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Neural-network-enhanced evolutionary algorithm applied to supported metal nanoparticles
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We show that approximate structural relaxation with a neural network enables orders of magnitude faster
global optimization with an evolutionary algorithm in a density functional theory framework. The increased
speed facilitates reliable identification of global minimum energy structures, as exemplified by our finding of
a hollow Pt13 nanoparticle on an MgO support. We highlight the importance of knowing the correct structure
when studying the catalytic reactivity of the different particle shapes. The computational speedup further enables
screening of hundreds of different pathways in the search for optimum kinetic transitions between low-energy
conformers and hence pushes the limits of the insight into thermal ensembles that can be obtained from theory.
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I. INTRODUCTION

The field of automated structure determination [1,2] and
high-throughput computational studies in condensed matter
physics and materials science [3] is seeing great advances in
capabilities following developments in first-principles compu-
tational methods and the advancements in computing power
available. The buildup of databases of structure-property re-
lations [4,5] enables efficient prediction of promising new
materials that are not yet experimentally characterized, or
even synthesized [6,7]. Such computational studies rely on
accurate identification of possible ground-state and metastable
structures of matter across variations in stoichiometries, sym-
metries, and, for extended system, also lattice parameters.

The same scenario plays out in the field of heterogeneous
catalysis which has a strong record of providing insight and
guidance for both computational and experimental investiga-
tions [8,9]. Coordination models have proven useful in ratio-
nalizing the catalytic activity of solid surfaces with and without
imperfections [10], and descriptor-based models have led to
predictions of new catalytic materials [11]. As an example,
the study of oxide-supported size-selected nanoparticles of
reactive metals has revealed that “each atom counts”[12]. That
is, the nanoparticles are showing pronounced variations in
their catalytic activity with particle size and shape [13–16],
and theoreticians have sought to use computational means to
unravel the underlying mechanisms [17–19].

In the search for realistic atomistic models for such systems
[20–23], it has become obvious that unbiased structure search
algorithms such as evolutionary algorithms [24,25] (EA),
basin hopping [1,26], or minima hopping [27] algorithms
are required whether it is to locate realistic geometries of
nanoparticles, to identify representative catalytic sites, or to
create an ensemble of different configurations. As system
sizes grow and become more realistic, so does the complexity
of the models needed and hence more structures must be
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considered before a good representation of candidates can
be obtained. Any measure to reduce the number of required
ab initio calculations is hence much valued as it provides
greater opportunity to explore relevant systems [28]. One way
to achieve a great speedup but still be able to preserve the
accuracy of first-principles calculations is to use well-trained
machine-learning potentials [29] whether it is from support-
vector machine methods [30], kernel methods [29,31–36], or
artificial neural networks [20,22,28,37–41] (NN). With the in-
troduction of machine-learning (ML) models that also include
forces, either as derivatives of the learned energy potential [42]
or by directly training the forces [34,43], it is now possible to
bring a given configuration to its local minimum configuration
with no prior assumption or analysis of the interaction mode
as would otherwise be needed for inexpensive classical force
fields. With the newly found opportunities, several successful
attempts have been proposed to combine ML and global
structure optimization as, e.g., a neural-network-biased genetic
algorithm [44], a combination of a neural network potential and
the basin-hopping method [45], the creation of hierarchical NN
libraries for multicomponent systems by generating training
data from EA runs [28], and particle swarm-intelligence based
global optimization involving trained Gaussian approximation
potentials [46]. Recently, Wu et al. showed that an adaptive
evolutionary algorithm that reparametrizes classic interatomic
potential parameters has the possibility to achieve large accel-
erations over purely ab initio evolutionary algorithm searches
[47]. Similarly, Van den Bossche et al. have demonstrated
comparable speedups for an EA by reparametrizing a tight-
binding density functional model potential [48]. However,
for complex or arbitrary multielement systems, the choice
and reparametrization of such potentials can be cumbersome,
thereby impeding and limiting the adaptive improvement of
the potentials. Here, instead we suggest retraining agnostic
machine-learned potentials as unbiased auxiliary energy ex-
pressions with no initiation mode assumed, which has the
prospects of circumventing issues of choosing appropriate
potential expressions. For this we chose an artificial neural
network that eliminates relaxations at the first-principles level
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FIG. 1. Left: standard EA algorithm. Right: the proposed LEA algorithm in which new candidate structures are relaxed within the Amp
model. The strategy is more conservative and hence more error tolerant than that of Ref. [47] as the model predicted energies are continuously
monitored.

of theory. Following the above, we present a neural-network-
enhanced evolutionary algorithm, a learning EA (LEA).

