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Thermodynamics of phase-separating nanoalloys: Single particles and particle assemblies
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The aim of this paper is to investigate the consequences of finite-size effects on the thermodynamics of
nanoparticle assemblies and isolated particles. We consider a binary phase-separating alloy with a negligible
atomic size mismatch, and equilibrium states are computed using off-lattice Monte Carlo simulations in several
thermodynamic ensembles. First, a semi-grand-canonical ensemble is used to describe infinite assemblies of
particles with the same size. When decreasing the particle size, we obtain a significant decrease of the solid/liquid
transition temperatures as well as a growing asymmetry of the solid-state miscibility gap related to surface
segregation effects. Second, a canonical ensemble is used to analyze the thermodynamic equilibrium of finite
monodisperse particle assemblies. Using a general thermodynamic formulation, we show that a particle assembly
may split into two subassemblies of identical particles. Moreover, if the overall average canonical concentration
belongs to a discrete spectrum, the subassembly concentrations are equal to the semi-grand-canonical equilibrium
ones. We also show that the equilibrium of a particle assembly with a prescribed size distribution combines a size
effect and the fact that a given particle size assembly can adopt two configurations. Finally, we have considered
the thermodynamics of an isolated particle to analyze whether a phase separation can be defined within a particle.
When studying rather large nanoparticles, we found that the region in which a two-phase domain can be identified
inside a particle is well below the bulk phase diagram, but the concentration of the homogeneous core remains
very close to the bulk solubility limit.
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I. INTRODUCTION

Nanoalloys are metallic particles containing two or more
elements with dimensions ranging typically from 1 to 20 nm.
These objects have properties that are fundamentally different
from those of discrete molecules and bulk systems. Nanoalloys
have been the focus of intense academic research and have now
many applications in different fields of science and technology,
such as in catalysis, magnetism, and optics [1]. Knowledge of
the structural stability of nanoalloys [2–4] is essential to guide
the synthesis processes by the physical route, and it is also the
first step toward understanding the aging of these nano-objects,
an important question for the use of these objects in practical
applications.

The first approach to model the stability of nanoalloys
is based on a continuum description, only relevant for large
enough particles. In these models, it is assumed that the struc-
ture of a nanoalloy can be decomposed in homogeneous re-
gions (called phases) surrounded by surfaces or interfaces. The
geometry of the homogeneous regions and the thermodynamic
behavior of surfaces are assumed simple and characterized
by a very limited number of parameters. Equilibrium is then
defined as the minimum of the Gibbs energy when varying
these parameters. Using these continuous models, the effect of
the size and shape of the particles on the equilibrium structure
has been demonstrated [5–8] with, for example, the increase
of solubility in nanoalloys and the decrease of melting temper-
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atures. Size- and shape-dependent phase diagrams have been
defined, in which equilibrium compositions after separation
and solubility limits do not coincide. It has also been shown that
the conservation of matter leads to constraints on the nucleation
and growth of a new phase and to the existence of a critical
particle size below which a two-phase state is unstable.

A more accurate description of the stability of nanoalloys is,
however, provided by atomic approaches, using either molec-
ular dynamics or Monte Carlo methods. These approaches can
in principle explore all possible structures and configurations
(core-shell, Janus-like, surface reconstructions, etc.) and auto-
matically include statistical fluctuations, which are required to
analyze the stability of small systems, inasmuch as the different
thermodynamic ensembles of finite systems are not equivalent.
These approaches have been used to analyze the stability of
specific particles and to explain nontrivial transformations
such as the transition between the high miscibility in Cs3Na
nanoparticles at low temperature and a demixtion at room
temperature [9], the dynamical equilibrium of the outer shell
of Cu-Ag nanoalloys [10], the formation of a core-shell in
size-mismatched nanoalloys [11], and the ordering in Au-Pd
nanoalloys [12].

Using atomic approaches, the definition of a relevant size-
dependent phase diagram is much more complicated than
with continuum approaches. First, in a finite-size system,
there is, strictly speaking, no phase transition because the
partition function is analytic. Fortunately, even for nanometric
particles, phase transitions can often be safely defined by
rapid variations of thermodynamic quantities [13,14]. Second,
because statistical ensembles are not equivalent for finite-size
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systems, the definition of an equilibrium state is only valid
within a given thermodynamic ensemble. This also raises
the question of the relevance of the computed equilibrium to
analyze specific experimental results. Third, atomic models au-
tomatically incorporate the complexity of the thermodynamic
behavior of interfaces, in particular segregation and wetting,
during which a concentration excess appears at the surface.
Due to the finite size of the system, the formation of such an
excess necessarily implies a depletion in the core of the particle
and therefore strongly impacts the stability of the particle.

