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We propose theoretically a method that allows to measure all the components of the quantum geometric tensor
(the metric tensor and the Berry curvature) in a photonic system. The method is based on standard optical
measurements. It applies to two-band systems, which can be mapped to a pseudospin, and to four-band systems,
which can be described by two entangled pseudospins. We apply this method to several specific cases. We consider
a 2D planar cavity with two polarization eigenmodes, where the pseudospin measurement can be performed via
polarization-resolved photoluminescence. We also consider the s band of a staggered honeycomb lattice with
polarization-degenerate modes (scalar photons), where the sublattice pseudospin can be measured by performing
spatially resolved interferometric measurements. We finally consider the s band of a honeycomb lattice with
polarized (spinor) photons as an example of a four-band model. We simulate realistic experimental situations
in all cases. We find the photon eigenstates by solving the Schrödinger equation including pumping and finite
lifetime, and then simulate the measurements to finally extract realistic mappings of the k-dependent tensor
components.
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I. INTRODUCTION

With the expansion of the field of topological physics,
it is nowadays well understood that the knowledge of the
spectrum of a Hamiltonian is not sufficient to have all the
information on a quantum system. Indeed, the Berry curvature,
determined by the eigenstates, is one of the central pillars of
modern physics [1,2]. It plays the main role in a plethora
of condensed matter phenomena. A local Berry curvature in
momentum space affects the motion of particles and leads
to intrinsic anomalous Hall and spin-Hall effects [3,4]. The
integral of the Berry curvature over a closed 2D manifold is
a topological invariant which is associated with the existence
of chiral conducting edge states as in the quantum Hall effect,
topological insulators and superconductors [5], and also with
the Fermi arc surface states in Weyl semimetals [6].

The Berry curvature is actually determined by the local
geometry of quantum space, being included in a more general
object—the quantum geometric tensor (QGT). This mathe-
matical object was initially introduced in order to define the
distance between quantum states [7]. It turns out that while
its real part indeed defines a metric, its imaginary part is
proportional to the Berry curvature [8]. The effects of the
quantum metric on physical phenomena are less known than
the ones of the Berry curvature, but there are several recent
works highlighting the direct consequences of the quantum
metric. In condensed matter, it appears to play a role in
different contexts, ranging from orbital susceptibility [9,10]
and corrections to the anomalous Hall effect [11,12], to the
exciton Lamb shift in TMDs [13] and superfluidity in flat bands
[14,15]. Finally, the quantum metric is widely used to assess
the fidelity in quantum informatics [16].

Topological and Berry curvature-related single-particle
phenomena have been extended from solid state physics to

many other classical or quantum systems, such as photonic sys-
tems [17–23], where the analog of quantum Hall effect was first
pointed out by Haldane and Raghu [24], cold atoms [25–27]
and mechanical systems [28], and more recently to geophysical
waves [29]. The emulation of condensed matter Hamiltonians
in artificial systems is an important part of modern physics
[25,30,31]. Recently, several protocols have been proposed
to measure the Berry curvature in such systems [32–34] and
some of them have been implemented experimentally [35,36].
However, the real part of the QGT—the quantum metric—has
never been measured experimentally, to our knowledge. In a
recent paper, T. Ozawa has proposed an experimental protocol
to reconstruct the QGT components in a photonic flat band
[37]. This reconstruction is based on the anomalous Hall drift
measurement of the driven-dissipative stationary solution in
different configurations, similar to previous works on the Berry
curvature extraction [18].

In this paper, we propose a different method to extract
the components of the quantum geometric tensor by direct
measurements using polarization-resolved and spatially re-
solved interference techniques. This proposal is based on the
experimental ability to perform direct measurement of the
photon wave function in radiative photonic systems such as
planar cavities and cavity lattices [38,39], but can be extended
to other systems where k-dependent pseudospin orientations
can be measured. Our method is designed to extract the QGT
components in systems with one or two coupled pseudospins
(two-band or four-band models), independently of the band
curvature. It can therefore be used for a wider range of systems
than other recently proposed schemes based on the anomalous
Hall effect [37], which require nonzero Berry curvature.

We emphasize that our proposal concerns the measurement
of geometrical quantities linked to the Hermitian part of the
system. However, the dissipation (finite lifetime of the radiative
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FIG. 1. (a) Sketch of a planar microcavity showing two distributed
Bragg reflectors (DBRs) formed by interleaving λ/4 layers and an
active region with quantum wells (QWs). (b) Staggered honeycomb
lattices can be made out of etched planar microcavities. The panel
shows a top view of such lattice. Each sublattice (A/B) is composed
of 0D cavities (micropillars) with different radius.

states) is the key ingredient which enables the measurement.
As highlighted in recent works, dissipation can also be linked
to new topological numbers related to the non-Hermiticity and
the complex eigenenergies [40,41], but this is not the subject
of the present work.