The paper is outlined as follows: We start by introducing
the evolutionary algorithm, pointing out how an NN model
can be trained initially and retrained on-the-fly on the steady
production of new structure-energy candidates. Next, we
present the details of the NN of the Behler-Parrinello [38,39]
type as implemented in Amp [42] and the computational
setup. We proceed by gauging the extent to which the method
reduces the need for first-principles calculations. To achieve
good statistics, we do this with a pseudoempirical energy
expression, the effective medium theory (EMT) [49], applied
to the model system of Ag3Pt3 nanoparticles on a Pt support.
We then move to a full-scale density functional theory (DFT)
investigation of MgO supported Pt particles where we apply the
method showing that a combination of NN and EA enables us
to unravel numerous unreported nanoparticle geometries that
are considerably more stable than those previously reported.
We finally investigate how the catalytic activity changes
with the particle shape and effectively exploit the trained
NN model to explore the transition barrier between relevant
nanoparticles.

II. METHOD

The basic EA algorithm (available in the Atomic Simulation
Environment (ASE) [50] and explained in details elsewhere
[25]) is sketched in the left part of Fig. 1, which shows how
the pool of candidates propagate towards the global minimum
structure by creating a random initial population and from that
picking parents to create new offsprings by pairing/mutation
operations. The offsprings are relaxed to a local minimum
before potentially entering the population, ideally improving
the population fitness before a new loop is initiated. The
expensive part of this type of global optimization algorithm
is the local relaxation performed at the first-principles level.
In our method, these calculations are hence circumvented by
performing the relaxation in a ML model. To exclude the need
for a large expensive precalculated data set for training, we
chose to on-the-fly train a NN model, very much in line with
NN accelerated saddle-point search proposed previously [51].
With the use of a NN model we further eliminate the need

for cheaper inaccurate screening procedures like the use of
classical potentials.

In this work, we chose a NN as the ML plug-in but any
general ML model including force prediction is applicable
and much more reliable than any classical force field [52].
To manage training, force calculation, etc., we utilize the
open-source NN module of Amp, explained in detail elsewhere
[42]. Amp has proven a powerful ML package with examples of
its use spanning an acceleration of saddle-point searches with
the nudged elastic band method [51], how dynamic Pd sur-
faces influence coverage-dependent oxygen interactions [53],
exploring AuPd(111) slab properties [54], to predicting active
CO/CO2 sites on bimetallic nanoparticles [55]. For consis-
tency, the construct of the NN is the same throughout this study
with two hidden layers, each with five nodes to give the output
atomistic energy, hence applying the atom-centered approach
with the forces calculated for each atom by differentiating
the energy with respect to the input parameters. The network
architecture is kept simple to avoid overfitting as the variance
in the data set is sparse especially for the initial training. The
cosine cutoff function (radius of 7.0 Å) and the Gaussian
(G2 and G4) descriptor used to describe the local structure
in the region around the atoms both implemented in Amp fol-
low the formalism suggested by Behler and Parrinello [38] with
the chosen η, ζ , and γ values presented in Table I. The chosen
parameters result in 40 and 72 symmetry functions per atom
type for the two- and three-component systems, respectively.

The Amp structure optimization of each LEA candidate
was in all cases terminated when no force exerted on any atom
exceeded 0.1 eV/Å.

TABLE I. The chosen η, ζ , and γ values for the used G2 and G4
symmetry functions [39].