Due to the high computational cost, atomic-scale ap-
proaches have rarely been used to study the complete phase
diagram of nanoalloys. One of the goals of the present work
is to give a general picture of the phase diagram of nanoalloys
through the computation of a size-dependent phase diagram
spanning the whole composition and temperature ranges.
Toward that end, we use the simple, flexible and low time-
consuming Lennard-Jones pairwise interaction potential and
off-lattice Monte Carlo calculations that can reproduce the
stability of both solid and liquid phases and allow surface
reconstructions. Such a pairwise potential is sufficient to
address fundamental issues but is not appropriate to study
specific metallic systems. This would require a more accu-
rate description of the many-body character of the chemical
bonding, for example using tight-binding or embedded-atom-
method (EAM) -type potentials. Another aim of the present
work is to present and compare several definitions of nanoalloy
phase diagrams, based on several choices of thermodynamic
ensembles. Finally, this work also presents an analysis of the
stability of nanoparticle assemblies, including the case of a
finite-size distribution. The present paper does not consider
the stability of small atomic clusters, for which the crystalline
structure differs from the bulk one [13,15,16]. This study
focuses on the phase diagrams of binary alloys with a face-
centered-cubic structure when the size mismatch between
atoms is negligible (e.g., Rh-Pd, Ir-Pd). The methodology
discussed in the following is, however, fully adapted to study
the effects of elasticity on the solubility limits of nanoalloys
with an atomic-size mismatch for which the strain has been
shown to strongly impact the nanoparticle morphology [26].

The paper is organized as follows. In Sec. II, we describe
the interatomic potential and the procedures used to compute
phase diagrams in the canonical and the semi-grand-canonical
ensembles. Section III is devoted to calculations performed in
the semi-grand-canonical ensemble, which is relevant for the
stability of an infinite assembly of particles with identical size.
In Sec. IV, using the canonical ensemble, the stability of a
finite assembly of particles is discussed, and the importance of
the size distribution is demonstrated. Finally, the question of
phase separation within an isolated nanoparticle is addressed
in Sec. V, before concluding remarks.

II. TECHNICAL DETAILS AND METHODOLOGY

A. Thermodynamic ensembles

Phase diagram calculations have to be performed in specific
thermodynamic ensembles. Here, we use the canonical and
semi-grand-canonical ensembles. In the canonical ensemble,
denoted here by ({Ni},P ,T ), the temperature T , the pressure

P , and the number Ni of atomic sites of species i in the M-
component alloy are fixed quantities, where M is the number
of chemical species. The mean concentration ci of species i

is therefore a conserved quantity. In the semi-grand-canonical
ensemble, denoted here by (N,{�μi},P ,T ), the temperature
T , the pressure P , the total number N of atoms, and the (M-1)
alloy chemical potentials �μi are fixed quantities. �μi =
μi − μref is the difference between the chemical potential μi

of atomic species i and the chemical potential of a reference
one. Calculations in the ({Ni},P ,T ) and in the (N,{�μi},P ,T )
ensembles are realized with a Monte Carlo code that takes
into account chemical relaxations and atomic displacements.
In the ({Ni},P ,T ) ensemble, the Metropolis algorithm [17] is
applied to exchanges between particles to reproduce chemical
correlations and to atomic displacements. This main loop
is iterated until the Markov chain converges to equilibrium.
Because atomic-size effects are not considered in this work,
the usual Markov steps on homogeneous strain have not been
included [18]. In the (N,{�μi},P ,T ) ensemble, we apply the
same Metropolis algorithm, except that position exchanges
between particles (swapping mechanism) are replaced by
changes of atomic species on single sites (flipping mechanism).
In the exchange mechanism, because we are interested in
equilibrium but not kinetics, the choice of the two atoms
is realized as follows: for each atom visited sequentially, a
second atom is randomly chosen. The flipping mechanism
is operated on a randomly chosen atom. Displacements are
attempted sequentially on each atom of the simulation box.
The displacement vector coordinates are randomly selected
between −0.1 and 0.1 Å. As usual, we define a Monte Carlo
time in terms of Monte Carlo steps (MCSs). In our calculations,
one MCS corresponds to 10N attempts of exchanges (or
identity changes) and 10N attempts of displacements, N being
the total number of atoms.

