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Simple mechanisms that impede the Berry phase identification from magneto-oscillations

A. Yu. Kuntsevich,1,2,* A. V. Shupletsov,1,3 and G. M. Minkov4,5

1P. N. Lebedev Physics Institute, 119991 Moscow, Russia
2National Research University Higher School of Economics, Moscow 101000, Russia

3Moscow Institute of Physics and Technology, Moscow 141700, Russia
4Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg, Russia

5M. N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620137 Ekaterinburg, Russia

(Received 18 March 2018; published 18 May 2018)

The phase of quantum magneto-oscillations is often associated with the Berry phase and is widely used to
argue in favor of topological nontriviality of the system (Berry phase 2πn + π ). Nevertheless, the experimentally
determined value may deviate from 2πn + π arbitrarily, therefore more care should be made analyzing the
phase of magneto-oscillations to distinguish trivial systems from nontrivial. In this paper we suggest two
simple mechanisms dramatically affecting the experimentally observed value of the phase in three-dimensional
topological insulators: (i) magnetic field dependence of the chemical potential, and (ii) possible nonuniformity of
the system. These mechanisms are not limited to topological insulators and can be extended to other topologically
trivial and nontrivial systems.
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I. INTRODUCTION

Emergence of topologically nontrivial systems, like
graphene or three-dimensional (3D) topological insulators
(TIs), required an experimental method to indicate topolog-
ical nontriviality, i.e., presence of the two-dimensional (2D)
carriers with a Dirac spectrum. A simple proper characteristic
is Berry phase φB , which is known in two limiting cases: 2πn

(topologically trivial) or 2πn + π (topologically nontrivial)
[1], where n is an integer number. It was conjectured [2]
that if the system exhibits magneto-oscillations (Shubnikov–de
Haas or de Haas–van Alphen), the phase of these oscillations
straightforwardly reflects the Berry phase [3]. This phase enters
the energy of Landau levels (LLs) through the quasiclassical
quantization condition

S(εN,k) =
(

2π |e|B
h̄

)(
N + 1

2
− β

)
, (1)

where S(εN,k) is a cross-sectional area of the N th LL orbit in
k space and the offset β is equal to the Berry phase divided
by 2π [2]. The quasiclassical equation is applicable for high
numbers of LLs N � 1.

It has become popular to determine this offset from the fan
diagrams (Berry plots), with the x axis being the number of
conductivity minimum and the y axis being the corresponding
inverted magnetic field. As a rule the points in this diagram
follow the straight lines and cross the x axis at a certain point.
In the case of two-dimensional carriers (like 2D gas in the quan-
tum well or at the surface of 3D TI), if this point is an integer
the system is believed to be topologically trivial, if this point
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is a half-integer it is topologically nontrivial. The magneto-
oscillation phase considerations were widely applied to
graphene and graphite [4,5], 3D topological insulators [6–13],
Rashba semiconductors [14], high temperature cuprate super-
conductors [15] and pnictides [16], Weyl [17,18] and Dirac
[19] semimetals, black phosphorous [20] and gray arsenic [21],
transition metal dichalcogenides [22], etc.

However, quite often, even in well understood systems like
3D TIs, the experimentally observed value of offset deviated
from the expected 0.5 value [6–9,13]. In order to explain these
discrepancies, a more elaborate theoretical analysis [8,23–25]
suggested several mechanisms: Zeeman splitting, absence of
the electron-hole symmetry, trigonal wrapping of the Fermi
surface, etc. It turned out that Zeeman splitting (large effective
g factor) is the most realistic option to explain experimental
data in bulk crystals of bismuth chalcogenides. However, it
remains unclear why this g factor might be so widely spread
from sample to sample (2 to 70). This uncertainty motivated
us to look for an alternative explanation.

