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Thermal properties of graphene under tensile stress
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Thermal properties of graphene display peculiar characteristics associated to the two-dimensional nature of this
crystalline membrane. These properties can be changed and tuned in the presence of applied stresses, both tensile
and compressive. Here, we study graphene monolayers under tensile stress by using path-integral molecular
dynamics (PIMD) simulations, which allows one to take into account quantization of vibrational modes and
analyze the effect of anharmonicity on physical observables. The influence of the elastic energy due to strain in
the crystalline membrane is studied for increasing tensile stress and for rising temperature (thermal expansion). We
analyze the internal energy, enthalpy, and specific heat of graphene, and compare the results obtained from PIMD
simulations with those given by a harmonic approximation for the vibrational modes. This approximation turns out
to be precise at low temperatures, and deteriorates as temperature and pressure are increased. At low temperature,
the specific heat changes as cp ∼ T for stress-free graphene, and evolves to a dependence cp ∼ T 2 as the tensile
stress is increased. Structural and thermodynamic properties display non-negligible quantum effects, even at
temperatures higher than 300 K. Moreover, differences in the behavior of the in-plane and real areas of graphene
are discussed, along with their associated properties. These differences show up clearly in the corresponding
compressibility and thermal expansion coefficient.
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I. INTRODUCTION

Two-dimensional materials, and graphene in particular,
have attracted in last years a great deal of attention in the
scientific community, due to their peculiar electronic, elastic,
and thermal properties [1–3]. Thus, graphene presents high
values of the thermal conductivity [4,5] and large in-plane
elastic constants [6]. Moreover, its mechanical properties are
interesting for possible applications, as cooling of electronic
devices [7,8].

The ideal structure of pure defect-free graphene is a planar
honeycomb lattice, but departures from this flat configuration
may appreciably alter its atomic-scale and macroscopic proper-
ties [9]. Several reasons can cause bending of a graphene sheet,
such as the presence of defects and external stresses [10]. In
addition, thermal fluctuations at finite temperatures give rise
to out-of-plane displacements of the C atoms, and for T → 0,
zero-point motion yields also a departure of strict planarity of
the graphene sheet [11].

The influence of strain in several characteristics of two-
dimensional (2D) materials, such as graphene and metallic
dichalcogenides, has been emphasized in recent years. This
includes electronic transport, optical properties, and the for-
mation of moiré patterns [12,13]. From a structural viewpoint,
external stresses may cause significant changes in crystalline
membranes, which can crumple in the presence of a compres-
sive stress, as is well known for lipid membranes [14,15] and
polymer films [16,17]. For graphene, crumpling was observed
in supported as well as freestanding samples, and has been
explained as due to both out-of-plane phonons and static
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wrinkling [18,19]. Recent molecular dynamics simulations in-
dicate that the maximum compressive stress that a freestanding
graphene sheet can sustain without crumpling decreases as the
system size grows, and was estimated to be about 0.1 N/m at
room temperature in the thermodynamic limit [20].

A tensile stress in the graphene plane does not break the
planarity of the sheet, but gives rise to significant variations
in the elastic properties of the material [21]. For example, the
in-plane Young modulus increases by a factor of 3 for a tensile
stress of 1 N/m [20]. In this respect, the real area per atom
A can be crucial to understand the elastic properties, which
have been in the past usually referred to its projection Ap

onto the mean plane of the membrane (Ap � A). This question
has been discussed along the years for biological membranes
[15,22–25], and has been recently examined for crystalline
membranes such as graphene [11,19,26–28]. In particular, the
high-quality data obtained by Nicholl et al. [19,27] clearly indi-
cate that some experimental techniques can measure properties
related to the real area A, whereas other techniques may be used
to quantify variables connected to the projected area Ap. The
difference A − Ap has been called hidden area for graphene
in Ref. [27], as well as excess area for biological membranes
[22,23]. A precise knowledge of the behavior of both areas is
important to clarify the temperature and stress dependence of
structural and thermodynamic properties of graphene. Thus,
it is possible to define the elastic properties in relation to the
area A or to Ap, which may behave very differently. In fact,
it is known that referring to the in-plane area Ap, one finds a
negative thermal expansion coefficient, but for the real area A

the thermal expansion is positive [11,26].
A deep comprehension of the properties of 2D systems has

been for many years a persistent goal in statistical physics
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[15,24,29]. This has been in part due to the complexity of the
considered systems, such as biological membranes and soft
condensed matter [24,25]. In this respect, graphene can be
dealt with as a model system where descriptions at an atomic
level can be connected with physical properties of the material.
Thus, thermal properties of graphene have been investigated
in recent years [30–34], and in particular its thermal expansion
and heat conduction were studied by various theoretical and
experimental techniques [4,31,35–38].

Several theoretical works carried out to study thermo-
dynamic properties of graphene (e.g., specific heat, ther-
mal expansion, …), were based on density-functional-theory
(DFT) calculations combined with a quantum quasiharmonic
approximation (QHA) for the vibrational modes [39–41]. This
is expected to yield reliable results at low temperature, but may
be questioned at relatively high temperature, especially for the
thermal expansion, due to an important anharmonic coupling
between in-plane and out-of-plane modes, not included in
the QHA. Moreover, classical Monte Carlo and molecular
dynamics simulations based on ab initio [26,42–44], tight-
binding [45–48], and empirical potentials [10,28,49,50] can
give reliable results at relatively high temperature, but fail to
describe thermodynamic properties at T < �D , with �D �
1000 K the Debye temperature of the material. This means,
in particular, that room-temperature results obtained for some
properties of graphene from classical atomistic simulations
may be clearly unrealistic. These shortcuts may be overcome
by using simulation methods which explicitly include nuclear
quantum effects, in particular those based on Feynman path
integrals [11,51–53].

Here, we use the path-integral molecular dynamics (PIMD)
method to study thermal properties of graphene under tensile
stress at temperatures between 12 and 2000 K. The thermal
behavior of the graphene surface is studied, considering the
difference between in-plane and real areas. The in-plane
thermal expansion coefficient turns out to be negative at
low temperatures, with a crossing to positive values at a
temperature which decreases fast as tensile stress is raised.
Particular emphasis is laid on the temperature dependence of
the specific heat at low T , for which results of the simulations
are compared with predictions based on harmonic vibrations of
the crystalline membrane. This approximation happens to be
noticeably accurate at low temperatures, once the frequencies
of out-of-plane ZA modes are properly renormalized for
changing applied stress.

The paper is organized as follows. In Sec. II we describe the
computational method employed in the simulations. Results
for the internal energy and enthalpy of graphene are given
in Sec. III. The thermal expansion is discussed in Sec. IV.
In Sec. V we present results for the specific heat, whereas
in Sec. VI the compressibility of graphene is discussed. In
Sec. VII we summarize the main results.

II. COMPUTATIONAL METHOD

A. Path-integral molecular dynamics

We use PIMD simulations to study equilibrium properties
of graphene monolayers as a function of temperature and
pressure. The PIMD procedure is based on the Feynman path-

integral formulation of statistical mechanics [54], an adequate
nonperturbative approach to study finite-temperature proper-
ties of many-body quantum systems. In the applications of
this method to numerical simulations, each quantum particle is
represented by a set of NTr (Trotter number) replicas (or beads),
that behave as classical-like particles forming a ring polymer
[51,52]. Thus, one deals with a classical isomorph whose
dynamics is artificial since it does not reflect the real quantum
dynamics of the actual particles, but is useful for effectively
sampling the many-body configuration space, yielding precise
results for time-independent equilibrium properties of the
quantum system. Details on this type of simulation techniques
are given in Refs. [51,52,55,56].