In this work, the calculations are performed at zero pressure.
The reference case is a bulk alloy, i.e., a large system with
periodic boundary conditions where phase transitions and
the phase diagram are clearly defined. Then, we analyze the
equilibrium of finite spherical particles with diameters between
2 and 15 nm. In the simulations, the initial configurations
correspond to a cut of the face-centered-cubic lattice by a
sphere with a core rich in B atoms and a shell rich in A atoms
to reduce hysteresis effects and metastabilities (pinning, lattice
friction) [18].

B. Interatomic potential

To study generic behaviors, we use a Lennard-Jones poten-
tial, which is very flexible in comparison with more realistic
potentials in terms of the determination of the potential pa-
rameters and also very efficient from a computational point of
view. The total energy of the system is given by the sum of pair
interactions:

V αβ(rij ) = −4εαβ

[(
σαβ

rij

)6

−
(

σαβ

rij

)12
]
, (1)

where rij is the distance between the i atom (of type α) and the
j atom (of type β). The parameter σαβ controls the position of
the energy minimum, and the parameter εαβ controls its depth.
For the pure α-component, σαα is related to the equilibrium
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TABLE I. Lennard-Jones potential parameters (upper part) and
corresponding quantities for the pure components (lower part) with
interactions up to the fifth neighbors. The lattice parameters, the
cohesive energies Ec, and the elastic moduli calculated with a strict
cutoff at zero temperature are given for the pure phases. γ111 is the
(111) surface energy at 0 K.

A-A A-B B-B

εαβ (eV) 0.18 0.153 0.146
σαβ (nm) 0.23508 0.23508 0.23508

a (nm) 0.36428 0.36428
Ec (eV/at.) −1.459 −1.186
Bulk mod. (GPa) 155 126
C11 (GPa) 217 177
C12

a (GPa) 124 100
γ111 (J m−2) 1.4 1.2

aFor pairwise potentials, C44 = C12 (Cauchy rule).

lattice parameter and εαα to the cohesive energy. The melting
temperature and the surface energy depend on both σαα and
εαα . To avoid energy discontinuities at the cutoff distance rcut,
the potentials are multiplied, for distances between rcut-�r and
rcut, by the polynomial tapering function f (x):

f (x) = [8 − 15(2x − 1) + 10(2x − 1)3 − 3(2x − 1)5]/16,

(2)
where x = [r − (rcut − �r)]/�r . This procedure ensures that
the potentials tend to zero smoothly over the distance �r ,
which is typically chosen equal to 0.2 Å. The potentials are
truncated between the fifth and sixth nearest neighbors of the
face-centered-cubic (fcc) structure, which is the ground state
for bulk alloys.

To decouple elastic effects and chemical effects, we choose
to investigate in this paper an A-B alloy with no atomic-
size mismatch (�a/a = 0). σAA, σAB , and σBB are thus
equal and adjusted to reproduce a particular lattice parameter
(0.36428 nm). The values of εαα (α = A or B) are chosen
to reproduce two given melting temperatures close to 1300 K
(1400 and 1155 K). These values are representative of common
face-centered metals (e.g., Cu, Ag, Ni, Pt) but not specific to a
particular one. εAB is chosen to ensure a phase separation at low
temperature. Table I summarizes the parameter values as well
as some energetic and elastic properties. The corresponding
(c,T ) and (�μ,T ) phase diagrams for the bulk system are
represented by black squares in Figs. 2 and 3. The miscibility
gap is almost symmetric with respect to c = 0.5. At this
concentration, the transition temperature between the solid
solution and the phase separation is 750 K. More details can
be found in Ref. [18].

III. THERMODYNAMICS OF INFINITE-PARTICLE
ASSEMBLIES

A. Introduction

In the semi-grand-canonical ensemble, for large systems,
phase transitions are associated with singularities (as a function
of �μi , P , or T ) of quantities such as internal energy, con-
centrations, or order parameters. When studying a demixtion
process, the concentrations c− and c+ corresponding to the

limits of the miscibility gap are estimated by varying the
alloy chemical potential �μ to observe a finite jump of the
concentration at a critical value �μc. In a previous study
devoted to bulk alloys, we developed a method based on the
Gibbs-Thomson effect to minimize hysteresis and metastabil-
ities taking place at low temperature (pinning, lattice friction)
[18]. The method consists in analyzing the dynamics of a
curved interface that separates a B-rich sphere embedded in
an A-rich matrix, and vice versa. The two critical values of
the alloy chemical potential determined by finite increments
on �μ are then arithmetically averaged to obtain �μc. In
the present study, because the analyzed systems are small,
the characteristic length of the interface fluctuations is not
negligible with respect to the particle size. As a consequence,
the two initial configurations (A- and B-rich spheres) lead to
the same behavior of the concentration variation as a function
of the applied alloy chemical potential. Therefore, the limiting
concentrations c− and c+ associated with the concentration
jump at �μc are simply identified as the concentrations
corresponding to �μ−

