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The thermal conductivity of a freestanding single-crystal silicon membrane may be reduced significantly by
attaching nanoscale pillars on one or both surfaces. Atomic resonances of the nanopillars form vibrons that
intrinsically couple with the base membrane phonons causing mode hybridization and flattening at each coupling
location in the phonon band structure. This in turn causes group velocity reductions of existing phonons, in addition
to introducing new modes that get excited but are localized and do not transport energy. The nanopillars also
reduce the phonon lifetimes at and around the hybridization zones. These three effects, which in principle may be
tuned to take place across silicon’s full spectrum, lead to a lowering of the in-plane thermal conductivity in the base
membrane. Using equilibrium molecular dynamics simulations, and utilizing the concept of vibrons compensation,
we report a staggering two orders of magnitude reduction in the thermal conductivity at room temperature by
this mechanism. Specifically, a reduction of a factor of 130 is demonstrated for a roughly 10-nm-thick pillared
membrane compared to a corresponding unpillared membrane. This amounts to a record reduction of a factor
of 481 compared to bulk crystalline silicon and nearly a factor of 2 compared to bulk amorphous silicon. These
results are obtained while providing a path for preserving performance with upscaling.
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I. INTRODUCTION

The emerging field of phononics seeks to elucidate the
nature of phonon dynamics in both conventional and artificially
structured materials and use this knowledge to extend the
boundaries of physical response at either the material or
structural/device level or both [1]. The field targets primarily
acoustic, elastic, and/or thermal properties and usually involves
the investigation and utilization of complex wave mechanisms
encompassing one or more of a diverse range of phenomena
such as dispersion, resonances, dissipation, and nonlinear
interactions [2]. In the subfield of nanophononics, an intensely
active area of research is the search for strategies for reducing a
material’s thermal conductivity [3], and in particular strategies
that would do so but not at the expense of deteriorating the
electrical properties [4].1 Attaining a low value of the thermal
conductivity k and simultaneously high values of the electrical
conductivity σ and the Seebeck coefficient S is strongly desired
in thermoelectric materials—materials that convert heat to
electric energy, or, conversely, use electricity to provide heating
or cooling [6]. The performance of a thermoelectric material
is measured by a figure of merit defined as ZT = (σS2/k)T ,
where T is the absolute temperature and k is the sum of a lattice
component kl and an electronic component ke [7].

Over the past few decades, a large research effort has
focused on semiconductors where kl � ke. The prevailing
approach to increasing ZT in this class of materials is to
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1The advent of nanofabrication techniques [5] is providing a pow-

erful enabling tool in this search.

introduce small and closely spaced features (such as holes,
particles, and/or interfaces) within the internal domain of the
material to scatter the heat-carrying phonons and consequently
reduce the lattice thermal conductivity, e.g., see Ref. [8]. This
strategy, however, faces the challenge that the scatterers are
also likely to impede the transfer of electrons and thus negate
any possibility of substantial increase in ZT . Another ap-
proach is the use of superlattices [9] or nanophononic crystals
[4,10,11] where the aim is to use Bragg scattering to open up
phonon band gaps and reduce the group velocities by flattening
the dispersion curves. A practical disadvantage to this route,
however, is that the surfaces of the periodic features, e.g., the
layers, holes or inclusions, need to be considerably smooth to
preserve the phase information required for the Bragg effects
to take place—especially when the features are of relatively
large sizes compared to the phonon wavelengths [12]. An even
stronger drawback is that the degree and intensity of group-
velocity reduction is rather limited and cannot be enhanced
beyond what the available Bragg interference patterns can
provide. One other promising avenue is through dimensionality
reduction, e.g., considering thermal transport along a nanowire
[13]. This introduces phonon confinement and strong phonon
scattering at the free surfaces, especially when roughened
or oxidized [14]. Yet this approach too, when used alone,
is relatively limited in its capacity to lowering the thermal
conductivity without excessive reduction in the size of the
smallest dimension.

In our group at CU Boulder, we have been investigating a
fundamentally different paradigm for increasing ZT . Instead
of depending on boundary-type scattering (internal or exter-
nal), Bragg interferences, and/or phonon confinement as lead-
ing mechanisms for lowering kl, we employ local resonances
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[15–17]. In this concept, termed nanophononic metamaterial
(NPM), nanoscale resonating substructures are intrinsically
introduced to a conventional semiconducting material which
acts as the prime thermoelectric medium. The purpose of these
substructures is not to generate subwavelength band gaps or
create negative long-wave effective properties as is the case
for locally resonant electromagnetic [18], acoustic [19], and
elastic [20] metamaterials, but to reduce the phonon group
velocities of the underlying semiconducting material, as well as
populate it with a large number of localized modes,2 in order to
significantly reduce its thermal conductivity. The substructure
resonances may be designed to couple with heat-carrying
phonon modes belonging to all or most of the dispersion
branches across the full spectrum of the host medium.3 This
atomic-scale coupling mechanism gives rise to a resonance
hybridization between pairs of the wave-number-independent
vibration modes of the local substructure (vibrons) and wave-
number-dependent wave modes of the host medium (phonons).
The stronger the couplings, the more significant the curve
flattenings, which in turn implies larger reductions in the
group velocities and stronger mode localizations within the
substructures. The phonon lifetimes also drop at the coupling
locations in the phonon band structure, which provides yet
further reduction in the thermal conductivity. In the limit, the
number of hybridizing resonances is three times the number of
atoms in a unit nanoresonator.

A candidate configuration of an NPM consists of an array,
or a forest, of silicon nanopillars distributed on the surface(s)
of a freestanding silicon membrane with no interior scatterers
[15–17]. Here the nanopillars act as the resonating substruc-
tures. Since the nanopillars are located external to the main
body of the membrane, the electronic band structure is only
mildly affected and the scattering of electrons occurs only near
the membrane surfaces and not in the interior. Compared to
all conventional phonon scattering-based approaches (where
the scatterers are in the main body of the transport medium),
this new route therefore provides the unique advantage of
practically decoupling the lattice thermal conductivity from
the Seebeck coefficient and the electrical conductivity—which
is essential to creating significant improvements in ZT . And
compared to superlattices and nanophononic crystals, an NPM
in general has two advantages: (i) the structural features do
not need to be periodic or smooth (because the resonance
hybridization phenomenon is independent of periodicity and
robust to perturbations in phase) and (ii) the intensity of group-
velocity reductions, with the added benefit of introduction of
localized modes and targeted phonon lifetime reductions, may
be continuously enhanced by simply increasing the size of the
nanoresonators [17,21].4 Finally, a nanopillared freestanding

2The unique qualitative nature of the localized mode shapes brought
about by this concept may also be used to impact other condensed
matter properties beyond the thermal conductivity.

3Another distinction for NPMs compared to locally resonant electro-
magnetic, acoustic, and elastic metamaterials is that they draw on their
unique properties for the function intended across the full spectrum
and not just within the subwavelength regime.

4A monotonic improvement in performance will take effect with
increasing nanoresonator size as long as the characteristic length

membrane naturally exhibits dimensionality reduction (com-
pared to the bulk form). Therefore the powerful rewards of
resonance hybridizations are gained over and above the benefits
of phonon confinement and/or surface roughness (as well as
the benefits to the electrical properties [22]). In light of these
impressive characteristics that are unprecedented in thermal
transport, the NPM concept in the form of a nanopillared mem-
brane is poised to enable thermoelectric energy conversion at
record high performance, while using a low-cost and practical
base material like silicon.

In a recent study, involving nanopillars on one surface,
it was shown that the performance of this membrane-based
NPM configuration is highly dependent on: (i) the relative
volumetric size of the nanopillar(s) with respect to the base
membrane within the unit cell [this quantity is denoted Vr and
is equal to DOFPillar/DOFBase, where DOFPillar and DOFBase

denote nanopillar(s) and base membrane number of degrees
of freedom (DOF) for total atomic motion, respectively]
and (ii) the overall size of the unit cell (including both the
base membrane and nanopillar portions) [17]. While the first
dependency provides a controllable design parameter (which
is an advantage as mentioned above), the second was shown
to pose a challenge because unless Vr is relatively high to
start with, the extent of the thermal conductivity reduction
will deteriorate significantly as the overall unit-cell size is
proportionally scaled up [17]. In this paper, we explore the
possibility of “compensating” this loss in performance by
increasing the nanopillar size at a higher rate than the base
membrane as we progressively examine larger unit cells. By
following this path, we demonstrate that it is possible to
even reverse the trend and, remarkably, achieve exceedingly
high performance with upscaling. Throughout the paper, this
compensatory effect is utilized and analyzed thoroughly in
the context of the underlying thermal conductivity reduction
mechanisms. Towards the end of our investigation, we high-
light the potential thermoelectric performance of NPMs by
providing ZT projections and contrasting the reduced values
of the thermal conductivity with that of the extreme case of
bulk amorphous silicon.

II. CHARACTERISTICS OF NPM PHONONS
AND VIBRONS

We investigate two prime freestanding NPM configurations:
a membrane with nanopillars (i) on one surface and (ii) on
each of the surfaces. In all cases, both base membrane and
nanopillar(s) are made of defect-free single-crystal silicon.
Figure 1 displays the unit cells of these two configurations
as well as the structure of a conventional cell (CC) and a unit
cell of a corresponding uniform (unpillared) membrane. The
geometry of a membrane with nanopillars on each surface is
represented as aAx×aAy×d + b×b×hT + b×b×hB, which
may be converted to CC by dividing each dimension by a.
Each of the last two terms in this representation is dropped as

scales of the unit cell as a whole are within the full span of the phonon
mean free path distribution—as the far end of the distribution is
approached, scattering mechanisms will dominate and the probability
of occurrences of resonance hybridizations will decay as a result.
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FIG. 1. (a) Conventional eight-atom unit cell for silicon and unit
cells for a (b) uniform membrane, (c) single-pillared NPM, and (d)
double-pillared NPM. In (b)–(d), the top and bottom surfaces are free.

needed when representing an unpillared surface. All geometric
parameters are pictorially defined in Fig. 1. Unless explicitly
specified, in all our analyses room temperature at T = 300 K
is assumed and the Stillinger-Weber empirical potential is used
to represent the interatomic interactions [23].

A. Band structure and density of states

As we have described in Sec. I, the key mechanism in
an NPM is the coupling between phonons and vibrons. In a
nanopillared membrane, the motion of phonons is confined
to the in-plane directions within the base membrane and the
motion of vibrons is limited primarily to the domain of each
nanopillar. The former may be viewed as traveling waves
propagating in an infinite medium, and the latter may be viewed
as standing waves taking shape in finite structures branching
out orthogonally from this infinite medium. Our interest is in
the steady-state characteristics of these two types of waves as
well as the manner by which they linearly interact across the
full spectrum. Nonlinear interaction between these waves is
also possible, and in fact takes place, but is not the prime focus
in this investigation.

