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Nonadiabatic Josephson current pumping by chiral microwave irradiation
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Irradiating a Josephson junction with microwaves can operate not only on the amplitude but also on the phase of
the Josephson current. This requires breaking time-inversion symmetry, which is achieved by introducing a phase
lapse between the microwave components acting on the two sides of the junction. General symmetry arguments
and the solution of a specific single-level quantum dot model show that this induces chirality in the Cooper pair
dynamics due to the topology of the Andreev bound-state wave function. Another essential condition is to break
electron-hole symmetry within the junction. A shift of the current-phase relation is obtained, which is controllable
in sign and amplitude with the microwave phase and an electrostatic gate, thus producing a “chiral” Josephson
transistor. The dot model is solved in the infinite-gap limit by Floquet theory and in the general case with Keldysh
nonequilibrium Green’s functions. The chiral current is nonadiabatic: it is extremal and changes sign close to
resonant chiral transitions between the Andreev bound states.
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I. INTRODUCTION

Microwave irradiation has always been a privileged tool to
analyze Josephson junctions [1]. Photon-assisted Cooper pair
transport has been observed in biased junctions [2,3]. Shapiro
steps reveal synchronization of the Josephson ac oscillations
with the microwave excitation [4]. In transparent junctions
such as quantum point contacts and in junctions made of a
quantum dot with a few levels, the Josephson properties are
governed by a discrete set of Andreev bound states (ABSs)
[5]. In the absence of constant bias, nonadiabatic behavior is
present even at low irradiation when the microwave frequency
(or its harmonics) matches the ABS spacing [6,7], causing a
sharp decrease in the current amplitude. Resonant microwaves
can be used as a spectroscopic probe of the ABS dispersion
with the phase difference applied on the junction [8].

Josephson currents can be induced either by a magnetic flux
or by driving a dc current through a junction. Here we propose
a third way of inducing a Josephson current. The main result
of this work is that microwave radiation can pump a Josephson
current in the absence of an applied superconducting phase dif-
ference and at zero average bias voltage. The required breaking
of time-inversion symmetry originates from the phase of the
microwave radiation, applied as an oscillating voltage vj (t) on
each side j = 1, 2 of the junction. A nontrivial phase difference
χ = χ1 − χ2 is included in microwave voltage amplitudes
vj (t) = −vj sin(�t + χj ), which introduces chirality in the
system. This can be achieved, for instance, by using a common
microwave line bifurcating into two branches, one containing
a delay line. A nonzero current appears for χ �= 0, π , made of
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Cooper pairs pumped through the junction. Another and less
obvious condition is to break charge-conjugation symmetry,
i.e., electron-hole symmetry in the junction. As shown below,
this can be related to general symmetry considerations. An
especially interesting situation is met if the junction is made
with a gated quantum dot. The resulting description, adopted in
this paper, considers a single noninteracting level, leading to a
pair of ABSs. A simplified “toy-model” description is obtained
in the infinite-gap model (IGM), yielding a periodically driven
two-level system that can be solved with Floquet formalism.
This model captures the essential physics. The general case,
involving coupling to the quasiparticle continuum states, is
analyzed using nonequilibrium Keldysh Green’s functions.

This effect pertains to the wide class of quantum pumping
phenomena [9,10]. It is remarkable that it disappears in the
adiabatic limit, i.e., when the quantum state of the junc-
tion is adiabatically modulated by the microwave radiation.
Comparing the microwave frequency to the energy splitting
between the phase-dependent ABSs, three regimes are ob-
tained: (i) a low-frequency regime, which can be described
within the IGM by Thouless’s argument [9], to lowest order in
nonadiabaticity; (ii) a high-frequency regime, easily solvable
analytically within the IGM; and (iii) a resonant regime,
which generalizes the current anomalies found by Bergeret
et al. [6,7] and is amenable to a rotating-wave-approximation
(RWA) solution in the IGM. Special attention is paid to the
cases of superconducting phase differences ϕ = 0,π where
the Josephson current is exclusively due to quantum pumping.
For simplicity, this current will be hereafter called the “chiral
current,” not to be confused with the oriented Josephson current
created by a magnetic flux piercing a ring.

One must emphasize that the present pumping mechanism
differs from other ones studied in Josephson junctions, such as
those involving Coulomb blockade [11], biased junctions [12],
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and a biased superconducting quantum interference device
pumping a normal current [13,14]. Our results also offer a
new way to create a highly tunable ϕ0 junction with a shifted
current-phase relation [15–23].

The plan of this work is as follows. Following this Intro-
duction, Sec. II presents the model and a general analysis of
the underlying symmetries. Section III contains the Floquet
solution of the infinite-gap model: low and high frequency
and close to a resonance (RWA). Section IV provides the
Keldysh solution of the full model and compares it to that of
the IGM. Section V demonstrates a mapping of the IGM onto
a tight-binding lattice chain model, emphasizing the relation
between the problem considered in this work and some driven
lattice models. Section VI concludes the paper.

II. THE MODEL AND ITS SYMMETRIES

The time-dependent phases deriving from the ap-
plied microwave voltages v1(t) = −v1 sin(�t + χ

2 ), v2(t) =
−v2 sin(�t − χ

2 ) are defined as

ϕ1 = ϕ

2
+ b1 cos

(
�t + χ

2

)
, ϕ2 = −ϕ

2
+ b2 cos

(
�t − χ

2

)
,

(1)

with bj = 2evj

h̄�
> 0. To take a simple example, let us first

consider a tunnel junction and work in the adiabatic ap-
proximation, e.g., plugging the phase dependences into the
equilibrium current-phase relation I (ϕ1,ϕ2) = Ic sin(ϕ1 − ϕ2).
Using Bessel function expansion, we find that the microwave
radiation modifies only the amplitude of the critical current
according to

〈I 〉dc = I0

[
J0(b1)J0(b2) + 2

∑
n>0

Jn(b1)Jn(b2) cos(nχ )

]

× sin ϕ. (2)

We show below that going beyond the adiabatic regime in a
quantum dot junction makes the microwave affect not only the
amplitude but also the phase of the Josephson current.

A specific model of a gate-tunable quantum dot Josephson
junction is considered now, which has a single relevant level
in front of the energy gap of the superconductors j = 1,2.
Neglecting Coulomb interactions, the Hamiltonian is the fol-
lowing:

H =
∑
kjσ

ξkj c
†
kjσ ckjσ + �

∑
kj

(c†kj↑c
†
−kj↓ + H.c.)

+ ε0

∑
σ

d†
σ dσ +

∑
kj,σ

tj [c†kjσ dσ eiϕj (t)/2 + H. c.], (3)

with ξkσ = εkσ − μ. The potentials evj (t) and the phases in the
pairing terms have been gauged away to appear in the tunneling
terms towards or away from the dot.