The outline of the paper is as follows. In Sec. II, we
quickly introduce the QGT. Section III is dedicated to two-band
systems keeping in mind two particular implementations. The
first case we consider is a planar microcavity [sketched in
Fig. 1(a)] taking into account the light polarization degree of
freedom. The second case is a staggered honeycomb lattice
[which can be made of coupled micropillar cavities as sketched
in Fig. 1(b)] for scalar photons, where the pseudospin of
interest is associated with the lattice degree of freedom. We
generalize the measurement protocol to generic four-band
systems described with two entangled pseudospins in Sec. IV.
This situation is realized in the s band of a lattice with two
atoms per unit cell (e.g., honeycomb lattice) taking into account
the polarization of light. It is also realized for scalar particles in
the p band of a honeycomb lattice. For all examples, in addition
to the analytical and tight-binding results, we perform nu-
merical simulations which aim to reproduce the experimental
measurement. We solve numerically the Schrödinger equation
including pumping and finite lifetime of the photonic states,
we then extract the experimentally accessible parameters and
use them to reconstruct the QGT components.

II. QUANTUM GEOMETRIC TENSOR

We first introduce the different geometrical quantities that
we propose to measure in the next sections. Geometry is deeply
linked with the notion of distance. The elementary distance
between two neighboring Bloch states relates to the k-space
formulation of the Fubini-Study metric:

ds2 = 1 − | 〈un(k)|un(k + dk)〉 |2. (1)

The parameter space of all Hamiltonians in this work is the
reciprocal space k. We use the notation |un〉 to describe
quantum states, even if not all the examples presented in
the following are based on periodic Bloch Hamiltonians.
The quantum distance is maximal (ds2 = 1) when the two

neighboring states are orthogonal and is zero when the states
are collinear. The normalization condition allows to write〈

∂ki
un(k)

∣∣un(k)
〉 = −〈un(k)|∂ki

un(k)〉 , (2)

which leads to the condition �[〈un|∂ki
un〉] = 0. Using this

condition, Taylor expansion of Eq. (1) to the second order gives

ds2 = (�[ 〈
∂ki

un

∣∣∂kj
un

〉 ] − 〈
∂ki

un

∣∣un

〉 〈
un

∣∣∂kj
un

〉 )
dkidkj .

(3)

This expression defines a real symmetric metric tensor
ds2 = gn

ij dkidkj . This tensor is gauge-invariant, meaning that
its components are invariant under the transformation |un〉 →
eiα(k) |un〉. Historically, it has been introduced for the first time
to define the distance between quantum states in a projective
Hilbert space [7]. Another very important gauge-invariant
geometrical quantity of Bloch states is the well-known Berry
curvature, which can be defined as an antisymmetric tensor:

�n
ij = i

[ 〈
∂ki

un

∣∣∂kj
un

〉 − 〈
∂kj

un

∣∣∂ki
un

〉 ]
. (4)

The expressions (3) and (4) together make up a mathemati-
cal entity, known as the quantum geometric tensor, which can
be written as

T n
ij =

〈
∂un

∂ki

∣∣∣∣ ∂un

∂kj

〉
−

〈
∂un

∂ki

∣∣∣∣ un

〉〈
un

∣∣∣∣ ∂un

∂kj

〉
(5)

Indeed, its real and imaginary parts are related to the metric
and the Berry curvature tensors [8]

gn
ij = �[

T n
ij

]
, �n

ij = −2�[
T n

ij

]
. (6)

The quantum metric and the Berry curvature can also be
computed using the derivatives of the Hamiltonian instead of
derivatives of the wave functions:

gn
ij = �

⎡
⎣∑

m�=n

〈um| ∂ki
Hk |un〉 〈un| ∂kj

Hk |um〉
(Em − En)2

⎤
⎦, (7)

�n
ij = i

⎡
⎣∑

m�=n

〈um| ∂ki
Hk |un〉 〈un| ∂kj

Hk |um〉
(Em − En)2

− 〈um| ∂kj
Hk |un〉 〈un| ∂ki

Hk |um〉
(Em − En)2

⎤
⎦. (8)

However, this form is not convenient for direct experimental
extraction, because only the wave-function components can be
measured and derived, and not the Hamiltonian itself.

In three-dimensional parameter space, Berry curvature can
be represented as a pseudo-vector Bn = (�n

yz,�
n
zx,�

n
xy)T . In

this work, we consider two-dimensional systems (i,j = x,y),
which means that �n

xy = Bn
z (k) is the only nonzero component

of the Berry curvature.