The interatomic interactions between carbon atoms are
described here by using the LCBOPII effective potential,
a long-range bond order potential, which has been mainly
employed to carry out classical simulations of carbon-based
systems [57]. In particular, it was used to study the phase
diagram of carbon, including graphite, diamond, and the
liquid, and showed its accuracy in predicting rather precisely
the graphite-diamond transition line [58]. In recent years,
this interatomic potential has been also found to describe
well several properties of graphene [10,50], and its Young’s
modulus in particular [20,59,60]. This interatomic potential
was lately employed to carry out PIMD simulations, which
allowed to quantify quantum effects in graphene monolayers
by comparing with results of classical simulations [11], as well
as to study thermodynamic properties of this 2D material [61].
Here, in line with earlier simulations [11,20,28], the original
parametrization of the LCBOPII potential has been slightly
changed to rise the zero-temperature bending constant κ from
1.1 to 1.49 eV, a value close to experimental data [62].

The calculations presented here have been performed in the
isothermal-isobaric ensemble, where one fixes the number of
carbon atoms (N ), the applied stress (P ), and the temperature
(T ). The stress P in the reference xy plane of graphene, with
units of force per unit length, coincides with the so-called
mechanical or frame tension [20,23,63]. P is obtained in the
simulations from the stress tensor τ , whose components are
given by expressions such as [61,64]

τxy =
˝

1

NAp

⎛
⎝ N∑

i=1

NTr∑
j=1

(mjvij,xvij,y − 2kjuij,xuij,y)

− 1

NTr

NTr∑
j=1

∂U (r1j , . . . ,rNj )

∂εxy

⎞
⎠
˛
, (1)

where the angular brackets 〈. . . 〉 indicate an ensemble average
and uij are staging coordinates [65], with i = 1, . . . ,N and j =
1, . . . ,NTr. In Eq. (1), mj is the dynamic mass associated to uij

and vij,x , vij,y are components of its corresponding velocity.
The constant kj is given by kj = mjNTr/2β2h̄2 for j > 1 and
k1 = 0. Here, β = (kBT )−1, U is the instantaneous potential
energy, and εxy is an element of the 2D strain tensor. The stress
P , conjugate to the in-plane area Ap, is given by the trace of
the stress tensor:

P = 1
2 (τxx + τyy). (2)
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Effective algorithms have been employed for the PIMD
simulations, as those described in the literature [64,66,67].
In particular, a constant temperature T was accomplished
by coupling chains of four Nosé-Hoover thermostats, and an
additional chain of four barostats was coupled to the area of
the graphene simulation box to yield the required stress P

[55,64]. The equations of motion were integrated by employing
the reversible reference system propagator algorithm (RESPA),
allowing to define different time steps for the integration of
the fast and slow degrees of freedom [68]. The kinetic energy
K has been calculated by using the virial estimator, which
displays a statistical uncertainty significantly smaller than the
potential energy V = 〈U 〉 [64]. The time step �t associated to
the interatomic forces has been taken as 0.5 fs, which was found
to be suitable for the carbon atomic mass and the temperature
range considered here. More details on this kind of PIMD
simulations can be found elsewhere [64,69,70].

Rectangular simulation cells with N = 960 atoms have
been considered, with similar side lengths in the x and y

directions (Lx ≈ Ly ≈ 50 Å), and periodic boundary condi-
tions were assumed. Sampling of the configuration space was
performed in the temperature range between 12 and 2000 K.
A temperature-dependent Trotter number has been defined as
NTr = 6000 K/T , which yields a roughly constant precision
for the PIMD results at different temperatures [69–71]. Given a
temperature T and a stress P , a typical simulation run included
3 × 105 PIMD steps for system equilibration and 6 × 106 steps
for calculation of average properties.

B. In-plane vs real area

As explained above, in the isothermal-isobaric ensemble
used here we fix the applied stress P in the xy plane,
allowing fluctuations in the in-plane area of the simulation cell
for which periodic boundary conditions are applied. Carbon
atoms are free to move in the z coordinate (out-of-plane
direction), and in general any measure of the real surface of
a graphene sheet at T > 0 should give a value larger than
the in-plane area. In this respect, it has been discussed for
biological membranes that their properties should be described
using the notion of a real surface rather than a projected
(in-plane) surface [25,72]. A similar question has been also
recently posed for crystalline membranes such as graphene
[11,20,26,27]. This may be relevant for addressing the calcu-
lation of thermodynamic variables, as the in-plane area Ap is
the variable conjugate to the stress P used in our simulations.
The real area (also called true, actual, or effective area in the
literature [23,25,72]) is conjugate to the usually called surface
tension [15].

The in-plane area has been most used to present the results
of atomistic simulations of graphene layers [25,50,53,59,73].
For biological membranes, however, it has been shown that
values of the compressibility may significantly differ when
they are related to A or to Ap, and something similar has
been recently found for the elastic properties of graphene from
classical molecular dynamics simulations [20].

Here, we calculate a real area A in three-dimensional (3D)
space by a triangulation based on the actual positions of the
C atoms along a simulation run (in fact we use the beads
associated to the atomic nuclei). Specifically, A is obtained

from a sum of areas corresponding to the structural hexagons.
Each hexagon contributes as a sum of six triangles, each one
formed by the positions of two adjacent C atoms and the
barycenter of the hexagon [20].

The instantaneous area per atom for imaginary time (bead)
j is given by

Aj = 1

N

2N∑
k=1

6∑
n=1

T
j

kn, (3)

where T
j

kn is the area of triangle n in hexagon k, and the sum in
k is extended to the 2N hexagons in a cell containing N carbon
atoms. Here, the triangles are defined with the coordinates rij

corresponding to bead j of atom i. The area A is then calculated
as

A =
〈

1

NTr

NTr∑
j=1

Aj

〉
. (4)

It is clear that A coincides with Ap for strictly planar
graphene, and in general one has A � Ap. Both areas display
temperature dependencies qualitatively different. In fact, A

does not present a negative thermal expansion, as happens
for the in-plane area in a large temperature range [11,59] (see
below). The difference A − Ap increases with temperature, as
bending of the graphene sheet increases, but even for T → 0,
A and Ap are not exactly equal, due to zero-point motion of
the C atoms in the transverse z direction.

III. ENERGY AND ENTHALPY

A. Internal energy

The internal energy E is obtained from the results of our
PIMD simulations as a sum of the kinetic K and potential
energy V at a given temperature. The kinetic energy has
been calculated by employing the virial estimator [64], which
displays a statistical uncertainty smaller than the potential
energy. We have included in E the center-of-mass translational
energy, a classical magnitude amounting to Ec.m. = 3kBT /2 at
temperature T . This quantity is irrelevant for the energy per
atom in large systems, but we have included it to minimize
finite-size effects [11].

We express the internal energy as E = E0 + V + K , tak-
ing as energy reference the value E0 corresponding to the
equilibrium configuration of a planar graphene surface in a
classical approach at T = 0 (minimum-energy configuration
of the considered LCBOPII potential, without quantum atomic
delocalization). This corresponds to an interatomic distance

dC−C = 1.4199 Å, i.e., an area A0 = 2.6189 Å
2

per atom. In a
quantum approach, out-of-plane atomic fluctuations associated
to zero-point motion appear even for T → 0, and the graphene
layer is not strictly planar. Moreover, anharmonicity of in-plane
vibrations gives rise to a zero-point lattice expansion, yielding
a distance dC−C = 1.4287 Å, i.e., around 1% larger than the
classical distance at T = 0 [11].

