes larger,
the blind bands may cross the Fermi surface [Fig. 1(c)], i.e.,
detGA(k,ω = 0) = 0 for some k, and thus, ChA becomes ill
defined even though the energy spectrum is still gapped. For a
general gapped system, we propose a topological invariant IA

based on the single-particle density matrix ρA(k) with ρσσ ′
A =

〈c†A,kσ ′cA,kσ 〉, which is equivalent to ChA when the system
is weakly coupled to the environment. For a noninteracting
system, there is a one-to-one correspondence between the
density matrix and the entanglement Hamiltonian [28,29].
Unlike the previous discussions of the relation between the
entanglement spectrum (entropy) and topological properties
of the full system (A + E) [30–32], we focus on the physical
implication of the eigenstates of the density matrix for A.
The index IA [see Eq. (6) below] is determined by the Berry
curvature of the dominant eigenstates of the density matrix
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FIG. 1. (a) The path for the contour integral in the ω plane. The
band structures (b) for the weak-coupling case and (c) for the strong-
coupling case. The solid blue lines refer to the poles with j ∈ OA, the
dashed red lines refer to the new bands (j /∈ OA) due to the coupling
to the environment, and the dotted yellow lines are blind bands.

ρA(k), as proposed in Ref. [24] for noninteracting systems,
giving the number of gapless edge modes for ρA.

This paper is organized as follows. In Sec. II, we show
that the topological Hamiltonian is applicable for the case
when GA(k,iω) has neither poles nor zeros. In Sec. III, we
express the Chern number (1) through the Berry curvature
of the bands of the energy spectrum and the blind bands. In
Sec. IV, a density-matrix description of topological invariant
is developed. In Sec. V, we discuss the applications of our
theory.

II. TOPOLOGICAL HAMILTONIAN METHOD

We suppose that GA(k,iω) in Eq. (1) has neither poles
nor zeros and try to find the corresponding topological
Hamiltonian through smooth deformation [14]. The deforma-
tion path is set to be Pλ: GA(k,iω,λ) = (1 − λ)GA(k,iω) +
λ[iω + G−1

A (k,iω = 0)]−1 for λ ∈ [0,1]. For iω = 0, we have
GA(k,iω,λ) = GA(k,iω), which is presumed to have neither
poles nor zeros. For iω �= 0, like in Ref. [14], using the
Lehmann representation of GA in the zero-temperature limit,
Eq. (D1), it is easy to check that sgn[Im〈a|GA(k,iω,λ)|a〉] =
−sgn(ω) for any vector |a〉 in the subspace A, which implies
that (the imaginary part of) every eigenvalue of GA(k,iω,λ)
is nonzero. Note that GA(k,iω,λ) also cannot diverge for a
well-defined GA(k,iω). Therefore, during the deformation,
ChA remains well defined, and thus, the deformation Pλ is
smooth. This means that the single-particle topological Hamil-
tonian H

topo
A (k) ≡ −G−1

A (k,iω = 0), whose Green’s function
is GA(k,iω,λ = 1), has the same topological properties as A.

On the other hand, the Green’s function for the full system
(A + E) can be written as a block matrix,

GF (k,τ − τ ′) =
(

GA GAE

GEA GE

)
, (2)

where Gσσ ′
A (k,τ − τ ′) = −〈Tτ ĉA,kσ (τ )ĉ†A,kσ ′(τ ′)〉, G

ση

AE =
−〈Tτ ĉA,kσ (τ )ĉ†E,kη(τ ′)〉, G

ησ

EA = −〈Tτ ĉE,kη(τ )ĉ†A,kσ (τ ′)〉, and

G
ηη′
E = −〈Tτ ĉE,kη(τ )ĉ†E,kη′(τ ′)〉. The indices η and η′ refer

to the internal degrees of freedom for the environment.
Introducing the projection operator PA for the A

subspace, we have GA = PAGF PA. Immediately, we
obtain the relation H

topo
A = [PA(H topo

F )−1PA]−1, where
H

topo
F (k) = −G−1

F (k,iω = 0) is the topological Hamiltonian
of the full system. In particular, for a noninteracting system

H 0
F , the topological property for the system A is determined

by [PA(H 0
F )−1PA]−1 instead of PAH 0

F PA. The former contains
the information on the coupling between A and E.