III. TWO-BAND SYSTEMS

The Hamiltonian of any two-level (two-band) system can
be mapped to a pseudospin coupled to an effective magnetic
field, because the two-by-two Hamiltonian matrix can be
decomposed into a linear combination of Pauli matrices and
of the identity matrix. As shown below, the knowledge of
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the pseudospin is sufficient to reconstruct all the geometrical
quantities linked with the eigenstates. A general spinor wave
function can be mapped on the Bloch sphere using two angles
(θ - polar, φ - azimuthal) and written in circular polarization
(spin-up, spin-down) basis:

|un,k〉 =
(

ψ+

ψ−

)
=

(
cos θ(k)

2 eiφ(k)

sin θ(k)
2

)
. (9)

θ and φ are defined for each band as

θ (k) = arccos Sz(k), φ = arctan
Sy(k)

Sx(k)
, (10)

where the pseudospin components can be defined via the
intensities measured in each of the six polarizations of light, if
the particular pseudospin is the Stokes vector of light:

Sz = |ψ+|2 − |ψ−|2
|ψ+|2 + |ψ−|2 ,

Sx = |ψH |2 − |ψV |2
|ψH |2 + |ψV |2 , (11)

Sy = |ψD|2 − |ψA|2
|ψD|2 + |ψA|2 ,

where the |ψi |2 correspond to horizontal (H), vertical (V),
diagonal (D), antidiagonal (A), and circular (±) polarization
intensities.

However, we stress here that pseudospin is arbitrary and
can correspond to polarization pseudospin or, for example,
to sublattice pseudospin, if the system is a lattice with two
atoms per unit cell. While for light the physical meaning of
the vertical and diagonal polarizations is quite natural, for an
arbitrary pseudospin they have to be reconstructed from the
“circular” (ψ+, ψ−) basis as follows:

ψH = 1√
2
(ψ+ + ψ−),

ψV = 1√
2
(ψ+ − ψ−),

ψD = 1√
2
(eiπ/4ψ+ + e−iπ/4ψ−),

ψA = 1√
2
(eiπ/4ψ+ − e−iπ/4ψ−).

Applying Eq. (5) to the eigenstates (9) leads to the formula:

gij = 1
4 (∂iθ∂j θ + sin2 θ∂iφ∂jφ), (12)

Bz = 1
2 sin θ (∂xθ∂yφ − ∂yθ∂xφ), (13)

where i and j indices stand for kx and ky components.
Therefore, extracting θ (k) and φ(k) for a given energy band
at each wave vector k allows to fully reconstruct the compo-
nents of the QGT in momentum space. This protocol can be
implemented using polarization-resolved photoluminescence
and interferometry techniques available for light in the state-
of-the-art experiments [38,39,42,43]. For two-band systems,
the metric tensor is the same for each band (g+

ij = g−
ij = gij ),

whereas the Berry curvatures are opposite (B+
z = −B−

z ) [10].

A. Planar cavity

A planar microcavity, shown in Fig. 1(a), has two main
features important for our study. First, it has a two-dimensional

ky (µm-1)
-1 0 1

E
 (m

eV
)

0

0.5

1

kx (µm-1)
-1 0 1

(a) (b)

FIG. 2. Dispersion of the planar microcavity with crossed
effective magnetic fields (XY, Zeeman, and TE-TM splittings).
(a) ky cross-section and (b) kx cross-section.

parabolic dispersion of photons close to zero in-plane wave
vector, because of the quantization in the growth direction.
This allows to use the Schrödinger formalism to deal with
massive photons. Second, the energy splitting between TE and
TM polarized eigenmodes is analogous to a spin-orbit coupling
(SOC) for photons [44], which is a necessary ingredient
to obtain a nonzero Berry curvature. The other necessary
ingredient to get nonzero Berry curvature is an effective
Zeeman splitting, which in practice can be implemented by
using strong coupling of cavity photons and quantum well
excitons, achieved in modern microcavities [45]. The excitons
are sensitive to applied magnetic fields: they exhibit a Zeeman
splitting between the components coupled to σ+ and σ−-
polarized photons, inducing a Zeeman splitting for the resulting
quasiparticles—exciton-polaritons [46].

Here, in order to get a complete picture, we consider an
additional splitting between linear polarizations which acts as
a static in-plane field [47]. Such field, usually linked with the
crystallographic axes, can appear because of the anisotropy of
the quantum well, and it can be controlled by an electric field
applied in the growth direction [48]. The resulting Hamiltonian
in momentum space can be written as a two-by-two matrix in
circular basis (ψ+,ψ−)T :

Hk =
(

h̄2k2

2m∗ + �z αe−iϕ0 + βk2e2iϕ

αeiϕ0 + βk2e−2iϕ h̄2k2

2m∗ − �z

)
, (14)

where α, β, and �z define the strength of the effective fields
corresponding to the constant X-Y splitting, TE-TM SOC,
and the Zeeman splitting, respectively. m∗ = mlmt/(ml + mt ),
with ml and mt corresponding to the longitudinal and trans-
verse effective masses. k =

√
k2
x + k2

y is the in-plane wave
vector with kx = k cos ϕ, ky = k sin ϕ. ϕ0 is the in-plane angle
of the constant field. The eigenvalues of this Hamiltonian for
realistic parameters (in particular, ϕ0 = 0, which means that
the constant field is in the x direction), are shown in Fig. 2 as the
cross-sections of the 2D dispersion in the kx and ky directions.
A clear anti-crossing is visible in panel (a), as a signature of
compensation of the in-plane field and the TE-TM splitting in
the corresponding direction.
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FIG. 3. Trace of the metric tensor gxx + gyy of the LPB in a cavity
system without Zeeman splitting: without (a) and with XY splitting
(b) from the analytical formula (15).