In Fig. 1 we show the temperature dependence of the
internal energy per atom, E − E0, as derived from our PIMD
simulations in the isothermal-isobaric ensemble for P = 0
(circles), −0.2 (squares), and −0.5 eV Å

−2
(diamonds). For
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FIG. 1. Internal energy per atom E − E0 as a function of tem-

perature for P = 0 (circles), −0.2 (squares), and −0.5 eV Å
−2

(diamonds). Symbols represent results of PIMD simulations. Error
bars are smaller than the symbol size. Solid lines are guides to the
eye. The zero-point energy amounts to 172 meV/atom for P = 0 and

207 meV/atom for P = −0.5 eV Å
−2

. The dashed line corresponds
to the results obtained by Brito et al. [53] using the REBO potential.

Note that 1 eV Å
−2 = 16 N m−1 in SI units.

P = 0 it was shown earlier that the size effect on the in-
ternal energy per atom is negligible for N = 960 (less than
the symbol size in Fig. 1), as compared with the largest
cells considered in Ref. [11]. The zero-point energy EZP

is found to be 172 meV/atom for P = 0, and slightly

higher for −0.2 eV Å
−2

, but it appreciably increases for

P = −0.5 eV Å
−2

to a value of 207 meV/atom. We will
show later that this rise in internal energy is basically due
to the elastic energy associated to an increase in the area
A. For comparison with our results, we also present in
Fig. 1 the energy E − E0 obtained by Brito et al. [53]
from path-integral Monte Carlo simulations using the REBO
potential (dashed line). These authors called it vibrational
energy, and corresponds to our internal energy; our vibra-
tional energy Evib is defined below (see Sec. III C). The
REBO potential yields a zero-point energy of 0.181 eV/atom,
i.e., 5% higher than that found here with the LCBOPII
potential.

The rise in internal energy with an applied tensile stress is
presented in Fig. 2 for three temperatures: T = 25 K (circles),
300 K (squares), and 500 K (diamonds). For zero stress we find
at 25 K an internal energy very close to that of the ground state
EZP. In the stress range displayed in Fig. 2 the internal energy
can be fitted to an expression E − E0 = c0 + c2P

2 + c3P
3,

with a coefficient of the quadratic term c2 ≈ 0.090 Å
4

eV−1,
nearly independent of the temperature. This is the leading
term for the variation of internal energy with the applied
pressure, which is nearly parabolic for stresses between 0 and

−0.1 eV Å
−2

.
The change in internal energy with temperature and pressure

can be described from variations in the elastic and vibrational
contributions to E. This is analyzed in the following sections.

-0.6 -0.4 -0.2 0

Stress  (eV Å-2)

0.15

0.2

0.25

0.3

In
te

rn
al

  e
ne

rg
y 

 (e
V

 / 
at

om
)

T = 500 K

300 K

25 K

FIG. 2. Stress dependence of the internal energy of graphene
for three temperatures: T = 25 (circles), 300 (squares), and 500 K
(diamonds). Symbols indicate simulation results and lines are fits to
the expression E − E0 = c0 + c2P

2 + c3P
3.

B. Elastic energy

An important part of the internal energy corresponds to the
elastic energy due to changes in the area of graphene. It is
directly related to the actual interatomic distance, i.e., to the
real area A, rather than to the in-plane area Ap (or in-plane
strain ε). Then, the internal energy E(T ) at temperature T can
be written as [11]

E(T ) = E0 + Eel(A) + Evib(A,T ), (5)

where Eel(A) is the elastic energy for an area A, and Evib(A,T )
is the vibrational energy of the system. The area A is a function
of the stress P and temperature T , but this is not explicitly
indicated in Eq. (5) for simplicity of the notation. One expects
nonzero values of the elastic energy, even in the absence of
an externally applied stress, due to thermal expansion at finite
temperatures, as well as for zero-point expansion at T = 0.
Evib(A,T ) is given by contributions of phonons in graphene,
both in-plane and out-of-plane vibrational modes.

We define the elastic energy Eel corresponding to an area
A as the increase in energy of a strictly planar graphene layer
with respect to the minimum energy E0 (for an area A0 =
2.61888 Å

2
/atom). By definition, Eel(A0) = 0, and for small

changes of A we found that it follows a dependence Eel(A) ≈
K(A − A0)2, with K = 2.41 eV Å

−2
. This dependence for

Eel(A) yields a 2D bulk modulus B0 = A0(∂2Eel/∂A2) =
2KA0, i.e., B0 = 12.6 eV Å

−2
, in agreement with the result

found earlier in classical calculations at T = 0 [20].
Our PIMD simulations directly yield E(T ), which can be

split into an elastic and a vibrational part, as in Eq. (5). At room
temperature (T ∼ 300 K) and for small stresses P (A close to
A0), the elastic energy is much smaller than the vibrational
energy Evib, but this can be different for low T and/or large
applied stresses (see below).

In Fig. 3 we display the temperature dependence of the
elastic energy, as derived from our PIMD simulations for

P = 0, −0.2, and −0.5 eV Å
−2

. For a given external stress, Eel
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FIG. 3. Temperature dependence of the elastic energy Eel of
graphene, as derived from the real area A obtained in PIMD

simulations for P = 0 (circles), −0.2 (squares), and −0.5 eV Å
−2

(diamonds). Symbols represent simulation results and error bars are
less than the symbol size. Dashed lines are guides to the eye.

increases with T , as a consequence of the thermal expansion
of the real area A, which turns out to be positive for all
temperatures T > 0 (α > 0, see below). Note that, in contrast,
the in-plane area Ap displays a thermal contraction (αp < 0) in
a wide temperature range, so that it is not a suitable candidate
for a reliable definition of the elastic energy.

For P = 0 we find a positive elastic energy in the zero-
temperature limit Eel = 1.7 meV/atom, due to zero-point
lattice expansion, which causes that A > A0. This low-T limit
appreciably increases for P < 0 due to the stress-induced
increase in area A, which yields values of 12 and 52 meV/atom

for the elastic energy at P = −0.2 and −0.5 eV Å
−2

, respec-
tively. For finite temperatures, one observes in Fig. 3 that
Eel(T ) increases faster with temperature for larger tensile
stress. This is due to an increase in the graphene compressibility
(reduction of the elastic constants) for rising tensile stress,
which in turn causes an increase in the thermal expansion
coefficient α (see Sec. IV).

C. Vibrational energy

After calculating the elastic energy for an area A resulting
from PIMD simulations at given T and P , we obtain the
vibrational energy Evib(A,T ) by subtracting the elastic energy
from the internal energy: Evib = E(T ) − E0 − Eel(A) [see
Eq. (5)]. In Fig. 4 we present the temperature dependence of
the vibrational energy of graphene for P = 0 (circles), −0.2

(squares), and −0.5 eV Å
−2

(diamonds), as derived from our
simulations. In contrast to Figs. 1 and 3, where one observes
that E and Eel increase with the applied tensile stress P , in
Fig. 4 one sees that the vibrational energy is lower for higher
tensile stress. This is mainly due to a decrease in the vibrational
frequency of in-plane modes for increasing stress (increasing
area), corresponding to positive Grünesien parameters [39,74].

The zero-point vibrational energy is found to decrease from
170 meV/atom for P = 0 to 164 and 155 meV/atom for
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FIG. 4. Temperature dependence of the vibrational energy per

atom Evib for P = 0 (circles), −0.2 (squares), and −0.5 eV Å
−2

(diamonds). Error bars are less than the symbol size. Dashed lines
are guides to the eye.