Unlike the case vj = 0, the physical properties do not
depend, in general, solely on the phase difference ϕ(t) =
ϕ1(t) − ϕ2(t), as seen by performing the gauge transformation
U = exp[−iνϕ2(t)] (defining ν = 1

2

∑
σ d†

σ dσ ). In the pres-
ence of time-dependent phases, this transformation correctly
eliminates the phase ϕ2(t), but it also yields a time-dependent

gate voltage on the dot. Actually, the Hamiltonian (3) does de-
pend on two independent time-dependent fields; for example,
it can lead to quantum pumping if the phase lapse χ is different
from zero or π .

We now investigate the symmetries of the full Hamiltonian
(3), first in the absence of microwave radiation. Equation (3) is
then parameterized by the phase ϕ and the dot energy ε0. Time
inversion T and charge conjugation C act on the fermion oper-
ators as T ckσT −1 = −σc−k,−σ (σ = ±) and CckσC−1 = c

†
kσ .

Using antilinearity of T leads to T H (ϕ,ε0)T −1 = H (−ϕ,ε0).
The current operator Ĵ (ϕ) = 2e

h̄
∂H
∂ϕ

transforms according to

−Ĵ (−ϕ), yielding the usual symmetry:

〈Ĵ (−ϕ,ε0)〉 = −〈Ĵ (ϕ,ε0)〉. (4)

On the other hand, charge conjugation applied to Eq. (3) turns
ξkiσ , ti , ε0, and ϕi into −ξkiσ ,−ti ,−ε0, and −ϕi . Owing to
symmetries of the current with ξ and ti , applying CT leads to

〈Ĵ (ϕ,−ε0)〉 = 〈Ĵ (ϕ,ε0)〉, (5)

a well-known symmetry of the so-called Josephson transistor
[24].

Let us now show that this last symmetry is broken
by the chiral phase χ . The symmetry operators T and C
are applied to the time-dependent Hamiltonian H (ϕj (t)).
Then T H (ϕj (t),ε0)T −1 = H ( − ϕj (−t),ε0) and −ϕj (−t) =
−ϕj + bj cos(�t ′ − χj ), with ϕj = ± ϕ

2 ,χj = ±χ

2 , t ′ = t +
π
�

. The latter time translation leaves the time-averaged quan-
tities unchanged; therefore, following the same reasoning as
above, we obtain for the dc component of the current

〈Ĵ (−ϕ,−χ,ε0)〉dc = −〈Ĵ (ϕ,χ,ε0)〉dc. (6)

Similarly, applying C leaves χ unchanged, leading to

〈Ĵ (−ϕ,χ,−ε0)〉dc = −〈Ĵ (ϕ,χ,ε0)〉dc. (7)

Equation (6) shows that time inversion operates both on χ and
ϕ, allowing us, in principle, to generate a nonzero chiral current
with ϕ = 0, π but χ �= 0, π . Let us define these currents by
Jchir,0/π (χ,ε0) = 〈Ĵ (0/π,χ,ε0)〉dc. Equations (6) and (7) lead
to

Jchir,0/π (−χ,ε0) = −Jchir,0/π (χ,ε0), (8)

Jchir,0/π (χ, − ε0) = −Jchir,0/π (χ,ε0). (9)

Therefore the chiral current not only changes sign with χ

[Eq. (8) is similar to Eq. (4)], but Eq. (9) shows that it also
changes sign with ε0, in contrast to the current generated
only by ϕ [Eq. (5)]. This nontrivial connection between time-
inversion and electron-hole symmetries is a fingerprint of this
chiral Josephson current. Notice that a normal current pumped
through a gated quantum dot is also found to change sign with
the gate voltage [25].

III. THE INFINITE-GAP LIMIT: FLOQUET ANALYSIS

A. The Hamiltonian

Let us first consider the IGM limit [26]. The subspaces of
even- and odd-number states on the dot become decoupled,
and only the even states may mediate a Josephson coupling.
Within the even-number space, a pseudospin mapping of the
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empty and doubly occupied states is defined as τ̂+ = d
†
↑d

†
↓ and

τ̂z = 2d
†
↑d

†
↓d↓d↑ − 1, yielding a driven two-level system:

H∞(t) =
∑
j=1,2

γj [e−iϕj (t)τ̂+ + eiϕj (t)τ̂−] + ε0τ̂z, (10)

where γj = πν(0)t2
j is the pair-hopping amplitude [ν(0) is the

metallic density of states].
This model can be solved with Floquet theory [27]. The

wave function �(t) evolves according to i�̇(t) = H∞(t)�(t)
(taking h̄ = 1). For the T -periodic Hamiltonian H∞(t) (T =
2π/�), there exists a set of Floquet pseudoenergies εα and a
periodic basis of wave functions (φα) with period T . A basis
solution �α(t) can be written as �α(t) = e−iεα tφα(t).

Fourier expansion of H∞(t) and φα(t) gives

H∞(t) =
+∞∑

n=−∞
H̃∞ne

in�t , φα(t) =
+∞∑

n=−∞
φ̃αne

in�t , (11)

where, defining γi,n = γiJn(bi)(i = 1,2),

H̃∞,0 = (γ1,0e
−i

ϕ

2 + γ2,0e
i

ϕ

2 ) τ+

+ (γ1,0e
i

ϕ

2 + γ2,0e
−i

ϕ

2 ) τ− + ε0τz, (12)

and for all integers n �= 0,

H̃∞,n = (−i)n[γ1,ne
−i

ϕ

2 ein
χ

2 + γ2,ne
i

ϕ

2 e−in
χ

2 ] τ+

+ in[γ1,ne
i

ϕ

2 ein
χ

2 + γ2,ne
−i

ϕ

2 e−in
χ

2 ] τ−. (13)

The Fourier series defined in Eq. (11) leads to

∞∑
m=−∞

H̃ FL
∞nmφαm = εαφαn, (14)

where

H̃ FL
∞nm = H̃∞,n−m + n�δnm. (15)

Noting φ̃α = (. . . ,φ̃α−1,φ̃α0,φ̃α1, . . .), Eq. (14) can be cast in
matrix form:

H̃ FL
∞ φ̃α = εαφ̃α. (16)

The dc current Iα associated with state |�α(t)〉 is defined

as Iα = 2e〈�α(t)| ∂H∞(t)
∂ϕ

|�α(t)〉, where f (t) = 1
T

∫ T

0 f (t)dt .
Equation (11) leads to

〈�α(t)|∂H∞(t)

∂ϕ
|�α(t)〉 = 〈φ̃α|∂H̃ FL

∞
∂ϕ

|φ̃α〉. (17)

According to the Hellman-Feynman theorem, 〈φ̃α| ∂H̃FL

∂ϕ
|φ̃α〉 =

∂εα

∂ϕ
. Therefore the dc current Iα in the Floquet eigenstate

becomes

Iα(ϕ,χ,ε0) = 2e
∂εα

∂ϕ
(ϕ,χ,ε0), (18)

generalizing the Josephson equation to a Floquet state. The
dc current Iα can be calculated from Eq. (18) once the
pseudoenergy εα is known from Eq. (16).