Figure 2 provides a demonstration of the linear interaction
between phonons and vibrons, i.e., the resonance hybridization
phenomenon, as manifested in the phonon band structure,
group-velocity distributions, and associated mode shapes. For
this purpose, we consider an 18×18×18 + 12×12×36 CC
NPM unit cell (consisting of 88 128 atoms) and perform
quasiharmonic lattice dynamics (LD) calculations. We use
the reduced Bloch mode expansion (RBME) method [24]
to speed up these calculations and solve all wave-number-
dependent eigenvalue problems over the 0–0.5-THz range (see
Appendix A for RBME implementation details). The effects
of the phonon-vibron mode coupling phenomenon are clearly
displayed. Figure 2(a) shows the resonance hybridizations in
the quasiharmonic frequency versus wave-number dispersion
diagram and the corresponding reduction in the group ve-
locities across the entire frequency range plotted (the same
effect extends throughout the entire spectrum). Reduction
in phonon group velocities directly implies reduction in the
thermal conductivity. Figure 2(b) focuses on a particular mode
in the band structure and displays the unit-cell mode shape
without and with resonance hybridization. The localization of
the atomic motion solely in the nanopillar region represents
a case of extreme localization of energy—metaphorically as
if the nanoresonator is acting like a “phonon siphon” sucking
the energy from the base membrane and retaining it in the
nanopillar portion. This phenomenon is significant because
the nanopillar portion contributes to the unit-cell’s overall heat
capacity, yet these localized modes appear in the band structure
as horizontal (or almost horizontal) lines and thus exhibit zero
(or-near-zero) group velocities.

In Fig. 3, we show the effects of the size and geometry
of a nanopillar on the distribution of the vibron density of
states (DOS) and how it correlates with that of the phonons
DOS of the underlying base membrane. It is observed that
for the same number of atoms, a wider nanopillar provides

Г X
Wave vector, κ

Fr
eq

ue
nc

y,
 ω

 (T
H

z)
 

0

0.1

0.3

0.5

0.2

0.4

Group velocity, vg (nm/ps)
100

)b()a(

Hybridization zones

Membrane
mode

NPM
mode

Membrane mode NPM mode

NPM: 18×18×18+12×12×36 CC
Membrane: 18×18×18 CC

y

z

x

(Phonon-vibron couplings)

FIG. 2. Illustration of the resonance hybridization phenomenon from a lattice dynamics perspective. (a) Phonon band structure and group
velocity distribution of a silicon membrane with (green) or without (red) silicon nanopillars standing on one surface. (b) Uniform membrane
atomic displacements for a heat carrying phonon mode in the acoustic regime contrasted to NPM atomic displacements of the same mode upon
resonance hybridization. Significant motion within the uniform membrane is seen. In contrast, the atomic displacements of the NPM hybridized
mode reveals localized nanopillar motion and almost “thermal silence” in the base membrane portion. In (a), a zoom-in is provided for two
hybridization zones including the one illustrated in (b). A magnification factor of 2000 is applied to the atomic displacements in the mode-shape
images.
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FIG. 3. Direct correlation between silicon membrane phonon
DOS (considering a 6×6×6 CC membrane) and silicon nanopillar
vibron DOS for various nanopillar side lengths and heights. The latter
quantities are obtained by considering the nanopillar as an indepen-
dent nanostructure with free boundary conditions. All quantities are
normalized with respect to their maximum values.

a more spread-out local resonances spectrum than a tall
nanopillar. The higher the vibron densities and the more
conforming to the phonons distribution, the more effective
is the resonance hybridizations phenomenon—especially at
low frequencies down to the limit of existing wavelengths
(see Sec. II B). For the largest nanopillar, we clearly see a
near-perfect conformity between the two distributions owing
to the fact that both membrane and nanopillar are made of the
same material. Recalling from Fig. 2, mode localizations take
place at each region in the spectrum where phonon dispersion
curves and horizontal vibron resonance lines hybridize. Unlike
the Anderson localization [25], the localization phenomenon
in the present system does not require disorder; the position,
spatial extent, and spectral characteristics of the localizations
are controlled by the location, size, and geometry of the
unit nanoresonator. The notion of conformity we refer to in
our discussion of Fig. 3 may be quantified. Conveniently,
we introduce a metric to represent its converse, namely, the

nonconformity factor R̂pv, which we define as

R̂pv = ‖Rpv − Rpp‖, (1)

where Rpv is the cross-correlation between the phonons and
the vibrons DOS, Rpp is the auto-correlation of the phonons
DOS, and ‖.‖ denotes the double norm. The reader may refer
to Ref. [26] for the definitions of correlation functions. The
nonconformity factor varies between 0 (perfect conformity)
and ∞ (no conformity). Consistent with our previous remarks,
we observe that an NPM with a wide and short nanopillar
indeed has a lower nonconformity factor (i.e., has a higher
level of conformity) compared to an NPM with a narrow and
tall nanopillar and the same total number of DOF.

1. Effect of vibrons compensation on phonon-vibron conformity

In Fig. 4, we take this analysis further and examine how the
overall size of the NPM affects the phonons and vibrons DOS
distributions, separately and with respect to each other. We see
in Fig. 4(a) that as the sizes of the membrane and nanopillar
portions are increased at an identical rate, the value of the
nonconformity factor rises. On the other hand, we observe
in Fig. 4(b) that when the size of the nanopillar portion is
increased at a higher rate compared to the membrane portion,
this value decreases, i.e., the degree of conformity intensifies.
The former scenario corresponds to the set of cases considered
in Ref. [17]. On the other hand, the latter scenario represents
a design pathway that creates compensation, as described in
Sec. I. For compensation to be realized, nanopillar vibrons are
added at a higher rate than membrane phonons as the overall
size of the unit cell examined is increased. The outcome is
that not only (i) the phonon band structure gets enriched
with a higher vibrons-to-phonons ratio, but also (ii) the
level of conformity between the phonons and vibrons DOS
distributions gets significantly enhanced.

2. Effect of vibrons compensation on group-velocity
and mode-weight-factor reductions

The degree of phonon-vibron conformity has significant
effects on all three mechanisms for thermal conductivity reduc-
tion. Considering the reduction in group velocities and the in-
troduction of nanopillar localized modes, this is demonstrated
in Fig. 5 where we again consider the three NPM configurations
shown in Fig. 4(b), which feature vibron compensation as the
membrane thickness is increased. In Fig. 5(a), we show the
group velocity frequency distribution across the full spectrum
for each NPM and its corresponding uniform membrane with
the same base membrane thickness. In order to quantify the
reduction in the group velocities across the full spectrum,
the average group-velocity ratio is computed and defined as
Gr = GNPM/GMemb, where the average group velocity G is
calculated for each system (NPM or uniform membrane) by

G = [1/(nκnm)]
nκ∑
κ

nm∑
m

vg(κ,m), (2)

where vg is the group velocity, nκ is the number of wave-
number points considered, nm = 3N is the total number of
modes for an N -atom unit cell, κ is the wave number (scalar
component of wave vector κ), and m denotes the branch
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FIG. 4. Demonstration of phonon-vibron conformity as a func-
tion of unit-cell size and Vr . Relative distributions of the phonons
and vibrons DOS are shown for three NPMs whose Vr values are
(a) kept constant and (b) increased as the overall unit-cell size
grows. The leftmost NPM configuration has a 3×3×1 CC membrane
and a 1×1×1 CC nanopillar. The vibron DOS are obtained by
considering the nanopillar as an independent nanostructure with free
boundary conditions. All quantities are normalized with respect to
their maximum values. Increasing the size of the nanopillar at a higher
rate than the size of the membrane leads to higher phonon-vibron
conformity, which corresponds to lower values of R̂pv and a more
intense resonance hybridizations effect.

number in the dispersion diagram; see Ref. [17] for additional
analysis on the influence of the nanopillars on the group
velocity characteristics. Clearly, we see that Gr drops as the
size increases with a higher growth rate in the nanopillar
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FIG. 5. Demonstration of the impact of the compensatory effect
on the frequency distributions of (a) the group velocity and (b)
the mode weight factor. These results are for the same three NPM
configurations considered in Fig. 4(b) where the Vr value grows as the
overall unit-cell size increases. Increasing Vr significantly decreases
the group velocities and increases the degree of mode localization,
across the full spectrum. This outcome is consistent with the decrease
in the nonconformity factor observed in Fig. 4(b).

portion, which is a manifestation of the compensatory effect. To
similarly investigate the impact of the compensatory effect on
the mode localizations, we use the mode weight factor fRegion

to quantify “regional” localization—this represents the relative
contribution of each region of the system (base membrane or
nanopillar) to each mode. This quantity is defined for each
mode (κ,m) by [27–29]

fRegion(κ,m) =
NRegion∑
i=1

3∑
j=1

φ∗
ij (κ,m)φij (κ,m), (3)

where φij (κ,m) is the normal eigenmode corresponding to
atom i and direction j . The ()∗ symbol denotes the complex
conjugate operation. The first summation is over the number
of atoms NRegion for a region in the system (for example,
NRegion = NMemb represents the number of atoms in the base
membrane and NRegion = NPillar represents the number of
atoms in the nanopillar). The factor fRegion varies between 0
and 1. If the region of interest encompasses the total number
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of atoms in the system, i.e., NRegion = NMemb + NPillar = N ,
the factor fRegion is equal to one. In order to quantify the
relative contribution of each component of the unit cell, a
mode weight factor ratio fr is defined as fr = FMemb/FPillar,
where FRegion represents the average value of fRegion over all
the modes in the system and is computed in a similar manner
to computing the average group velocity G. Following this
definition, FMemb + FPillar = 1. The ratio fr varies between 0
(all the motion is localized within the nanopillar) and ∞ (all
the motion is localized within the base membrane). The lower
the fr value, the higher the relative motion of the atoms in the
nanopillar compared to the base membrane and therefore the
higher the degree of mode localization in the nanoresonator.
Figure 5(b) shows that higher Vr values yield lower fr values,
which is again consistent with the compensatory effect.

In summary, with vibron compensation we observe a perfect
correlation between the increase in phonon-vibron conformity
on the one hand (which is represented by a decrease in R̂pv),
and the reductions in Gr and fr on the other hand. The
consequence is a sustained increase in thermal conductivity
reduction, compared to a uniform membrane, with increasing
membrane thickness (see Sec. IV).