P = −0.2 and −0.5 eV Å
−2

, respectively. This decrease, al-
though clearly noticeable, is smaller than the increase of about

50 meV/atom in the elastic energy for P = −0.5 eV Å
−2

(see
Fig. 3). These zero-T energy values per atom correspond in a
harmonic approximation to 〈3h̄ω/2〉, which is a mean value
for the frequencies ω in the six phonon bands of graphene
[75,76]. Our results for P = 0 correspond to 〈ω〉 = 914 cm−1,

to be compared with 833 cm−1 for P = −0.5 eV Å
−2

.
The three curves for Evib(T ) shown in Fig. 4 for different

stresses are roughly parallel in the displayed temperature range.
Values of Evib presented in this figure are clearly larger than
those corresponding to a classical model for the vibrational
modes. In this limit, the vibrational energy per atom is Ecl

vib =
3kBT /2, which means 39 and 78 meV/atom for T = 300
and 600 K, respectively. In contrast, we find Evib = 166 and

206 meV/atom from PIMD simulations for P = −0.5 eV Å
−2

at those temperatures.
We note that in the language of membranes and 2D elastic

media there appears an energy contribution due to bending
of the surface, that is usually taken into account through
the bending constant κ , which measures the rigidity of the
membrane. In our present formulation, the bending energy is
included in the vibrational energy associated to the flexural
ZA modes, as can be seen in their contribution to the specific
heat (see Sec. V). Anharmonic couplings between in-plane and
out-of-plane modes are also expected to show up, especially at
high temperatures [77].

D. Enthalpy

Since we are working in the isothermal-isobaric ensemble, it
is natural to consider the enthalpy as a relevant thermodynamic
variable, in particular to calculate the specific heat of graphene
at several applied stresses (see Sec. V). For a given stress P ,
we define the enthalpy H as H = E + PAp. As a reference
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FIG. 5. Enthalpy per atom H − H0, as a function of temperature.

(a) Enthalpy for a tensile stress P = −0.5 eV Å
−2

(circles), along
with its three components Evib, Eel, and P (Ap − A0) [see Eq. (6)].
Dashed lines are guides to the eye. (b) Enthalpy in the low-temperature

region for P = 0 (circles), −0.2 (squares), and −0.5 eV Å
−2

(dia-
monds). Symbols represent results of PIMD simulations. Error bars
are less than the symbol size. Dashed lines in (b) indicate fits of the
simulation results to the polynomial H − H0(P ) = HZP + a2T

2 +
a3T

3 in the region from T = 0 to 100 K.

we will consider H0(P ) = E0 + PA0, such that H converges
in the classical limit to H0(P ) at T = 0.

In Fig. 5(a) we present the enthalpy of graphene, H −
H0(P ), as a function of temperature for a tensile stress P =
−0.5 eV Å

−2
. Results of our simulations are displayed as

circles. Taking into account that the enthalpy can be written
as

H − H0(P ) = Eel + Evib + P (Ap − A0), (6)

we have plotted in Fig. 5(a) the temperature dependence of
the three contributions in the right-hand side of Eq. (6). The
largest change with temperature appears for the vibrational
energy (diamonds). The elastic energy Eel as well as the term
P (Ap − A0) are also found to depend on temperature, due to
the thermal expansion (or contraction) of the in-plane area Ap,
but their change is much smaller than that of Evib. As a result,

the enthalpy turns out to be smaller than the vibrational energy
at low temperature because Eel + P (Ap − A0) < 0. However,
H − H0(P ) becomes larger than Evib at T � 1500 K, due to
the larger increase in Eel for rising temperature.

To better appreciate the low-temperature region, in Fig. 5(b)
we present the temperature dependence of the enthalpy, as
derived from PIMD simulations up to T = 300 K. Symbols
indicate results of the simulations for P = 0 (circles), −0.2

(squares), and −0.5 eV Å
−2

(diamonds). Dashed lines are fits
to the expression H − H0(P ) = HZP + a2T

2 + a3T
3 in the

temperature region from T = 0 to 100 K. This polynomial
form shows good agreement with the temperature dependence
of the enthalpy obtained from the simulations in the fitted
region. For T � 150 K, the lines depart progressively from the
data points. Note that a linear term in this expression for the en-
thalpy is not allowed for thermodynamic consistency since the
specific heat cp = (∂H/∂T )P has to vanish in the limit T → 0.
The coefficient a2 changes from 6.1 × 10−8 eV K−2 for P = 0

to 2.6 × 10−8 eV K−2 for P = −0.5 eV Å
−2

. The coefficient
a3 varies from 3.5 to 5.1 × 10−10 eV K−3 in the same stress
range. This is important for the low-temperature dependence
of the specific heat discussed in Sec. V, as the contribution
of the quadratic coefficient a2 decreases for increasing stress,
whereas a3 is found to increase. This means that the specific
heat cp in the lowest temperatures accessible to our simulation
method will be given as a combination of a linear term 2a2T

and a quadratic one 3a3T
2, with the latter becoming more

important for larger tensile stresses.

IV. THERMAL EXPANSION

In the low-temperature limit (T → 0), the real area A and
in-plane area Ap derived from PIMD simulations converge to

2.6459 and 2.6407 Å
2
/atom, respectively. Comparing these

values with the classical minimum A0 = 2.6189 Å
2
, we find

a zero-point expansion in A and Ap of about 0.02 Å
2
/atom

(∼1%), due to an increase in the mean C–C bond length
(an anharmonic effect). There also appears a difference of
0.2% between real and in-plane areas at low temperature,
caused by out-of-plane zero-point motion, so that the layer
is not strictly planar. This is a genuine quantum effect, as in
classical simulations for T → 0 one finds a planar layer in
which A and Ap coincide [11,20]. The difference A − Ap

increases as temperature is raised since Ap is the projection
of A on the xy reference plane, and the real graphene surface
becomes increasingly bent for rising temperature because of
larger out-of-plane atomic displacements.

For P = 0, the area A displays an almost constant value up
to T ≈ 200 K, and increases at higher temperatures. However,
Ap decreases in the temperature range from T = 0 to T ≈
1000 K, reaches a minimum, and then increases at higher T

[11]. These results for Ap are qualitatively similar to those
found from classical Monte Carlo and molecular dynamics
simulations of graphene [59,73], but in PIMD simulations the
contraction of Ap with respect to the zero-temperature value
is significantly larger than for classical calculations.