B. Low-frequency limit

In this section, the microwave frequency � is supposed
to be small compared to the other relevant energies. The
quasiadiabatic approximation can then be used.

Let us call (|�+(t)〉,|�−(t)〉) the instantaneous basis of the
system, such that H∞(t)|�±(t)〉 = E±(t)|�±(t)〉, where

E±(t) = ±
√

ε2
0 + γ 2

1 + γ 2
2 + 2γ1γ2 cos[ϕ1(t) − ϕ2(t)], (19)

with ϕ1,2(t) given by Eq. (1). Each wave function |�(t)〉
can be decomposed on this basis: |�(t)〉 = c+(t)|�+(t)〉 +
c−(t)|�−(t)〉. Following Thouless [9] (see also Xiao et al. [28])
and choosing |�(0)〉 = |�+(0)〉, we have

|�(t)〉 = |�+(t)〉 − i|�−(t)〉 〈�−(t)| ∂
∂t

�+(t)〉
E+(t) − E−(t)

. (20)

The dc current of the state |�(t)〉 is I =
2e〈�(t)| ∂H (t)

∂ϕ
|�(t)〉, and we find

I = 2e

(
∂E+
∂ϕ

− C+
ϕ,t

)
, (21)

where

C+
ϕ,t = i

(〈
∂�+
∂ϕ

∣∣∣∂�+
∂t

〉
−

〈
∂�+
∂t

∣∣∣∂�+
∂ϕ

〉)
(22)

is the Berry curvature in the (�t,ϕ) variables. The first term
in Eq. (21) is the adiabatic contribution, and the second
one is the first nonadiabatic correction. It is straightforward
to check that if ϕ = 0,π , the adiabatic current 2e

∂E+
∂ϕ

=
−γ1γ2 sin[ϕ1(t)−ϕ2(t)]

|E−(t)| has a zero time average, whatever the relative
phase χ of the microwave fields. Actually, the adiabatic current
is a function of ϕ(t) = ϕ1(t) − ϕ2(t) = ϕ + b1 cos(�t + χ

2 ) −
b2 cos(�t − χ

2 ), which verifies ϕ(t + T
2 ) = −ϕ(t) and thus has

a zero integral on the interval [0,T ] [29]. Therefore the chiral
current at ϕ = 0, π is intrinsically nonadiabatic, and

Ichir,0/π = −2e C+
ϕ,t |ϕ=0/π . (23)

This justifies the word “chiral” used throughout the paper:
chirality is related to the properties of the ABS wave functions.
The Berry curvature is expressed by rewriting the Hamiltonian
as H∞(t) = 	h(t) · 	σ , with

	h(t) =
(�(t) + �∗(t)

2
,i

�(t) − �∗(t)

2
,ε0

)t

,

�(t) =
∑
j=1,2

γj e
−iϕj (t), 	σ = (σx,σy,σz), (24)

where |	h(t)| = |E±(t)|. Expressing each of the three terms
separately leads to

1

|	h|3
	h · (∂ϕ

	h × ∂t
	h) = −2C+

ϕ,t . (25)

Equations (23) and (25) then yield [30]

Iϕ=0 = e�

h

1

|	h|3
∫ 2π

0

	h · (∂ϕ
	h × ∂(�t) 	h)d(�t). (26)

195423-3



VENITUCCI, FEINBERG, MÉLIN, AND DOUÇOT PHYSICAL REVIEW B 97, 195423 (2018)

Interestingly, this results in

Iϕ=0 = −e�

2π

∂

∂χ

(∫ 2π

0

ε0

|E±(�t)|d(�t)

)
. (27)

This equation shows an intriguing formal similarity between
the pumped Josephson current, as a function of the microwave
phase χ , and the equilibrium Josephson current, expressed
as the derivative of the ABS energy with respect to the
superconducting phase. Yet in Eq. (27), the ABS energy is
replaced by its inverse.

C. High-frequency limit

Perturbation theory can be used in the case of large mi-
crowave frequency � and small amplitudes b1, b2 of the
microwave [31]. The Floquet Hamiltonian is split into diagonal
and nondiagonal parts: HFL

∞ = HFL
diag + ρ h, where HFL

diag is di-
agonal and ρ h is nondiagonal (ρ � 1). The resulting effective
Hamiltonian takes the form

HFL
∞,eff = e−iρSHFL

∞ eiρS. (28)

The matrix S is chosen according to

〈α|S|β〉 = −〈α|h|β〉
εα − εβ

, (29)

where |α〉 = |±,p〉, |β〉 = |±,q〉 (with p �= q integers) are
eigenstates of HFL

diag with eigenvalues εr = ±
√

ε2
0 + |z̃|2 + r�

and z̃ = γ1e
−iϕ/2 + γ2e

iϕ/2 (r = p,q).
Expanding the effective Hamiltonian in powers of b leads

to HFL
∞,eff  HFL

∞,diag + ρ2

2 [h,S]. The effective Hamiltonian be-
comes [31]

HFL
∞,eff = HFL

∞,diag + 1

�
[H̃∞,1,H̃∞,−1]1N×N, (30)

where H̃∞,1 (H̃∞,−1) is the first harmonic (first negative
harmonic) of the periodic Hamiltonian H∞(t), which leads to

1

�
[H̃∞1,H̃∞−1] = 1

�
γ1γ2b1b2 sin ϕ sin χ σz. (31)

The effective Hamiltonian HFL
∞,eff is block diagonal, and only

the zeroth harmonic is considered by periodicity of the energy
spectrum. Denoting H∞,eff = HFL

∞,eff,0 leads to

H∞,eff = (γ1e
−i

ϕ

2 + γ2e
i

ϕ

2 ) τ+

+ (γ1e
i

ϕ

2 + γ2e
−i

ϕ

2 ) τ− + ε̃0τz, (32)

with the dot level renormalized by the microwave:

ε̃0 = ε0 + 1

�
γ1γ2b1b2 sin ϕ sin χ. (33)

The eigenvalues H∞,eff are

Ẽ0,± = ±
√

ε̃2
0 (ϕ) + γ 2

1 + γ 2
2 + 2γ1γ2 cos ϕ. (34)

Using the fact that I = 2e
∂Ẽ0,±

∂ϕ
, the chiral current at ϕ = 0 (ζ =

1) or ϕ = π (ζ = −1) is given by

Ichir,0/π = 2e
ε0γ1γ2b1b2 sin χ

�

√
ε2

0 + (γ1 + ζγ2)2
. (35)

Equation (35) provides evidence for a Josephson current
induced solely by the chiral phaseχ . This current is quadratic in
the microwave amplitude, and it changes sign with the dot level
energy ε0, in agreement with the general symmetry relations
discussed above. If ϕ = π and for a symmetric junction, it
shows a jump at ε0 = 0.