B. Frequency limits for “active” resonance hybridization

Thermal transport in silicon is carried by very short-
wavelength waves and therefore there are lower frequency
limits on the nanopillar generated vibrons that couple with the
phonons. In bulk silicon, the transport is carried by phonons
with wavelengths ranging, roughly, from 0.4 to 10 nm at
room temperature with the majority of the distribution being
between 0.4 to 2.2 nm [30]. In Fig. 6, we show the phonon
dispersion curves for a uniform membrane unit cell of size
1×1×6 CC (i.e., 0.5431-nm-wide) and an NPM unit cell of size
6×6×6 + 4×4×12 CC (i.e., 3.2586-nm-wide). In principle,
the Brillouin zone of this NPM unit cell may be unfolded six
times and mapped on that of the uniform membrane to enable
direct comparison. In the figure, we consider the wavelengths
of λ = 0.54, 1.09, and 10.86 nm and mark the frequency where
each of these wavelengths intersects the lowest dispersion
curve of the uniform membrane. The intercepts correspond
to frequencies ω = 3.1, 2.8, and 0.1 THz, respectively. These
values represent the lower limits on the frequencies of vibrons
that are capable of coupling with phonons at each of these
wavelengths and lower. For example, any local resonance that
is 2.8 THz or higher is, in principle, available for coupling
with phonons with a wavelength of 1.09 nm or lower. Fur-
thermore, we observe from Fig. 6(a) that the longitudinal
acoustic branch extends to nearly 7 THz upon unfolding once.
Thus the numerous vibrons spanning the 3–7 THz range are
available for coupling and hybridization with a wide selection
of phonons with wavelengths between 0.5 and 1 nm, and many
more vibrons are active when also considering phonons with
wavelengths larger than 1 nm. Upon examining closely the
NPM dispersion curves [see inset of Fig. 6(b)], we observe
that the vibrons for this example NPM structure start at 0.04
THz and populate as we move upwards in frequency; thus there
are plenty of vibrons available for resonance hybridizations to
take place within the full range of phonon wavelengths.
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Another remaining factor that limits resonant thermal trans-
port is the distribution of the phonon mean free path (MFP).
For bulk silicon, the MFP distribution at room temperature
ranges from a few nanometers to a few microns [30]. And
for silicon membranes with a thickness on the order of a
few tens or hundreds of nanometers, the room-temperature
MFP distribution was shown in recent experimental results
to comfortably cover a range that is at least on the order of
the membrane thickness; see, for example, Refs. [14,31]. The
active wavelengths (which as discussed above can be as small
as a few angstroms) are able to travel relatively long distances
within the nanopillared membrane structure as long as these
distances fall within the range of the MFP distribution. An
important advantage of molecular dynamics (MD) simulations
is that all anharmonic and boundary scattering activity is
accounted for and thus any limitations on the dynamical pro-
cesses involving the nanostructure phonon and vibron modes
are inherently incorporated in the results. The reader is referred
to Ref. [16] where direct evidence of the existence of the
resonance hybridization phenomenon in a room-temperature
MD simulation was demonstrated using spectral energy den-
sity (SED) calculations [32,33]. In the next section, we use a
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different version of the SED method to further confirm the
existence of localized modes and to examine the effect of
resonance hybridizations on the phonon lifetimes and MFPs.

III. EFFECT OF RESONANCES ON PHONON LIFETIMES
AND MEAN FREE PATHS

In this section, we briefly investigate the effect of local
resonances on the scattering properties of an NPM, namely
the phonon lifetimes τ and MFPs � = vgτ . We use the SED
method [32,33] to extract these quantities after running equilib-
rium molecular dynamics (EMD) simulations (implementation
details are in Appendix A). This technique predicts the phonon
SED field 	 (or 	′; see discussion below) at wave vector κ and
frequencies ω by taking a superposition of 3N (total number
of modes in the unit cell) Lorentzian functions

	(κ,ω) =
3N∑
m

I0

1 + [2τ (ωa − ω)]2
, (4)

where I0 is the SED peak, ωa represents the anharmonic fre-
quency of mode (κ,m), and τ also corresponds to mode (κ,m).
In the literature, there are two formulations for computing
SED: 	 and 	′. Both methods are, in principle, the same
although in practice they tend to produce slightly different
results [34]. The former uses the normal mode velocity of the
atoms and thus requires a priori knowledge of the phonon
modes. The projection of atomic velocities onto the phonon
modes is computationally demanding especially for large
supercells such as NPM unit cells. However, the peaks are
easily distinguishable in the 	 formulation and this allows
us to predict the frequencies/lifetimes mode by mode. The
	′ formulation, on the other hand, requires only the atomic
velocities and no modal projections are involved. This makes
the predictions of the lifetimes in particular more challenging
especially when the modes are closely spaced where identify-
ing the peaks becomes difficult. However, the 	′ approach has
the advantage that it requires less intensive computations. Here,
we choose to use the 	 formulation, which entails predicting
all phonon information mode by mode. According to [33], 	

is computed by

	(κ,ω) = μ0

3N∑
m

∣∣∣∣
∫ ttot

0
q̇(κ,m; t)e−iwtdt

∣∣∣∣
2

, (5)

where μ0 = m̄/(2πttotNc), m̄ is the mass of a silicon atom, ttot

is the total simulation time, and q̇ is normal mode velocity,

q̇(κ,m; t) =
3,N,Nc∑

j,i,l

u̇j (l,i; t)φ∗
ij (κ,m)eiκ .r0(l,0), (6)

where r0 is the equilibrium position vector of the lth unit cell,
and u̇j is the j -component of the velocity of the ith atom in
the lth unit cell at time t . There is a total of Nc = Nc,xNc,y

unit cells in the simulated computational domain. To predict
the phonon anharmonic frequencies and lifetimes from Eq. (5),
each peak is fitted to Eq. (4) (a Lorentzian function centered
at ωa with a half-width at half-maximum value of 1/(2τ )).

We choose to study an NPM unit cell with the dimensions
3×3×3 + 1×1×3 CC (240 atoms) and the corresponding
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FIG. 7. (a) The quasiharmonic LD dispersion curves for the
3×3×3-CC uniform membrane unit cell and 3×3×3+1×1×3-CC
NPM unit cell are shown with the red and blue lines, respectively.
The red squares and blue circles show the anharmonic frequencies
extracted from EMD. (b) The group velocity, lifetime, and MFP of the
phonons marked in (a). The red triangles and blue crosses correspond
to the NPM system when performing the SED calculations on the
atoms only in the membrane or nanopillar portion, respectively. (c)
SED peaks for the uniform membrane (left) and the NPM (right). The
peak broadening in the NPM case is a manifestation of the effect of
resonances. The black lines show the Lorentzian fits.

uniform membrane unit cell with the dimensions of 3×3×3 CC
(216 atoms). The quasiharmonic LD dispersion diagrams for
these single unit cells are shown as solid lines in Fig. 7(a). As
explained earlier, the velocity trajectories of atoms from EMD
simulations and mode shapes from separately performed LD
calculations are the main input for Eq. (5). Five independent
simulations are performed under NV E conditions (constant
number of atoms, volume, and energy) and are run for 222

time steps using a 0.8-fs time step—the total simulation time
is ttot = 3.4 ns. The trajectories are output every 25 steps
resulting in 217 time steps. Several unit cells must be considered
in the direction of interest (�X in our case) to accurately
predict frequencies at the allowed wave vectors and also ensure
that there are no computational size effects due to periodic
boundary conditions. We have considered two long simula-
tion domains consisting of Nc,x = 32 with (i) Nc,y = 1 and
(ii) Nc,y = 2 single unit cells, respectively; the first consisting
of 7680 atoms and the second of 15 360 atoms. This results
in 17 allowed wave vector points in the �X path of the
irreducible Brillouin zone. Using the EMD data and the 	
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formula, we have computed the frequencies and lifetimes of
several transverse-acoustic (TA) phonon modes roughly in the
range between 0.4–1 THz. The results are obtained based on
peaks averaged over five simulations before curve fitting. Both
simulation domains yield close results, which confirms that
there is no significant computational size effect.

The anharmonic frequencies (squares and circles) for the
calculated TA phonons are shown in Fig. 7(a). Clearly,
they closely match with the quasiharmonic dispersion curves
(higher frequency phonons are expected to deviate from the
quasiharmonic dispersion curves). The subset of data points
falling along one of the horizontal lines (just below 1 THz) is
direct evidence of the presence of localized modes. For fre-
quencies lying along the phonon dispersion branch for shear-
like waves, the lifetimes and MFPs are predicted and shown in
Fig. 7(b). The predictions for this low-frequency range reveal
that the lifetimes and MFPs in an NPM are generally lower than
in the corresponding uniform membrane, with a substantial
decrease within the hybridization zones (for example, around
0.76 THz). It is evident, however, that these decreases in the
lifetimes and MFPs while significant, they are not too extreme
because we are still able to identify and extract anharmonic
frequencies [as shown in Fig. 7(a), which is indicative of
the presence of wave phenomena. Conversely, the resonance-
induced changes in the phonon band structure affects the nature
of anharmonic interactions, including nonlinear interactions
between the localized modes and the extended modes. The
lifetimes and MFPs are also predicted for the membrane
and nanopillar portions of the NPM system by respectively
considering atoms in only the membrane or the nanopillar in the
SED calculations. The results are close to the predictions made
for the entire NPM system. The quasiharmonic group velocities
of the same modes are also shown in Fig. 7(b) for comparison.
In Fig. 7(c), we carefully examine an energy peak for each of
the uniform membrane and the NPM. The left subfigure shows
a frequency peak extracted from the SED data of the uniform
membrane, which shows a sharp and distinguishable peak. In
contrast, for the NPM mode shown in the right subfigure,
the peak is broadened and thus the lifetimes are reduced.
The reductions in the lifetimes/MFPs, as expected, are at and
around the hybridization regions in the phonon band structure.
Decreases in these quantities augment the reductions in the
group velocities as well as the presence of mode localizations
in causing an overall reduction in the thermal conductivity
(compared to a corresponding uniform membrane).

In summary, it is of particular importance that the added
anharmonic scattering stemming from the erection of the
nanopillars on a membrane do not prevent the resonance
hybridizations phenomenon from unfolding in a silicon NPM
at room temperature. This observation is noted not only in
the discrete anharmonic data in Fig. 7(a), but also in Ref. [16]
where a similar silicon-based NPM configuration was analyzed
using SED (following the 	′ formulation) and the dispersion
curves that emerged demonstrated clear evidence of ample
resonance hybridization features. The extent to which each of
the three mechanism—group velocity reductions, mode local-
ization in the nanopillars, and decreases in the lifetimes/MFPs
at and around the hybridization zones—relatively contribute to
the overall thermal conductivity reduction will be investigated
in future studies.

IV. NPM PERFORMANCE: EXTREME THERMAL
CONDUCTIVITY REDUCTION

The size and geometry of the nanopillars are key to in-
creasing the intensity of the resonance hybridizations effect,
as demonstrated in Figs. 3 and 4. In this section, we extend our
investigation to the prediction of the lattice thermal conduc-
tivity and seek to further investigate the conditions for its ex-
treme reduction. Equilibrium MD simulations and the Green-
Kubo (GK) method are used for the thermal conductivity
calculations; see Appendix A for the implementation details.
Lattice dynamics calculations together with the Boltzmann
transport equation (BTE) following the single-mode relaxation
time (SMRT) approximation, and nonequilibrium molecular
dynamics (NEMD) simulations, are also utilized for additional
analyses provided in the appendices and these prediction
methods too are described in Appendix A.

A. NPM size, geometric, and temperature effects on thermal
conductivity reduction

In Fig. 8, we investigate using the EMD-GK scheme the
reduction in the in-plane thermal conductivity for various NPM
sizes and geometries. The reduction is represented by kr, the
lattice thermal conductivity of a membrane with nanopillar(s)
in the unit cell divided by that of a uniform membrane with the
same thickness.5 Key factors in this analysis are (i) Vr and (ii)
the rate of change of Vr, and the manner by which the geometry
of the different NPM components (membrane and nanopillar)
change relative to each other, as the size is increased. Using
α as a size parameter, we refer to the latter factor as the “α
dependency.” The mathematical representation of the various
α dependencies considered, their corresponding Vr values, and
other related quantities are given in Table III in Appendix B.
A corresponding graphical representation is provided in the
insets of Fig. 8 in the form of Vr versus α, Vr versus hT/hB,
and kr versus Vr .