To analyze the thermal expansion of graphene, and follow-
ing our definitions of the areas A and Ap, we will consider two
different thermal expansion coefficients. The first of them, α,

195433-6



THERMAL PROPERTIES OF GRAPHENE UNDER TENSILE … PHYSICAL REVIEW B 97, 195433 (2018)

0 200 400 600 800 1000
Temperature  (K)

0

0.5

1

1.5

2
Th

er
m

al
  e

xp
an

si
on

α 
  (

K
-1

)

P = - 0.5 eV Å-2

- 0.2 eV Å-2

P = 0

(a)  Real  area×10-5

0 500 1000 1500
Temperature  (K)

-1

-0.5

0

0.5

1

1.5

Th
er

m
al

  e
xp

an
si

on
α p  (

K
-1

)

P = - 0.5 eV Å-2

P = 0

- 0.2

(b)  In-plane  area×10-5

FIG. 6. (a) Thermal expansion coefficient α of graphene vs
temperature, as derived from the results of PIMD simulations.
(b) In-plane thermal expansion coefficient αp of graphene vs tem-
perature, obtained from numerical derivatives of the area Ap . In both
panels, symbols represent data points for different stresses: P = 0

(circles), −0.2 (squares), and −0.5 eV Å
−2

(diamonds). Dashed lines
are polynomial fits to the data points. The solid line indicates the result
obtained in Ref. [39] from density-functional perturbation theory.

refers to changes in the real area:

α = 1

A

(
∂A

∂T

)
P

. (7)

This coefficient takes mainly into account changes in the
interatomic distances, and is rather insensitive to bending of
the graphene layer. The second coefficient, αp, is a measure
of variations in the in-plane area and has been widely used
in the literature to analyze results of classical simulations and
analytical calculations:

αp = 1

Ap

(
∂Ap

∂T

)
P

. (8)

In Fig. 6 we present both thermal expansion coefficients,
as derived from our PIMD simulations for P = 0 (circles),

−0.2 (squares), and −0.5 eV Å
−2

(diamonds). Symbols are
data points obtained from numerical derivatives of the areas A

[Fig. 6(a)] and Ap [Fig. 6(b)]. For these derivatives we took

temperature intervals ranging from 10 K at low temperature
to about 50 K at temperatures T ∼ 1000 K. In general, the
statistical uncertainty (error bars) in the values of αp obtained
from numerical derivatives is larger than that found for α, as
a consequence of the larger fluctuations in Ap. The behavior
of α shown in Fig. 6(a) is similar to that observed for most
3D materials, i.e., it goes to zero in the low-temperature limit
and increases for rising temperature so that α > 0 for T > 0
[74,78]. This is related to the fact that the in-plane vibrational
modes have positive Grüneisen parameters when they are
calculated with respect to the real area A. One observes in
Fig. 6(a) that α is higher for larger tensile stress. In fact, at

800 K the α value obtained for P = −0.5 eV Å
−2

is 40%
larger than that corresponding to P = 0. Viewing the thermal
expansion as an anharmonic effect, this can be interpreted as
an increase in anharmonicity for larger tensile stress. This is
associated with an increase in area A and the corresponding
decrease in the frequency of vibrational in-plane modes, which
in turn causes a larger vibrational amplitude and consequently
a larger anharmonicity.

The in-plane thermal expansion coefficient αp also con-
verges to zero in the low-temperature limit, but contrary to
α it decreases for increasing temperature until reaching a
minimum, as shown in Fig. 6(b). The negative value of αp in
the minimum approaches zero for rising tensile stress. In fact,
it goes from −9.2 × 10−6 K−1 for P = 0 to −2.3 × 10−6 K−1

for P = −0.5 eV Å
−2

. At higher T , αp approaches zero
and eventually becomes positive at a temperature T0, which
changes appreciably with the applied stress. As a result, we
find T0 = 1020, 590 K, and 360(±10) K, for the three values
of the stress P presented in Fig. 6.

It is interesting to note that the difference α − αp, which
vanishes at T = 0, rapidly increases for rising temperature, and
for P = 0 it takes a value ≈1.0 × 10−5 K−1 at temperatures
higher than 1000 K. For larger tensile stress, this difference
is smaller since the amplitude of out-of-plane vibrations is
reduced, and Ap is closer to A. Thus, for P = −0.2 and

−0.5 eV Å
−2

, we find at high temperatures α − αp ≈ 8 ×
10−6 K−1 and 6.5 × 10−6 K−1, respectively.

The results presented here for αp at zero external stress
display a temperature dependence similar to those found
earlier using other theoretical and experimental techniques
[37,79–81]. The solid line in Fig. 6(b) represents the thermal
expansion coefficient αp obtained by Mounet and Marzari [39]
from DFT combined with a QHA for the vibrational modes.
Similar curves αp(T ) were obtained from first-principles
calculations in Refs. [40,41], converging to negative values
at high temperature. This seems to be a drawback of this
kind of calculations, which are optimal to obtain the total
energy and electronic structure of the system, but the employed
QHA may be not precise enough to capture the important
coupling between in-plane and out-of-plane vibrational modes
at relatively high temperatures. This mode coupling controls
the in-plane thermal expansion.

Jiang et al. [79] studied freestanding graphene using a
nonequilibrium Green’s function approach, and obtained a
minimum for αp of about −10−5 K−1, similar to our data for
P = 0 displayed in Fig. 6(b). Moreover, these authors found
a crossover from negative to positive αp for a temperature

195433-7



CARLOS P. HERRERO AND RAFAEL RAMÍREZ PHYSICAL REVIEW B 97, 195433 (2018)

T0 ∼ 600 K, lower than the results of our PIMD simulations.
An even lower temperature T0 ∼ 400 K has been found by
using other theoretical techniques [37,82]. Room-temperature
Raman measurements [81] yielded αp = −8 × 10−6 K−1,
whereas a value of −7 × 10−6 K−1 was derived from scanning
electron microscopy [80]. We note, however, that the agree-
ment between measurements with different techniques is not
so good for the temperature dependence of αp since the change
in αp at T > 300 K is faster in the former case [81] than in the
latter [80].

The temperature dependence of αp can be qualitatively
understood as a competition between two opposing factors. On
one side, the real area A increases as T is raised in the whole
temperature range considered here. On the other side, bending
of the graphene surface causes a decrease in its projection, Ap,
onto thexy plane. For stress-free graphene at temperaturesT �
1000 K, the decrease due to out-of-plane vibrations is larger
than the thermal expansion of the real surface, and αp < 0.
For T � 1000 K, the thermal expansion of A dominates
over the contraction of Ap associated to out-of-plane atomic
motion, and thus αp > 0. For graphene under tensile stress, the
amplitude of out-of-plane vibrations is smaller, so the decrease
in Ap is also smaller and the region of negative αp is reduced.

Our results for the thermal expansion of graphene, derived
from atomistic simulations, can be related with an analytical
formulation of crystalline membranes in the continuum limit,
for which the relation between A and Ap may be written as
[20,72]

A =
∫

Ap

dx dy

√
1 + (∇h(x,y))2 . (9)

Here, h(x,y) is the height of the membrane surface, i.e., the
distance to the reference xy plane. In this classical approach,
the difference A − Ap may be calculated by Fourier trans-
formation of the right-hand side of Eq. (9) [15,20,25]. In
this procedure one needs to consider a dispersion relation
ωZA(k) for out-of-plane modes (ZA flexural band), where
k = (kx,ky) are 2D wave vectors. The frequency dispersion
in this acoustic band is well approximated by the expression
ρ ω2

ZA = σk2 + κk4, consistent with an atomic description of
graphene [28] (k = |k|; ρ, surface mass density; σ , effective
stress; κ , bending modulus). Then, for effective stress σ > 0,
which is the case at finite temperatures, even for zero external
stress (P = 0), one finds [20,28]

A = Ap

[
1 + kBT

8πκ
ln

(
1 + 2πκ

σAp

)]
. (10)

This expression was obtained in the classical limit, so it
does not take into account atomic quantum delocalization.
Nevertheless, it is expected to be a good approximation to our
quantum calculations at relatively high temperature, T � �D ,
with �D ∼ 1000 K the Debye temperature corresponding to
out-of-plane vibrations in graphene [83,84].