In our paper we do not modify the model Hamiltonian,
rather we consider simple macroscopic mechanisms. In
particular, we discuss the effect of chemical potential
(whether it is constant or changes with magnetic field) on
the phase of the quantum oscillations and show that its role
might be decisive. Moreover, we show that indirectly assumed
sample homogeneity is also crucial for correct extraction of
the magneto-oscillation phase. While illustrated in 3D TIs, our
arguments are applicable for various multicomponent systems
(e.g., semimetals) and should clearly be taken into account.

The magneto-oscillations in 3D TIs are believed to be due to
topological surface states (TSS) that are two dimensional. Let
us first consider the phase of magneto-oscillations in a single
two-dimensional (2D) system like semiconductor quantum
well or graphene.
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FIG. 1. (a) Ladder of Landau levels versus magnetic field for
spinless massive particles, solid brown line: chemical potential versus
magnetic field provided that total density is fixed, according to Eq. (2),
dotted line: constant chemical potential BN values are indicated.
(b) The same as (a) for two-dimensional Dirac particles with linear
dispersion. (c) Fan diagram 1/BN versus N adopted from Ref. [4]. Top
and bottom axes indicate two ways to define N (see text). (d) Landau
level ladder in monolayer graphene for explanation of the anomalous
phase of the magneto-oscillations.

II. QUALITATIVE PICTURES

A. Two-dimensional systems

It is textbook knowledge that the spectrum of a two-
dimensional system in a perpendicular magnetic field B

consists of Landau levels (LLs) with a fixed degeneracy per
spin Be/h per unit area (2.41 × 1010 B[T] cm−2). The overall
electroneutrality condition is reduced to constant total 2D
electron density n(T ,B) = const. Correspondingly, when an
integer number N of LLs is filled, we get

1/BN = Ne/(hn). (2)

This equation reflects the degeneracy of the LLs, and does
not depend on zero-field spectrum of the carriers. Chemical
potential traces the LLs and jumps across the gaps, at points
BN , where Eq. (2) is fulfilled [see Fig. 1(a)]. At these points
minima in conductivity and resistivity are observed simulta-
neously and the integer number N can be straightforwardly
found from the Hall resistivity at the center of the N th plateau
Rxy = h/(e2N ) in the quantum Hall effect (QHE) regime. If
one tries to determine the offset from the fan diagram of the 2D
system, according to Eq. (2), one always has to get zero! In the
case of Shubnikov–de Haas oscillations, i.e., if the magnetic
field is not high enough to open the complete gap between LLs,
all these reasonings remain valid and BN values correspond

to conductivity minima. A natural question arises: how is the
nonzero Berry phase observed in graphene since the pioneering
works [4,5]?

In graphene the Dirac spectrum leads to square root depen-
dency of the LL positions from the number N and magnetic
field B:

EN = ±
√

2Nh̄eBv2. (3)

Here v is the speed of electrons assuming linear dispersion.
This dependency is shown schematically in Fig. 1(b). Each
LL, including zeroth, has fourfold degeneracy (2 spins ×
2 isospins). Zeroth LL is half-populated by electrons (twofold
degeneracy) and half-populated by holes (twofold degeneracy)
[it is illustrated in Fig. 1(d)]. In order to get a nontrivial
phase from magneto-oscillations, one has to forget about the
degeneracy of the levels and just count the minima of the
resistivity. For example, the fan diagram, adopted from Ref. [4],
clearly shows the offset 0.5 [bottom axis, black boxes in
Fig. 1(c)]. If we define filling factors from the Hall resistivity as
h/(e2Rxy) [top axis, red triangles in Fig. 1(c)], we get crossing
of the x axis at zero in complete agreement with Eq. (2).

To sum up, the fan plot in graphene shows that zeroth LL
has two times smaller degeneracy for electrons and this is a
signature of the Dirac cone that is related to the nontrivial
Berry phase. Moreover, there are only two possibilities for the
values of the offset in case n = const. in any 2D system: integer
(if there is no zeroth LL equally shared between electrons and
holes) and half-integer (if there is one). Actually, the latter
is observed only in graphene, if the conductivity minima are
counted, and only because the N > 1 LLs are not further
splitted by Zeeman effect.