c and �μ+
c , respectively, where �μ−

c

(�μ+
c ) is the alloy chemical potential just before (after) the

concentration jump takes place.
For systems with free surfaces, the atomic sites close to the

surface behave differently from the bulk ones due to their lower
coordination numbers. Thus, apart from the bulk transition,
the system may exhibit surface transitions associated with
successive critical chemical potentials �μc [10,19,20]. Of
course, the existence of a well-defined sequence of surface
transitions is likely to disappear at high temperature when
spatial and chemical fluctuations of atomic sites are large
enough.

When considering nano-objects, transitions are even more
difficult to localize because they are smooth as a consequence
of the analyticity of all statistical functions [24]. However,
when considering particles containing more than several hun-
dreds of atoms, as is the case in this study, transitions can
usually still be clearly defined. Finally, another important point
is that, for finite systems, the statistical ensembles are, strictly
speaking, nonequivalent.

In this part, we first address the stability of a nanoparticle
in the semi-grand-canonical ensemble. Then, the result is
compared to the situation of a finite assembly of particles with
identical size in the canonical ensemble. Finally, the extension
to an assembly of particles differing in size is considered.

B. Calculation in the semi-grand-canonical ensemble

We first consider a single particle in the semi-grand-
canonical ensemble. For a given particle size, the values of
the critical chemical potential �μc are searched in the (�μ,T )
parameter space. Figure 1 shows snapshots of four particles 6.6,
4.4, 2.8, and 2.2 nm in diameter at T = 400 K. For each of these
particle sizes, a run along increasing �μ with small increments
of 0.5 meV reveals the occurrence of only one critical set
(�μ−

c ,�μ+
c ). Even for the smallest particle considered here

(2.2 nm, 429 atoms), a chemical potential jump can be easily
identified. The corresponding (�μ,T ) phase diagrams are
shown in Fig. 2. The transition temperature between the liquid
and the solid decreases with the particle size. The solid-solid
transitions are also affected, but only slightly: the critical value
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FIG. 1. Snapshots of four bimetallic particles of 6.6, 4.4, 2.8, and 2.2 nm in diameter from Monte Carlo simulations at T = 400 K in the
semi-grand-canonical ensemble. The light (dark) color corresponds to B (A) atoms, respectively. The four particles contain 12 137, 3565, 1058,
and 429 atoms, respectively. Half sections of the particles are also presented for �μ−

c and �μ+
c (see text for details).

of the chemical potential of 2.2 nm particles is 10% lower than
the bulk alloy one, and the temperature corresponding to the top
of the miscibility gap is lowered by only 3%. However, in the
(c,T ) phase diagrams, represented in Fig. 3, the miscibility gap
is much more affected by size effects: it becomes asymmetric
with respect to the equiatomic concentration and shrinks
when the particle size decreases. This effect is related to the
difference �γ between the surface energies of A and B atoms,
which amounts to 200 mJ m−2 for a (111) surface at 0 K (see
Table I). We indeed checked that the miscibility gap remains
symmetric if �γ is set to zero. This condition is easily imposed
within the Lennard-Jones approach, as it amounts to simply
imposing εAA = εBB . We have also noted that the asymmetry
of the miscibility gap is not linked to surface segregation
effects, as, when �γ = 0, segregation of the minority species
does exist and is still observed.

The knowledge of these size-dependent phase diagrams
may be a useful tool to interpret the observed configurational

FIG. 2. Chemical potential-temperature phase diagrams for the
bulk alloy and for spherical nanoparticles with diameters equal to
6.6, 4.4, 2.8, and 2.2 nm.

states of large monodisperse assemblies of nanoparticles, if,
of course, the synthesis conditions are such that the assem-
bly reaches its equilibrium state. The semi-grand-canonical
thermodynamics of a single particle is formally equivalent
to the canonical thermodynamics of an infinite assembly of
particles with the same size, which only interact through the
exchange of atoms. Therefore, in the single-phase domains
of the phase diagram presented in Fig. 3, infinite assemblies
feature only one type of particle, whereas in the two-phase
domains, assemblies exhibit two populations. In the latter case,
the equilibrium concentrations of each particle type are given
by the limits of the miscibility gap, and the fraction of particles
of each type is given by the lever rule.