We note that both κ and σ change with temperature and
stress, so that it is not straightforward to write an analytical
formula for α − αp from a temperature derivative of Eq. (10).
For given temperature T and stress σ = σ0 − P we can write
A − Ap = δApT , δ being a parameter derived from Eq. (10),
which is a good approximation for the difference α − αp.
The effective stress σ0 appears at finite temperatures for zero
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FIG. 7. Specific heat of graphene as a function of temperature, as

derived from PIMD simulations for P = 0 (circles) and −0.5 eV Å
−2

(squares). Error bars of the data points are less than the symbol
size. The dashed line is the specific heat cv obtained from the six
phonon bands corresponding to the LCBOPII potential in a harmonic
approximation (P = 0). Open symbols indicate results for cv derived
from DFT-type calculations at T = 900 K (square, Ref. [34]), 850
and 750 K (circles, Ref. [35]). The horizontal dashed-dotted line
represents the classical Dulong-Petit limit.

external stress (P = 0), and vanishes for T → 0 in the classical
limit [28]. Introducing the finite-temperature values of σ0

and κ given earlier [20,28], we find δ = 1.0 × 10−5 K−1,
6.6 × 10−6 K−1, and 5.1 × 10−6 K−1 for P = 0, −0.2, and
−0.5 eV Å

−2
, respectively. These values are close to those

found for α − αp from our PIMD simulations (see above).
However, the difference between both sets of results increases
for rising tensile stress. Thus, for P = −0.5 eV Å

−2
our

simulations yield α − αp = 6.5 × 10−6 K−1, larger than the
prediction based on Eq. (10), which is based on harmonic
vibrations. We observe that the importance of anharmonic
effects (including also quantum corrections) is manifested
more clearly for large tensile stresses.

V. SPECIFIC HEAT

We have calculated the specific heat of graphene monolay-
ers as a temperature derivative of the enthalpy H derived from
our PIMD simulations (see Sec. III D): cp(T ) = dH (T )/dT .
One may ask if our simulations can yield reliable results
for this thermodynamic variable, mainly because electronic
contributions to cp are not taken into account in our numerical
procedure. This is, however, not a problem for the actual
precision reached in our calculations, as the electronic part
is much less than the phonon contribution, actually considered
in our method. The former was estimated in various works,
and turns out to be three or four orders of magnitude less
than the phonon part in the temperature range considered here
[33,85,86].

In Fig. 7 we display the specific heat of graphene as a

function of temperature for P = 0 (circles) and −0.5 eV Å
−2

(squares), as obtained from a numerical derivative of the
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enthalpy. For comparison, the classical Dulong-Petit specific
heat is shown as a dashed-dotted line (ccl

v = 3kB). At room
temperature, the specific heat of graphene is about three times
smaller than the classical limit, and cp is still appreciably lower
than this limit at T = 1000 K. This is in line with the magnitude
of the Debye temperature of graphene, which amounts to about
1000 K for out-of-plane modes [83,84] and �D � 2000 K for
in-plane vibrations [31,83]. In Fig. 7 we also present results
for cv at P = 0 taken from earlier DFT calculations combined
with a QHA: T = 900 K from Ref. [34] (open square), 850
and 750 K from Ref. [35] (open circles). These data agree well
with the results of our PIMD simulations.

For a comparison with our numerical results for cp(T ) at
zero and negative stress, we present a harmonic approximation
(HA) for the lattice vibrations. This approximation is expected
to be rather accurate at low temperatures, provided that a
reliable description for the phonon frequencies is used. A
comparison between results of the HA and PIMD simulations
yields an estimate of anharmonic effects in the specific heat
of graphene, given that both kinds of calculations employ the
same interatomic potential.

The HA assumes constant frequencies for the graphene
vibrational modes (calculated for the minimum-energy config-
uration), and does not take into account changes in the areas A

and Ap with temperature. Thus, it will give us the constant-area
specific heat per atom cv(T ) = dE(T )/dT , which for a cell
with N atoms is given by

cv(T ) = kB

N

∑
r,k

[
1
2βh̄ ωr (k)

]2

sinh2
[

1
2βh̄ ωr (k)

] , (11)

where the index r (r = 1, …, 6) indicates the six phonon bands
of graphene (ZA, ZO, LA, TA, LO, and TO) [39,75,76] and the
sum in k runs over wave vectors k = (kx,ky) in the hexagonal
Brillouin zone, with discrete k points spaced by �kx = 2π/Lx

and �ky = 2π/Ly [28]. For increasing system size N , one has
new long-wavelength modes with an effective cutoff λmax ≈ L,
with L = (NAp)1/2, and the minimum wave vector is k0 =
2π/λmax (i.e., k0 ∼ N−1/2).

The dashed line in Fig. 7 was calculated with the HA using
Eq. (11), with the frequencies ωr (k) (r = 1, …, 6) obtained
from diagonalization of the dynamical matrix corresponding
to the LCBOPII potential. Results of the simulations for P = 0
follow closely the HA up to about 400 K, and they become pro-
gressively higher than the dashed line at higher temperatures,
for which anharmonic effects become more important. At room
temperature (T = 300 K), we obtained cv = 9.1 × 10−5 eV/K
atom from the HA versus a value of 9.3(±0.1) × 10−5 eV/K
atom derived from PIMD simulations. Both values are a
little higher than that found by Ma et al. [35] from DFT
calculations (cv = 8.6 J/K mol, i.e., 8.9 × 10−5 eV/K atom).
The difference between results obtained for P = 0 from ab
initio calculations combined with a QHA and those presented
here for a simpler HA are due to two main reasons. The
first reason is that in the HA one does not take into account
changes of frequencies with the temperature, and the second
is the relative inaccuracy of the phonon bands derived from
the considered effective potential far from the � point, as
compared with those obtained from DFT calculations. The HA
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FIG. 8. Specific heat of graphene as a function of temperature.
Symbols represent results derived from PIMD simulations for P = 0

(circles), −0.2 (diamonds), and −0.5 eV Å
−2

(squares). Lines were
derived from a HA based on the six phonon bands corresponding
to the LCBOPII potential for N = 61 440 (see text for details).
Experimental data for graphite obtained by Desorbo and Tyler [90]
are shown as open diamonds.

provides, however, a consistency check for the results of the
PIMD simulations at low temperature, as discussed below.

As shown in Sec. III, a part of the internal energy (and the
enthalpy) corresponds to the elastic energy Eel, i.e., to the cost
of increasing the area A of graphene by thermal expansion or
an applied tensile stress. The contribution of this energy to the
specific heat is given by dEel/dT , which is not included in
the HA. This contribution can be calculated from the results
of our PIMD simulations displayed in Fig. 3. For P = 0, it
amounts to 2.3 and 5.5 × 10−6 eV/K atom at 500 and 1000 K,
which means a non-negligible increase in the specific heat with
respect to the pure HA. This increase is especially visible at
T � 500 K, capturing part of the anharmonicity of the system.
In fact, at T = 1000 K it accounts for a 45% of the difference
between the results derived from PIMD simulations and the HA
presented in Fig. 7. The rest of that difference is associated to
anharmonicity of the lattice vibrations.

In our present context, the most relevant effect of an applied
stress P in the phonon bands is a change in the low-frequency
region of the ZA modes, for which

ωZA(k)2 = ω0
ZA(k)2 − P

ρ
k2. (12)

The zero-stress band ω0
ZA(k) calculated for the minimum-

energy structure (area A0) follows for small k: ρ ω0
ZA(k)2 ≈

κk4. Thus, for P < 0 the small-k region is dominated by
the quadratic term (linear in P ) in Eq. (12), and ωZA(k) ≈√−P/ρ k for k � 1 Å

−1
. The specific heat of stressed

graphene in the HA has been calculated by taking the fre-
quencies ωZA(k) derived from Eq. (12).