The results in Figs. 8(a) and 8(b) show that regardless
of the specific form of the α-dependency, kr increases with
size when Vr is constant. We have shown in an earlier study
that this behavior correlates with the degree by which the
resonance hybridizations affect the group velocities as a unit
cell is proportionally upscaled in size [17]. For kr to maintain
its value with α, or possibly even drop in value, we need to
introduce compensation (as discussed in the previous sections)
to the α dependency; that is, to select the dependency in a
manner such that Vr increases as α increases. The strength of
this compensation is measured by γ = dVr/dα. We observe
that indeed kr drops, as desired, for the cases exhibiting a com-
pensatory α-dependency, e.g., kr drops from 0.36 at α = 1 to
0.14 at α = 3 for the 6α×6α×18 + (6α − 2)×(6α − 2)×18α

CC model for whichVr = α(1 − 1/3α)2 andγ = (1 − 1/9α2).
This negative trend in thermal conductivity reduction is at-
tributed to what we described earlier as the compensatory
effect. The connection between kr and the α dependency, with
and without compensation, correlates directly to the reduction

5Throughout the paper, the term “lattice” is often dropped for brevity
when referring to lattice thermal conductivity predictions.
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FIG. 8. Thermal conductivity ratio kr vs the size parameter (scaling factor) α in (a), (b), and (d) and vs the ratio of top and bottom nanopillar
heights hT/hB in (c). A membrane thickness of 6, 12, and 18 CC correspond to 3.26, 6.52, and 9.78 nm, respectively. Thick arrows in (a) and
(b) represent maximum upward and downward changes among the cases considered. In each of (a), (b), and (d), the left inset shows kr vs the
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versus double-pillared NPM unit cell. Unlike in Fig. 3, here the vibron DOS are extracted from the NPM band structure. In (d), β denotes
the nanopillar height divided by the membrane thickness. All trends clearly show that the performance of an NPM in reducing kr is directly
dependent on Vr and the type of α dependency. In the double-pillared configuration considered in (d), a two orders of magnitude reduction in
the thermal conductivity is recorded.

in the group velocities and the increase in mode localizations
that arise due to the resonance hybridizations. A demonstrative
case study on these correlations is provided in Appendix B.

In Fig. 8(c), we examine the influence of adding a second
nanopillar (at the bottom) of the membrane. The right inset
demonstrates that this significantly increases the spread in
the vibron DOS spectrum, and as a result kr drops from 0.25
to 0.12.

In Fig. 8(d), we examine different nanopillar heights by
varying the parameter β.6 It is shown that the larger the value
of β [i.e., the taller the nanopillar(s)], the stronger the reduction

6The numerical values of the thermal conductivity reduction for all cases considered in Fig. 8(d) are provided in Table IV in Appendix B.

in kr, which allows us to attribute additional incremental
reductions in kr with increases in nanopillar height to the
wave-resonance coupling phenomenon rather than boundary
scattering. This is consistent with observations in previous
studies of NPMs [16,21,35]. Pushing the compensatory effect
further, we show in Fig. 8(d) a reduction in the lattice thermal
conductivity by a factor of 75 for a single nanopillar and a factor
of 130 for double nanopillars for a 9.78-nm thick membrane
with each nanopillar extending up to 586.5 nm in height. The
extent of these reductions is unprecedented in the literature,
and yet more reductions are possible with further increases in
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nanopillar size and augmentation with conventional treatments
such as optimized alloying [35].7

Additional investigations of NPM design avenues are
summarized in Appendices C, D, and E. For example, in
Appendix E, the nanopillars are replaced by nanowalls, which
are shown to provide yet further reduction in the thermal
conductivity.

Lastly, we examine the effect of temperature on the perfor-
mance of the best performing design considered in Fig. 8(d),
namely, the double-pillared membrane with α = 3 and β =
60. At a temperature of 700 K, we obtain a value of kr =
0.0519 ± 0.0085, which corresponds to nearly a factor of 19
reduction in the lattice thermal conductivity compared to a
uniform membrane with the same thickness of 9.78 nm.

B. Correlation of NPM analytical geometric trends
with kr predictions from MD simulations

As explained in Sec. I and demonstrated in Sec. II and
Appendix B, the resonance hybridization phenomenon (i)
causes the group velocities of many of the base membrane
phonon modes to reduce significantly, and (ii) adds numerous
zero-group velocity modes (vibrons) to the system. It is shown
in Sec. III that resonance hybridizations also reduce the phonon
lifetimes at and around the coupling regions with the phonon
band structure. Each of these three factors contribute to the
reduction of kr. Since the intensity of these effects depend on
the number of vibrons added to the system, we may predict the

7Future research will explore different nanoresonator configurations
to reduce the need for occupying a large volume. For example, the
nanopillars may be made from a higher atomic density material in
order to generate the same number of vibrons using smaller heights;
or may be made from a material with heavier atoms in order to shift
the vibrons DOS to lower frequencies and thus be more effective
in reducing the thermal conductivity and enable the use of shorter
nanopillars.

extent of the thermal conductivity reduction indirectly from
Vr (especially that we also saw, from Fig. 4, that a rise in
Vr causes an increase in the phonon-vibron conformity, i.e.,
a drop in R̂pv). This correlation is demonstrated in Fig. 9,
which plots both kr and 1/Vr versus the size parameter α

for the three different double-pillar configurations considered
in Fig. 8(d).

It is observed that both trends decrease with increase in
α due to the compensatory effect. It is also observed that
this decrease takes place with a decreasing rate, which is for
the two following reasons. First, as more vibrons are added,
the effect of additional vibrons gradually diminishes as the
dispersion curves get saturated with resonance hybridizations.
This factor is evident in both the kr and 1/Vr trends. Second,
as the NPM characteristic size increases, this size compared
to the MFP distribution increases, which in turn leads to a
diminishing of the effects of resonance hybridizations. The
latter factor pertains to only the kr trends, and we indeed
observe a slightly less negative slope for the kr curves compared
to the 1/Vr curves. As discussed earlier, the MFPs factor for
an NPM made of silicon will become practically influential
in hindering wave and resonance phenomena at significantly
higher NPM dimensions than the dimensions considered in
this investigation. This factor becomes less influential as the
temperature is reduced.

V. CONCLUSIONS

In Ref. [15], a new type of nanostructured material was
introduced that enables a reduction in the lattice thermal con-
ductivity through the phenomenon of full-spectrum resonance
hybridizations. Unlike materials that naturally exhibit local
resonances from rattling atoms, such as clathrates [36], an
NPM includes artificially introduced local nanoresonators as
substructures that may be attached to the host material (for
example, nanopillars standing on a silicon membrane). With
this concept, and given that we can size the nanoresonators
as desired, we yield a tremendous number of hybridizing
resonances that may be engineered to span roughly the entire
spectrum of the host material. If the relevant unit-cell dimen-
sions fall within the range of the phonon MFP distribution,
each of these resonances will (i) cause a reduction in the
group velocities of existing heat carrying modes (phonons)
and (ii) introduce localized modes (vibrons) that absorb but
not transfer heat—these two effects work in tandem and could
be tuned to attain a significant reduction in the transport
medium’s thermal conductivity. Drops in the phonon lifetimes
also take place—at and around the hybdrization zones in
the phonon band structure—leading to further reduction in
the thermal conductivity. Direct evidence of the existence of
resonance hybridizations in nanopillared silicon membranes
at room temperature was provided in a subsequent study
using SED analysis of atomic motion from MD simulations
[16]. Therefore the reductions in the lifetimes, while relatively
significant in the coupling regions, are still moderate enough
overall not to impede the occurrence of the phonon-vibron
couplings which are of coherent nature.

More recently, it was discovered that the performance of an
NPM deteriorates as the unit-cell size is increased [17]. This
property is detrimental because it impedes the feasibility of
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upscaling to sizes that are suitable for thermoelectric device
integration, which is needed to enable industrial-scale deploy-
ment for waste heat conversion to electricity and for cooling
and refrigeration. Furthermore, parameter optimization studies
have shown that the inclusion of nanoresonators could reduce
the thermal conductivity by at most a factor of five [17,21,35].
In this paper, we reveal a route that reverses the unfavorable
size-effect trend and causes the thermal conductivity reduction
to increase, rather than decrease, with size. The key is the
notion of vibrons compensation, that is, to enlarge the nanores-
onator(s) at a higher rate than the base membrane as larger
unit-cell sizes are considered. In addition to enriching the band
structure with a higher vibron-to-phonon ratio, this approach
causes an increase, rather than a decrease, in the conformity be-
tween the phonon and vibron DOS distributions. The outcome
is not only favorable for upscaling, but it is also extremely
advantageous in that it allows the unit-cell design space to
expand thus opening up a path for a significant increase in
the effectiveness of the resonance hybridizations phenomenon,
as quantitatively demonstrated in Fig. 4. Effective resonance
hybridizations lead to not only a magnification in the intensity
of phonon group-velocity reductions, but also a boost in
mode localizations (as explicitly demonstrated in Fig. 5 and
Appendix B), and a noticeable decrease in a substantial fraction
of the population of phonon lifetimes (as shown in Fig. 7). This
in turn grants us a route for unprecedented reductions in the
thermal conductivity.

The nanopillared (or nanowalled) membrane configuration
of an NPM is particularly advantageous because the nanopillars
(or nanowalls) are located outside the main spatial domain of
the membrane where electric charge generation and electron
transport takes place, and are therefore expected to have at most
a mild effect on the electrical properties. From our calculations,
the lattice thermal conductivity of a 9.78-nm-thick uniform
silicon membrane is 3.7 ± 0.7 times lower than the bulk
form. Multiplying this by the factor of 130 ± 28 for the best
double-nanopillar case reported in Fig. 8(d) gives a total factor
of 481 ± 55, which corresponds to roughly half the thermal
conductivity of bulk amorphous silicon (see Appendix F). By
conservatively assuming the same kr value for α = 6 for this
high performing configuration, a 19.55-nm-thick NPM would
exhibit a lattice thermal conductivity reduction by a factor of
311 ± 85 with respect to bulk crystalline silicon.8 Assuming
a one-to-one mapping between the total thermal conductivity
reduction and the increase in ZT —as demonstrated by the
experimental characterization of similarly sized freestanding
silicon membranes [11] and silicon nanowires [13],9 and given
that ZT of moderately doped bulk silicon is at a minimum
0.01 at T = 300 K [37,39], we obtain a projected room-

8We predict kl of a 19.55-nm-thick uniform silicon membrane to be
2.4 ± 0.4 times lower than the bulk form.