G2
η 0.01 0.05 1 4 10 20 40 80

G4
η 0.001 0.005
ζ 1 4
γ −1 1
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The addition to the regular EA proposed in this work is illus-
trated in the right part of Fig. 1. First, a regular EA is initialized
and the initial starting population is generated and relaxed with
a total energy code of choice. We are presently resorting to
two methods; the EMT [49] potential for statistical purposes
and DFT for real scale systems (see details below). Before
the next EA step, pairing/mutation, Amp is trained against
the relaxation paths of the start population. When the training
is satisfactorily converged (∼10 000 training iterations) the
EA evolution proceeds but the structure relaxation is now
performed at great speed with Amp instead of with the regular
quantum mechanics (QM) based method. When converged to
a local minimum within Amp, a single-point calculation is
performed with the parent calculator and a new training point
is added to the pool of training data. If there is significant
discrepancy between the parent calculator and the Amp energy,
|EDFT − EAmp| > Etol (in this work chosen as 1 eV), the EA is
paused and Amp is retrained based on all accumulated training
data. Once the Amp energy prediction is sufficiently good, the
EA proceeds as normal until it stagnates. Stagnation is here de-
fined as nstag = 40 subsequent attempts with lower fitness than
the fittest found so far. Amp is retrained (for an additional 1000
iterations) and the EA run is resumed using the optimized Amp
potential. The algorithm, as any evolutionary algorithm, has no
natural stopping point and is stopped once the progress is com-
pletely stagnated or after a set number of evolution steps nmax.

A. Effective medium theory with Ag3Pt3 nanoparticles

As a proof of concept, the EMT potential [49] has been
employed to describe the energy of a Ag3Pt3 nanoparticle
disposed on a Pt surface. The two-dimensional (2D) periodic
model surface cell is an fcc(111) surface with the supercell
spanning 4 × 4 × 2 atoms with both layers held fixed. For
all EMT calculations, the geometric convergence was consid-
ered achieved when no exerted force on any atom exceeded
0.025 eV/Å.

B. Density functional theory with Ptx nanoparticles

To describe the MgO(100) supported Ptx nanoparticle en-
ergies, we used the plane-wave method within the DFT frame-
work of GPAW [56] with an energy cutoff of 340 and 400 eV for
the parent calculator in the LEA search and final calculations,
respectively. For comparability with previous studies [57,58],
we used the Perdew-Burke-Ernzerhof exchange-correlation
functional [59], sampling the gamma point of the Brillouin
zone. The global minimum and other potential candidates
were optimized in the final calculations until no forces on
any atoms were above 0.025 eV/Å both with and without
spin polarization. For spin-polarized calculations, the total
magnetic moment was fixed at 1, 2, and 3 for each of the final
structures to locate the most preferable spin configuration. Two
slabs of bulk truncated MgO(100) with lattice constant 4.21 Å
were used as substrate. For the LEA search, a (5 × 5) cell with
two layers (both frozen) was utilized while a larger (7 × 6) cell
consisting of four layers with only the bottom layer frozen was
used for the post analysis. The parameters chosen for the post
analysis thus conform fully with those used in Refs. [57,58].

III. RESULTS AND DISCUSSION

As NNs are interpolation methods, the performance is at
best very suboptimal in regions outside the training data. The
point of a global optimization algorithm such as an EA is
exactly to quickly be able to search widely in parameter space
in unexplored regions. This is prone to introduce structures
that are not resembling those in the training data. So, why
is it still possible to use a NN to optimize and evaluate the
fitness of new candidates? The training data consist of a set
of feature vectors centered on each atom, hence describing the
local environment, and even though by the human eye a new
structure might appear very different from any structure in the
training set, its local feature vectors could very easily still be in
the interpolated part of the training data. This is especially true
as new candidates are often created by a pairing between two
half-candidates (e.g., by the cut-and-splice operator). With
that in mind, it is still possible, notably at the cutting plane,
to create environments not possible to represent well with
the current training data and hence the NN could perform
unsatisfactorily. An unintended poor performance is caught as
every new candidate is recalculated at the full level of accuracy,
however, only as a single-point calculation with the parent
calculator and added to the training data before a potential
retraining is initialized.