Inside a given particle, the concentration fields are of course
inhomogeneous and depend on temperature. In our calcula-
tions, we consider spherical particles and we observe that the

FIG. 3. Composition-temperature phase diagrams computed
within the semi-grand-canonical ensemble for the bulk alloy and for
spherical nanoparticles with diameters equal to 13, 6.6, 4.4, 2.8, and
2.2 nm. Shaded areas correspond to two-phase domains.
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FIG. 4. Averaged radial concentration profiles of a 6.6 nm particle for �μ−
c (open symbols) and �μ+

c (close symbols). Part (a) corresponds
to calculations at 400 K and part (b) corresponds to calculations at 750 K. Dashed lines correspond to the bulk alloy equilibrium concentrations.

concentration fields have a radial symmetry at equilibrium. As
shown in Fig. 4, at 400 K, the concentration profile associated
with �μ−

c exhibits a 4 nm large homogeneous zone poor in
B atoms around the center of the particle (core), followed
by a 0.5-nm-thick interface, and ending with a surface rich
in B (shell). For �μ+

c , the concentration profile is quasiho-
mogeneous through the particle. At 750 K, the concentration
profiles exhibit a 1–2 nm large homogeneous zone close to
the center of the particle and then a diffuse transition up to
the surface, which is rich in B. These observations indicate
that, within the miscibility gap, the configurational states of the
particles at low temperature (core-shell-like) are qualitatively
very different from those observed at high temperature. In
Fig. 5, the concentrations measured close the center of the
particles (in the homogeneous zones) for �μ−

c and �μ+
c

are superimposed to the bulk alloy (c,T ) phase diagram for
solid-solid transformations. We observe that they are close to
the limits of the bulk miscibility gap. In other words, within the
miscibility gap associated with nanoparticles, the equilibrium
concentrations at the center of the particles differ only slightly
from their bulk equilibrium values. For example, for assemblies
of 6.6 nm particles, concentrations at the center deviate only
very slightly from those of the bulk alloy (Fig. 5), even though
the corresponding phase diagram is clearly very different from
the bulk one (Fig. 3).

The previous calculations and conclusions pertain to a
situation in which a large number (possibly infinite) of
monodisperse particles reach collectively a thermodynamic
equilibrium. In the next section, we investigate the collective
behavior of a small number of particles. This of course requires
the use of the canonical ensemble.

IV. CANONICAL ENSEMBLE: FINITE
ASSEMBLIES OF PARTICLES

A. Finite assemblies of particles with identical size

We consider a finite assembly of particles in interaction
in the canonical ensemble, where the number of A and B

atoms in the assembly, the temperature, and the pressure are
fixed quantities. To make a link between the equilibrium of
a single particle in the semi-grand-canonical ensemble and

FIG. 5. Concentrations calculated at the center of particles with
diameters equal to 6.6 and 4.4 nm (close symbols) superimposed on
the corresponding bulk alloy (c,T ) phase diagram.
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the equilibrium of the particles in the canonical ensemble, we
investigate a situation in which all the particles have the same
size, the same shape, and the same number of atomic sites.

In the semi-grand-canonical ensemble, the relevant ther-
modynamic function is the grand potential G(�μ), which is
related to the canonical free energy F (c) of a single particle by

G(�μ) = minc{F (c) − �μc}. (3)

We are interested here in a situation in which the grand-
canonical equilibrium state is degenerated. In other words, the
chemical potential �μ is equal to its critical value �μc, and
the concentration of the two degenerated states is such that

F (c1) − �μc c1 = F (c2) − �μc c2, (4)

which, together with Eq. (3), leads to

∂F

∂c

∣∣∣∣
c1

= ∂F

∂c

∣∣∣∣
c2

= F (c1) − F (c2)

c1 − c2
= �μc. (5)

We consider now a finite monodisperse assembly of N

particles in the canonical ensemble. The total free energy of
this assembly is given by

Ftot({ci}) =
N∑

i=1

F (ci), (6)

where ci is the average concentration of particle i. The additive
property of Ftot is linked to two assumptions. First, there are
no direct chemical interactions between atoms of different
particles through the interatomic potential. The second require-
ment is less straightforward. The identification of an average
concentration ci for a given particle and its associated canonical
free energy F (ci) requires that the average concentration can
be defined along a sufficiently long time sequence and that
its fluctuations are small enough. This obviously requires that
the particles are large enough, but also that the number of
particles is sufficiently high in order to make the concentration
fluctuations between particles nearly independent.