9The MFP of electrons in bulk silicon at room temperature has
been determined experimentally to range, roughly, from 10 to 30 nm
depending on the level of doping [37]; thus with moderate doping
(which is recommended to optimize between S and σ ) it is conceivable
that a nanostructure with a 20-nm characteristic size would exhibit
negligible change in the electrical properties compared to the bulk
form. We assume in this mapping ke to be insignificant [38].

temperature ZT value of 3.1 ± 0.9.10 This is significantly
higher than any previously reported ZT value at any tempera-
ture,11 not only for silicon but for thermoelectric materials in
general.
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APPENDIX A: THERMAL CONDUCTIVITY
PREDICTION METHODS

1. Equilibrium molecular dynamics simulations

Thermal conductivity predictions in this investigation are
obtained primarily using EMD simulations and the GK method
[41–44]. In the GK method, the lattice thermal conductivity
tensor kl is calculated from the heat current auto-correlation
function (HCACF) by

kl = 1

kBV T 2

∫
〈J(0) ⊗ J(t)〉dt, (A1)

where kB is the Boltzmann constant, V is the total volume of the
system including both membrane and nanopillar portions (i.e.,
volume of the unit cell aAx×aAy×d + b×b×hT + b×b×hB

in a simulation domain consisting of a single unit cell), J
is the heat current vector (in the unit of energy times length
per unit time) computed over all atoms in the system, and ⊗
denotes the tensor product operation. As defined earlier, T is
the temperature and t is the time. The integrand 〈J(0) ⊗ J(t)〉
represents the time average of the HCACF.

Throughout the investigation, we recall that the crystals
are assumed to be defect-free and interatomic interactions are
modeled using the Stillinger-Weber empirical potential [23].
All simulations are performed using the LAMMPS software
and the heat current vector is evaluated using the stress-based

10If we assume that the electrical properties also do not change for
the best 9.78-nm-thick double-nanopillar case, we would obtain a
room-temperature ZT value of 4.8 ± 0.6.

11Following the same projection procedure, we obtain a ZT value of
1.8 ± 0.3 at T = 700 K for a 19.55-nm thick nanopillared membrane.
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formula

J = −
∑

i

Sivi , (A2)

where Si and vi , respectively, denote the virial stress tensor and
the velocity vector for atom i [45]. The computational domain
for the NPM models and the uniform membrane models
consists in each case of one unit cell with standard periodic
boundary conditions applied at the in-plane boundaries leaving
the surfaces free in the z direction [16,17]; see Fig. 1 for
an illustration of the unit-cell geometries considered and the
associated notation. The computational domain for the bulk
case consists of a cubic unit cell with periodic boundary
conditions applied in all three directions.

The systems are initially equilibrated for 1 ns, with a time
step �t = 0.8 fs, at room temperature (T = 300 K) under
the NPT ensemble (zero pressure cell size based on constant
number of atoms, pressure, and temperature). The simulations
are subsequently allowed to run under the NV E ensemble
for an additional 6 ns to collect heat fluxes that are recorded
every 4 fs. The 6-ns time span is sufficiently long compared
to the longest phonon lifetime to reliably predict the thermal
conductivity. With these parameters, the HCACFs generally
converge within the first 1 ns, with the rate of convergence de-
pending on the type of the material system [e.g., bulk, uniform
membrane, or NPM]. The smaller the value of the predicted
thermal conductivity, the shorter the convergence time. The
x-direction HCACF (normalized with respect to its initial
value) for the NPM system with the best performance (double
pillared with α = 3 and β = 60) is shown in Fig. 10(a). The
normalized HCACFs of a corresponding uniform membrane
(i.e., a silicon membrane with the same thickness but without
nanopillars) and the bulk case are also shown. The x-direction
thermal conductivity (denoted kl) for the NPM system, which is
observed to have converged within the 100 to 200 ps window, is
plotted in Fig. 10(b); and in the inset, the thermal conductivities
of the uniform-membrane and bulk cases are shown as well.
To minimize modeling errors, the quantity reported is kr which
as defined earlier is the NPM lattice thermal conductivity
divided by that of a corresponding uniform membrane with the
same thickness. For each prediction of kr, an average value is
obtained from six independent simulations with different initial
velocities. Furthermore, both thex andy in-plane directions are
considered for all NPM and uniform membrane calculations—
effectively resulting in an averaging over twelve predicted
values. For bulk silicon, the reported thermal conductivities
are the average of values obtained by simulating three unit
cells of different sizes, each simulated also six times, and, in
addition, evaluations are made over the x, y, and z directions—
effectively resulting in an averaging over fifty-four predicted
values. The unit cells considered for the bulk simulations
are 6×6×6 CC, 12×12×12 CC, and 18×18×18 CC—the
predicted thermal conductivity for each is 412 ± 32, 319 ± 28,
and 397 ± 36 W m−1 K−1, respectively. Thus no discernible
computational size effect is observed among these three unit-
cell sizes, which is consistent with what others have observed
in similar investigations [46,47].

The thermal conductivities predicted using the EMD-GK
method and the adopted empirical potential are overestimated
in terms of absolute quantities; however, this method is able to
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FIG. 10. EMD-GK. (a) Normalized HCACF for the double-
pillared NPM system with size and pillar-to-membrane aspect ra-
tio parameters of α = 3 and β = 60, respectively. The uniform-
membrane and bulk HCACFs are also shown in the background.
The same curves are provided in the inset with the time axis plotted
in logarithmic scale. (b) Calculated lattice thermal conductivity for
the NPM system considered in (a). Twelve thermal conductivity
predictions are shown in light blue, and the average value is in dark
blue. The dashed box highlights the converged value of kl. In the
inset, the uniform-membrane and bulk thermal conductivities are also
shown along with boxes indicating the convergence regions.

reliably predict accurate physical trends [42,46,47]. In all the
EMD simulations, the reported error bars are calculated using
the standard error of the mean S.

For uncertainty quantification of any multivariate function
Q(k1 ± Sk1 ,k2 ± Sk2 , . . .), where k1, k2, . . . represent the ther-
mal conductivity values of specific systems, and each of Sk1 ,
Sk2 , . . . denotes the corresponding error—for example, consid-
ering Q as the ratio of NPM lattice thermal conductivity with
respect to that of the uniform membrane, Q = (kNPM ± SkNPM )/
(kMemb ± SkMemb )—the following formula is used [48]:

SQ =
√√√√∑

i

(
∂Q

∂ki

Ski

)2

. (A3)

Using this simulation framework, the lattice thermal con-
ductivity of a uniform membrane is predicted and listed in
Table I for various thicknesses d. These values are identical to
those reported in Ref. [17], and the prediction for bulk silicon
is in good agreement with other predictions in the literature
where the simulation setup is similar [46,49].
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TABLE I. Thermal conductivity of uniform silicon membranes
and bulk silicon using EMD simulations and the GK method. The
membrane unit-cell size is 6α×6α×d CC, where α is a size parameter
(scaling factor) and d = 6α is the thickness. Three unit-cell sizes
are considered for the bulk case: 6×6×6 CC, 12×12×12 CC, and
18×18×18 CC. The bulk thermal conductivity value is averaged over
these three sizes.

α d (CC) d (nm) kl(Wm−1 K−1)

1 6 3.26 47 ± 9
2 12 6.52 76 ± 11
3 18 9.78 101 ± 19
6 36 19.55 157 ± 27
Bulk – – 376 ± 19

2. Nonequilibrium molecular dynamics simulations

Another commonly used technique for lattice thermal con-
ductivity predictions is based on NEMD simulations and direct
application of Fourier’s law of heat conduction [43,46,50].
While this route is not used in any of the analyses presented

in the main sections or the other appendices, here we briefly
review the technique and provide some results to enable a
comparison with predictions based on the EMD-GK approach.

For a system subjected to a spatial temperature gradient ∇T

across its boundaries, the Fourier’s law of conduction states
that the steady-state heat current density vector j (which is a
microscopic vector of an effective heat current density defined
as a quantity of energy per unit time per unit area) is

j = −kl∇T . (A4)

Equation (A4) is a general form of the law that defines volumet-
ric heat current and is applicable even when the medium does
not exhibit a uniform cross-sectional area. For an NPM, the
quantity j is related to J [which is the total nonvolumetric
effective heat current vector calculated using Eq. (A2)] by
j = J/V , where V as stated earlier is the volume of the entire
system—including both the base membrane portion and the
nanopillar portion.

The technique applies to a finite, multiple unit-cell system.
As an example, we consider the five unit-cell model of an NPM
shown in Fig. 11(a) and consider the x component of kl. A
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FIG. 11. NEMD-Fourier: (a) schematic of NEMD simulation setup consisting of Nc,x = 5 and Nc,y = 1 NPM unit cells along the x and y

directions, respectively. (b) Temperature profile with linear fit (top), temperature profile in high resolution (middle), and temperature gradient
(bottom) across the finite dimension. The piecewise variation in the temperature profile is due to the division of the system into membrane-only
segments and nanopillared membrane segments. (c) Thermal conductivity as a function of number of unit cells along the direction of the
temperature gradient (shown in normalized form in the inset). The curved dashed lines represent exponential fittings. The horizontal lines
represent average values for the EMD-GK results (dashed) and converged values for the NEMD-Fourier results (solid). This figure is similar to
Fig. 4 in Ref. [17] except here the total volume of the NPM unit cell is considered in the NEMD-Fourier kl predictions, rather than the volume
of the base membrane portion only.
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pair of Langevin heat baths is used to create a temperature
gradient ∂T /∂x, where T = 1/(3NxkB)

∑Nx

i=1 mi‖vi‖2 and
Nx = Nx,base or Nx = Nx,base + Nx,pillar is the number of atoms
over the entire cross section at position x, and mi and vi denote,
respectively, the mass and velocity vector of the ith atom (in our
model mi is constant and is equal to the mass of a silicon atom
which, as defined earlier, is denoted by m̄). The temperature
definition shows that, at each position x, the kinetic energy
of all the atoms should be considered (including the atoms
in the nanopillar as they have nonzero velocity) to correctly
obtain the correct temperature profile through the system. This
is done by setting the temperature of the left and right ends at
TL = 310 K and TR = 290 K, respectively. Periodic boundary
conditions are applied in the y direction and the surfaces are
kept free along the z direction. We simulate this nonequilibrium
system for 0.8 ns to reach the steady state and then run it for
another 9.6 ns to obtain the average heat flux and temperature
profile.

As shown in Fig. 11, the temperature profile emerging from
simulations along the direction of periodicity is not smooth;
this is because the value of the cross-sectional area changes
in a piecewise manner as the heat is transported along the
membrane, based on whether or not there is a nanopillar. Thus
in using the Fourier law to calculate kl, Eq. (A4) is replaced
with j = −kl∇Tlin, where ∇Tlin represents a linear fit of the
temperature gradient along the multiple unit-cell system. The
reported thermal conductivity values are the average of two
independent simulations.