A. Pt3Ag3 nanoparticles with EMT

To provide a relevant basis for a statistical analysis of the al-
gorithm, a relative simple nanoparticle of three Pt and three Ag
atoms is deposited on a Pt(111) surface. The global minimum
model system is displayed in Fig. 2(a). Restarting the LEA
and regular EA algorithms 100 times from scratch allows for a
direct comparison between the number of candidates and par-
ent (EMT in this case) calculations needed to locate the global
minimum. In Fig. 2(b), we plot the fraction of the individual
runs that have succeeded in finding the global minimum versus
the improvement attempts made (or “generations”) of the EA
cycle (see Refs. [35,60] for a similar metric). Not surprisingly,
the LEA runs are delayed in locating the global minimum
before the same success rate is achieved. However, the cy-
cle employing a neural network needs far fewer parent (ab
initio/EMT) calculations per attempt, which is evident when
we plot the same data versus the number of parent calculations
[Fig. 2(c)]. Both methods need a proper starting point achieved
by relaxing the initial random population 50 steps, hence,
when analyzed we distinguish between the initial and the EA
cycle calculations needed to propagate the search. Figure 2(b)
reveals that to achieve finding the global minimum structure
with 50% certainty the average number of attempts needed
to make increases from ∼170 to ∼260. On the other hand,
the amount of EA parent cycle calculations for the successful
runs for the two strategies decreases from n × m ≈ 8900 to
n ≈ 260. The above is highlighted in Fig. 2(d). The average
number of EA cycle parent calculations for the regular EA is
shaded light red, where n and m introduced in Fig. 1 are the
number of EA loops and parent relaxation steps, respectively.
Correspondingly for the NN model, shaded light yellow, only
the n EA cycle parent calculations are on average needed and if
we consider the m model relaxations for basically free, which
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FIG. 2. (a) The atomistic model of the Pt3Ag3 nanoparticle supported on the Pt(111) with the Ag and Pt atoms colored green and blue,
respectively, while the slab Pt atoms are white. (b), (c) The success rate of locating the global minimum as a function of the number of
candidates evaluated and the number of needed parent calculations, respectively, while (d) highlights the significant reduction in the average
parent calculations needed.

is a good approximation when compared to expensive DFT
calculations, the difference in parent calculations is a very good
representation of the amount of time on average gained when
locating the global minimum. What is also evident is that a large
amount of the needed parent calculations actually originate
from the initial relaxation of the start population, the white bars,
an amount that dominates the needed parent calculations for the
LEA method. For this specific system, each LEA run requires
∼10 retraining steps, predominantly caused by stagnations.

B. Ptx nanoparticles on MgO with DFT

Having established a robust algorithm, we apply it to a
number of Pt nanoparticles on MgO which have been studied
extensively for their catalytic properties both theoretically
and experimentally [57,58,61–65]. A number of nanoparticle
configurations of sizes 9, 10, and 13 have already been
suggested from an extended search [57,58] and we employ the
LEA algorithm for the exact same systems and computational
setup. Running the NN accelerated EA for the three particle
sizes reveals that the task of finding the right nanoparticles
is indeed too complex to do by hand as several more stable
configurations are located for all three sizes. For each size,
we restarted the search three times and the evolution of all
nine LEA runs are plotted in Fig. 3. The top 54 most stable
candidates found during the LEA runs are plotted in the
Supplemental Material [66], Fig. S1-3, for each particle size.

The apparent global minimum is located by all three EA runs
for the Pt9 nanoparticle, and by 2

3 of the runs for the Pt10

and Pt13 nanoparticles. The fact that we do not find the global
minimum for every restart conforms with the findings in Fig. 2
for the Pt3Ag3 system, where Fig. 2(b), for instance, showed
∼50% hit rate after ∼400 attempts.

From the EA search, candidates within a ∼0.5 eV window
from the top are transferred and rerelaxed in the same unit cell
as used by Crampton et al. [57,58] Their best guess for each
size is plotted in Figs. 4(c), 4(f), and 4(o). For the Pt9 and Pt10

nanoparticles, the structures and the updated energies of our
two best structures found are plotted in Figs. 4(a), 4(b), 4(d),
and 4(e). Following Crampton et al., the spin degree of freedom
has been mapped and optimized for each of the structures
resulting in both magnetic and nonmagnetic structures. A more
extensive view of the explored structures is plotted for the
Pt13 nanoparticles in Figs. 4(g)–4(o)which show the transition
for LEA structures to the post-analyzed structures. In the top
of Fig. 4(g), the density of states of uniquely found LEA
candidates in the (5 × 5) cell is plotted, and just below is a
zoom-in on a 0.6-eV window of the most stable candidates.
Finally, at the bottom the final rerelaxed structures in the
(7 × 6) cell are plotted on the same energy scale. The same
analysis can be seen for the both the Pt9 and Pt10 searches in
the Supplemental Material [66], Figs. S4 and S5.