We now address the following question: in which circum-
stances does the canonical assembly of N particles split into
two subassemblies of N1 and N2 particles (with N1 + N2 =
N ), characterized by two different concentrations c1 and
c2, that are associated with the degenerated grand-canonical
equilibrium?

The answer to this simple problem proceeds as follows.
Under the previous assumptions, the equilibrium state {ceq

i } of
our canonical ensemble is given by applying the variational
principle on the free energy defined in Eq. (6):

Ftot
({

c
eq
i

}) = minci

N∑
i=1

F (ci) (7)

under the constraint

N∑
i=1

ci = Nc̄, (8)

where c̄ is the overall average concentration. This problem is
equivalent to minimizing the functional G({ci},λ), where λ is

a Lagrange parameter:

G({ci},λ) = F (ci) − λ

(
N∑

i=1

ci − Nc̄

)
. (9)

The equilibrium concentrations should therefore verify

∂F

∂c

∣∣∣∣
c

eq
i

= λ. (10)

In the present situation (a binary alloy that displays a
miscibility gap), the generic shape of the low-temperature
free-energy curve displays only two wells. Therefore, for a
given (Lagrange parameter) λ, their exist only two different
concentrations cI and cII such that

∂F

∂c

∣∣∣∣
cI

= ∂F

∂c

∣∣∣∣
cII

= λ. (11)

Each particle will now adopt one of these two concentrations.
If NI (NII) is the number of particles with concentration cI (cII),
the quantity G introduced above becomes a function of NI and
NII:

G(NI,NII,λ) = NIF (cI) + NIIF (cII)

− λ(NIcI + NIIcII − Nc̄). (12)

The next step of our variational procedure consists in
minimizing this function with respect to the integers NI and
NII. As their sum is constant, when they reach the values that
minimize G(NI,NII,λ), NI and NII must verify the following
equations:

G(NI,NII,λ) � G(NI − 1,NII + 1,λ), (13)

G(NI,NII,λ) � G(NI + 1,NII − 1,λ). (14)

This translates to

F (cI) − λcI � F (cII) − λcII, (15)

F (cII) − λcII � F (cI) − λcI, (16)

which implies

F (cI) − λcI = F (cII) − λcII. (17)

The canonical concentrations cI and cII should therefore
verify simultaneously Eqs. (11) and (17):

∂F

∂c

∣∣∣∣
cI

= ∂F

∂c

∣∣∣∣
cII

= F (cI) − F (cII)

cI − cII
. (18)

This equation is identical to Eq. (5). Therefore, if a solution
to our initial problem exists, the concentrations cI and cII

of the two subassemblies of our canonical ensemble will be
necessarily equal to the concentrations c1 and c2 that are
associated with the degenerated grand-canonical equilibrium:

cI = c1,

cII = c2.

Of course, as the concentration is a conserved quantity, a
necessary condition for this solution to exist is that the solutions
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c = 0.73
cI= 0.56
cII= 0.98
c = 0.75
cI= 0.59
cII= 0.98

c = 0.30
cI = 0.30

FIG. 6. Half-sections of an assembly of ten particles obtained by Monte Carlo simulations at 400 K in the canonical ensemble for three
imposed total concentrations: c̄ = 0.30, 0.73, and 0.75 from top to bottom. The light (dark) color corresponds to B (A) atoms, respectively.
The concentration of each particle population is also specified.

NI and NII of the linear system:

c1NI + c2NII = Nc̄,

NI + NII = N

are integers. This requires that the average concentration c̄ can
be written as

c̄ = c1 + c2 − c1

N
k, k = 0,1, . . . ,N. (19)

In summary, if the concentration c̄ belongs to the discrete
spectrum defined by Eq. (19), the canonical particle assembly
of N particles will split, at the equilibrium, into two sub-sets
associated with the degenerated equilibrium concentrations c1

and c2 identified in the semi-grand-canonical ensemble, and
the fraction of particles of each type will be given by the lever
rule.

To confirm this analysis, we now proceed to a numerical
study of the thermodynamic behavior of a finite set of particles.
Two different situations are considered: first, a set of ten
particles with a diameter of 4.4 nm, and second, an assembly
of four particles with a diameter equal to 2.2 nm.