III. BERRY CURVATURE METHOD

For the integral (1), considering the contour integral in
Fig. 1(a) forω and using the residue theorem, the result depends
only on the behavior of the Green’s function at its poles and
zeros (see Appendix A). Generally, the integral (1) gives

ChA =
n∑

j=1

εαβ

2πi

∫
d2k

〈
∂αψA

j (k)
∣∣∂βψA

j (k)
〉

−
n−m∑
j=1

εαβ

2πi

∫
d2k

〈
∂αφA

j (k)
∣∣∂βφA

j (k)
〉
, (3)

where |ψA
j (k)〉 and |φA

j (k)〉 are the eigenvectors of the Green’s
function GA(k,ω) with divergent eigenvalues (i.e., poles of
GA) and zero eigenvalues (i.e., zeros of GA) for ω < 0,
respectively. Here, we have supposed that given a momentum
the number of the poles is n and that of the zeros is n − m

for ω < 0. Clearly, the value of ChA indicates the difference
between the number of gapless edge modes and gapless edge
blind bands.

Now, we compare Eq. (3) with the first Chern number of a
closed system: the full system. For the full system, the formula
of the first Chern number is similar to Eq. (1), but with GA

replaced by GF .
For the full system, the zeros of GF (k,ω) may appear only

for strong interactions with some special symmetries [8], and
then the Berry curvature method will give a result similar to that
of Eq. (3). In most cases, GF (k,ω) has no zeros. We suppose
that there are, in total, N bands for the full system, and the
first n bands are filled. Then the first Chern number of the full
system is described by the n filled (quasiparticle) states,

ChF =
n∑

j=1

εαβ

2πi

∫
d2k〈∂αψj (k)|∂βψj (k)〉, (4)

where α and β run through k1 and k2 (see Appendix A)
[15,33]. Note that the Green’s function is GF (k,ω) =
1/[ω − HF (k,ω)], where HF (k,ω) = H 0

F (k) + �(k,ω), with
�(k,ω) being the self-energy. The poles εj (k) are deter-
mined by det[HF (k,εj (k)) − εj (k)] = 0. The state |ψj (k)〉 in
Eq. (4) is the eigenstate of HF (k,ω = εj (k)) with the eigen-
value εj (k) < 0 (numerically, εj (k) is the value of ω where
det[HF (k,ω) − ω] changes sign). Here, we have supposed
that each band has a long lifetime to use the concept of a
quasiparticle, which breaks down for strong-interaction cases.

For the noninteracting case, the states in the set R ≡
{|ψj (k)〉}j=1,...,n are orthogonal to each other, and Eq. (4)
is invariant under a U (n) transformation for |ψj 〉 in R (see
Appendix B). For the interacting case, these states are not
orthogonal anymore, but with the assumption that they are still
linearly independent (which is expected for weak and moderate
interactions) and using Gram-Schmidt orthogonalization, we
prove that any orthogonal basis of the set R gives exactly the
same Chern number (4) in Appendix. As a result, the Chern
number is related only to the space spanned by the set R for
both cases. This finding allows us to simplify the problem.
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Choosing the contour integral for the Green’s function GF

as shown in Fig. 1(a), we get the following relation:

n∑
j=1

〈k,l|ψj (k)〉〈ψj (k)|k,l′〉
1 − ∂ωEj (k,ω)

∣∣∣∣
ω=εj (k)

= 1

2πi

∮
dzezτG

l,l′
F (k,z), (5)

where τ = 0+ and l includes all of the internal degrees
of freedom (σ and η). The energy Ej (k,ω) in the de-
nominator is the j th eigenvalue of HF (k,ω), which satis-
fies Ej (k,εj (k)) = εj (k). In addition, 1

2πi

∮
dzezτG

l,l′
F (k,z) =

1
2π

∫
dωeiωτG

l,l′
F (k,iω) = 〈c†kl′ckl〉. Thus, from Eq. (5), for the

single-particle density matrix ρF (k) with ρll′
F (k) = 〈c†kl′ckl〉,

the eigenstate set {|ψj (k)〉}j=1,...,n of ρF (k) with nonzero
eigenvalues spans exactly the same space as the set R. Conse-
quently, the Chern number (4) equals the sum of the integral of
Berry curvature of all states |ψj (k)〉. This provides a method
for evaluating the topological index beyond the topological
Hamiltonian method.