To obtain deeper insight into the low-temperature depen-
dence of the specific heat, cp(T ) is shown in Fig. 8 in
a logarithmic plot. Symbols indicate results derived from
PIMD simulations for P = 0 (circles), −0.2 (squares), and
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−0.5 eV Å
−2

(diamonds). With our present method, we cannot
give reliable values of cp for temperatures lower than 15 K,
mainly due to the very large computation times required for
Trotter numbers NTr > 500. Dashed lines show cv(T ) derived
from the harmonic approximation using Eq. (11) for a large cell
size (N = 61 440 atoms). Such a large N cannot be reached in
our quantum simulations, and gives us a useful reference where
finite-size effects are minimized. The lines corresponding
to the HA follow closely the data points derived from the

simulations at low temperatures. For P = −0.5 eV Å
−2

, one
observes that the PIMD results become progressively higher
than the HA line at T > 50 K. Such a difference is almost
unobservable for P = −0.2 eV Å

−2
, and disappears for P = 0.

It is clear that the HA describes well the specific heat in the
stress-free case at T < 200 K, and becomes less accurate as
tensile stress and/or temperature increase.

The low-temperature behavior of the heat capacity can
be further analyzed by considering a continuous model for
frequencies and wave vectors, as in the well-known Debye
model for solids [74]. At low temperatures, cv is mainly
controlled by the contribution of acoustic modes with small
k. For graphene, these are TA and LA modes with ωr ∝ k,
and ZA flexural modes with quadratic dispersion (ωr ∝ k2)
for negligible σ at P = 0 and low T , whereas it is linear in
k for P < 0. In general, the low-T contribution of a phonon
branch with dispersion relation ωr ∝ kn can be approximated
by replacing the sum in Eq. (11) by an integral, which yields
cr
v ∼ T 2/n (see Ref. [61]). We note that for d-dimensional

systems one finds an exponent d/n [87,88].
Summarizing the above comments, the low-temperature

contributions of the relevant phonon branches to the specific
heat [those with ω(k) → 0 for k → 0], one has for graphene
cv ∼ T μ close to T = 0, with μ = 1 for P = 0 and μ = 2 in
the presence of a tensile stress (P < 0). This is in fact what we
find for cv from the HA at low temperature in our calculations
for a large graphene supercell. To see the convergence of μ

to its low-T value, we have calculated this exponent as a
function of temperature from a logarithmic derivative: μ =
d ln cv/d ln T . Close to T = 0 we obtain the values expected
from our discussion above, but in the region displayed in Fig. 8,
μ has not yet reached the zero-temperature value. In fact, for
T = 10 K we find for μ the values 1.05, 1.59, and 1.85, for

P = 0, −0.2, and −0.5 eV Å
−2

, respectively. The first of them
is already close to its low-temperature limit (μ = 1), but the
exponents for graphene under stress are still somewhat lower
than their zero-T limit (μ = 2). We note that the larger the
tensile stress (larger σ = σ0 − P ), the closer is μ to 2 at a
relatively low T since the wave-number region where the linear
term dominates in the ω(k) dispersion of the ZA band is larger
(ρω2

ZA ≈ σk2). For the results of our PIMD simulations we
note that, although one can obtain an exponent μ from a linear
fit in the logarithmic plot of Fig. 8 (in particular the fit is rather
good for T < 100 K), it is true that the actual slope is slowly
changing in this temperature range.

Alofi and Srivastava [89] calculated the specific heat of few-
layer graphene by using a semicontinuum model and analytical
expressions for phonon dispersion relations. In particular, for
single-layer graphene they found a temperature dependence
cv ∼ T 1.1 for T � 10 K, with an exponent that coincides with

the mean μ value derived from our results for P = 0 in the
region from 10 to 50 K.

For comparison with our results for graphene, we also
present in Fig. 8 experimental data for the specific heat cp

of graphite, obtained by Desorbo and Tyler [90]. For graphite,
the dependence of cp on temperature has been analyzed in
detail over the years [91–94]. For T < 10 K, cp rises as T 3 (a
temperature region not shown in Fig. 8), as in the Debye model,
and for temperatures between 10 and 100 K, it increases as T 2

(μ = 2). The major difference with stress-free graphene is that
in graphite the dominant contribution to cp in this temperature
range arises from phonons with a linear dispersion relation
for small k (ω ∼ k). At room temperature, the experimental
specific heat of graphite is 8.90 × 10−5 eV/K atom (8.59 J/K
mol), somewhat less than the result for graphene derived
from our PIMD simulations for P = 0: cp = 9.3(±0.1) ×
10−5 eV/K atom.

To compare with the results for cp of graphene derived from
our PIMD simulations, we have also calculated the specific
heat cv from constant-Ap simulations. For each considered
temperature, we took the equilibrium area Ap obtained in
the isothermal-isobaric simulations, and calculated cv as a
numerical derivative of the internal energy

cv =
(

�E

�T

)
Ap

(13)

from temperature increments �T (both positive and negative).
One expects that cv � cp at any temperature, but the difference
between them turns out to be less than the statistical error bars
of our results. A realistic estimation of this difference can be
obtained from the thermodynamic relation [61,95]

cp − cv = T α2
pAp

χp

, (14)

where χp is the in-plane isothermal compressibility (see
Sec. VI). Using Eq. (14), we find that cp − cv is at least two
orders of magnitude less than the cp values given above for the
tensile stresses and temperatures considered here.

We finally note that a calculation of the low-T specific
heat of solids using this kind of path-integral simulations is
in general not straightforward. The verification of the Debye
law cp ∼ T 3 has been a challenge for path-integral simulations
of 3D materials because of the effective low-frequency cutoff
corresponding to finite simulation cells [96,97]. These kinds
of calculations at relatively low temperatures are in principle
more reliable for 2D materials due to two different reasons. The
first reason is that the length of the cell sides scales as N1/d ,
and the minimum wave vector k0 available in the simulations is
k0 ∼ N−1/d . For a simulation cell including N atoms, k0 is less
for 2D than for 3D materials, so that the low-frequency region is
represented better for d = 2, and therefore the low-temperature
regime will be also better described. The second reason is that
the internal energy (or enthalpy) for graphene rises as T μ+1

with μ = 2 or 3. At low T , this increase is faster than the usual
phonon contribution to the enthalpy in 3D materials (H ∼ T 4)
and, consequently, it is more readily observable (less relative
statistical noise) for 2D materials such as graphene.
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FIG. 9. Stress dependence of the isothermal compressibilities χ

(squares) and χp (circles) of graphene at T = 300 K, as derived from
PIMD simulations. Error bars, when not shown, are in the order of
the symbol size. Open symbols indicate results derived from AFM
indentation experiments: a square from Ref. [98] and a circle from
Ref. [6] (the error bar corresponds to one standard deviation for several
measurements).

VI. COMPRESSIBILITY

The in-plane isothermal compressibility is defined as

χp = − 1

Ap

(
∂Ap

∂P

)
T

. (15)

The variables in the right-hand side of this equation refer to
in-plane quantities, as the pressure P in our isothermal-isobaric
ensemble is a variable conjugate to the in-plane area Ap . χp has
been calculated here by using the fluctuation formula [20,95]

χp = Nσ 2
p

kBT Ap

, (16)

where σ 2
p are the mean-square fluctuations of the area Ap

obtained in the simulations. This expression is more convenient
for our purposes than obtaining (∂Ap/∂P )T since a calculation
of this derivative by numerical methods requires additional
simulations at nonzero stresses. We have verified at some
selected temperatures and pressures that both procedures give
the same results for χp (taking into account the statistical
error bars). Similarly, for the real area A one can define a
compressibility χ = −(∂A/∂P )T /A, which will be related to
the fluctuations of the real area A.