D. Solution close to resonance

We use the same method as Bergeret et al. [7] to find the
analytical current close to resonance, e.g., when the microwave
frequency matches the ABS spacing. Let us consider the
infinite-gap Hamiltonian:

H∞(t) =
(

ε0 �(t)

�∗(t) −ε0

)
, (36)

with �(t) = ∑
j=1,2 γj e

−iϕj (t) = |�(t)|eiβ(t). The instanta-
neous eigenvalues in Eq. (36) take the formE±(t) = ±EA(t) =
±

√
ε2

0 + |�(t)|2, and the orthonormal eigenvectors are the
following:

|�+〉 =
(

cos θ
2 eiβ

sin θ
2

)
, |�−〉 =

(
− sin θ

2 eiβeiα

cos θ
2 eiα

)
, (37)

where cos[θ (t)] = ε0
EA(t) , sin[θ (t)] = |�(t)|

EA(t) , α is an arbitrary
phase, and H∞(t)|�±〉 = ±EA(t)|�±〉.

Let us now turn to the instantaneous basis (|�+〉,|�−〉). In
this new basis, |�̃〉 is related to |�〉 in the old basis by |�̃〉 =
U |�〉, where U is a unitary matrix, obtained from Eq. (37):

U † =
(

cos θ
2 eiβ − sin θ

2 eiβeiα

sin θ
2 cos θ

2 eiα

)
. (38)

The gauge α(t) eliminates the τ̂x term in the Hamiltonian ĤA.
It must satisfy

β̇ sin θ cos α + θ̇ sin α = 0. (39)

The new Hamiltonian associated with |�̃〉 is ĤA = UHU † +
i dU

dt
U †. It is given by

ĤA(t) =
[
EA(t) + β̇ cos2 θ

2
− β̇ + α̇

2

]
τ̂z

− θ̇

2 cos α
τ̂y + β̇ + α̇

2
. (40)

The current operator is defined as I∞ = 2e ∂H∞
∂ϕ

. From
now on, we choose a symmetric junction (γ1 = γ2 = γ0) and
symmetrical microwave amplitudes (b1 = b2 = b). The angle
β no longer depends on ϕ. Using Eq. (36), the current operator
takes the form I∞ = 2e

∂|�(t)|
∂ϕ

[cos β τ̂x − sin β τ̂y]. In the new

basis, the current operator becomes ÎA = UI∞U †; thus

ÎA = 2e
∂|�(t)|

∂ϕ
[cos θ τ̂z + cos θ cos α τ̂x − cos θ sin α τ̂y].

(41)

According to Ref. [7], the dc current is calculated by (i)
modifying the Hamiltonian by adding to it a term proportional
to ÎA and defining a generating function for the time-averaged
current and (ii) going to Floquet space and calculating the
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long-time Floquet evolution operator at times nT (n � 1).
This defines a generalized Josephson energy, and the averaged
current is obtained by a double derivative:

Idc = ∂E(η,μ)

∂μ

∣∣∣
η,μ=0

∂E(η,μ)

∂η

∣∣∣
η,μ=0

, (42)

with ±E(η,μ) being the eigenvalues of the matrix M̂ =
1
T

∫ T

0 Ĥn(t)dt + μτ̂z. This is the first term in the expansion
of the effective evolution operator in the detuning from the
nth-order resonance, expressed by the small parameter (EA −
n�

2 )/�. The Hamiltonian Ĥn(t) is such that

Ĥn(t) = ein�tτ̂z/2

[
ĤA(t) + ηÎA − n

�

2
τ̂z

]
e−in�tτ̂z/2. (43)

After some simplifications, we obtain

1

T

∫ T

0
dtĤn(t)

= 1

T

∫ T

0
dt

[
τ̂z

(
EA − n

�

2

)

−τ̂x

(
θ̇

2 cos α
+ η cos θ sin α

∂|�|
∂ϕ

)
sin(n�t)

]
. (44)

Let us first consider ϕ = 0, with small b. After several manip-
ulations (see Appendix A), Eq. (44) yields the effective RWA
Hamiltonian close to the first-order resonance:

1

T

∫ T

0
Ĥ1(t)dt

= τ̂z

(
Ē0 − �

2

)
+ τ̂x

γ0b

2E0

[
� cos

χ

2
F1 − ηε0 sin

χ

2
F2

]
,

(45)

where E0 =
√

ε2
0 + 4γ 2

0 is the Andreev energy without mi-

crowaves, Ē0 = E0(1 − γ 2
0

E2
0
b2 sin2 χ

2 ), and F1,F2 are constants

defined in Appendix A. The eigenvalues of M̂1 verify

E2(η,μ) =
(

Ē0 − �

2
+ μ

)2

+ γ 2
0 b2

4E2
0

[
� cos

χ

2
F1 − ηε0 sin

χ

2
F2

]2
. (46)

Finally, the chiral current close to the first resonance is

Ichir,0(χ,ε0) = eγ 2
0 b2ε0

E0

(� − 2Ē0)F1F2 sin χ

(� − 2Ē0)2 + 4γ 2
0 b2F 2

1 cos2 χ

2

.

(47)

This resonance is plotted in Fig. 6, together with the full
Keldysh result (see the next section). The resonance width
is given by 2γ0bF1| cos χ

2 |, and the maximal chiral current is
anharmonic in χ :

Imax
chir,0 ∼ eγ0bF2|ε0 sin χ

2 |
2h̄E0

. (48)

Let us consider now the case ϕ = π . The first harmonic
(� = 2EA) was calculated above to first order in the resonance
detuning. Equation (44) is used, and E0 = |ε0| stands for

FIG. 1. (a) Current-phase relation in the chiral case (χ = π

2 ), with
ε0 = 0.5, � = 1.75, γ1 = γ2 = 1, b1 = b2 = b = 0,0.4,1.2, showing
the nonadiabatic resonances and the chiral asymmetry around ϕ = π .
(b) Floquet spectrum in the energy-phase plane, with b1 = b2 = b =
1.2. The dotted lines indicate the equilibrium ABS.

the Andreev state energy without microwaves. Defining Ē′
0 =

E0(1 + γ 2
0

E2
0
b2 sin2 χ

2 ) leads to

E2(η,μ) =
(

Ē′
0 − �

2
+ μ

)2

+ γ 2
0 b2

π2E0

[
� sin

χ

2
G1 + 2

3
ηε0 cos

χ

2
G2

]2

(49)

and

Ichir,π (χ,ε0)

= −8eγ 2
0 b2ε0

3π2E0

(� − 2Ē′
0)G1G2 sin χ

(� − 2Ē′
0)2 + 16

π2 γ
2
0 b2G2

1 sin2 χ

2

, (50)

where G1,G2 are defined in Appendix A.
Comparing Eq. (50) to Eq. (47), notice the sign change

and the different χ dependence of the resonance width
∼ 4

π
γ0bG1| sin χ

2 | and of the maximal chiral current Imax
chir,π ∼

2eγ0bG2

3πh̄
| cos χ

2 |.
Interestingly, the dependence on χ of Imax, Eq. (48), recalls

that of an equilibrium junction made of a resonant dot varying
as |sin ϕ

2 | due to closure of the Andreev gap at ϕ = π . In the
present case, the ABSs are gapped, but at resonance the driven
system behaves gapless, generating the anharmonicity in χ .