For an open system A, in general, detGA(k,ω) = 0 at some
frequencies. To see the emergence of these blind bands, let
us for simplicity focus on the noninteracting case. We still
suppose that there are in total N bands for the full system,
and the first n bands are filled. For the case that the system
A decouples from the environment E, we now prove that no
blind bands exist. Let the set RA ≡ {|ψj (k)〉}j∈OA

, with OA ≡
{1, . . . ,m,n + 1, . . . ,n + m′} (i.e., m filled bands and m′ un-
filled bands), belong to the system A and the other bandsRE ≡
{|ψj (k)〉}j∈OE

, with OE ≡ {m + 1, . . . ,n,n + m′ + 1, . . . ,N}
(i.e., n − m filled bands and N − n − m′ unfilled bands),
belong to the environment. Set |ϕj (k)〉 ≡ PA|ψj (k)〉, then
|ϕj (k)〉 = 0 for j ∈ OE , and the set {|ϕj (k)〉}j∈OA

forms a com-
plete orthogonal set in the subspace A. So the Green’s function
becomes GA(k,ω) = ∑

j∈OA

|ϕj (k)〉〈ϕj (k)|
ω−εj (k) . If GA(k,ω)|u〉 = 0

for a nonzero |u〉, this implies {|ϕj (k)〉}j∈OA
are linearly

dependent, which contradicts the orthogonality. Therefore, the
Green’s function GA has no zero eigenvalues.

When the system is weakly coupled to the environment,
we have GA(k,ω) = ∑N

j=1
|ϕj (k)〉〈ϕj (k)|

ω−εj (k) , and |ϕj (k)〉 now can
be nonzero even for j ∈ OE . Hence, the new poles εj (k)
from j ∈ OE emerge, accompanied by the appearance of the
zeros of GA [8]. The latter cancels the effects from the new
bands [see Eq. (3)], which is consistent with the robustness
of the topological index. Intuitively, the set {|ϕj (k)〉}j=1,...,N is
overcomplete, and it allows |u〉 to be an eigenstate of GA(k,ω)
with zero eigenvalue. Note that for the new poles εj with j ∈
OE , one has Vj ≡ 〈ϕj (k)|ϕj (k)〉 � 1 for the weak-coupling
case. Thus, for ω away from εj (j ∈ OE), the weak coupling
corrects the Green’s function slightly and cannot contribute
zeros. However, if ω − εj ∼ Vj for j ∈ OE , the correction
becomes significant. As a result, for the weak-coupling case,
the blind bands will always be close to those new bands
[Fig. 1(b)], and actually, they always appear in pairs [8].
Consequently, below the Fermi surface, the number of blind
bands and that of the new bands are the same. The number of
effective bands occupied in the system A is m ≡ Npole − Nblind,

whereNpole andNblind are the number of energy bands and blind
bands below the Fermi surface, respectively.

IV. DENSITY-MATRIX DESCRIPTION

For weak coupling and the noninteracting case, the blind
bands are always close to the new poles. This property allows
us to smoothly tune εj (k) for a well-defined GA(k,ω), avoiding
bands or blind bands crossing the zero point, so that the first
n poles [εj (k) < 0] are moved together to εG(k) < 0, and the
others are moved to εE(k) > 0, without changing the topolog-
ical index (1). The final Green’s function becomes GA(k,ω) =

ρA(k)
ω−εG(k) + ρA(k)

ω−εE (k) , where ρA(k) = ∑n
j=1 |ϕj (k)〉〈ϕj (k)| and

ρA(k) = ∑N
j=n+1 |ϕj (k)〉〈ϕj (k)|. By using the completeness∑N

j=1 |ψj (k)〉〈ψj (k)| = I, we find ρA = IA − ρA, where IA

is the unit matrix in the subspace A. In addition, we have
ρσσ ′

A = 1
2πi

∮
dzezτGσσ ′

A (k,z) = 〈c†A,kσ ′cA,kσ 〉.
The topological Hamiltonian for the final Green’s func-

tion GA(k,iω) is H
topo
A = [ε−1

E IA − xρA]−1, where x = ε−1
E −

ε−1
G > 0. Consequently, the eigenstates of H

topo
A with negative

eigenvalues are exactly the eigenstates of ρA with the largest
m eigenvalues. For the interacting case, using the Lehmann
representation of the Green’s function GA and by properly
tuning the position of the many-body eigenenergy, a similar
discussion can be applied, and the same conclusion can be
obtained (see Appendix D).

For strong coupling, the blind bands may cross the zero
point even for a gapped system, in which case the Chern
number (1) becomes ill defined. To extend the concept of the
topological index to a general gapped system, we propose the
following formula as a generalized topological index:

IA =
m∑

j=1

εαβ

2πi

∫
d2k〈∂αψj (k)|∂βψj (k)〉, (6)

where |ψj (k)〉 are the eigenstates of ρA(k) with the m largest
eigenvalues. From the above discussion, for the weak-coupling
case, we have IA = ChA. Moreover, formula (6) is the same as
the definition of topology for a “density matrix” in [23,24]. For
the strong-coupling case with a well-defined ChA, these two
quantities may be different if the system in this phase region
cannot be mapped to an isolated system by smoothly changing
(without the blind bands and the energy spectrum crossing the
zero point) the parameters such as the coupling strength.