Using Eqs. (5), the QGT components are found analytically
as

gxx = β2
(
k2
y(α − k2β)2 + k2�2

z

)
(
α2 + 2

(
k2
x − k2

y

)
αβ + k4β2 + �2

z

)2 ,

gyy = β2
(
k2
x(α + k2β)2 + k2�2

z

)
(
α2 + 2

(
k2
x − k2

y

)
αβ + k4β2 + �2

z

)2 ,

gxy = β2kxky(α2 − k4β2)(
α2 + 2

(
k2
x − k2

y

)
αβ + k4β2 + �2

z

)2 ,

B±
z = ±2β2k2�z(

α2 + 2
(
k2
x − k2

y

)
αβ + k4β2 + �2

z

)3/2 . (15)

We see that while the Berry curvature requires a nonvanishing
Zeeman splitting, the metric tensor can be nonzero even
without any applied magnetic field: the TE-TM spin-orbit
coupling is sufficient. We plot the calculated trace of the
metric tensor as a function of wave vector for β = 0.1 in
the absence of Zeeman splitting (�z = 0) in Fig. 3. Panel (a)
exhibits cylindrical symmetry due to α = 0, while panel (b)
demonstrates the transformation of the metric in the reciprocal
space in presence of nonzero in-plane effective field α = 0.2.
We stress that the metric diverges where the states become
degenerate (an emergent non-Abelian gauge field forms around
these points [49] when α �= 0), but it can nevertheless be
measured sufficiently far from the points of degeneracy.

Next, we plot the Berry curvature for a nonzero Zeeman
splitting �z = 0.1 in Fig. 4. One can see that α �= 0 (implying
anisotropic eigenenergies) leads to an important change in the
Berry curvature distribution in momentum space from a ring-

FIG. 4. Berry curvature of the LPB in a cavity system: without
(a) and with XY splitting (b) from the analytical formula (15).
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FIG. 5. Berry curvature extracted from numerical simulations
using Schrödinger equation and Eq. (13).

like maximum to two point-like maxima in the ky direction,
similar to what happened to the metric tensor. Actually, Berry
curvature is highest at the anticrossing of the branches, where
the metric tensor was divergent for zero Zeeman splitting. In
the isotropic case, this anticrossing does not depend on the
direction of the wave vector, while the in-plane field breaks
this isotropy and gives two preferential directions for the
anticrossing, where the TE-TM splitting and the in-plane field
compensate each other [see Fig. 2(a)].

These results can be directly compared with numerical
simulations, from which the QGT components are extracted
using Eq. (13). Here, and in the following, we are solving the
2D Scrödinger equation numerically over time:

ih̄
∂ψ±
∂t

= − h̄2

2m
�ψ±− ih̄

2τ
ψ± ± �zψ±+β

(
∂

∂x
∓ i

∂

∂y

)2

ψ∓

+αe∓iϕ0ψ∓ + Uψ± + P̂ , (16)

where ψ+(r,t),ψ−(r,t) are the two circular components, m =
5 × 10−5mel is the polariton mass, τ = 30 ps the lifetime,
β is the TE-TM coupling constant (corresponding to a 5%
difference in the longitudinal and transverse masses). �z =
0.06 meV is the magnetic field in the Z direction (Zeeman
splitting), α is the in-plane effective magnetic field (splitting
between linear polarizations) with its orientation given by ϕ0 =
0, and P̂ is the pump operator (Gaussian noise or Gaussian
pulse exciting all states at t = 0). U is an external potential
used in the following sections to encode the lattice potential
(here, U = 0).

The solution of this equation is then Fourier-transformed
ψ(r,t) → ψ(k,ω) and analyzed as follows. For each wave
vector k, we find the corresponding eigenenergy as a max-
imum of |ψ(k,ω)|2 over ω. Then, the pseudospin S and its
polar and azimuthal angles θ,φ are calculated from the wave
function ψ(k,ω) using Eqs. (10) and (11). This corresponds
to optical measurements of all six polarization projections at
a given wave vector and energy. Finally, the Berry curvature
is extracted from θ (k),φ(k) using Eq. (13). The results are
shown in Fig. 5. Panel (a) shows the Berry curvature in a
planar cavity without the in-plane splitting (α = 0). Panel (b)
demonstrates the modification of the Berry curvature under
the effect of a nonzero in-plane field α = 0.1 meV. As in the
analytical solution, the ring is continuously transformed into
two maxima.
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FIG. 6. Staggered honeycomb lattice tight-binding dispersion
(�AB/J = 0.2). Dashed vertical lines mark high symmetry points
in the first Brillouin zone.