B. Three-dimensional topological insulators

Three-dimensional topological insulators are much more
common objects for speculations about the Berry phase. Zeroth
Landau level for Dirac surface states of the 3D TI has eB/2h

degeneracy per unit of surface area, and contribution of the
zeroth level should cause a half-integer quantum Hall effect per
one surface. Apart from graphene, in 3D TIs (i) the spectrum
of the TSS has stronger deviations from the ideal Dirac one
and (ii) there is large number of bulk states besides the surface
carriers.

Many efforts were made to move the Fermi level of the
3D TIs into the gap and decrease the contribution of bulk
carriers [26]. However, at least in bismuth chalcogenides (the
most studied 3D TIs), there are a lot of low mobility bulk
states anyway (∼1017 cm−3, see Refs. [7,10,26]; the density
of bulk carriers is obtained from saturation of Hall effect
in high field according to the two-band model) that do not
experience Landau quantization in magnetic field, apart from
surface states. They lead to large density of states on the Fermi
level and therefore to pinning of the chemical potential. Thus,
in 3D TIs for TSS the μ = const. condition seems to be realized
instead of n = const. condition in 2D systems.

Let us illustrate what phase is expected in case μ = const.
In order to find conductivity maxima positions Bmax

N (when LLs
cross the Fermi level) one has to solve Eq. (1) with εN = μ.
For the Dirac spectrum this quasiclassical procedure leads to
LLs, coincident with the exact solution, given by Eq. (3), and
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we get

2Nh̄eBmax
N v2 = μ2 = const. (4)

It gives 1/Bmax
N ∝ N . Conductivity minima are located at

BN roughly in the middle between the corresponding maxima
Bmax

N and Bmax
N+1. Therefore, for the Dirac spectrum, the offset is

equal to 0.5. For the parabolic spectrum ε = p2/2m the same
procedure leads to the equidistant LLs EN = h̄eB/m(N +
1/2) and, correspondingly, zero offset of the fan diagram,
because the conductivity minima correspond to the Fermi level
between LLs:

h̄
eBmin

N

m
N = μ = const. (5)

To summarize the above qualitative considerations, n =
const. condition makes the offset value sensitive only to LL
degeneracy and insensitive to the spectrum of carriers. Indeed,
the Berry plot in this case is usually obtained from Eq. (2) which
does not depend on positions of LLs [defined by spectrum
of the carriers through Eq. (1)]. Since in 2D systems all
LLs with N > 0 have the same degeneracy eB/h, the offset
value for n = const. depends only on whether there is zeroth
LL (graphene) with degeneracy eB/2h or not (conventional
2D systems). The opposite μ = const. condition, according
to Eq. (1), makes the offset sensitive to Berry phase and
spectrum details. Besides, the μ = const. condition (unlike
n = const.) distinguishes low LLs (1, 2, 3) and high LLs
(5, 6, 7, ...) as Eq. (1) applicable only for N � 1. In two
limiting cases, the massless Dirac system and spinless system
with the parabolic dispersion, the textbook values (0.5 and
0, respectively) of the offset are reached. Interestingly, these
values exactly coincide with the n = const. case [in Figs. 1(a)
and 1(b) dotted lines μ = const. cross sawtoothlike solid lines
n = const. approximately in the Landau midgaps]. However,
in general, there is no coincidence, and in the μ = const. case
the deviations of the spectrum from the ideal Dirac one lead
to deviations of the Berry plot offset from 0.5 (for 3D TIs see,
e.g., Refs. [8,23–25]).

Considered conditions are realized only in ideal 3D TIs.
Indeed, n = const. is applicable only for pure 2D system
without any excess reservoir of carriers, i.e., in 3D TIs it can be
realized only if the chemical potential lies in a band gap where
there are no bulk carriers at all that cannot be reached in real 3D
TIs. The μ = const. condition is realized only in 3D TIs with
continuous density of bulk states on the Fermi energy level
which is much larger than density of surface states. However
real 3D TIs may deviate from μ = const. limiting case.