Without interaction and without coupling to the environ-
ment, the eigenvalues of ρA are 1 (with degeneracy m) and
0, which gives the gapped flat-band structure. The interaction
and coupling will change the single-particle distribution, and
the null eigenvalues become finite. However, the m majority
eigenstates are still gapped from the minority eigenstates.
The topological phase transition occurs when the mth largest
eigenvalue of ρA(k) becomes degenerate with the (m + 1)th
largest eigenvalue of ρA(k) or the gap of the energy spectrum
closes (which may lead to an energy band inversion for GA and
thus a sudden change in the eigenstates of ρA). In contrast, by
the definition of the Chern number (1), the topological phase
transition can occur when the blind bands close and reopen a
gap between them without any energy band inversion [8].
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V. APPLICATIONS

A. Z2 topological invariant

For a time-reversal (T )-invariant 2D system, the Z2 topo-
logical index in the form of a Green’s function is a five-
dimensional integral [7]. For the case with conserved spin, the
Z2 index ν can be expressed through the topological index of
the decoupled spin subsystem [see Eq. (1)], i.e., ν = Ch↑mod2
[9,34–36], which simplifies the calculation greatly. Here, the
Chern number Chσ reflects the number of edge states for each
spin. The spin conservation can be violated by different types
of spin-orbit coupling (SOC) [9]. In the following, we point
out that for the weak SOC case, ν = Ch↑mod2, and for a
general gapped case, ν = I↑mod2, relating the topology of the
subsystem and that of the full system [37,38].

Let G↑ and G↓ be the Green’s functions for each spin
subsystem. Due to T symmetry, we have the following rela-
tions (see Appendix C): G∗

↑(k,iω) = G↓(−k, − iω), ρ∗
↑(k) =

ρ↓(−k), and G↑(k,ω + iδ) = GT
↓ (−k,ω + iδ). The first two

relations imply Ch↑ = −Ch↓ and I↑ = −I↓ from Eqs. (1)
and (6). The last relation shows a close relation between the
density of states for each subsystem, which indicates that the
subsystems and the full system close and reopen a gap at the
same time. The topological state for the full system is changed
when the topological properties in the subsystem are changed
due to the SOC coupling to the other subsystem. Thus, the Z2

index can be obtained from the index IA of the subsystem.
In Fig. 3 in Appendix C, we plot the numerical results for the

topological index IA of the subsystem of the Kane-Mele model,
showing the exact relation to the Z2 index, ν = I↑mod2.

B. Proximity effect

A simple but fundamental question is what happens
when an ordinary insulator is coupled to a topologi-
cal insulator. As an example, here, we consider a sys-
tem on a bilayer honeycomb lattice, with each layer de-
scribed by the Haldane model [39]: Hα = [−t1

∑
〈i,j〉 c

†
iαcjα −

t2
∑

〈〈i,j〉〉 eiθφα c
†
iαcjα + H.c.] + mα

∑
i(−1)ic†iαciα , where t1

is the nearest-neighbor tunneling, t2 is the next-nearest-
neighbor tunneling with a phase θφα and θ = ±1, mα is
the staggered potential, and α = 1,2 is the layer index. The
parameters are t1 = 4t2, φ1 = π/2, m1 = 0, φ2 = 0, and m2 =
0.2t2, so that the first layer is a Chern insulator, and the second
one is an ordinary insulator.

To observe the interference effect, we further introduce a
tunneling term between layers, H12 = t12

∑
i c

†
i2ci1 + H.c. The

topological index IA with respect to the tunneling coefficient
t12 is shown in Fig. 2(a). In the whole region of t12/t2, the
index IA for the first layer is unchanged. For the second
layer, there are no edge modes or edge blind bands when
t12 = 0. For a small finite t12, since the full system has gapless
poles on the edge, the second layer also has a gapless edge
state, and simultaneously, a gapless blind state appears. The
Chern number ChA = IA is still zero, in agreement with the
new bulk-boundary correspondence we derived. The second
layer subsystem obtains a nonzero topological index when
t12 � 0.83t2, while the full system displays a transition from
a Chern insulator to a trivial one through band inversion. For

FIG. 2. (a) Topological index for the bilayer system consisting
of an ordinary insulator and a Chern insulator. The green line is the
Chern number for the full system. The blue line is the index IA for the
first layer, and the orange line is for the second layer. (b) The band
structure for the full system with zigzag edges. (c) The spectrum of
the density matrix for the second layer. (d) The blind bands of the
Green’s function for the second layer. Here, t12 = 2.5t2 for (b)–(d).

t12 � 0.83t2, the stable edge state disappears, but the gapless
blind band remains, and thus, IA = −1 for the second layer. For
t12 = 2.5t2, the spectrum of the full system with zigzag edges
is shown in Fig. 2(b), which has no edge states. However, the
spectrum of the density matrix for each layer contains a gapless
edge state, which is shown in Fig. 2(c). For the second layer,
the blind bands become gapless at the edge [Fig. 2(d)].