E. Numerical solution

As an example of a nonperturbative result, Fig. 1(a) shows
the Floquet current for different microwave amplitudes, and
Fig. 1(b) shows the Floquet spectrum for χ = π

2 and large
b1 = b2. We note I1 = e

h̄
γ1. The anticrossings are shifted in
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phase and clearly asymmetric, which reflects time symmetry
breaking and the chirality. To calculate the time-averaged
Josephson current, we need, in principle, to fix the initial
conditions, e.g., perform an average over an initial distribution
of Floquet eigenstates. Here we use a simple protocol which
perfectly maps onto the ground-state Andreev current for zero
microwave amplitude b1,2 = 0. As ϕ increases, the zeroth-
order Floquet state �n=0,− is followed everywhere except
in the center of the anticrossing, where it jumps across the
anticrossing gap. As in Refs. [6,7], we obtain dips in the
current when the ABS splitting is a multiple of the microwave
frequency. Again, there is a strong asymmetry in the current
due to the chiral phase χ . Most importantly, nonzero “chiral”
currents are obtained at ϕ = 0,π .

IV. GENERAL SOLUTION: KELDYSH ANALYSIS

The microwave perturbs the ABS, also causing transitions
towards the quasiparticle continuum, an effect neglected in
the infinite-gap approximation. Let us fully solve the model
Hamiltonian (3) by using Keldysh nonequilibrium Green’s
functions. Those allow us to obtain the spectral density and
the dc current from Hamiltonian (3) [32–34]. The Keldysh
Green’s function Ĝ+,− is defined in the Nambu space spanned
by the Pauli matrix τ̂ by

Ĝ+−
ab (τ,τ ′) = i

(
〈c†b↑(τ ′)ca↑(τ )〉 〈c†b↑(τ ′)c†a↓(τ )〉
〈cb↓(τ ′)ca↑(τ )〉 〈cb↓(τ ′)c†a↓(τ )〉

)
, (51)

and ĜA
ab(τ,τ ′) is obtained by replacing all correlators

〈A(τ ′)B(τ )〉 by θ (τ − τ ′)〈{A(τ ′),B(τ )}〉 (a,b = 1,2,d). Due
to time periodicity, double Fourier transform is performed as

Ĝab,nm(ω) =
∫∫

dτdτ ′eiω(τ−τ ′)ei�(nτ−mτ ′)Ĝab(τ,τ ′). (52)

The Dyson equation implies a product in frequency space
and a convolution product in the indices n:

ĜR,A = ĝR,A + ĝR,A�̂R,AĜR,A,

Ĝ+− = (Î + ĜR�̂R)ĝ+−(Î + �̂AĜA), (53)

where �
R,A
jd and the bare Green’s functions are defined in

Appendix B.
The dc current is calculated between lead 1 and the dot (the

trace is in Nambu space):

I = e

h̄
tr

{
σz

∫
dω

∑
n

[�̃d1,nĜ
+−
1d,0n(ω) − �̃1d,nĜ

+−
d1,0n(ω)]

}
,

(54)

where �̃jd,n is the nth harmonic of the periodic self-energy
�jd = �

R,A
jd . Details are given in Appendix B.

Solving for the Dyson equation and taking the n = m = 0
component yield the dc Josephson current I (ϕ,χ,ε0), which is
a function of (i) the superconducting phase difference ϕ, (ii)
the chiral (microwave) phase difference χ , (iii) the microwave
amplitudes b1,2 and frequency � (we take h̄ = 1 in all the
figures), and (iv) the dot parameters ε0 and t1,2. The current is
in units of I0 = e

h̄
�. The values ηs = 10−3�,ηd = 10−5� are

used for the inelastic parameters, and temperature is T = 0,
unless specified otherwise.

FIG. 2. (a) Current-phase relation in the chiral case (χ = π

2 ),
with ε0 = 0.1�, � = 0.35�, t1 = t2 = 0.6�, b1 = b2 = b = 0.4,
showing the nonadiabatic resonances and the chiral asymmetry
around ϕ = π . (b) Density of states (see text) in the energy-phase
plane, with the same parameters.

Figure 2(a) shows the current-phase relation in the chiral
case for moderate b1 = b2 = 0.4. The evidence for chirality is
confirmed by plotting the effective density of states, defined
as ρd = 2Im(Ga

dd − Gr
dd ), where the anticrossings causing

the resonances are asymmetric. This qualitatively confirms
the trends obtained in the IGM (Sec. III, Fig. 1). Notice the
logarithmic scale in the amplitude. Some broadening is due
to the inelastic parameters, but it is mainly due to coupling
to the continuum via the microwave excitation. This spectrum
could be observed by microwave [8] or tunnel [35] ABS spec-
troscopy. The phase shift and the chiral currents (at ϕ = 0,π )
are very small for those excitation amplitudes. Figure 3 instead
shows the case of a higher microwave amplitude. The phase
shift and nonzero chiral currents are quite visible. Again, these
features are similar to those found in the infinite-gap model
(Fig. 1). Since the microwave radiation strongly couples the
equilibrium ABS to the continuum, only qualitative agreement
can be found.