In Fig. 9 we present the stress dependence of the com-
pressibilities χp (circles) and χ (squares) of graphene, as
derived from our PIMD simulations at 300 K. At P = 0, one
finds χp > χ , as a consequence of the larger fluctuations in
the in-plane area Ap. In this figure we have included some
points corresponding to (small) compressive stresses P > 0,
to remark the very different behavior of χp and χ in this region.
χ follows a regular dependence, in the sense that it displays a
smooth change as P is varied in the considered stress region.
The in-plane compressibility χp, however, increases fast for
P > 0, which is consistent with an eventual divergence at a

critical stress Pc. This divergence of χp shows the same fact as
the vanishing of the in-plane bulk modulus Bp (the inverse of
χp) discussed in Ref. [20] from classical calculations. Close
to this critical compressive stress, the planar morphology of
graphene becomes unstable due to large fluctuations in the
in-plane area, which is related to the onset of imaginary
frequencies in the ZA phonon bands for P > Pc. A detailed
characterization of this wrinkling transition at Pc is out of
the scope of this paper and will be investigated further in
the near future. It is not yet clear whether quantum effects
may be relevant or not for a precise definition of Pc. It is
remarkable that the compressibility χ derived from the real
area does not display any abrupt change in the region close to
the critical stress, as both the area A and its fluctuations are
rather insensitive to the corrugation of the graphene surface
imposed by compressive stresses. For large tensile stress, χ

and χp converge one to the other, as shown in Fig. 9, since the
amplitude of out-of-plane vibrations becomes smaller and the
real graphene surface is closer to the reference xy plane.

For comparison with the results of our simulations, we also
present in Fig. 9 data for the compressibility of graphene at
P = 0 derived from atomic force microscopy (AFM) inden-
tation experiments. We have transformed the values for the
Young modulus Y given in Refs. [6,98] to compressibility by
using the expression χ = 2(1 − ν)/Y , with a Poisson ratio ν =
0.15 [20]. The resulting compressibilities are plotted as open
symbols: a square [98] and a circle [6] (the error bar indicates
one standard deviation for several measurements). We note that
interferometric profilometry experiments [19] have revealed
that close to P = 0 much smaller values of the Young modulus
(much larger compressibilities) can be found for graphene.
These authors have suggested that this apparent discrepancy
can be associated to the difference between compressibilities
of the real and projected areas, as discussed here. It seems
that some experimental techniques can measure one of them,
while other techniques may be sensitive to the other. This is an
ongoing discussion that should be elucidated in the near future
[20,27].

A thermodynamic parameter related to the thermal expan-
sion αp and compressibility χp is the dimensionless Grüneisen
parameter γ , defined as

γ =
∑

rk γrk cvr (k)∑
rk cvr (k)

, (17)

where cvr (k) is the contribution of mode (rk) to the spe-
cific heat, and γrk are mode-dependent Grüneisen parameters
[39,74]. The overallγ can be related with our in-plane variables
in graphene by using the thermodynamic relation [61,74]

γ = αpAp

χpcv

. (18)

For P = 0, the results of our PIMD simulations yield γ =
−2.2 at 300 K, and at 1000 K, γ ≈ 0 within the precision of
the numerical results. At T = 300 K, αp and γ are negative
because the mode-dependent Grünesien parameter of the out-
of-plane ZA modes is negative [4,34,39]. However, for T >

1000 K, this negative contribution is dominated by the positive
sign of γrk for in-plane modes, which are excited at these
temperatures, so that αp and γ are positive.
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At room temperature (T = 300 K) we find γ = −1.2

and −0.24, for P = −0.2 and −0.5 eV Å
−2

, respectively.
Although these values of γ are still negative, they are very
different from the zero-stress result (γ = −2.2). Looking at
Eq. (18), the main reason for this important change in the
Grünesien parameter with tensile stress is the large variation
in the in-plane thermal expansion coefficient αp, which takes
values of −8.5, −3.9, and −1.0 × 10−6 K−1 for P = 0,
−0.2, and −0.5 eV Å

−2
, respectively [see Fig. 6(b)]. From

the point of view of the phonon contributions to γ , the small

negative value found for P = −0.5 eV Å
−2

indicates that the
relative contribution of phonons with negative γrk (out-of-
plane ZA modes) is at room temperature less important than
for P = 0. This is due to an increase in frequency of small-k
modes (ωZA ∼ √−P/ρ k), which causes a reduction in its
corresponding cvr (k) at 300 K [see Eq. (17)].

VII. SUMMARY

In this paper, we have presented and discussed results of
PIMD simulations of graphene in a wide range of tempera-
tures and tensile stresses. This technique has allowed us to
quantify several structural and thermodynamic properties, with
particular emphasis on the thermal expansion and specific
heat. Nuclear quantum effects are clearly appreciable in these
variables, even at T higher than room temperature. Zero-point
expansion of the graphene layer due to nuclear quantum motion
is not negligible, and amounts to about 1% of the area A. This
zero-point effect decreases as tensile stress is increased.

The thermal contraction of graphene discussed in the
literature turns out to be a reduction of the in-plane area Ap

(αp < 0), caused by out-of-plane vibrations, but not a decrease
in the real area A. In fact, the difference A − Ap rises as
temperature increases since the amplitude of those vibrations
grows. On one side, the in-plane thermal expansion αp is
negative at low temperature, and becomes positive for T �
1000 K. On the other side, the thermal expansion α of the
real area is positive for all temperatures and tensile stresses

discussed here. The thermal contraction of Ap is smaller as the
tensile stress increases, due to a reduction in the amplitude of
out-of-plane vibrations. Our PIMD simulations give αp < 0 at

low T for stresses so high as −0.5 eV Å
−2

(−8 N/m). For this
stress, αp becomes positive at T ∼ 350 K.

The anharmonicity of the vibrational modes is clearly
noticeable in the behavior of A and Ap. The increase in real
area A for rising T (α > 0) is a consequence of anharmonicity
of in-plane modes, similar to the thermal expansion in most 3D
solids. Moreover, the peculiar dependence of αp (negative at
low T and positive at high T ) is an indication of the coupling
between in-plane and out-of-plane modes.

Other thermal properties of graphene can be well described
by an HA at relatively low T , once the frequencies of the
vibrational modes are known for the classical equilibrium ge-
ometry at T = 0. This is the case of the specific heat, for which
our PIMD results indicate that the effect of anharmonicity
appears gradually for temperatures T � 400 K. Part of this
anharmonicity is due to the elastic energy Eel, associated to
the expansion of the actual graphene sheet, which is not taken
into account by the HA. At low T , the specific heat can be
described as cp ∼ T μ. At the lowest temperatures studied here
(T � 10 K), we find an exponent μ = 1.05 and 1.85, for P = 0

and −0.5 eV Å
−2

, respectively. These values are close to the
corresponding low-temperature (T → 0) values, i.e., μ = 1
for stress-free and μ = 2 for stressed graphene.

We note the consistency of the simulation results with the
principles of thermodynamics, in particular with the third law.
This means that thermal expansion coefficients have to vanish
for T → 0, as found for both the in-plane area Ap and the real
area A derived from our simulations for P = 0 and P < 0. The
same happens for the specific heat, i.e., cp → 0 for T → 0.
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