VI. CONCLUSION

We have systemically discussed the topology of 2D open
systems. The invariant given by the Ishikawa-Matsuyama
formula reflects the number difference of gapless edge modes
and gapless edge blind bands. Moreover, we defined another
topological invariant in terms of the single-particle density
matrix which is applicable for general gapped systems and
is equivalent to the former invariant for the case of weak
coupling to the environment. Two applications were discussed.
For time-reversal-invariant insulators, we explained that the
relation of the Chern invariant for each spin subsystem and
the Z2 index of the full system is given by ν = I↑mod2,
which highly simplifies the calculation for the Z2 index. In
addition, we considered the proximity effect when an ordinary
insulator is coupled to a topological insulator, which shows
an inverse topological invariant is induced by the nontrivial
part [40].

The examples given here are for noninteracting cases. The
method can be applied to the interacting system, also at finite
temperature, and the single-particle density matrix can be
obtained, for example, by using dynamical mean-field theory.
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APPENDIX A: BERRY CURVATURE METHOD

In this section, we derive the expression of the first Chern
number in terms of Berry curvature [i.e., Eqs. (3) and (4) in
the main text], following the method developed in [15]. To

calculate the integral

Ch = εμνρ

24π2

∫
d3kTr[G∂μG−1G∂νG

−1G∂ρG
−1]

= − εμνρ

24π2

∫
d3kTr[∂μG∂νG

−1G∂ρG
−1], (A1)

it is helpful to introduce a similarity transformation U , so that
G = UGdU

−1, where Gd is diagonalized. Substituting it into
Eq. (A1), we obtain

Ch = − εμνρ

24π2

∫
d3kTr

[{(∂μU )GdU
−1 + U (∂μGd )U−1 + UGd (∂μU−1)}{(∂νU )G−1

d U−1 + U
(
∂νG

−1
d

)
U−1

+UG−1
d (∂νU

−1)
}
UGdU

−1{(∂ρU )G−1
d U−1 + U

(
∂ρG

−1
d

)
U−1 + UG−1

d (∂ρU
−1)

}]
. (A2)

There are 27 terms in total in Eq. (A2). Twelve of the terms give total derivatives, three terms vanish due to asymmetrization, and
six terms cancel with each other. The remaining terms are

Ch = εμνρ

4π2

∫
d3kTr

[(
G−1

d ∂μGd

)
(∂νU

−1)(∂ρU )
] = εμνρ

4π2

∮
dz

∫
d2kez0+

Tr
[(

G−1
d ∂μGd

)
(∂νU

−1)(∂ρU )
]
. (A3)

Here, the contour integral in the complex plane of ω (denoted
by z here) is shown in Fig. 1(a) in the main text. The poles and
zeros of the Green’s function appear only at real frequencies.
For real frequency, the Green’s function is Hermitian, and the
elements of U are Uσj = 〈k,σ |ψj (k,ω)〉, where |ψj (k,ω)〉 is
the j th eigenstate of G with eigenvalue Gd,j (k,ω) and σ is the
internal degree of freedom. Explicitly, Eq. (A3) becomes

Ch = εμνρ

4π2

∑
j,σ

∮
dz

∫
d2kez0+(

G−1
d,j ∂μGd,j

)
× (∂ν[U−1]jσ )(∂ρUσj ). (A4)

If Gd,j (k,ω) has no zeros but has poles below the Fermi
energy (i.e., the zero point), then around the pole Gd,j (k,ω) ∼
λ(k,ω)
ω−ε(k) , we have∑

σ

(
G−1

d,j ∂ωGd,j

)(
∂kx

[U−1]jσ

)(
∂ky

Uσj

)

∼
∑

σ

−1

ω − ε(k)

[
∂kx

〈ψj (k,ω)|k,σ 〉][∂ky
〈k,σ |ψj (k,ω)〉]

= −1

ω − ε(k)

〈
∂kx

ψj (k,ω)|∂ky
ψj (k,ω)

〉
(A5)

and ∑
σ

(
G−1

d,j ∂kx
Gd,j

)(
∂ky

[U−1]jσ

)
(∂ωUσj )

∼ ∂kx
ε(k)