Let us now set ϕ = 0 or π and analyze the chiral current
Ichir. It is amplified when a resonance occurs at ϕ = 0 or π .
We focus here on small microwave amplitudes which lead
to small chiral currents but display more clearly the main
qualitative features. This situation can be compared to an
equilibrium tunnel junction where the current is harmonic
except for a resonant dot. Figure 4 indeed shows Ichir,0(�) and
Ichir,π (�) as a function of �. The chiral current changes sign
at resonance. For ϕ = 0, the main resonance indeed occurs
at � ∼ 2EA(ϕ = 0), e.g., matching the ABS spacing. A thin
and asymmetric resonance also appears around � = 1.4�

due to a transition from the lowest ABS to the upper gap
edge. In contrast to the main resonance between ABSs, it
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FIG. 3. The same as Fig. 2, except b1 = b2 = 1.2. The chiral
currents at ϕ = 0,π are apparent despite the nonresonant behavior.

depends strongly on the gap-smearing parameter ηs , as shown
in Fig. 5(a). The subtle dependence of a resonant property
on the coupling to quasiparticle states and on η has been
discussed in Ref. [36] for a related problem. In the case
ϕ = π , the first harmonic resonance around � = 0.3� is quite
soft, and remarkably, an intense and narrow second harmonic
[� ∼ EA(ϕ = π )  0.15�] resonance appears.

In the above-described pumping mechanism, the phase χ

replaces ϕ as the driving phase for the Josephson current.
Far from resonance, Ichir is approximately sinusoidal with
χ . Close to resonance, strong nonharmonicity and a change
in sign are instead obtained [Fig. 5(b)]. Figure 5(c) shows

FIG. 4. (a) Variation with � of the chiral current (ϕ = 0, χ = π

2 ),
with ε0 = 0.1�, t1 = 0.6�, b1 = b2 = 0.2: broad resonance around
� = 0.9� (first harmonic) and narrow asymmetric resonance due
to the gap edge around � = 1.4�. (b) Same as (a), but ϕ = π ,
ε0 = 0.4�, t1 = t2 = �; resonances from right to left: broad (first
harmonic, �  0.3�), sharp (second harmonic, �  0.15�), and
small (third harmonic, �  0.1�). (c) Same parameters as (a), except
b1 = 0.5,b2 = 0.2. (d) Same as (b), except b1 = 0.5,b2 = 0.2.

FIG. 5. (a) ηs broadening of the ABS-to-gap edge resonance at
ϕ = 0: same parameters as in Fig. 4(a) with t1 = t2. (b) Dependence
on χ (ϕ = 0), with ε0 = 0.1�, t1 = t2 = 0.6�, b1 = b2 = 0.2, and
� = 0.85� (red dot-dashed line, close to an extremum in �) or � =
0.9� (blue dashed line, close to the resonance center). (c) Dependence
on ε0 (ϕ = π,χ = π

2 ), with � = 0.6�, t1 = �, t2 = t1 or t2 = 0.8t1,
b1 = b2 = 0.2. (d) Temperature dependence [the same as (c), t2 = t1].

the chiral current as a function of the dot level ε0 at fixed
ϕ = π and χ = π

2 , displaying the symmetry expressed by
Eq. (7). More generally, the symmetries (6) and (7) were
numerically checked for ϕ �= 0. Remarkably, the rapid change
close to ε0 = 0 is in agreement with the analytical formula
[Eq. (35)] obtained within the IGM. Moreover, asymmetric γ ,
or a nonzero temperature, makes Ichir linear with ε0 [Fig. 5(c)].
This behavior reminds us of that of a resonant symmetric
equilibrium junction where at zero temperature the current
experiences a jump at phase ϕ = π .

Let us comment in more detail on the vicinity of a resonance
such that n� ∼ 2EA(ϕ), with ±EA(ϕ) being the equilibrium
Andreev bound-state energies. The salient result, featured in
Fig. 4, is the maximal chiral current close to the resonance and
its rapid sign change as the resonance is crossed. The exact
calculation qualitatively agrees well with the RWA calculation
in the IGM (Sec. III C). This is illustrated in Fig. 6. No
quantitative agreement is possible due to the renormalizing
effect of the quasiparticles. Yet except for the resonance
towards the continuum, we can nearly match the results of the
Keldysh calculation with the IGM by fitting the parameters of
the latter.

The resonant chiral pumping effect found above is robust
against nonzero temperature (kBT = 0.1� here) and junction

FIG. 6. Chiral current at ϕ = 0, χ = π

2 close to the first-harmonic
resonance. Keldysh result (ε0 = 0.2�, t1 = t2 = 1.0�, b1 = b2 =
0.2) vs RWA (infinite gap) with fitted parameters γ0 = 1.0, b = 0.2,
ε0 = 0.8.
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FIG. 7. (a) Variation with � of the chiral current (ϕ = 0, χ = π

2 ),
with ε0 = 0.1�, t1 = t2 = 0.6�, b1 = b2 = 1.2. (b) Same as in (a)
but ϕ = π .

asymmetry [Fig. 5(c)] and also nonsymmetric microwave
amplitudes [Figs. 4(c) and 4(d)]. It bears some similarity to
pumping mechanisms, as explored in a variety of situations
with normal or superconducting islands [11–14,25]. Yet it is
remarkable that the chiral current emerges only beyond the
adiabatic regime and is maximal if the microwave frequency,
or its harmonics, matches the ABS spacing, which is precisely
an antiadiabatic effect. For small ε0, the resonant chiral current
is larger at ϕ = π than at ϕ = 0 due to the nonharmonicity of
the equilibrium I (ϕ) close to ϕ = π .

Figure 7 shows the frequency dependence of the chiral
current for a stronger microwave amplitude (b1 = b2 = 1.2).
The resonances are much broader, and above all, very sizable
chiral currents are obtained, close to 0.8I0 for ϕ = π .

The χ dependence of the chiral current can be compared
to the ϕ dependence of the junction equilibrium current (e.g.,
with no microwave). The microwave amplitude works with the
junction transparency to control the current amplitude far from
resonance. This is similar to an equilibrium junction with a
nonresonant dot. Indeed, the sin χ variation resembles the sin ϕ

variation obtained for a nonresonant dot. On the other hand, at a
maximum close to resonance, the strongly nonharmonic sin χ

2
variation (for ϕ = 0) resembles that obtained for a symmetric
resonant dot junction if ε0 = 0: there, closure of the Andreev
gap at ϕ = π results in a sawtooth jump of the equilibrium
current at zero temperature, which is rounded by asymmetry
and temperature (Fig. 5). A similar situation is met in the
chiral case, with a nonzero ε0 but chiral microwave resonant
with the ABS spacing. While in the nonresonant case the χ

variation goes like sin χ , in the resonant regime it approaches
|sin χ

2 |. This interpretation is confirmed by the asymmetry and
temperature rounding of the jump at ε0 = 0 [Eq. (35) and
Figs. 5(c) and 5(d)]. Moreover, the change in sign in Ichir(χ )
upon crossing resonance can be compared to the change of an
equilibrium I (ϕ) from zero to π character.

For stronger microwave amplitudes, the current-phase re-
lation is strongly anharmonic, and the resonances are much
broader [6,7]; the same is true for the chiral current.