III. DEVIATIONS FROM THE μ = const. CASE

A. Crossover from n = const. to μ = const. in 3D TI thin films

We first consider thin films, as an intermediate case, where
the crossover from n = const. to μ = const. might be realized.
Indeed, the density of the impurity band states for bulk carriers
is small due to negligible thickness. Correspondingly, when
the total electron density is varied by gate voltage, the Fermi
level is tuned from gap (where only TSS are present and
n = const.) to valence (VB) or conduction band (CB) (where
bulk states provide a μ = const. condition). Apparently, one
would expect differences between these two limits only if

the Hamiltonian deviates from the ordinary Dirac one. In the
most popular family of 3D TIs the Bi2−xSbxSe3−yTey mainly
Zeeman term (introduced in Ref. [27]) was shown to affect the
phase significantly [8]:

Ĥ = v(kyσ̂x − kxσ̂y) + 0.5gμBBzσ̂z. (6)

Here k = (kx,ky) is a quasimomentum vector that should
be replaced by k − eA/c in magnetic field, g is the effective
g factor, μB is the Bohr magnetron, and σ is a vector of Pauli
matrices. The spectrum of LLs is modified in the following
way [8]:

EN = ±
√

2Nh̄eBv2 +
(

gμBB

2

)2

. (7)

The Zeeman term deflects the chiral electron spin structure
out of the surface plane and becomes significant in large mag-
netic fields, leading to nonlinearity of 1/BN (N ) dependence.
For further estimates we take v ∼ 3 × 105 m/s (for Bi2Se3)
from the ARPES measurements [28]. In various previous
papers [6,8,9] an arbitrary offset was explained by tuning the
value of the g factor. In our estimates we suppose a fixed
moderate value g = 30 and Gaussian LL broadening with
� = 1 meV, close to the theoretical predictions [27].

We suggest the following realistic toy model of the Bi2Se3

3D TI thin film: the system consists of two surfaces, hosting
Dirac fermions with the spectrum of LLs given by Eq. (7) and
3D bulk states with field-independent density of states per unit
area:

D3D(E) = 2m||
√

2m⊥(E − E0)

2π2h̄3 d, (8)

where d is the film thickness, taken to be 10 nm, m|| and
m⊥ are effective masses in-plane and perpendicular to plane,
respectively, and E0 is the bottom of the conduction band
position, calculated relative to Dirac point of the TSS, and
taken to be equal to 150 meV (half of band gap in Bi2Se3).
The effective masses are taken from ARPES/magnetotransport
measurements [29] (m⊥ ∼ 0.25me, m|| ∼ 0.5me). We also
assume for simplicity that top and bottom surfaces of the 3D
TI are equivalent.

The chemical potential and electron density must satisfy the
following equations:

n3D(B) + n2D(B) = n = const., (9)

μ3D(B) = μ2D(B). (10)

The first one is the conservation of total charge (n3D and n2D

are total densities of the 3D and 2D carriers in the film per unit
area) and the second one is the thermodynamical equilibrium
condition. In zero-temperature limit the corresponding densi-
ties are calculated as n = ∫ μ

0 D(ε,B)dε, where D(ε,B) is the
density of states per unit area.

Solving them, we get the dependence of Fermi level on
the magnetic field, find the intersection of μ(B) [Fig. 2(a)] and
N th Landau midgap (BN ), and build the dependence N (1/BN )
[Fig. 2(b)]. In order to avoid dimensional parameters (like the
value of the magnetic field in T or carrier density in units of
1012 cm−2) we use the oscillations numbers from 5 to 10.
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FIG. 2. (a) Landau levels (fifth to tenth) versus magnetic field
for TSS in model 3D TI Bi2Se3 thin film with an effective g

factor equal to 30. Chemical potential versus magnetic field provided
that total density is fixed, for three values of the total density.
(b) The same as (a) for two-dimensional Dirac particles with linear
dispersion. (b) The corresponding fan diagrams 1/BN versus N . The
inset show schematically the dependence of the phase factor on total
carrier density.