Because the NEMD-Fourier technique is based on a finite
system with fixed boundaries, a relatively large number of unit
cells is usually required to adequately remove erroneous size
effects [44,46]. In Fig. 11(b), kl is predicted as a function of
the total number of unit cells in the x direction Nc,x (in a layout
consisting of only one cell in the y direction). Estimates of the
converged values of the thermal conductivity are obtained by
performing an exponential extrapolation on the data points. By
comparing these results with counterparts from the GK-EMD
method, it is seen that the thermal conductivity values predicted
by NEMD-Fourier are lower than the corresponding EMD-
GK predictions. However, importantly, the predicted thermal
conductivity reductions from the two methods agree well [see
the inset of Fig. 11(b)]. The kr values computed by EMD-
GK are at most 15% smaller than the corresponding NEMD-
Fourier predictions.12

3. Boltzmann transport equation

In some cases, whenever stated in the text, the lattice thermal
conductivity is predicted using the BTE approach under the
assumptions of the SMRT approximation [51] and an isotropic

12A similar version of Fig. 11 is featured in Ref. [17]. In this
reference, however, the thermal conductivity predictions of the NPM
were based on considering the volume of the base membrane only
instead of the entire volume of the NPM. Consideration of the base
volume only in the calculations is an approximation that has resulted
in an overprediction of kl by roughly 11%.

Brillouin zone. In this method, kl is evaluated by

kl = 1

V

Ac

4π

∑
m

∫ κmax

0
C(κ,m)v2

g(κ,m)τ (κ,m)κdκ

︸ ︷︷ ︸
Kl

, (A5)

where Ac is the unit-cell base area (i.e., area spanned by the
region aAx×aAy of the unit cell), C denotes the specific
heat, and V , vg, and τ are as before the total volume of
the system (including the base membrane and nanopillar
portions), the group velocity, and the scattering time constant
(lifetime), respectively. The integration is over all phonon wave
numbers from κ = 0 to κmax = π/(aAx) [or π/(aAy)] for
branch number m and the summation is over all the phonon
branches. The nonvolumetric lattice thermal conductivity is
denoted Kl.

In Eq. (A5), the phonon specific heat C for each mode is
computed according to the Bose-Einstein distribution,

C(κ,m) = kB
χ2eχ

(eχ − 1)2
, (A6)

where χ = χ (κ,m) = h̄ω/kBT and h̄ is the reduced Planck
constant. In the classical limit as T → ∞, Eq. (A6) approaches
kB. The phonon band structure and group velocities are
obtained by performing quasiharmonic LD calculations [52].
For unit-cell models featuring a large number of DOF, these
calculations are accelerated using the RBME technique [24].
In the present implementation of the RBME technique, a
three-point expansion is conducted whereby eigenvectors are
selected at the �, �, and X points within the irreducible
Brillouin zone to form reduced bases which are then used
for the calculations at other wave numbers. This procedure
generates dispersion curves along the �X path at more than
an order of magnitude higher speed with errors less than 1%
compared to the full (nonreduced) calculations. Finally, the
scattering time constants are modeled following Matthiessen’s
rule:

τ−1(κ,m) = τ−1
U + τ−1

I + τ−1
B , (A7)

where τU, τI, and τB denote specific relaxation time constants
associated with umklapp scattering, impurity scattering, and
boundary scattering, respectively. For each of these quantities,
we follow our earlier model in Ref. [15], where τ−1

U =
AT ω2e−B/T , τ−1

I = Dω4, and τ−1
B = |vg|/l. The length pa-

rameter is selected to represent nonspecular surfaces, i.e.,
l = d. The material parameters A, B, and D are obtained
from curve fits to experimental data on uniform silicon mem-
branes as detailed in Ref. [15] and summarized in Table II
for membranes with a thickness of d = 6, 12, and 18 CC.

TABLE II. Empirical relaxation time parameters used in the BTE-
SMRT models.

Thickness, d (CC) 6 12 18 Bulk

A [×10−19] (s/K) 4190.00 80.20 30.10 2.20
B (K) 705.62 373.90 299.15 178.15
D [×10−45] (s3) 1.32 1.32 1.32 1.32
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These scattering parameters are used for both uniform and
nanopillared membrane models.

4. Definition of NPM volume V in thermal conductivity models

In all the three methods described above for thermal conduc-
tivity prediction, namely, the GK-EMD, NEMD-Fourier, and
the BTE-SMRT methods, we have emphasized that the total
volume V of the NPM system (or unit cell if the computational
domain consists of only a single unit cell) consists of both
the base membrane and the nanopillars portions. In all these
formulations, the normalization by the total volume V is
necessary to correctly express the volumetric heat capacity
csys of the NPM nanostructure—which is a quantity influenced
by the motion of all the atoms and the characteristics of
all the modes in the system. This point is elucidated in the
following short review of pertinent fundamental formulations
from statistical thermodynamics.

In real space, which is relevant to the EMD-GK and NEMD-
Fourier methods, the nonvolumetric heat capacity for a single
DOF of atomic motion at a constant volume is defined as
Cq = ∂Eq/∂T , where Eq is the total energy (potential energy
plus kinetic energy) of the qth DOF. Thus the volumetric heat
capacity for a system with N atoms (each atom has three DOF)
is calculated as csys = (1/V )(∂E/∂T ), where E = ∑3N

q=1 Eq

is the total energy of the system [53].
Considering the mechanics of a quantum-harmonic oscilla-

tor, the energy of the qth DOF is defined as [54,55]

Eq = h̄ωq

(
1
2 + f (0)

q

)
, (A8)

where ωq is the oscillator frequency, f (0)
q = 1/(eχq − 1) is

the Bose-Einstein equilibrium distribution function, and χq =
h̄ωq/kBT . Upon differentiation with respect to T , the nonvol-
umetric heat capacity of the qth DOF is

Cq = h̄ωq

∂f (0)
q

∂T
. (A9)

It follows that the corresponding quantity per unit volume is

cq = h̄ωq

V

∂f (0)
q

∂T
, (A10)

and the volumetric heat capacity of the system is

csys = 1

V

3N∑
q=1

h̄ωq

∂f (0)
q

∂T
. (A11)

The motion of all the atoms in the system, including the base
membrane and nanopillar portions, necessarily contribute to
the definition of csys because both portions form a contiguous
integrated internal structure.

By taking the classical limit of f (0)
q as T → ∞, Eq. (A11)

is simplified to

csys = 3NkB

V
. (A12)

Although Eq. (A12) describes a classical-harmonic heat
capacity while the heat capacity in MD simulations is in-
herently a classical-anharmonic quantity, it is a reasonable
assumption to approximate the heat capacity of each DOF by

kB when predicting properties of silicon (for both bulk and
nanostructures) at room temperature [56,57].

In phonon space, which is relevant to the BTE-SMRT
method, the energy of each mode is similarly defined as [58]

E(κ,m) = h̄ω(κ,m)
[

1
2 + f (0)(κ,m)

]
. (A13)

Here, for simplicity, we drop the index and identify each mode
by a particular wave vector κ and branch number m. From
Eq. (A13), the nonvolumetric heat capacity of a mode is

C(κ,m) = h̄ω(κ,m)
∂f (0)(κ,m)

∂T
, (A14)

which upon simplification takes the form expressed in Eq. (A6)
for a wave number at a given direction. Thus the heat capacity
for a mode per unit volume is

c(κ,m) = h̄ω(κ,m)

V

∂f (0)(κ,m)

∂T
, (A15)

and, by extension, the volumetric heat capacity of the system
in phonon space is

csys = 1

V

3N∑
m=1

∑
κ

h̄ω(κ,m)
∂f (0)(κ,m)

∂T
, (A16)

where the first summation is over 3N because the total
number of modes at a given wave vector κ is equal to the
total number of DOF in the system. The csys quantity is
formulated by incorporating the contributions of all modes in
the system, including the modes exhibiting localized motion in
the nanopillar portion(s). This is because the totality of modes
directly corresponds to the totality of DOF of the contiguous
integrated internal structure comprising both the membrane
and nanopillar portions. Another important quantity that is
defined in phonon space is the heat current density vector j
which has been related to the temperature gradient in Eq. (A4).
The statistical mechanics definition of j is

j = 1

V

∑
m

∑
κ

h̄ω(κ,m)f (κ,m)vg(κ,m), (A17)

where f is the phonon distribution function and vg is the
group velocity vector. Similar to Eq. (A16), this quantity is also
formulated by incorporating the contributions of all modes in
the system, including both phonon and vibron modes. Under
the SMRT approximation, Eq. (A17) is written as

j = −
∑
m

∑
κ

h̄ω

V

∂f (0)

∂T
vg ⊗ vgτ∇T , (A18)

where, for brevity, the mode-dependency terms (κ,m) for ω,
f (0), vg, and τ are dropped, and in preparation for the next
step, V has been inserted inside the summations. Substituting
Eq. (A15) into Eq. (A18) gives

j = −
∑
m

∑
κ

cvg ⊗ vgτ∇T . (A19)

In the above formulations, the total volume of the NPM (incor-
porating both the base membrane and nanopillar portions) is
used to obtain valid expressions for the volumetric heat capac-
ity in real [Eq. (A11)] and phonon [Eq. (A16)] space and for
the heat current density in phonon space [Eq. (A19)]. Thus the
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TABLE III. Explicit form of the Ar , Vr , and γ functions for the NPM configurations considered in Fig. 8.

Fig. 8(a)

Unit cell (CC) Ar Vr γ = dVr/dα

6α×6α×18 + 4α×4α×18 4/9 4/9 0
6α×6α×18 + (6α − 2)×(6α − 2)×18 (1 − 1/3α)2 (1 − 1/3α)2 (2/3α2)(1 − 1/3α)
6α×6α×18 + 4α×4α×18α 4/9 4/9α 4/9
6α×6α×18 + (6α − 2)×(6α − 2)×18α (1 − 1/3α)2 α(1 − 1/3α)2 (1 − 1/9α2)

Fig. 8(b)

6×6×6α + 4×4×6α 4/9 4/9 0
6α×6α×6α + 4α×4α×6α 4/9 4/9 0
6α×6α×6α + (6α − 2)×(6α − 2)×6α (1 − 1/3α)2 (1 − 1/3α)2 (2/3α2)(1 − 1/3α)
6α×6α×6α + 4α×4α×6α2 4/9 4/9α 4/9
6α×6α×6α + (6α − 2)×(6α − 2)×6α2 (1 − 1/3α)2 α(1 − 1/3α)2 (1 − 1/9α2)

Fig. 8(c)

12×12×18 + 10×10×18 + 10×10×hB 25/18 (25/18)(1+hB/hT) –

Fig. 8(d)

6α×6α×6α + (6α − 2)×(6α − 2)×6αβ (1 − 1/3α)2 β(1 − 1/3α)2 (2β/3α2)(1 − 1/3α)
6α×6α×6α + (6α − 2)×(6α − 2)×6αβ + (6α − 2)×(6α − 2)×6αβ 2(1 − 1/3α)2 2β(1 − 1/3α)2 (4β/3α2)(1 − 1/3α)

definition of V = VBase + VPillar (where VBase and VPillar denote
the volume of the base membrane and nanopillar portions,
respectively) is necessary for satisfying the thermodynamic
balance laws inherent in the thermal conductivity prediction
models described by each of Eqs. (A1), (A4), and (A5).