ω − ε(k)

〈
∂ky

ψj (k,ω)
∣∣∂ωψj (k,ω)

〉
. (A6)

Thus, for each pole, using the residue theorem for Eq. (A4),
we obtain

1

2πi

∫
d2k

{〈
∂kx

ψj (k,ω)
∣∣∂ky

ψj (k,ω)
〉

+ ∂ky
ε(k)

〈
∂kx

ψj (k,ω)
∣∣∂ωψj (k,ω)

〉
+ ∂kx

ε(k)
〈
∂ωψj (k,ω)

∣∣∂ky
ψj (k,ω)

〉}∣∣
ω=ε(k)

− (kx ↔ ky). (A7)

Defining the quasiparticle band |ψj (k)〉 = |ψj (k,ε(k))〉, we
can simplify Eq. (A7) to

1

2πi

∫
d2k

〈
∂kx

ψj (k)
∣∣∂ky

ψj (k)
〉 − (kx ↔ ky). (A8)

Summing all of these quasiparticle bands below Fermi energy,
we get the result [Eq. (4)] given in the main text.

If G has zeros [note that Eq. (A4) is dual for G and
G−1], then around the zeros, Gd,j (k,ω) ∼ λ(k,ω)[ω − ε(k)],
a similar discussion can be used, and we obtain∑

σ

(
G−1

d,j ∂ωGd,j

)(
∂kx

[U−1]jσ

)(
∂ky

Uσj

)

∼ 1

ω − ε(k)

〈
∂kx

ψj (k,ω)
∣∣∂ky

ψj (k,ω)
〉

(A9)

and ∑
σ

(
G−1

d,j ∂kx
Gd,j

)(
∂ky

[U−1]jσ

)
(∂ωUσj )

∼ − ∂kx
ε(k)

ω − ε(k)

〈
∂ky

ψj (k,ω)
∣∣∂ωψj (k,ω)

〉
. (A10)

The only difference from Eqs. (A5) and (A6) is the sign, which
explains the result [Eq. (3)] in the main text.

APPENDIX B: U(n) SYMMETRY AND GRAM-SCHMIDT
ORTHONORMALIZATION

For the noninteracting case, |ψ1(k)〉,|ψ2(k)〉, . . . , |ψn(k)〉
are orthogonal with each other. In the following, we prove that
in this case, ChF [Eq. (4) in the main text] is invariant under
a smooth U (n) transformation |ψj (k)〉 = ∑

l Ujl(k)|ψ̃l(k)〉
[note that Ujl(k) can be chosen to be well defined in the whole
Brillouin zone]. Substituting the transformation into the Berry
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curvature, we obtain
n∑

j=1

∫
d2k

〈
∂kx

ψj (k)
∣∣∂ky

ψj (k)
〉

=
n∑

j,l,l′=1

∫
d2k

〈
∂kx

[Ujlψ̃l(k)]
∣∣∂ky

[Ujl′ψ̃l′ (k)]
〉

=
n∑

j,l,l′=1

∫
d2k

〈
∂kx

ψ̃l(k)
∣∣∂ky

ψ̃l′(k)
〉
U ∗

j lUjl′

+
n∑

j,l,l′=1

∫
d2k

〈
ψ̃l(k)

∣∣∂ky
ψ̃l′(k)

〉(
∂kx

U ∗
j l

)
Ujl′

+
n∑

j,l,l′=1

∫
d2k

〈
∂kx

ψ̃l(k)
∣∣ψ̃l′(k)

〉(
U ∗

j l∂ky
Ujl′

)

+
n∑

j,l,l′=1

∫
d2k〈ψ̃l(k)|ψ̃l′(k)〉∂kx

U ∗
j l∂ky

Ujl′ . (B1)

Using the unitary of U , we get
n∑

j,l,l′=1

∫
d2k

〈
∂kx

ψ̃l(k)
∣∣∂ky

ψ̃l′ (k)
〉
U ∗

j lUjl′

=
n∑
l

∫
d2k

〈
∂kx

ψ̃l(k)
∣∣∂ky

ψ̃l(k)
〉

(B2)

and
n∑

j,l,l′=1

∫
d2k

〈
ψ̃l(k)

∣∣∂ky
ψ̃l′ (k)

〉(
∂kx

U ∗
j l

)
Ujl′

=
n∑

j,l,l′=1

∫
d2k

〈
∂ky

ψ̃l(k)
∣∣ψ̃l′(k)

〉(
U ∗

j l∂kx
Ujl′

)
. (B3)