In general, some of the minima in the small unit cell
are “false” minima and hence when transferred to the large

(a) (b) (c)

FIG. 3. The three individual LEA runs for each of the three nanoparticle sizes 9, 10, and 13 Pt atoms in (a), (b), and (c), respectively. The
plots show the most stable candidate found as a function of the number of attempts.
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0

FIG. 4. Top and side views of the two most stable configurations and the previous reported (*) for the Pt9 (a)–(c) and Pt10 (d)–(f). (g) From
the top: the density of states for the 5-eV most stable Pt13 nanoparticles for all LEA runs, zoom-in on the window of the first 0.6-eV most stable
particles, and the structures transferred to Crampton et al.’s (7 × 6) unit cell with the total magnetic moment optimized. (h)–(o) The eight best
nanoparticles including Crampton et al.’s suggested (marked *) shown in a top view. (b), (c), (f) Have an optimized magnetic moment of 2
while (n) has a magnetic moment of 1; the remaining depicted structures are nonmagnetic. Green, red, and light blue spheres represent Mg, O,
and Pt atoms, respectively.

unconstrained cell they relax into one of the other minima.
The large change in energy seen for a couple of configurations
is mostly due to a significant stability gain when allowed to
possess a magnetic moment.

It is evident that a relevant proportion of the most stable
Pt9 structures are very asymmetric and hence even harder to
guess. Out of the 10 best structures identified in our work,
only three, including the previously suggested structure, have
a high symmetry. The asymmetric trend is also observed for
the Pt10 nanoparticles with the global minimum configuration
showcasing four atoms twisted out of a high-symmetry con-
figuration. A great example of a relevant peculiar deformation
that a human would hardly imagine which could have relevant
consequences for the catalytic property of the particle.

The situation is different for the larger Pt13 nanoparticles.
Here, the most stable nanoparticle is very symmetric and
formed like a hollow pyramid with a missing atom in the center.
In hindsight, this is an obvious structure which is possible,
at least in the case of Au13 supported on MgO(100) [67], for
humans to guess but still overlooked for Pt13 in previous studies

[57,58]. This is not a single incidence as a total of six highly
symmetric structures are among the more stable geometries
for the three particles sizes found in this work. In the next
sections we will explore the consequences of not knowing the
right particle geometry by comparing adsorption properties
of the hollow pyramid [Fig. 4(h)] and the elongated structure
[Fig. 4(o)] previously suggested.

C. Adsorption of CO and C2H4 on Pt13

First, we examine the reactivity of the nanoparticles by cal-
culating the adsorption energy, a classical catalytic descriptor.
Both CO and ethylene have been adsorbed on the two different
nanoparticles on any conceivable/reasonable site. All stable
sites found are depicted in the top panel of Fig. 5. As the
adsorption energy is site dependent, each site has been assigned
a number and the corresponding adsorption potential energy
can be found in Table II. For each nanoparticle, the most stable
adsorption configuration has been depicted in the bottom panel
of Fig. 5.
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FIG. 5. The CO and C2H4 adsorption sites, respectively, on the hollow pyramid (a) and (c) and the elongated structure (b) and (d). The
configurations pictured in (a)–(d) are of the relaxed clean structure with a schematic showing the added adsorbates. The favored adsorption
configurations of CO and C2H4 imaged on the hollow pyramid [(e) and (g), respectively] and on the elongated structure [(f) and (h), respectively].

For the hollow pyramid, the same adsorption site is pre-
ferred whether the adsorbed molecule is a CO or an ethylene
molecule. A middle interface atom is pulled slightly out and
upward ∼1.23 Å from its resting position in both cases while
solely bonding the adsorbate. For both molecules, there is a
clear “best adsorption site” (CO: 0.22 eV and C2H4: 0.16 eV
more stable than the second most stable). For ethylene, if we
ignore the most favored adsorption, it seems that π bonding to
a single Pt atom and σ bonding to two Pt atoms are relatively
competitive as is seen for sites 2, 3, 5, and 6 (π bonded) versus
8, 9, 10, and 11 (σ bonded) in Fig. 5(c).

Adsorption on the elongated Pt13 nanoparticle is a bit more
complicated as the low symmetry allows for many different
adsorption sites as is seen when, e.g., comparing Figs. 5(c)
and 5(d). Adsorbing CO at the most favorable site drags the
immediate Pt atom ∼1.97 Å away from its resting position,
a significant structural change. Ethylene on the elongated
structure prefers to sit on one side of the nanoparticle bridging
two Pt atoms making two σ -like bonds.