B. Staggered honeycomb lattice for scalar particles

An example of a staggered honeycomb lattice of micropillar
cavities is shown in Fig. 1(b). The Hamiltonian of such lattice
for scalar particles in the tight-binding approximation with two
sites per unit cell is also a two-by-two matrix which can be
mapped to an effective magnetic field acting on the sublattice
pseudospin. The Bloch Hamiltonian in (ψA,ψB)T basis reads
[50]

Hk =
(

�AB −Jfk

−Jf ∗
k −�AB

)
, (17)

where fk = ∑3
j=1 exp (−ikdφj

) and �AB is energy difference
between A and B sublattice states.

The corresponding tight-binding dispersion is plotted in
Fig. 6. The gap, opened by the staggering potential, leads to
opposite Berry curvatures at K and K ′ points [2,51]. While
a simple analytical formula can be achieved by linearization
of the Hamiltonian around these points, here, we compute
the geometrical quantities numerically using Eqs. (7) and
(8), which, by avoiding linearization, allows to recover the
signature of the underlying lattice in the QGT components
(Fig. 7). Indeed, the presence of two valleys in the hexagonal
Brillouin zone implies a triangular shape of QGT components
around K and K ′ points, which is neglected in the first-order
approximation.

We have also performed numerical simulations with the
QGT extraction for the staggered honeycomb lattice. In this
section, to consider scalar particles, only one spin component
was taken into account in the Schrödinger equation (16) (ψ+)
and all couplings between the components were removed (α =
0, β = 0). Thus the only remaining pseudospin is the sublattice
pseudospin linked with the honeycomb potential encoded in
U (r) �= 0. We use a lattice potential U (r) of 26 × 26 unit cells
with radius of the pillars r = 1.5 μm, pillar radius modulation
of 30%, and lattice parameter a = 2.5 μm.

Once the wave function ψ(r,t) and its image ψ(k,ω) are
found, we extract the angles θ and φ defining the spinor. The
physical meaning of the spinor here is different from that of
the previous section, and the meaning of these angles differs
as well. For Sz and θ , the measurement is straightforward,
because |ψ+|2 and |ψ−|2 are simply the intensities of emission
from the two pillars A and B in the unit cell. To determine φ, the

FIG. 7. Quantum geometric tensor components in staggered hon-
eycomb lattice (tight-binding results). (a) gxx , (b) gyy , (c) gxx + gyy ,
(d) Berry curvature Bz (lower band, �AB/J = 0.2). Dashed red
squares around K point show the zoomed region for the numeric
QGT extraction.

phase difference between the two pillars, one has to consider
the real-space Fourier image of the corresponding wave-vector
state (the Bloch wave in real space) and determine this phase
by interference measurements with a reference beam. This
technique is analogous to the one used recently to measure
the phase difference between pillars in a honeycomb photonic
molecule [43]. Figure 8 shows two interference patterns for
two opposite wave vectors q close to a particular Dirac point
K . The reference beam propagates along the x direction,
and the deviation of the interference fringes from the vertical
direction is an evidence for the phase difference between the
pillars. To extract the numerical value of the phase, a double
Fourier-transform with a maximum shift is routinely used
[43,52].

0

2

4

0 1-1
x (µm)

0 1-1
x (µm)

y 
(µ

m
)

(a) (b)

A A

B B

FIG. 8. Examples of interference pattern in real space used in
order to reconstruct phase difference between A and B pillars for two
opposite values of q. The thick white lines mark the contours of the
numerical staggered honeycomb potential used in the simulations.
Red (blue) dashed circles highlight the A (B) pillars.
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FIG. 9. Berry curvature (a) and metric tensor component gxx

(c), extracted from numerical simulations based on the Schrödinger
equation (16), compared with corresponding tight-binding results [(b)
and (d)]. Zoom around K point (dashed red square in Fig. 7).

Figure 9 shows the results of the extraction of the QGT
components as discussed above. Panel (a) shows the Berry
curvature Bz and panel (c) shows the XX component of the
quantum metric (gxx), with corresponding tight-binding results
shown in panels (b) and (d), respectively. All panels are shown
in the vicinity of one of the Dirac points (chosen as the
reference for the wave vector q), where these components differ
from zero. This allows to demonstrate that the resolution of the
method is sufficient for the extraction in spite of the broadening
due to the finite lifetime, numerical disorder, and the finite size
of the structure. We see that the gxx component is compressed
along the vertical direction, as in the tight-binding calculation
[Fig. 7(a), and zoom in Fig. 9(d)], and that the Berry curvature
shows a slight triangular distortion due to the symmetry of
the valley [53], which would be simply cylindrical in the first
order.

IV. FOUR-BAND SYSTEMS

Several systems are well described by four-band Hamil-
tonians. Some examples are bilayer honeycomb lattices [54],
spinor s or p-bands in lattices with two atoms per unit cell
[55].