Combining Eq. (B3) with the third term of Eq. (B1) and using
the antisymmetry for the exchange of kx and ky , we find that
the second and third terms of Eq. (B1) will not contribute to
ChF . The last term in Eq. (B1) is

n∑
j,l,l′=1

∫
d2k〈ψ̃l(k)|ψ̃l′(k)〉∂kx

U ∗
j l∂ky

Ujl′

=
n∑

j,l=1

∫
d2k∂kx

U ∗
j l∂ky

Ujl

=
n∑

j,l=1

∫
d2k∂kx

(
U ∗

j l∂ky
Ujl

) −
n∑

j,l=1

∫
d2kU ∗

j l∂kx
∂ky

Ujl,

the first term of which vanishes due to the periodic boundary
condition and the second term of which will be canceled by
the antisymmetry in kx,ky . Finally, we have

n∑
j=1

∫
d2k

〈
∂kx

ψj (k)
∣∣∂ky

ψj (k)
〉

=
n∑
l

∫
d2k

〈
∂kx

ψ̃l(k)
∣∣∂ky

ψ̃l(k)
〉
, (B4)

showing the U (n) symmetry.

Before going to the interacting case, we want to stress that∫
d2k

[〈
∂kx

ψj (k)
∣∣∂ky

ψj (k)
〉 − 〈

∂ky
ψj (k)

∣∣∂kx
ψj (k)

〉]
(B5)

is quantized and it is stable for a smooth deformation of |ψj (k)〉
[41].

For the interacting case, |ψ1(k)〉,|ψ2(k)〉, . . . ,|ψn(k)〉 are
not orthogonal to each other. In the following, we prove
that these states can be smoothly deformed to an orthogonal
basis without changing ChF , supposing that they are still
linear independent. Using Gram-Schmidt orthogonalization,
we define an orthogonal orthogonal basis: |�1(k)〉 = |ψ1(k)〉,
|�2(k)〉 = |ψ2(k)〉−〈�1(k)|ψ2(k)〉|�1(k)〉

|||ψ2(k)〉−〈�1(k)|ψ2(k)〉|�1(k)〉|| , . . . . It is easy to check
that 〈�j (k)|ψj (k)〉 = 〈ψj (k)|�j (k)〉 > 0 for j = 1, . . . ,n.
The smooth deformation then is defined by (t ∈ [0,1])

|�i(k,t)〉 = (1 − t)|ψi(k)〉 + t |�i(k)〉
||(1 − t)|ψi(k)〉 + t |�i(k)〉|| . (B6)

This deformation is well defined since ||(1 − t)|ψi(k)〉 +
t |�i(k)〉|| = (1 − t)2 + t2 + (1 − t)t[〈ψi(k)|�i(k)〉 + 〈�i(k)
|ψi(k)〉] > 0. Thus, we have defined a smooth deformation,
so that |ψ1(k)〉, |ψ2(k)〉, . . . , |ψn(k)〉 go to |�1(k)〉, |�2(k)〉,
. . . , |�n(k)〉 without changing the Chern number. And using
the U (n) symmetry of the Chern number for the orthogonal
basis, we get the conclusion that the Chern number is related
only to the space spanned by |ψ1(k)〉,|ψ2(k)〉, . . . ,|ψn(k)〉.

APPENDIX C: TIME-REVERSAL-INVARIANT SYSTEM

For a T -symmetric system, it is easy to check that if
|ψn〉 is a set of complete orthogonal bases, then T |ψn〉
is too. On the other hand, for any |ψ〉 and |φ〉, we
have 〈ψ |T −1|φ〉 = (〈T ψ |φ〉)∗. Using the definitions ciσ (τ ) =
eτH ciσ e−τH , ciσ (t) = eiHtciσ e−iH t , and T ciT −1 = iσyci ,
where H is the many-body Hamiltonian, ci = (ci↑,ci↓)T , and
the index i includes the lattice index and other internal degrees
of freedom besides spin, we have

G↓,ij (τ ) = −
∑

n

〈ψn|Tτ [ci↓(τ )c†j↓(0)e−β(H−�)]|ψn〉

= −
∑

n

〈ψn|T −1Tτ [ci↑(τ )c†j↑(0)e−β(H−�)]T |ψn〉

= −
(∑

n

〈T ψn|Tτ [ci↑(τ )c†j↑(0)e−β(H−�)]|T ψn〉
)∗

= G∗
↑,ij (τ ). (C1)

Here, e−β� = ∑
n〈ψn|e−βH |ψn〉. Similarly, for the retarded

Green’s function,

G
↑
ret,ij (t) = −i�(t)〈ψn|{ci↑(t),c†j↑(0)}e−β(H−�)|ψn〉

= −i�(t)〈ψn|T −1{ci↓(−t),c†j↓(0)}e−β(H−�)T |ψn〉
= −i�(t)(〈ψn|{ci↓(−t),c†j↓(0)}e−β(H−�)|ψn〉)∗

= −i�(t)〈ψn|{cj↓(0),c†i↓(−t)}e−β(H−�)|ψn〉
= G

↓
ret,j i(t). (C2)
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FIG. 3. The topological number IA for the spin-up subsystem.