As adsorption of ethylene is significantly stronger on the
elongated geometry, it is interesting to compare the relative
stability of the two adsorption complexes and to consider if
transforming the nanoparticle shape from the hollow pyramid

to elongated is possible, perhaps during adsorption. The first is
straightforward: the energy difference Ead (hollow + C2H4) −
Ead (elongated + C2H4) = −0.14 eV shows that the pyramid
complex is still slightly more stable; the latter is significantly
more complex and is discussed in the next section.

D. Pt13 structure transformation

In order to determine for a given Pt nanoparticle size if
the catalytic properties are governed by one particle shape
or an ensemble of particle shapes, the transition barriers
between particles must be known. The trained NN models
lends themselves to a thorough investigation of such barriers. In
Fig. 6 we consider the transition of the hollow Pt13 nanoparticle
into the elongated Pt13 nanoparticle. If performed at the DFT
level, only few guesses can be covered concerning which Pt
atoms of the initial nanoparticle map onto which Pt atoms
of the final nanoparticle. A natural choice would be the
mapping that results from the Hungarian method in which the
2-norm distance of the two nanoparticles is minimized. This
strategy is very similar to the approach Zhai et al. apply for
exploring transitions between isomers of α-Al2O3 supported
Pt7 nanoparticles [68]. Using, however, the NN potential, a
brute force strategy may be adopted to screen for the best

TABLE II. Adsorption potential energies in eV for the different adsorption sites on both the hollow pyramid and the elongated structure
for both CO and C2H4. The bold numbers indicate the lowest energy adsorption sites of the four different nanoparticle adsorbate combinations.
The corresponding structures are depicted in Fig. 5(e)–5(h).

No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

hPy −1.90 −1.82 −2.12 −1.90 −1.73 −1.75
CO

elong −1.53 −1.91 −1.76 −1.97 −1.86 −1.48 −2.07 −1.94 −1.68 −1.80

hPy −0.90 −1.05 −1.02 −0.88 −1.04 −1.07 −1.23 −0.99 −0.98 −1.02 −1.04
C2H4

elong −1.41 −1.28 −1.31 −0.55 −0.37 −1.15 −0.98 −1.05 −1.45 −0.33 −1.07 −1.61 −1.24 −1.23 −0.91 −1.14
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1.89

FIG. 6. The first axis shows the reaction coordinate for the
transformation of the hollow pyramid to the elongated structure. The
lowest-energy path is plotted in blue, while the pathway resulting from
minimizing the 2-norm mapping is plotted as a reference in green.
The top and bottom panels shows images of side and top views of the
initial state, transition states, and final state of the two pathways. The
Pt atoms are colored according to their relative height in the pyramid
configuration: the lighter the blue, the higher the atoms are.

possible mapping. This is done adapting a parallel version of
a machine-learning accelerated saddle-point search [51], but
starting from the already trained Amp model. Collecting new
training data (pathway points at the DFT level) and retraining
is performed in parallel over all investigated paths using one
common Amp model. Specifically, we have investigated the
pathways for 600 different mappings resulting from freezing
indices of five atoms, manually mapping three atoms in five
different ways, and combining the remaining five Pt atoms in
every conceivable way (see Supplemental Material [66], Fig.
S6, for the different mappings). The rationale for fixing said
indices is the like positions while the rationale for the manually
shuffling of the three atoms is the desire to keep the number
of pathway searches in the hundreds while still exploring any
reasonable mapping.

The 600 NN-based searches were done using the AUTONEB

[69] method adopting the IDPP [70] method for the initial
guesses. The results showed several low-energy barrier path-
ways, six of which had estimated barriers less than 0.15 eV
from the lowest-energy barrier. For reference, the Hungarian
pathway emerged as the 71st lowest with a barrier 0.29 eV
higher than the lowest. These seven pathways (including the
Hungarian) were subsequently fully modeled at the DFT level
and converged with very few iterations compared to what
would have been required in the absence of the NN-based
pathways. The mapping of the Hungarian method resulted
in a barrier of 1.89 eV, while the best pathway of the six
found with the systematic mapping showed a lower barrier
of 1.26 eV. The corresponding energy profiles are depicted in
Fig. 6 and movies of the two transitions are available in the

?

?