APPENDIX B: ANALYSIS OF THE COMPENSATORY
EFFECT IN NPM UPSCALING

A pivotal quantity in our analysis of size and geometric
effects in Sec. IV is the ratio of pillar-to-membrane DOF:

Vr = DOFPillar

DOFBase
. (B1)

For our all-silicon NPM unit cell, this quantity is equal to the
volumetric ratio mathematically defined as

Vr = VPillar

VBase
= b×b×(hT + hB)

aAx×aAy×d
. (B2)

Also of importance is the derivative of this quantity with respect
to α,

γ = dVr

dα
, (B3)

which quantifies the strength of the compensatory effect, i.e.,
the rate by which the nanopillar(s) size grows compared to the
base membrane as the overall unit-cell size is increased. This
effect is introduced and utilized in Sec. IV. The filling fraction
of the nanopillar(s) with respect to the area of the surfaces of
the base membrane (per unit cell) is defined as

Ar = [b×b]T

[aAx×aAy]T
+ [b×b]B

[aAx×aAy]B
, (B4)

where we recall the subscripts T and B refer to the top and
bottom surface of the membrane, respectively. Only one term is
retained for the case of a single-sided nanopillared membrane.
This quantity is beneficial for fabrication planning [59].

The Ar, Vr , and γ quantities for all the cases considered in
Fig. 8 are presented as a function of α in Table III. In Fig. 8(d)
in particular, the compensatory effect is taken advantage of
and shown to comfortably enable two orders of magnitude

TABLE IV. Thermal conductivity reduction values kr for the NPM configurations considered in Fig. 8(d).

Fig. 8(d)
kr(×10−3)

α

Unit cell (CC) β 1 2 3

20 38.70 ± 7.91 38.16 ± 6.19 33.93 ± 7.02
6α×6α×6α + (6α − 2)×(6α − 2)×6αβ 30 34.23 ± 7.38 22.43 ± 4.01 21.60 ± 4.62

60 21.48 ± 4.12 13.51 ± 1.99 13.31 ± 2.53

20 18.92 ± 3.74 14.41 ± 2.35 14.40 ± 3.11
6α×6α×6α + (6α − 2)×(6α − 2)×6αβ + (6α − 2)×(6α − 2)×6αβ 30 17.01 ± 3.86 11.02 ± 1.94 10.26 ± 2.15

60 11.06 ± 3.04 7.74 ± 1.29 7.69 ± 1.67
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FIG. 12. (a) Thermal conductivity reduction vs normalized nanopillar height for NPMs of three different sizes. The compensatory effect is
evident by comparing the three data points marked with a cross and linked with a dashed line. (b) Group velocity frequency distribution for
these data points demonstrating the contrast between uniform and nanopillared membranes and the increased intensity of the group velocity
reductions due to the compensatory effect. (c) Frequency distributions of the cumulative nonvolumetric thermal conductivity ratio KCum

r for the
same data points demonstrating the strength of the compensatory effect at the 0–1-THz frequency range. This quantity, which is obtained using
LD and the BTE-SMRT technique, is predominantly influenced by the changes that occur to the group velocities. The thermal conductivity
ratios kr obtained from the EMD-GK method are plotted for comparison. The kr values are based on the total volume V and therefore account
for both the group velocity reductions and the mode localization effect. (d) Mode participation ratios for the same data points demonstrating
the contrast between uniform and nanopillared membranes and the decrease in the delocalization ratio due to the compensatory effect.

reductions in the thermal conductivity. Table IV lists the
numerical values of kr for all the curves presented in Fig. 8(d).

To illustrate the size and compensatory effects shown in
Fig. 8, we use EMD simulations and the GK method to
plot in Fig. 12(a) the thermal conductivity reduction kr as a

function of nanopillar height (normalized with respect to the
base membrane thickness) for a specific NPM configuration,
6α×6α×d + 4α×4α×hT CC, and considering three sizes:
α = 1, 2, and 3. For all cases, we observe first a reduction
in kr with increase in nanopillar height, which confirms that

195413-17



HOSSEIN HONARVAR AND MAHMOUD I. HUSSEIN PHYSICAL REVIEW B 97, 195413 (2018)

the cause of the thermal conductivity reduction is not limited
to boundary scattering but is also due to the resonance effects.
This is consistent with observations in Fig. 8(d) and in previous
studies of NPMs [16,21,35]. We also observe, for all three
cases, an eventual leveling of kr with increase in nanopillar
height, which is due to the saturation of the impact of the reso-
nance hybridizations effect with increase in Vr [17]. If we now
examine a specific value of hT/d (e.g., hT/d = 1), where Vr is
constant, we observe that the extent of the thermal conductivity
reduction deteriorates with increase in NPM size—which is a
characteristic of the system as thoroughly reported in Ref. [17].
On the other hand, if we examine the three data points marked
with a cross and joined by a dashed line in Fig. 12(a), we
observe that kr does not increase but in fact reduces in value.
These three data points represent three different NPM sizes
(i.e., three different α values) but with nanopillar heights that
grow in size at a higher rate than that of the base membrane as α

is increased. The increase in the thermal conductivity reduction
(reduction in kr) among these three data points demonstrates
the compensatory effect. A consequence of this effect is that the
larger the size of the unit cell, the less quickly the performance
saturates with increasing nanopiller height. In other words,
the rewards of increasing the nanopillar height become more
significant for larger sized NPM unit cells. This is observed by
comparing the rate of saturation in the α = 3 curve versus the
α = 1 curve in Fig. 12(a). The compensatory effect is further
elucidated in Figs. 12(b) and 12(c) in terms of the changes to
the group velocities and in Fig. 12(d) in terms of the changes
to the mode localizations.

In Fig. 12(b), it is clearly seen that the increase in Vr

intensifies the concentration of group velocity reductions and
thus compensates (in balance when γ = 0, and in excess when
γ > 0) the deterioration in performance due to increase in
size. To provide further insight, we show in Fig. 12(c) the
frequency distribution (from 0 to 1 THz) of the cumulative
nonvolumetric thermal conductivity Kl of an NPM divided
by the same quantity for a corresponding uniform membrane,
obtained by the BTE-SMRT technique. The numerator and
denominator quantities are obtained by evaluating the integrals∫ ω

0 KNPM(ω′)dω′ and
∫ ω

0 KMemb(ω′)dω′, respectively. The nor-
malized quantity, KCum

r , is plotted for each of the three data
points considered in Fig. 12(b). Membrane and bulk scattering
constants (see Table II) are used in the left and right subfigures,
respectively. And as a reference, vertical lines are included to
represent the standard (i.e., volumetric) thermal conductivity
reduction values obtained by EMD simulations and the GK
method.13 We observe that the compensatory effect takes hold
rather strongly within the plotted low-frequency range. The
effect takes place throughout the rest of the spectrum as well,
but it weakens at higher frequencies and hence the small, yet
still a negative slope, change in the total kr value among the
three data points as α increases.

The compensatory effect manifests itself also in the changes
that take place in the nanopillar-generated mode localizations,

13While BTE-SMRT may predict different thermal conductivities
than EMD-GK, the predictions of the relative reductions in the thermal
conductivity (i.e., kr) are generally in good agreement (see Ref. [16]
and the BTE-SMRT data points in Fig. 12(a)).

as demonstrated in Fig. 12(d). Here we quantify the mode-
localization phenomenon by computing the mode participation
ratio pr, which is defined for a mode at wave vector κ and
branch number m by [21,60]

pr(κ,m) = 1

N
∑N

i=1

[ ∑3
j=1 φ∗

ij (κ,m)φij (κ,m)
]2 , (B5)

where φij (κ,m) is the displacement component corresponding
to atom i and direction j of the normalized mode shape. The
first summation is over the total number of atoms N in the
system, which in our LD calculations consists of a single
unit cell (i.e., N = NBase + NPillar) and the second summation
is over the three directions of motion per atom. The factor
pr indicates the degree of localization over the entire system
without being specific to a particular region, e.g., the nanopillar
or base membrane portion of the unit cell. In Sec. II, we use
the mode weight factor to investigate the degree of regional
localization [27–29].

It is clearly observed in Fig. 12(d) that most of the pr

values for the NPMs are significantly lower than those for the
corresponding uniform membranes—this is due to the high
mode localizations that take place within the nanopillars, as
illustrated in Fig. 2. As discussed earlier, these mode localiza-
tions contribute to the reduction in the thermal conductivity
because each localized mode adds to the total heat capacity
of the system yet exhibits effectively zero group velocity. To
quantify this effect, a localization ratio LR is defined as the
number of modes for which pr is less than or equal to 0.5,
divided by nκnm, where nκ is the number of wave-vector
points considered and nm is the number of dispersion branches
considered. Conversely, the delocalization ratio LR is defined
as the number of modes for which pr is greater than 0.5,
divided by nκnm. Thus the sum of these two quantities is
equal to unity, i.e., LR + LR = 1. A decrease in LR implies
more localized modes. In analogy to our quantification of
a net effect in the group velocities due to the addition of
the nanopillars, we consider a normalized delocalization ratio
defined as LRr = LRNPM/LRMemb. This metric is evaluated
in Fig. 12(d) for the low-frequency range of 0–1 THz. Similar

to the group velocities, we again see a reduction in LR
(0−1THz)
r

as a function of Vr [considering the same three unit cells
marked by crosses in Fig. 12(a)]. This confirms the existence
of the compensatory effect also in the context of the mode
localization phenomenon.

APPENDIX C: ADDITION OF A NANOPILLAR
ON MEMBRANE BOTTOM SURFACE

In Figs. 8(c) and 8(d), we have shown that the addition
of a nanopillar, in the unit cell, to the bottom surface of a
membrane that already has a nanopillar on the top surface
reduces the thermal conductivity further. Here we note that the
combination of identical nanopillars (one extending from the
top and one extending from the bottom) will not produce a spec-
trum where each particular nanopillar resonance is duplicated,
but instead new resonances/vibrons will emerge—which is a
favorable outcome. The emergence of new resonances/vibrons
is explained by the fact that the overall dynamics of a double-
pillared membrane—where the nanopillars are coupled to a
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FIG. 13. (a) Thermal conductivity and (b) average group velocity
reduction due to addition of a second (bottom) nanopillar to a
membrane unit cell that already has a nanopillar on the top surface.
In both subplots, the ordinate is plotted vs the height of the bottom
nanopillar, hB, normalized by the height of the top nanopillar, hT,
which in this analysis is set to 6 CC.

common base membrane, and as such are indirectly connected
to each other—will be different than one where there is only a
single nanopillar on one surface and the other surface being
free. In other words, if we start with a membrane with a
nanopillar standing on one surface, by adding a new nanopillar
to the other surface we would be modifying the dynamical
properties of a system with already altered inertial and stiffness
properties. This is in contrast to the case of adding a nanopillar
to only one surface where the default dynamical properties are
that of a uniform membrane.

In this section, we again consider a double-pillared silicon
NPM and examine more closely the underlying cause of the
reduction in kr as the height of the second (bottom) nanopillar is
varied. We focus on changes in kl along the x direction. For this
purpose, we consider as an example the unit-cell configuration
6×6×6 + 2×2×hT + 2×2×hB CC, fix hT = 6 CC, and allow
hB to vary from 0 to 6 CC in increments of 1 CC. The values
of kr for each of these cases are obtained by the BTE-SMRT
technique and plotted as a function of hT/hB in Fig. 13(a).
The trend is consistent with that obtained by EMD-GK for
the similar analysis shown in Fig. 8(c). In comparison, the
ratio of the average group velocity of the NPM to that of the
corresponding uniform membrane versus hT/hB is shown in
Fig. 13(b). The quantity Gr is evaluated as in Sec. II A. The
trends in Figs. 13(a) and 13(b) are clearly highly correlated.
Thus we observe a direct link between the extent of the
group-velocity reductions and the overall thermal conductivity
reductions within the NPM considered [17]. Furthermore,
adding one more nanopillar increases the number of the
localized modes, which in turn leads to an additional reduction
in the thermal conductivity. This is what we expect from the
nanostructure-induced resonance hybridizations effect.