After that, using Fourier transformation for position and
time, we get G∗

↑(k,iω) = G↓(−k, − iω), ρ∗
↑(k) = ρ↓(−k),

and G↑(k,ω + iδ) = GT
↓ (−k,ω + iδ).

The numerical results for the topological index IA of the
spin-up subsystem of the Kane-Mele model is shown in Fig. 3.

APPENDIX D: THE DENSITY-MATRIX DESCRIPTION
FOR THE INTERACTING CASE

We treat Gσσ ′
A (k,τ − τ ′) = −〈Tτ ĉA,kσ (τ )ĉ†A,kσ ′(τ ′)〉 in the

full system. The Lehmann representation of the Green’s func-
tion in the zero-temperature limit is [14]

Gσσ ′
A (k,ω) =

∑
j̃

〈0|cA,kσ |j̃〉〈j̃ |c†A,kσ ′ |0〉
ω − (Ej̃ − E0)

+
∑

j

〈j |cA,kσ |0〉〈0|c†A,kσ ′ |j 〉
ω + (Ej − E0)

, (D1)

where |j 〉 and |j̃〉 are the many-body wave functions with
energies Ej and Ej̃ and |0〉 is the ground state of the full system
with energy E0. For an M-particle system, |j 〉 refers to the
(M − 1)-particle state, and |j̃ 〉 refers to the (M + 1)-particle
state. Note that −Ej + E0 < 0 and Ej̃ − E0 > 0. By defining

vectors in the A subspace |ϕj 〉 and |ϕj̃ 〉 with 〈k,σ |ϕj 〉 ≡
〈j |cA,kσ |0〉 and 〈k,σ |ϕj̃ 〉 ≡ 〈0|cA,kσ |j̃ 〉, we have

GA(k,ω) =
∑

j

|ϕj 〉〈ϕj |
ω − (−Ej + E0)

+
∑

j̃

|ϕj̃ 〉〈ϕj̃ |
ω − (Ej̃ − E0)

.

(D2)

Without interaction and coupling, the union of {ϕj } and {ϕj̃ }
is an orthogonal set. For the case with interactions or coupling
with environments, they are not orthogonal to each other any
longer. For the weak-coupling and weak-interaction case, we
can move all of −Ej + E0 together to εG < 0 and all of Ej̃ −
E0 to εE > 0 without the bands and blind bands crossing the
zero point, and finally, we get

GA(k,ω) = ρA(k)

ω − εG

+ ρ̄A(k)

ω − εE

, (D3)

where ρA(k) = ∑
j |ϕj 〉〈ϕj | and ρ̄A(k) = ∑

j̃ |ϕj̃ 〉〈ϕj̃ |. In the
following, we show that ρ̄A(k) = IA − ρA(k), so that all of the
discussion about the noninteracting case can be applied to the
weak-interacting system.

By defining vectors in the full space (A + E), |ψj 〉 and
|ψj̃ 〉, with 〈k,σ |ψj 〉 ≡ 〈j |cA,kσ |0〉, 〈k,η|ψj 〉 ≡ 〈j |cE,kη|0〉,
〈k,σ |ψj̃ 〉 ≡ 〈0|cA,kσ |j̃〉, and 〈k,η|ψj̃ 〉 ≡ 〈0|cE,kη|j̃〉, we have
|ϕj 〉 = PA|ψj 〉, |ϕj̃ 〉 = PA|ψj̃ 〉. The Green’s function for the
full system becomes:

GF (k,ω + iδ) =
∑

j

|ψj 〉〈ψj |
ω + iδ − (−Ej + E0)

+
∑

j̃

|ψj̃ 〉〈ψj̃ |
ω + iδ − (Ej̃ − E0)

. (D4)

For any vector |k,l〉 in the full space (A + E), the spectral
function of GF satisfies [42]

1 = −
∫ ∞

−∞
dω

1

π
Im[〈k,l|GF (k,ω + iδ)|k,l〉], (D5)

which implies

I =
∑

j

|ψj 〉〈ψj | +
∑

j̃

|ψj̃ 〉〈ψj̃ |. (D6)

By projecting on the A subspace, we get the result ρ̄A(k) =
IA − ρA(k).
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