When it comes to accounting for an additional degree of
freedom like polarization pseudospin in a two-band lattice
system, where there is already a sublattice pseudospin, one may

think that measuring the two pseudospins should be sufficient
to deduce the QGT in the first Brillouin zone.

It is indeed the case when the Hamiltonian can be decom-
posed in two uncoupled two-by-two blocks, which means that
the two pseudospins are independent. This situation is realized
for fermions in lattices in presence of time-reversal symmetry,
for instance [56,57], where the two pseudospins are Kramers
partners. Here, we consider a more generic situation, where
we account for the possible coupling of the two pseudospins:
an eigenstate of the full system cannot be decomposed as a
product of the two pseudospins. The wave function has to take
into account the entanglement of the two subsystems. A general
four-component wave function can be written as (see Appendix
for an extended discussion of the generality):

|un,k〉 = (c+
Aeiφ+

A ,c−
Aeiφ−

A ,c+
B eiφ+

B ,c−
B eiφ−

B )T

= eiφ−
B

⎛
⎜⎜⎜⎜⎝

cos θA

2 cos θAB

2 eiφAeiφAB

sin θA

2 cos θAB

2 eiφAB

cos θB

2 sin θAB

2 eiφB

sin θB

2 sin θAB

2

⎞
⎟⎟⎟⎟⎠. (18)

Hence, six angles are necessary to parametrize the general
wave function. As in the previous section, they are related to
pseudospin components:

φA = φ+
A − φ−

A = arctan
SA

y

SA
x

,

φB = φ+
B − φ−

B = arctan
SB

y

SB
x

, (19)

φAB = φ−
A − φ−

B = arctan
SAB−

y

SAB−
x

,

and

θA = arccos SA
z ,

θB = arccos SB
z , (20)

θAB = arccos SAB
z ,

where φA, φB , θA, θB are defined by the internal pseudospin
(e.g., polarization) on each component of the external pseu-
dospin (A/B sublattices), φAB is the phase difference between
the sublattice components for a given component (σ−) of
the internal pseudospin. θAB is defined by the total intensity
difference between the two sublattices. The measurement of
these six angles in a band allows a full reconstruction of the
corresponding eigenstate.

Using the eigenstate formulation (18), one can derive the
QGT component formulas in terms of these angles:

gij = 1

4

(
∂iθ

AB∂j θ
AB + ∂iθ

A∂j θ
A cos2 θAB

2
+ ∂iθ

B∂j θ
B sin2 θAB

2
+ ∂iφ

AB∂jφ
AB sin2 θAB

+ cos2 θA

2
cos2 θAB

2
(3 − cos θAB − cos θA(1 + cos θAB))∂iφ

A∂jφ
A
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+ cos2 θB

2
sin2 θAB

2
(3 + cos θAB + cos θB(cos θAB − 1))∂iφ

B∂jφ
B

+ cos2 θA

2
sin2 θAB(∂iφ

AB∂jφ
A + ∂jφ

AB∂iφ
A)

− cos2 θB

2
sin2 θAB(∂iφ

AB∂jφ
B + ∂jφ

AB∂iφ
B)

− cos2 θA

2
cos2 θB

2
sin2 θAB(∂iφ

A∂jφ
B + ∂jφ

A∂iφ
B)

)
, (21)

�z = 1

4

(
sin θA cos2 θAB

2
(∂xθ

A∂yφ
A − ∂yθ

A∂xφ
A) + sin θB sin2 θAB

2
(∂xθ

B∂yφ
B − ∂yθ

B∂xφ
B)

+ sin θAB cos2 θA

2
(∂xθ

AB∂yφ
A − ∂yθ

AB∂xφ
A) − sin θAB cos2 θB

2
(∂xθ

AB∂yφ
B − ∂yθ

AB∂xφ
B)

+ sin θAB(∂xθ
AB∂yφ

AB − ∂yθ
AB∂xφ

AB)

)
. (22)

One can observe that the formula complexity has clearly
increased compared to the two-state system. However, we
stress that if the energy spectrum is accessible experimentally
with sufficient resolution, the extraction protocol difficulty
does not increase despite the higher number of angles. In
the following, we consider one specific case in order to
demonstrate the feasibility of the measurement.

A. Honeycomb lattice for spinor particles

In this section, we consider the s band of a regular hon-
eycomb lattice containing vectorial (polarized) photons with
TE-TM splitting and an external Zeeman field as an example
of a four-state system. In such system, the quantum anomalous
Hall effect for polaritons has been predicted recently [58]. The
minimal tight-binding Bloch Hamiltonian written in circular
basis (ψ+

A ,ψ−
A ,ψ+

B ,ψ−
B )T is the following:

Hk =
(

�zσz Fk

F+
k �zσz

)
, Fk = −

(
fkJ f +

k δJ

f −
k δJ fkJ

)
, (23)

where δJ is the TE-TM SOC strength and f ±
k =∑3

j=1 exp (−i[kdφj
∓ 2φj ]). �z is the Zeeman field and σz

the third Pauli matrix.
The Hamiltonian becomes a four-by-four matrix due to

the additional polarization degree of freedom. The typical
dispersion in the first Brillouin zone is plotted in Fig. 10. This
time, the band gap between the two lower and two upper bands
is opened thanks to the combination of the Zeeman field (which
breaks time-reversal symmetry) and the TE-TM SOC. In this
configuration, the Berry curvatures around K and K ′ point
have the same sign and the Chern number characterizing the
band gap is nonzero.