The Monte Carlo results obtained for the set of ten identical
4.4 nm particles are represented in Fig. 6. Three average
concentrations (c̄ = 0.30, 0.728, and 0.749) have been inves-
tigated at the fixed temperature T = 400 K. When the average
concentration c̄ sits in the single-phase domain identified
within the semi-grand-canonical ensemble (c̄ = 0.30), we
naturally observe a single-particle state. Conversely, when
c̄ lies within the two-phase domain (c1 � c̄ � c2 with c1 =
0.56 and c2 = 0.98), the assembly splits into two subsets of
particles, with specific concentrations cI and cII (see Fig. 6),
in agreement with the previous analysis. Moreover, when
c̄ fulfills the quantification requirement given by Eq. (19)
(c̄ = 0.728), the observed canonical concentrations cI and cII

correspond exactly to the semi-grand-canonical ones, c1 and
c2, as predicted above. In contrast, when c̄ deviates from the
discrete spectrum (c̄ = 0.749), the equilibrium concentrations
differ definitively from the semi-grand-canonical ones, as
expected. We now analyze the set of four identical particles
with a diameter equal to 2.2 nm and for T = 400 K. The
aim is to enhance the quantification effects associated with
Eq. (19), and also to investigate numerically the influence
of a smaller particle size. According to the results presented
in Fig. 3, the limits of the two-phase domain calculated
in the semi-grand-canonical ensemble for a particle size of
2.2 nm are c1 = 0.63 and c2 = 0.98. We have investigated
many average concentrations c̄ in between 0.5 and 1, and it

appears that the four-particle assembly may adopt qualitatively
three different behaviors, which are now described using the
three selected concentrations c̄ = 0.805, 0.7875, and 0.77. The
overall behavior will be discussed at the end of this section.

Figure 7 represents, for each of the three concentrations
c̄ given above, the time evolution of the four particle con-
centrations observed in the canonical ensemble as well as the
corresponding concentration distribution. At any time step, the
assembly splits into two subsets with two concentrations cI and
cII, as anticipated before. Due to the surface energy difference
between A and B atoms, cII is always close to c2 (see Sec. III B).
In contrast, cI may strongly deviate from c1. When c̄ = 0.805,
the requirement of Eq. (19) is fulfilled with NI = NII = 2 and
we observe [Fig. 7(a)] that the canonical concentrations cI and
cII are equal to the semi-grand-canonical concentrations c1

and c2, respectively, in agreement with the analysis presented
above. The next situation, c̄ = 0.7875, corresponds to a case
in which c̄ deviates slightly from the quantification case just
described. Consequently, we expect that the assembly still
splits into two subsets with NI = NII = 2 but with canonical
concentrations cI and cII that differ from the semi-grand-
canonical concentrations c1 and c2. Indeed, in Fig. 7(b), we
observe that cI = 0.61 and cII = 0.97. The behavior is generic
to a situation that is close but not equal to a quantification case.
We also note that each of the four particles does not stay in the
same state but instead switches between the two concentrations
cI and cII, but this switching event preserves the NI = NII = 2
partition. The last situation, c̄ = 0.77, corresponds to a case
that is in between two quantification values. More precisely,
the next lower quantified concentration is c̄ = 0.7175, for
which NI = 3 and NII = 1, and the next higher quantified
concentration is c̄ = 0.805, for which NI = 2 and NII = 2. As
consequence, for the considered concentration c̄ = 0.77, the
four-particle assembly switches as a function of time between
those two distributions, as seen in Fig. 7(c).

We also clearly observe in Fig. 7 that, within a given dis-
tribution (NI,NII), the concentration of each particle fluctuates
around cI or cII. These fluctuations reach ±10% around cI for
the 2.2 nm particle considered in Fig. 7(c) and decrease as the
particle size increases (not shown). These fluctuations and their
amplitudes may be explained through a qualitative analysis
of the canonical free energy F (c) as a function of its average
concentration c [see Eq. (6) and the corresponding discussion].
In the present situation, in which the thermodynamic properties
of a particle are governed by the presence of a miscibility
gap, the free energy F (c) displays generically a two-well
shape qualitatively displayed in Fig. 8. When a given particle
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FIG. 7. Time evolution (in Monte Carlo steps) and partial distribu-
tion of the particle concentrations in an assembly of four particles with
diameters equal to 2.2 nm, at 400 K, for three average concentrations
(c̄ = 0.805, 0.7875, and 0.7700 from top to bottom).

is thermodynamically linked to others within a canonical
ensemble, its concentration, which is not fixed, can fluctuate
around an average value. These fluctuations are controlled by
the second derivative of F (c). When the average concentration
is close to 1, we clearly anticipate that the second derivatives
are large and therefore the fluctuations should be small. This is
the reason why, in all the cases shown in Fig. 7, the fluctuations
around the average concentrations cII (which are close to
c2 = 0.98) are small. The fluctuations around the other average
concentrations displayed by the particle (i.e., cI) are much

FIG. 8. Generic free-energy curve of a single particle (see text for
details).

stronger because the second derivative of the free energy F (c)
is smaller (see Fig. 8). We also note that the fluctuations around
cI increase with cI and that the fluctuations around cII increase
when cII decreases. The reason is that, due to its double-well
shape, and provided we consider a concentration domain
around its minimum, the second derivative of the free energy
F (c) generically decreases when the average concentration c

comes closer to the middle of the two-phase grand-canonical
domain (see Fig. 8).