For low total density, when Fermi level is in the gap, the
offset value is equal to 0.5, as expected. For high density,
when Fermi level is deep in the CB, intercept is −0.5 but
in the crossover regime intercept can be even less! Thus,
if the Zeeman splitting is strong enough, an arbitrary phase
can be achieved in the crossover between two limiting cases
n = const. and μ = const.

An experimental realization of the suggested mechanism
would be a total density dependent (i.e., gate-voltage depen-
dent) offset value. We should note, however, that there are
almost no reported magneto-oscillations data in thin films
of (Bi,Sb) chalcogenides, where Fermi level is tuned across
the gap.

We believe our considerations are supported experimentally
by Ref. [12], where the offset value changes from 0.5 to 0.2
as the chemical potential level is moved from the band gap to
conduction band (see Fig. 4(b) of Ref. [12]).

B. Linear dependence of μ with field

Another chemical potential-related mechanism of the effec-
tive offset shift can be realized in clean bulk 3D TI samples
(see, e.g., experiments [6,7,10]). Bulk states have much larger
density of states and much smaller mobility than the TSS.
Assume the chemical potential level drifts with magnetic field,
e.g., μ(B) = E0 + αB instead of μ(B) = const., as shown in

FIG. 3. (a) Schematic band diagram of the low density 3D TI,
adopted from Ref. [11]. (b) Energy diagrams [En(B) dependencies]
for the topological surface states Landau levels (solid lines). Dotted
and dashed lines: chemical potential within two models. Gray bars
and orange circles: correspond to Landau gaps. (c) Fan diagrams,
corresponding to μ = const. (gray bars) and μ = μ0 + αB (orange
circles).

Fig. 3(b). In this case positions of the Landau gaps [circles in
Fig. 3(b)] become shifted with respect to μ(B) = const. case
[bars in Fig. 3(b)]. The corresponding offset also shifts, as
shown in Fig. 3(c).

The effect of the chemical potential drift with respect to
the Dirac point (zeroth LL) is demonstrated experimentally in
Fig. 2(c) of Ref. [30] from tunnel spectroscopy measurements
(zeroth LL shifts with respect to chemical potential level as
field increases). The drift velocity dμ/dB was about 1 meV/T.
Let us estimate the offset shift, caused by such drift of the chem-
ical potential. We put μ(B) = E0 + dμ/dBBN into Eq. (1)
instead of εN , and neglect the second order in dμ/dB terms.
For the parameters of Bi2Se3 (E0 = 150 meV, v = 3 × 105

m/s), the offset has a shift h−1e−1v−2E0dμ/dB ≈ 0.37. This
estimate naturally explains the almost arbitrary value of the
offset in magneto-oscillation experiments in 3D TIs.

Where does this magnetic field dependence of the chemical
potential come from? We can suggest some scenarios. For
example, if the disorder is weak enough, and Fermi level is
pinned by the bottom of the conduction band [see Fig. 3(a)],
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FIG. 4. (a) The simplest case of nonuniform sample (long rect-
angular sample in Hall bar geometry with crack, shown by hatching).
Current flows between contacts 1 and 2. Longitudinal resistivity is
measured between contacts 3 and 4 and contain contribution of cracks.
Hall resistance is measured between contacts 3 and 5 and corresponds
to bare material. (b) and (c) Other possibilities of nonuniformity.

locally the spectrum of bulk states in the band tail might
also be quantized in magnetic field. Assume that 3D density
can be so low that starting from certain magnetic field all
bulk electrons are placed in zeroth bulk LL, and acquire
minimal additional energy h̄ωc/2. For the realistic mass of
the 3D carriers (m⊥ ≈ 0.25me in Bi2Se3), we get a reasonable
value dμ/dB ∼ 0.3 meV/T. Another, even stronger effect
might be the Zeeman drift of the chemical potential in the
band tail. Indeed, if the spin-orbit-interaction-renormalized g

factor is large enough, then the chemical potential of the band
carriers should decrease with field. Yet another scenario, also
believable in such narrow-band semiconductors as bismuth
chalcogenides, is the sensitivity of the band gap and overall
spectrum to magnetic field, due to magnetic field effect on
atomic levels, Bloch functions, etc. We believe eventually the
nature of the nonzero dμ/dB value will be clarified.