In Figs. 11 and 12, we plot the QGT components in
reciprocal space of the two bands below the band gap (blue and
red lines in Fig. 10) computed using Eqs. (7) and (8). One can
see that the map of these quantities is slightly more complicated
than before, due to the coupling between the two pseudospins
(sublattice and polarization). Indeed, one can observe clear
reminiscences of the trigonal warping at the corner of the
Brillouin zone. For the first band, each Brillouin zone corner

is linked with a negative contribution to the Berry curvature,
whereas for the second band each of them is associated with
three positive contributions. This allows to visualize why the
band-gap Chern number is C = C1 + C2 = +2. However,
while the total Chern number remains unchanged as long
as the gap does not close, the local Berry curvature can be
redistributed between the two bands below the band gap as
a function of the parameters: the geometry can be smoothly
deformed without changing the overall topology.

In numerical simulations, the main difference with respect
to the staggered (but spinless) honeycomb lattice is the ne-
cessity to extract the phase difference between the pillars for
a single spin component (σ−), which can be experimentally
realized by making interfere the light emitted by different
pillars [43] using an additional polarizer. After solving the
Schrödinger equation (16) for a lattice of 26 × 26 unit cells,
taking into account the TE-TM coupling and Zeeman splitting,
we have extracted the Berry curvature close to one of the K

points of the second band (the one on the left of Fig. 12). The
results of the extraction are shown in Figs. 13(a) and 13(c).

k (1/a)
-2 0 2 4

E
 (

J)

-3

0

3

K'MK

Topological gap

FIG. 10. Tight-binding dispersion of regular honeycomb lattice
with TE-TM SOC and Zeeman field (�z/J = 0.1, δJ/J = 0.2).
Dashed vertical lines mark high symmetry points in the first Brillouin
zone.
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FIG. 11. Quantum geometric tensor components in regular hon-
eycomb lattice (first band, tight-binding results). (a) g(1)

xx , (b) g(1)
yy ,

(c) g(1)
xx + g(1)

yy , (d) Berry curvature B (1)
z . (First band, �z/J = 0.1,

δJ/J = 0.2.)

Zoomed tight-binding results are plotted in Figs. 13(b) and
13(d) for clarity. The parameters are inherently different from
the ones of Figs. 11 and 12: δJ = 0.44, �z = 0.1: the TE-TM
splitting has been enhanced to allow clear observation of the
trigonal warping. As a consequence of the latter, we observe
three points with positive Berry curvature and one point with
negative Berry curvature [59] in the middle (QGT components
have been redistributed with respect to Figs. 11 and 12). The
positive point on the left is less visible because it is not on the
edge of the first Brillouin zone.

FIG. 12. Quantum geometric tensor components in regular hon-
eycomb lattice (tight-binding results). (a) g(2)

xx , (b) g(2)
yy , (c) g(2)

xx + g(2)
yy ,

(d) Berry curvature B (2)
z . (2nd band, �z/J = 0.1, δJ/J = 0.2.)

-0.4 -0.2 0 0.2 0.4
-1q  (µm )x

-0.4 -0.2 0 0.2 0.4
-1q  (µm )x

0.4

0.2

0

-0.2

-0.4

-1
q

 (µ
m

)
y

0.4

0.2

0

-0.2

-0.4

-1
q

 (µ
m

)
y

(a) (b)

(c) (d)

0

310

3-10

0

310

3-10

2
B

 (µ
m

)
z

2
g

 (µ
m

)
xx

FIG. 13. Berry curvature �(2)
z (a) and metric component g(2)

xx (c)
extracted from numerical simulations based on (16) using (21) and
(22). (b)–(d) Tight-binding results. Zoom around K point.

V. CONCLUSIONS

To conclude, we have presented a method of direct extrac-
tion of the quantum geometric tensor components in reciprocal
space from the results of the optical measurements. We demon-
strate the successful application of this method to two different
two-band systems: a planar cavity and a staggered honeycomb
lattice. In the second part, we generalize the method to a
four-band system, considering a regular honeycomb lattice
with TE-TM splitting and Zeeman splitting as an example.
The numerical experiment accuracy enables to observe the
interesting patterns of the quantum metric and the Berry
curvature, as the signature of the trigonal warping in the case
of a four-component spinor, which allows to be optimistic for
future experiments.