Also, a chiral current persists in the presence of cross
talk between the two dephased microwave excitations and
towards the dot gate. This can be shown by setting, in-
stead of Eq. (1), ϕ1 = ϕ

2 + b1 cos(�t + χ

2 ) + b′
1 cos(�t − χ

2 ),
ϕ2 = − ϕ

2 + b2 cos(�t − χ

2 ) + b′
2 cos(�t + χ

2 ), ε0(t) = ε0 +
ε1 cos(�t + χ

2 ) + ε2 cos(�t − χ

2 ). Generalizing the large-�
calculation, we obtain (Appendix C)

Ichir = ±2e

h̄2

γ1γ2(b1b2 − b′
1b

′
2)ε0 sin χ

�Eeff
0

, (55)

where Eeff
0 is an effective ABS energy depending on the dot

level modulations ε1,2. The chiral current is thus robust against
small cross talk b′

1,2 �= 0.

V. LATTICE CHAIN MAPPING

The Cooper pair pumping mechanism, illustrated in the
IGM, can be understood in relation to charge pumping in
some tight-binding chain models. For this purpose, let us
introduce the number-state representation |N,ν〉, where N

is the number of pairs exchanged through the junction from
terminal 1 to terminal 2 and ν = 0,1 indicates the charge state
of the dot. The variable N is, by convention, defined here from
the pair numbers N1,2 by N = N2−N1−ν

2 . The number N and the
superconducting phase difference ϕ are conjugated variables.
As a result, it is straightforward to rewrite the Hamiltonian H∞
in the number basis as

H∞ =
∑
N

ε0(|N,1〉〈N,1| − |N,0〉〈N,0|)

+
∑
N

(
γ1e

−iϕ1(t)|N,1〉〈N,0|

+ γ2e
−iϕ2(t)|N − 1,1〉〈N,0| + H. c.

)
. (56)

The above convention means that transferring a pair from
terminal 1 to the dot does not change N , while transferring
this pair from the dot to terminal 2 increases N by 1. This
maps the IGM on a bipartite tight-binding chain, described by
a model of the class of Rice-Mele models [37]. The sites of
this chain are indexed by (N,ν), and the phase ϕ plays the
role of the one-dimensional wave vector k; both models yield
the two-level Hamiltonian given by Eq. (10). The comparison
with the Rice-Mele model is more transparent in the limit
b � 1, where the time dependence is harmonic and we have
H∞(t) = 	h(t) · 	σ , with

	h(t) =
(

(γ1 + γ2) cos
ϕ

2
− [γ1δϕ1(t) − γ2δϕ2(t)]

× sin
ϕ

2
,(γ1 − γ2) sin

ϕ

2

+ [γ1δϕ1(t) + γ2δϕ2(t)] cos
ϕ

2
,ε0

)
, (57)

with δϕ1,2(t) = b1,2 cos(ωt ± χ

2 ). Notice that in the absence
of microwave excitation, the IGM maps onto a Su-Schrieffer-
Heeger (SSH) model.

The existence of pumped charge current in such models,
as proposed and realized in experiments [38,39], provides an
interpretation of our results. An interesting point is that due
to the presence of a continuum of quasiparticle states, the full
model described by Eq. (10) goes well beyond such a simple
chain model. This work shows that the pumping properties
are robust against the incorporation of such continuum states.
Moreover, pumping scenarios are usually considered in the
quasiadiabatic limit [9], while here we have studied the full
frequency range and new resonant features.

VI. CONCLUSION

In conclusion, this work demonstrated that two dephased
microwave fields microwaves provide nonadiabatic pumping
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of Josephson currents without any superconducting phase
difference. The current is driven by the microwave phase χ and
is tuned in amplitude and sign by crossing ABS resonances.
The chirality has its root in the structure of the wave function
of the ABS as a function of two phases [ϕ1(t) and ϕ2(t), or,
equivalently, ϕ and �t]. The chiral properties are robust against
temperature and asymmetry in the junction parameters (γ1 �=
γ2) and in the microwave amplitudes. Most results have been
shown with small microwave amplitudes, but larger values of
Ichir comparable to I0 can easily be reached in experiments.
The striking sign change of the current at resonance contrasts
with the current amplitude maxima found in the nonchiral case
[6,7]. All the possible known regimes of current in a standard
Josephson junction (harmonic or sawtooth phase dependence,
zero or π junction, as well as very anharmonic ones like in ϕ0

junctions) are encountered for the chiral current as a function
of χ . Using an electrostatic gate or tuning the microwave
frequency offers fine control of the chiral current in amplitude
and sign. The latter results from symmetry properties, and
Coulomb interactions are not expected to qualitatively change
the physics.

In a Josephson transistor [24], the current amplitude oscil-
lates with the gate without any sign change as the dot levels
pass across the gap. Due to the additional gate-controlled sign
change, the proposed setup deserves the name chiral Josephson
transistor. A generalization to a multilevel dot is possible but
also involves microwave transitions between different channel
ABSs. Also, the chiral current variation quadratic with the
microwave amplitude recalls the photogalvanic effect studied
in Ref. [40].
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APPENDIX A: ROTATING-WAVE APPROXIMATION

The general form of the Ĥn(t) matrix in Eq. (43) is the
following:

Ĥn(t) = τ̂z

[
EA + β̇ cos2 θ

2
− β̇ + α̇

2
+ η sin θ

∂|�|
∂ϕ

− n
�

2

]

+ τ̂x

[
η cos θ cos α

∂|�|
∂ϕ

cos(n�t)

−
(

θ̇

2 cos α
+ η cos θ sin α

∂|�|
∂ϕ

)
sin(n�t)

]

+ τ̂y

[
−

(
θ̇

2 cos α
+ η cos θ sin α

∂|�|
∂ϕ

)
cos(n�t)

−η cos θ cos α
∂|�|
∂ϕ

sin(n�t)

]
+ β̇ + α̇

2
. (A1)

We consider the cases ϕ = 0 (ζ = 1) and π (ζ = −1):

|�(t)| =
√

2γ 2
0

[
1 + ζ cos

(
2b sin �t sin

χ

2

)]
, (A2)

∂|�(t)|
∂ϕ

= − ζγ 2
0

|�(t)| sin(2b sin � sin
χ

2
), (A3)

EA(t) =
√

ε2
0 + |�(t)|2, (A4)

β̇ = �b sin �t cos
χ

2
, (A5)

cos[θ (t)] = ε0

EA(t)
, (A6)

sin[θ (t)] = |�(t)|
EA(t)

, (A7)

tan[α(t)] = − β̇ sin θ

θ̇
. (A8)

Let us first consider ϕ = 0, with small b. Taylor expanding
the expression of tan α in Eq. (A8) leads to