IV. INFLUENCE OF INHOMOGENEITIES

Another issue that can cause incorrect treatment of the
magneto-oscillations data is the choice of criterion of the
integer number of the filled LLs. Which feature should
be associated with Landau gaps: maximum or minimum of
the resistivity (or anything else)? The generally accepted
answer was given by Xiong et al. [7] that conductance minima
coincide with Landau gaps because conductance is defined by
conductivity of the system. Noteworthy, conductance (global
characteristic) corresponds to conductivity (local characteris-
tic) only in a homogeneous system. Let us illustrate how the
inhomogeneity can make the oscillation phase misleading.

Consider the simplest stripe-shape system constructed by
homogeneous single-component high mobility parts separated
by a highly resistive transition region, e.g., one crack or grain
boundary [Fig. 4(a)].

For uniform regions the minima of conductivity correspond
to the minima of local resistivity, because oscillations are

always observed for classically large magnetic fields μB > 1,

σxx = neμ

1 + μ2B2
∝ ρxx

ρ2
xy

. (11)

Thus Landau gaps correspond to minima of local resistivity
ρxx . Total four-wire resistance (inverse conductance) equals to
sum ρxxl/w + RC , where RC is the resistance of the crack. At
the same time the Hall effect is unaffected by the crack. If RC is
so large that it exceeds the Hall resistance in relevant magnetic
fields, then the effective conductance G can be evaluated as

Gxx ≈ 1

ρxx + RCw/l
. (12)

Thus, conductance minima correspond to maxima of re-
sistance (and therefore to maxima of conductivity) and phase
of oscillations acquires artificial ∼π shift. Depending on the
configuration of nonoscillating regions [Figs. 4(b) and 4(c)], an
arbitrary shift can be received. How can the presence of such
regions be indicated in real samples? The most reliable and
expensive approach would be detailed microanalysis. There
is, however, an indirect indicator.

It is textbook knowledge [31] that mobility derived from
Shubnikov–de Haas oscillations (μSdH ≡ eτD/m ≈ 1/Bons,
where τD and m∗ are Dingle time and effective mass cor-
respondingly, and Bons is the minimal magnetic field where
oscillations emerge) cannot exceed the one from the Hall co-
efficient (μHall ≡ ρxx

−1dρxy/dB), especially in Dirac systems
where backscattering is prohibited. Experimentally, however,
the opposite relation is often observed μSdH > μHall in 3D
topological insulator systems [7,10,11,13]. This anomalous
ratio was attributed to a huge reservoir of low-mobility bulk
carriers. Interestingly, even in the first research, where the
conductance criterion was suggested [7], the offset values
determined from Gxx and Gxy disagree with each other, thus
showing up incompleteness of the multiliquid model. In thin
films of 3D TIs (∼10-40 nm) it is hard to imagine a huge
reservoir of low mobility carriers, while the μSdH/μHall ratio
may exceed one [32,33].

On the contrary, such ratio can be explained in all systems by
the presence of transition regions. Indeed, if transition regions
are responsible for this high resistivity, whereas low-disorder
domains provide intensive magneto-oscillations starting from
relatively low fields, this high μSdH/μHall ratio is naturally
explained. However, if the sample is inhomogeneous, it is
becoming absolutely unclear which criterion for the integer
LL index should be used.

For example, in Ref. [33] physical vapor deposition grown
Bi2−xSbxTe3−ySey 18-nm thickness films are reported with
Hall mobility less than 30 cm2/V s and Shubnikov–de Haas
mobility in the range between 2500 and 5000 cm2/V s. In
the same films relative amplitude of the Shubnikov–de Haas
oscillations was less than 0.01% (0.2 Ohm atop of 2400 Ohm),
thus clearly signifying the case, shown in Fig. 4(c).