The access to these geometrical quantities will allow to
increase our understanding of each of the systems presented
in the different examples, where the QGT could affect the
transport phenomena (e.g., via the anomalous Hall effect).
The knowledge of the geometry of the quantum space is of a
fundamental general interest by itself. Finally, a similar method
could be applied to get the information on the symmetry
of the underlying lattice of the Universe in various lattice
models [60].
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APPENDIX: GENERALITY OF THE BISPINOR WAVE FUNCTION

A bispinor is composed of four complex numbers, which we write here in the polar form:

|ψ〉 =

⎛
⎜⎜⎜⎝

c1e
iϕ1

c2e
iϕ2

c3e
iϕ3

c4e
iϕ4

⎞
⎟⎟⎟⎠

with a normalization condition (ci are real and positive)

c2
1 + c2

2 + c2
3 + c2

4 = 1.

Let us first deal with the phase of the bispinor:⎛
⎜⎜⎜⎝

c1e
iϕ1

c2e
iϕ2

c3e
iϕ3

c4e
iϕ4

⎞
⎟⎟⎟⎠ = eiϕ4

⎛
⎜⎜⎜⎝

c1e
i(ϕ1−ϕ4)

c2e
i(ϕ2−ϕ4)

c3e
i(ϕ3−ϕ4)

c4

⎞
⎟⎟⎟⎠ = eiϕ4

⎛
⎜⎜⎜⎝

c1e
i(ϕ1−ϕ2)ei(ϕ2−ϕ4)

c2e
i(ϕ2−ϕ4)

c3e
i(ϕ3−ϕ4)

c4

⎞
⎟⎟⎟⎠.

This allows us to group the phase terms as in the main text:

|ψ〉 = eiϕ4

⎛
⎜⎜⎜⎝

c1e
i(ϕ1−ϕ2)ei(ϕ2−ϕ4)

c2e
i(ϕ2−ϕ4)

c3e
i(ϕ3−ϕ4)

c4

⎞
⎟⎟⎟⎠ = eiϕ4

⎛
⎜⎜⎝

(
c1e

i(ϕ1−ϕ2)

c2

)
ei(ϕ2−ϕ4)

(
c3e

i(ϕ3−ϕ4)

c4

)
⎞
⎟⎟⎠.

Now let us deal with the real positive coefficients ci , keeping in mind the normalization condition. We can rewrite the latter as

c2
1 + c2

2 + c2
3 + c2

4 = (√
c2

1 + c2
2

)2 + (√
c2

3 + c2
4

)2 = 1.

To simplify the derivation, let us define new variables a and b as

a =
√

c2
1 + c2

2

and

b =
√

c2
3 + c2

4.

The normalization condition then reads

a2 + b2 = 1.

For any possible values of a and b that satisfy this equation, there exists an angle ξ such that a = cos ξ and b = sin ξ . This
angle can be obtained as ξ = arctan b/a. In our calculations in the main text, we are rather using θAB = 2ξ , which means that
a = cos θAB/2 and b = sin θAB/2. Since ξ exists, θAB exists as well. Let us now rewrite the amplitudes of the bispinor as follows:⎛

⎜⎜⎜⎝
c1

c2

c3

c4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

c1
cos ξ

cos ξ
c2

cos ξ
cos ξ

c3
sin ξ

sin ξ
c4

sin ξ
sin ξ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

(
c1

cos ξ
c2

cos ξ

)
cos ξ(

c3
sin ξ
c4

sin ξ

)
sin ξ

⎞
⎟⎟⎟⎟⎠.

Then, we can see that for the upper part of the bispinor, the following expression is verified (based on the definition of a = cos ξ

above): (
c1

cos ξ

)2

+
(

c2

cos ξ

)2

= c2
1 + c2

2

cos2ξ
= c2

1 + c2
2

c2
1 + c2

2

= 1.

The two coefficients in the parenthesis in the upper part of the bispinor are therefore normalized to 1, and we can apply the
same reasoning to them: there exists an angle ξA such that c1/ cos ξ = cos ξA and c2/ cos ξ = sin ξA (this angle is given by
ξA = arctan c2/c1). Again, in the main text we have used a twice larger angle θA = 2ξA. Similar reasoning applies as well to the
lower part of the bispinor, which allows to find θB = 2 arctan c4/c3.
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We have thus demonstrated that an arbitrary bispinor can be written in the form given in the main text:

|ψ〉 =

⎛
⎜⎜⎜⎝

c1e
iϕ1

c2e
iϕ2

c3e
iϕ3

c4e
iϕ4

⎞
⎟⎟⎟⎠ = eiϕ4

⎛
⎜⎜⎝

(
cos ξAei(ϕ1−ϕ2)

sin ξA

)
cos ξei(ϕ2−ϕ4)

(
cos ξBei(ϕ3−ϕ4)

sin ξB

)
sin ξ

⎞
⎟⎟⎠.
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