1.27 eV

0.14 eV

0.52 eV

1.23 eV

0.21 eV
1.61 eV

0.75 eV

FIG. 7. Graphical representation of the two examined Pt13

nanoparticles with and without ethylene adsorbed. The left illustrates
the possibility that one of the other stable configurations allows for
an even stronger adsorption complex. The relative energy is plotted
along the vertical axis and the unknown numbers are indicated with
“?”.

Supplemental Material [66]. The different barrier heights are
crucial when preparing Pt13 particles for a catalytic experiment.
If, at deposition of the Pt particles, elongated structures are
formed they are easily converted into hollow pyramids as the
barrier is “only” 0.75 eV which is manageable even at room
temperature. This prediction would have been missed by only
asserting the Hungarian mapping as it results in a 1.37-eV
barrier which is not surpassable at room temperature. We
note, however, that both the Hungarian and best systematic
barrier estimates conform with the idea that as soon as hollow
pyramids are formed they will be “trapped” in this state (at
room temperature) as the barrier is simply too high to surmount,
whether it is 1.26 or 1.89 eV does not matter.

The total stability of the most favorable elongated and
pyramid ethylene complexes are almost equal but the barrier for
transforming the nanoparticle from the hollow to the elongated
is not expected to be dramatically reduced by adsorbing,
e.g., ethylene; the exact effects though are at the moment
unknown. Hence, not changing the fact that newly created
particles will quickly convert to and be “trapped” as hollow
pyramids even at elevated room temperature. A visual overview
of the stability of the two nanoparticles (with and without
adsorbed ethylene) is presented in Fig. 7. The very different
adsorption configuration especially for ethylene (σ versus π

bonded) and the energy difference between the two different
configurations will very likely heavily influence the credibility
of potential theoretical predictions of the catalytic reactivity
of the real nanoparticles in practice, rendering them useless.
In principle, there could be another combination of particle
configuration and adsorption site that is even more stable as
illustrated in the left part of Fig. 7. For the full picture situations
involving different adsorbate chemical potential should also be
considered. This would, however, require a detailed study and
subsequent analysis and is outside the scope of this study.

Without exploring every stable nanoparticle conformation
transformation barrier, we can get a feeling for how diverse the
most stable conformations are and formulate qualified expecta-
tions on the distribution of experimentally found particles. This
is achieved with the presumption that look-alike conformations
are associated with a smaller transformation barrier and by
grouping the conformations into clusters. All the unique Pt13
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FIG. 8. A dendrogram including the eight clusters found by clus-
tering the unique Pt13 structures (and the top MgO layer) following
an agglomerative clustering algorithm with an average linkage and an
inconsistent coefficient of 3.4 for separating clusters using the Bag
of Bonds [71] fingerprint function following Ref. [60]. The hollow
pyramid belongs to the purple cluster while the elongated structure
belongs to the dark red cluster. For each cluster, the structure closest
to the centroid has been plotted representing the geometry of the given
cluster.

structures are clustered into eight clusters shown in Fig. 8
by measuring their relative similarity. For each cluster, the
member closest to the centroid is visualized, as well as the
cluster assignment of the hollow pyramid and the elongated
structure. The five most stable structures are members of the
first four clusters (from the left) with the hollow pyramid as
the only member of the purple cluster. This indicates that it has

no immediate very stable “relatives” suggesting, without per-
forming the full search of every possible adsorption, mapping,
and transformation, that experimentally prepared particles of
13 Pt atoms are expected to be found in this exact configuration
at moderate temperatures.

IV. CONCLUSION

In summary, a neural-network-enhanced EA is outlined
and applied to MgO supported Pt nanoparticles. The method
proves highly CPU efficient and enables the identification of
different particle shapes. This is, for instance, seen for the very
stable Pt13 hollow pyramid. Our results highlight the need
for efficient unbiased optimization methods, and the neural-
network-enhanced EA described opens up for the study of, e.g.,
kinetic transitions between different particle shapes with the
use of the on-the-fly trained neural networks. These transitions
of rather diverse structures represent no easy task as is shown
by investigating two Pt13 conformers and the “brute force”
mapping allowed by our trained neural network brings the
estimated barrier down by 0.62 eV compared to a mapping sug-
gested by the Hungarian method. We show that indeed “every
atom” counts and it is of utmost importance that we know every
atomic position before statements on catalytic activity are made
as, e.g., shown for the adsorption geometry and energy of CO
and ethylene probe molecules on a Pt13 nanoparticle.
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