V. DISCUSSION

On the basis of the discussed three mechanisms, we suggest
that the best object for studies of the phase of quantum
oscillations in 3D TIs would be thin films or flakes, because
of negligible density of the in-gap states. If there is no
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abnormal μSdH/μHall > 1 ratio, then most probably the system
is uniform, and conductivity minimum criterion should be
trusted. Indeed, this signature of the uniformity is present in
most experimental papers on Shubnikov–de Haas oscillations
in thin films or flakes, where ∼0.5 offset is reported.

Another source of mistake in determination of the offset
is the procedure of the straight line 1/BN (N ) plotting. If the
typical numbers N , used for fit, are large (about 10–25), and
the amount of minima is small (5–7), then the mistake can
be essential. We believe therefore that for reliable statements
about the offset value, the results should be demonstrated not
on a single sample, but rather on a series of samples.

Chemical potential drift mechanism, suggested by us, poses
a question whether the Zeeman term [see Eq. (6)] used for ex-
planation of the anomalous offsets in Refs. [6–8,10] is relevant
in 3D TIs. Indeed, such a term in the Hamiltonian emerges
only in magnetic field, i.e., it is invisible, e.g., by ARPES, and
cannot be confirmed from independent measurements. Instead,
the deviations of the Berry plot offset from 0.5 are naturally
explained within the chemical potential drift.

Concerning bismuth chalcogenides, we should also note
that in doped crystals (with carrier density ∼1020 cm−3) with
negligible TSS contribution, Shubnikov–de Haas oscillations
of bulk states are often studied. These oscillations are quasi-
2D, because they originate from an almost cylindrical Fermi
surface [29]. However, they are often attributed to surface
carriers [34–36]. Moreover, 0.5 offset is often detected and
considered to be a fingerprint of Diracness. We should note
that in almost all of these bulk crystals the ratio μSdH/μHall has
an abnormal value, larger than one, and that the straightforward
application of Eq. (1) requires additional knowledge about the
spectrum of these systems.

A. Phase of magneto-oscillations in 3D TI strained HgTe

Recently, strained epitaxial layers of HgTe (from 50 to
100 nm) were shown to be 3D topological insulators [37–39].
Apart from bismuth chalcogenides, this material has zinc
blend structure, no van der Waals bonds, and, hence, high
structural quality advantaged from well-developed epitaxial
technology. The main features of 3D TI HgTe (as compared to
bismuth chalcogenides) are: (i) much higher mobilities up to
106 cm2/V s and almost complete absence of the in-gap bound
states and (ii) very small band gap (∼10 mV).

The complete Berry plot in the 3D TI regime (see Fig. 3(d)
in Ref. [37]) is nonlinear: in low magnetic fields (high N )
only one surface demonstrates oscillations due to elevated
mobility and density. The role of the second surface is to
stabilize the chemical potential. The phase of these oscillations
is abnormal β ≈ 0.6, in agreement with [39]. At high magnetic
fields (lowN ), both top and bottom surfaces are quantized (case
n = const.), and N follows Eq. (2), without any phase shift.

The Berry plots 2.2–4.4 V in Fig. 3(c) in Ref. [38] cor-
respond 3D TI with inequivalent surfaces and demonstrate
nontrivial phase of the quantum magneto-oscillations. As
Fermi level of the top surface moves to the valence band
(2 V figure), the phase of the oscillations shifts (similarly
to our Fig. 2). Thus, the arguments of our paper could be
straightforwardly applied to HgTe systems.