{tan[α(t)]}−1 = ε0

E0
b

sin2 χ

2

cos χ

2

cos �t, (A9)

meaning that {tan[α(t)]}−1 is not small if χ is close to
π . Imposing time continuity of α implies sin α > 0. There-

fore sin α = 1
f (t) , where f (t) =

√
1 + ε2

0

E2
0
b2 cos2 �t

sin4 χ

2
cos2 χ

2
and

cos α = ε0
E0

b
sin2 χ

2
cos χ

2
cos �t/f (t). Using the first harmonic n = 1,

Taylor expanding, and integrating, Eq. (44) yields Eq. (45),
where F1,F2 are defined by

F1 =
∫ T

0 sin2 �tf (t)∫ T

0 sin2 �t
, F2 =

∫ T

0 sin2 �t/f (t)∫ T

0 sin2 �t
. (A10)

A similar calculation in the case ϕ = π makes use of

G1 =
∫ T

0 |sin 2�t |g1(t)∫ T

0 |sin 2�t |
, G2 =

∫ T

0 |sin �t | sin2 �t/g2(t)∫ T

0 |sin �t | sin2 �t
,

(A11)

with

g1(t) =
√

1 + b2 cos2
χ

2

sin4 �t

cos2 �t
, g2(t) = |cos �t |g1(t).

(A12)

APPENDIX B: GREEN’S FUNCTIONS

Let us define the bare Green’s functions (GFs) and the tunnel
self-energy for the calculation of the current:

�
R,A
jd =

(
tj e

iϕj (t)/2 0

0 −tj e
−iϕj (t)/2

)
(B1)

(j = 1,2). The bare GFs in the leads are given by

ĝ
r,a
jj = πν(0)√

�2 − (ω ± iηs)2

(−(ω ± iηs) �

� −(ω ± iηs)

)

(B2)

and ĝ+−
jj (ω) = nF (ω)[ĝA

jj (ω) − ĝR
jj (ω)].

The bare GFs in the dot are given by ĝ
R,A
dd = (ω − ε0τ̂z ±

iηd )−1 and ĝ+−
dd (ω) = nF (ω)[ĝa

dd (ω) − ĝr
dd (ω)]. The broaden-

ing parameters ηs,ηd mimic residual inelastic processes.
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Expanding the Dyson equation (53) yields

G+−
d1 = (

1 + Gr
dd�

r
d1g

r
11�

r
1d + Gr

dd�
r
d2g

r
22�

r
2d

)
g+−

dd

(
�a

d1g
a
11 + �a

d1g
a
11�

a
1dG

a
dd�

a
d1g

a
11 + �a

d2g
a
22�

a
2dG

a
dd�

a
d1g

a
11

)
+Gr

dd�
r
d1g

+−
11

(
1 + �a

1dG
a
dd�

a
d1g

a
11

) + Gr
dd�

r
d2g

+−
22 �a

2dG
a
dd�

a
d1g

a
11, (B3)

G+−
1d = (

gr
11�

r
1d + gr

11�
r
1dG

r
dd�

r
d1g

r
11�

r
1d + gr

11�
r
1dG

r
dd�

r
d2g

r
22�

r
2d

)
g+−

dd

(
1 + �a

d1g
a
11�

a
1dG

a
dd + �a

d2g
a
22�

a
2dG

a
dd

)
+ (

1 + gr
11�

r
1dG

r
dd�

r
d1

)
g+−

11 �a
1dG

a
dd + gr

11�
r
1dG

r
dd�

r
d2g

+−
22 �a

2dG
a
dd, (B4)

where G
r,a
dd is the full retarded or advanced Green’s function localized on the dot such as

G
r,a
dd = [(

g
r,a
dd

)−1 − (
�d1g

r,a
11 �1d + �d2g

r,a
22 �2d

)]−1
. (B5)

Here �dj,n (�jd,n) is the nth harmonic of the self-energy defined in Eq. (B1):

�d1,n = �∗
1d,−n =

(
t1e

−iϕ/4(−i)nJn( b1
2 )einχ/2 0

0 −t1e
iϕ/4inJn( b1

2 )einχ/2

)
,

�d2,n = �∗
2d,−n =

(
t2e

iϕ/4(−i)nJn( b2
2 )e−inχ/2 0

0 −t2e
−iϕ/4inJn( b2

2 )e−inχ/2

)
. (B6)

APPENDIX C: CROSS TALK EFFECTS

Let us consider the infinite-gap model Hamiltonian
with cross talk between the microwave amplitudes (and
phases) applied on superconductors 1 and 2 and towards the
electrostatic gate:

H∞(t) =
(

ε �(t)

�∗(t) −ε

)
, (C1)

with �(t) = ∑
j=1,2 γje

−iϕj (t) and

ϕ1 = ϕ

2
+ b1 cos

(
�t + χ

2

)
+ b′

1 cos
(
�t − χ

2

)
,

ϕ2 = −ϕ

2
+ b2 cos

(
�t − χ

2

)
+ b′

2 cos
(
�t + χ

2

)
,

ε = ε0 + ε1 cos
(
�t + χ

2

)
+ ε2 cos

(
�t − χ

2

)
, (C2)

with bj ,b
′
j ,εj > 0. The cross talk from superconductor 1 to 2

(2 to 1) is described by the terms b′
1,2, and the cross talk with

the gate voltage applied to the dot is described by ε1,2. Using
only the first harmonics in the Fourier decomposition of the
Hamiltonian defined in Eq. (C1) leads to

H∞(t) = H̃∞0 + H̃∞1e
i�t + H̃∞−1e

−i�t . (C3)

Using Brillouin-Wigner perturbation theory, the effective
Hamiltonian becomes

H∞eff = H̃∞0 + 1

�
[H̃∞1,H̃∞−1], (C4)

and after a straightforward calculation, its eigenvalues are
found to be

E2
ϕ = ε̃2 + γ 2

1 + γ 2
2 + 2γ1γ2 cos ϕ

− cos χ
[
γ 2

1 b1b
′
1 + γ 2

2 b2b
′
2 + γ1γ2 cos ϕ(b1b

′
1 + b2b

′
2)

]
− 2 sin χ

�

[
γ 2

1 B2
1 + γ 2

2 B2
2 + γ1γ2 cos ϕ(B1 + B2)

]
+ sin2 χ

�2

[
γ 2

1 B2
1 + γ 2

2 B2
2

] + 2
γ1γ2

�2
cos ϕB1B2 sin2 χ,

(C5)

where ε̃ = ε0 + γ1γ2 sin ϕ sin χ [b1b2 − b′
1b

′
2], B1 = b1ε2 −

b′
1ε1, and B2 = b′

2ε2 − b2ε1. This leads to the dc current at
ϕ = 0, π :

Iϕ=0,π = 2e
γ1γ2ε0 sin χ (b1b2 − b′

1b
′
2)

�Eeff
0

, (C6)

where Eeff
0 = Eϕ=0,π , as given by (C5).
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