The results of Figs. 8(d) and 13 raise a practical question
from a fabrication and device design points of view (see,
for example, Ref. [61] which examines the fabrication of
silicon nanopillars with high aspect ratios). Which is a better

configuration, one with a single tall nanopillar or one with two
nanopillars (at the top and at the bottom) where each is half the
height of the nanopillar of the first configuration? The answer is
given in Table IV. Comparing, for α = 3, the single nanopillar
case with β = 60 to the double nanopillar case with β = 30
shows that the latter gives a superior performance in reducing
the thermal conductivity by roughly 23%.

APPENDIX D: MULTIPLE THIN NANOPILLARS
VERSUS SINGLE THICK NANOPILLAR

In this section, we investigate one more design option
for nanopillared membranes. We compare the performance
of a multiple-pillared silicon membrane, where several thin
nanopillars are standing on one surface within the unit cell,
to an equivalent membrane with only a single nanopillar in
the unit cell. In this context, two NPM configurations are
considered equivalent if the multiple nanopillars in the first
system have the same total number of DOF to that of the
single nanopillar in the second system. As an example, we
consider an NPM with four nanopillars on the top surface and
select the dimensions such that the configuration is equivalent
to a 6×6×6 + 2×2×6 CC NPM with a single nanopillar;
see Fig. 14(a). The base membrane and the nanopillars have
5184 and 576 DOF, respectively. For the four-pillared NPM,
the nanopillars’ heights are denoted h1, h2, h3, and h4,
respectively, the nanopillars are equally spaced at 2 CC, and
each nanopillar has a square cross section of 1×1 CC. The
four nanopillar heights have a mean value of μ = 6 CC
and a standard deviation of σs. We choose seven sets as
examples, each of which has distinct heights as shown in
Table V. These sets are sorted in ascending order for the
values of σs (set I to set VII). We compute the thermal
conductivity ratio kr and the average group velocity ratio Gr

for these different cases using the BTE-SMRT technique and
LD calculations, respectively. As shown in Fig. 15, there is
a decreasing trend for each of kr and Gr as the ratio σs/μ is
increased. This indicates that a multifrequency spread emerges
that is distinct for each particular combination of the different
heights of the nanopillars and its unique vibration resonance
distribution. We also compute kr and Gr for the equivalent
single-pillared system (6×6×6 + 2×2×6 CC) and note that it
has lower values of each quantity compared to all the four-
pillared systems. This indicates that a single-pillared NPM
is most likely to be more effective in reducing the thermal
conductivity than an equivalent four-pillared NPM with the
same total number of vibrons. For a better understanding of
this comparison, the vibron DOS of each of the four thin
nanopillars and the equivalent thick nanopillar are shown in
Fig. 14(b). It is clear that the equivalent thick nanopillar
has a broader and more phonon-conforming vibron distri-
bution than the combination of the four single nanopillars
(R̂pv for the heq case is 14% lower than the hi=1,...,4 case).
Thus the analysis shown in Fig. 3, where the phonon-vibron
correlation is examined for a single nanopillar with various
dimensions, is an effective approach for designing a high
performing NPM unit cell for thermal conductivity reduction.
The structure in the left side of Fig. 14(a), on the other
hand, features a sharpened multiband distribution of vibrons—
which we envisage to be useful for applications that require
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FIG. 14. (a) Four-pillared NPM (left) compared to an equivalent
single-pillared NPM (right) with the same total volume. The mean
value of the nanopillar height is μ = 6 CC. Each nanopillar has
a square cross section of 1×1 CC. The equivalent single-pillared
NPM has a nanopillar of size 2×2×6 CC. (b) Vibrons DOS for
the considered nanopillars where each case is labeled by its height:
h1,h2,h3,h4, or heq. To allow direct comparison with the vibrons DOS
distribution for the thick heq nanopillar, a superposition of all the
vibrons DOS for each of the four thin nanopillars is included and
labeled hi=1...4. In all these calculations, a nanopillar is examined as
an independent nanostructure with free boundary conditions (as done
in Figs. 3 and 4). The phonons DOS of the base membrane (without
any nanopillars attached) is shown in the foreground in red in all
subplots.

acute phonon filtering across certain regions in the frequency
spectrum.14

14The vibron DOS distribution of the unit cell shown in the left side
of Fig. 14(a) is expected to be slightly different than the superimposed
distribution shown in the hi=1,...,4 column of Fig. 14(b) because of the
coupling with the base membrane and the ensuing changes in the

TABLE V. Seven sets are considered for the four-pillared NPM
shown in the left side of Fig. 14(a), sorted here in ascending order of
σs/μ. The nanopillars’ heights are in units of CC.

Set h1 h2 h3 h4 σs/μ

I 6 6 6 6 0.00
II 4 5 7 8 0.30
III 2 5 8 9 0.53
IV 2 4 6 12 0.72
V 1 2 8 13 0.93
VI 1 3 4 16 1.13
VII 1 2 3 18 1.34

APPENDIX E: REPLACEMENT OF NANOPILLARS
BY NANOWALLS

As mentioned in Sec. I, the resonating substructures in an
NPM may take a variety of forms. An alternative to nanopillars
is the introduction of nanowalls with a finite thickness along
one direction in the plane of the membrane and extended
to infinite in the orthogonal direction. A schematic of this
modified NPM configuration is shown in Fig. 16(a) where a
nanowall extends along the full length of the periodic unit
cell in the x direction and has a specified thickness along
the y direction. Compared to a squared nanopillar with the
same thickness and height as the nanowall, the latter has
more DOF, thus the NPM exhibits a higher value of Vr and
is therefore expected to have a lower value of kr. Furthermore,
the asymmetry of the nanoresonator is expected to produce
anisotropic phonon properties and anisotropic planar thermal
conductivity.

To confirm and quantify these expected results, we in-
vestigate a nanowalled membrane with dimentions 6×6×6

dynamical stiffness when all four nanopillars are present in the same
unit cell.
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FIG. 15. (a) Thermal conductivity and (b) average group velocity
reduction of the four-pillared NPM and its equivalent single-pillared
NPM. The coefficient of variation listed in Table V forms the
horizontal axis.
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(b) Phonon dispersions of uniform, nanopillared, and nanowalled
membranes. (c) Thermal conductivity along the x- and y-directions
for nanopillared and nanowalled membranes. The anisotropy in the
planar thermal conductivity is evident for nanowalled membranes.

+ 6×4×6 CC and, for direct comparison, a corresponding
nanopillared membrane with dimensions 6×6×6 + 4×4×6
CC. The nanowall on top of the membrane has the same
length as the unit cell along the x direction and it therefore
an extended structure in this direction due to the application
of the periodic boundary conditions. Along the y direction,

both the nanowall and nanopillar have the same thickness. In
Fig. 16(b), the dispersion curves for a uniform, a nanopillared,
and a nanowalled membrane are shown; for the nanowalled
case, dispersion diagrams are shown for wave propagation
along both the �X and �Y directions. We observe the �X
dispersion diagram is relatively similar to that of a uniform
membrane; indeed, there is no periodicity in that direction and
the nanowalled membrane is in fact a uniform waveguide along
the x direction. The �Y dispersion diagram, on the other hand,
is comparable to the nanopillared case because the nanowalls
form a periodic system with freely vibrating substructures that
exhibit a wide range of the resonance modes.

In Fig. 16, the �X and �Y thermal conductivities of the
nanowalled membrane are computed using the EMD-GK
method and compared to the nanopillared case. A total of
six simulations were run for each case. It is clear that the
nanopillared membrane is practically isotropic with respect
to the x and y directions. The nanowalled membrane, on
the other hand, displays two distinct values of the thermal
conductivity. In the y direction, the thermal conductivity of the
nanowalled system is noticeably smaller than the nanopillared
case and reduces with increasing nanowall height (following
a similar saturating trend as for nanopillared membranes). For
a nanoresonator height of hT = 15 CC, we predict an average
kr value of 0.1966 ± 0.0572 for the two nanopillared cases,
and kr values of 0.3157 ± 0.06368 and 0.1255 ± 0.0255 for
the �X and �Y nanowalled cases, respectively. The additional
reduction in the thermal conductivity brought about by the
nanowalls is a direct outcome of increasing the volume of
the nanoresonator. In summary, replacing the nanopillars by
nanowalls is shown (i) to reduce the thermal conductivity
significantly (by a nearly 30% in the present example)
and (ii) introduces a sharp planar anisotropy in the thermal
conductivity (by nearly a factor of two in the present example).
Furthermore, adopting nanowalls might be advantageous over
nanopillars in terms of ease of nanofabrication.

APPENDIX F: COMPARISON WITH BULK AMORPHOUS
SILICON THERMAL CONDUCTIVITY

To put the significance of the reductions in the thermal
conductivity reported in Fig. 8(d) further in perspective, here
we make a comparison with the thermal conductivity of bulk
amorphous silicon at room temperature.

A model of bulk amorphous silicon is produced by the
melt-quench technique in the framework of EMD [62]. During
a 100-ps process, a model of bulk crystalline silicon is melted

TABLE VI. Thermal conductivity of bulk amorphous silicon
predicted using a unit cell of size 6α×6α×6α.

α Ax,y,z(CC) aAx,y,z(nm) kl(W m−1 K−1)

1 6 3.26 1.39 ± 0.03
2 12 6.52 1.48 ± 0.03
3 18 9.78 1.38 ± 0.03
4 24 13.03 1.40 ± 0.03
5 30 16.29 1.47 ± 0.02
Average – – 1.42 ± 0.01
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by increasing the temperature from 300 to 3500 K under
an NV T ensemble (constant number of atoms, volume, and
temperature). The melted silicon is then quenched back to
300 K at a rate of 1 K/ps. Following this approach, we run six
different samples and report the results in Table VI. The quality
of the produced samples is assessed by computing the radial
distribution function which gives the average coordination
number CN. Our calculations produce a CN value around
4.22, which is slightly higher than the experimental value of
approximately 4. This is primarily because of the interatomic
potential used. As reported by others, the Stilinger-Weber
potential overpredicts the average CN [62]. The calculated

density of our samples is 2.329 g cm−3, which is practically
the density of crystalline silicon.

We note from Table VI that there is no significant compu-
tational size effect for the unit cells considered. We therefore
average the predictions and obtain a thermal conductivity value
of kl = 1.42 ± 0.01 W m−1 K−1. This averaged value agrees
well with other investigations in the literature on amorphous
silicon [62,63]. Upon comparing with the highest perform-
ing 9.78-nm-thick double-pillared membrane investigated in
Fig. 8(d), we find that the NPM has a thermal conductivity
that is 1.82 ± 0.19 times lower than that of bulk amorphous
silicon.
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