We should note however that thin film-based HgTe 3D TIs
are not that simple. For example, the gap positions determined
from capacitance and resistivity do not coincide. For adequate
analysis of the Berry plots in these systems (top gate +
top surface of 3DTI + bottom surface of 3DTI) one should
additionally solve a Poisson equation. Indeed, in order to
maintain chemical potential common as a magnetic field is
swept, a redistribution of carriers between top and bottom
surfaces should occur, thus affecting the electrostatics of the
whole system. These calculations are out of the scope of this
paper and yet have to be done.

Interestingly, Ref. [38] probes density of mainly the top
surface through the quantum capacitance. This method has
advantages over resistive detection, it does not suffer from
conductivity/resistivity criterion, possible sample inhomo-
geneities, and detunes from parasitic bulk and second surface
contributions. Application of the capacitive technique to the
other 3D TI materials will help to understand whether conduc-
tivity/resistivity criteria determine Landau gaps.

B. Phase of magneto-oscillations in 3D multiband systems

Apart from 2D systems and surface states of 3D topological
insulators, discussed in this paper, 3D metals (or semimetals)
are not gapped in magnetic field, because they preserve disper-
sion in a magnetic field direction. In particular, for quadratic
spectrum one has

EN (kz) = h̄eB

meff
(n + γ ) + h̄2kz

2

2mz

, (13)

where kz is the wave vector of electron in the magnetic field
direction, and mz and meff are effective masses in parallel and
perpendicular to magnetic field directions, respectively. For
systems with linear dispersion one has

EN (kz) = h̄c

√
2Be

2πh̄
[n + γ + C2 sin2(θ )] + kz

2. (14)

Here c is the velocity of electrons, C is the material
dependent parameter, equal to zero in Weyl metal and not equal
to zero in Dirac metal, and θ is the angle between magnetic
field and a certain crystallographic direction.

Correspondingly, the density of states between LLs be-
comes nonzero, leading to the shift of the conductance minima
out of the center of the Landau gap. In order to calculate the
magneto-oscillations phase shift one usually considers only the
first harmonic of the oscillations [40], which is justified only
for large N . There are other factors that make the magneto-
oscillation phase in the 3D case less reliable. For example,
a realistic modification of the spectrum in topological metals
(introduction of electron-hole asymmetry) causes significant
shift of the phase [41].

The mechanisms, described in our paper, may readily affect
the phase in numerous multiband 3D materials, like cuprates,
pnictides, topological semimetals (e.g., Dirac and Weyl), etc.
Indeed, if at the Fermi level there are only few equivalent bands
with coincident LLs, then the n = const. condition should be
applied. In the opposite limit, when besides electrons of interest
there is a large side density of states from the other subbands,
the μ = const. condition becomes applicable. However, the
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μ 
= const. case is also entirely possible, especially for thin
film objects.

In fact, for any multisubband system a theoretical analysis,
similar to ours, should precede the treatment of the Berry
plot data: (i) spectrum of LLs should be calculated for each
subband; (ii) chemical potential should be found for each
magnetic field from equilibrium and electroneutrality condi-
tions [equations similar to (9), and (10)]; (iii) positions of
the corresponding Landau gaps should be found; and (iv)
the corresponding criterion (minima of conductance or heat
conductance or anything else) should be chosen and justified.

Interestingly, recently very similar ideas were implemented
to theoretical analysis of the phase of magneto-oscillations in
nodal line semimetals [42], i.e., materials where instead of
single Dirac point a nodal line is observed.

VI. CONCLUSION

To sum up, positions of the Landau gaps are determined by
thermodynamics of the system and detected by resistivity. We

demonstrate that besides topology such practical aspects, as
a possibility for sample inhomogeneity and thermodynamical
constrains, crucially affect the phase of magneto-oscillations
in 3D topological insulators. The situation when the phase
is different from π is entirely possible, even for Dirac-
like carriers. Therefore, the phase of magneto-oscillations,
at least in most studied 3D TIs (bismuth chalcogenides),
should not be generally used to prove the Diracness. Rather,
magneto-oscillations phase might be only complimentary to
other measurements. Generalization of our ideas to other
material systems, like Dirac and Weyl semimetals, can also
be performed.
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