On the right-hand side of Fig. 7, we observe that, on top
of their overall shape, the concentration distributions display
several extremely sharp peaks at specific positions. This shows
that some particle configurations are observed with higher
probabilities. We have verified that the position of these con-
centration peaks is not influenced by the number of particles in
the assembly nor by temperature, but rather by their size. There-
fore, we conclude that this specific configuration corresponds
to local energy minima. This illustrates the importance of the
geometric structure when considering small nanoparticles, a
feature extensively discussed in the literature [21,22].

We now present the overall four-particle assembly behavior
as a function of the average concentration c̄. Figure 9 represents
the concentration cp of each particle averaged in a time interval
where no concentration switch is observed, as a function of
the average concentration c̄ of the assembly. The semi-grand-
canonical concentrations c1 and c2 correspond to the red dashed
lines, and when c̄ fulfills Eq. (19), the concentration of each
particle is highlighted in red. The dotted lines are guidelines.
For c̄ � c1 and for c̄ � c2, each particle concentration is c̄

(single-phase domain). For the five concentrations c̄, which
fulfill Eq. (19), the equilibrium concentrations calculated in
the canonical ensemble (red symbols) are identical to those cal-
culated in the semi-grand-canonical ensemble (dashed lines).
When c̄ is outside the discrete spectrum, cII is close to c2,
whereas cI adopt a quasilinear behavior (dotted lines):

cI ≈ Nc̄ − NIIcII

NI
, (20)

which is simply a consequence of the conservation law, given
that cII is hardly sensitive to c̄. Finally, we note that for c̄=0.96,
the four particles adopt the same state. This means that in the

195404-8



THERMODYNAMICS OF PHASE-SEPARATING … PHYSICAL REVIEW B 97, 195404 (2018)

FIG. 9. Single-particle concentration cp (p = 1,2,3,4) vs particle
assembly concentration c̄, obtained by Monte Carlo simulations in
the canonical ensemble at 400 K in a four-particle system. The
particle diameter is 2.2 nm. Red dashed lines correspond to the
equilibrium concentrations c1 = 0.63 and c2 = 0.98 calculated in
the semi-grand-canonical ensemble. Red symbols are the measured
concentrations when c̄ fulfills Eq. (19), and dotted lines correspond
to the extrapolation of Eq. (20). Labels 7a, 7b, and 7c denote the
concentrations c̄ analyzed in Fig. 7.

canonical ensemble, the single-state domain is reached before
the semi-grand-canonical limit c2 = 0.98, as it should.

B. Finite assemblies of particles with different sizes

The synthesis of nanoalloys by the physical route is often
obtained by the deposition of atoms on a substrate. During the
deposition, the substrate is usually heated to enhance diffusion,
and a postsynthesis heat treatment is sometimes added. At the
end of such a process, the particles are in a coarsening regime
with low thermodynamic driving forces. In binary nanoalloys,
where the exchange of atoms between particles is much faster
for a given species than for the other one, a partial equilibrium
is reached leading to particle assemblies in which the particle
concentration is size-dependent [23].

In the present work, the importance of the size distribution of
a particle assembly is demonstrated through the computation of
the canonical equilibrium of an assembly with a prescribed size
distribution. We consider a 30-particle assembly composed of
three subassemblies: 5 nanoparticles with a diameter of 2.2 nm,
15 with a diameter of 4.4 nm, and 10 with a diameter of 6.6 nm.
As in the previous section, the number of atomic sites of each
particle is fixed, and Monte Carlo simulations are performed to
reach equilibrium in the canonical ensemble where the number
for A and B atoms in the assembly, the temperature, and the
pressure are fixed quantities.

Figure 10 represents the equilibrium concentration cp of
each particle at T = 400 K as a function of the nominal
concentration c̄ of the assembly in B atoms. For concentrations
lower than c̄ = 0.45, all the subassemblies are in a single-
population state, and it is observed that the smaller the particle
size, the higher the concentration in B atoms. This effect is
due to the segregation of B atoms at the surface and to the fact

FIG. 10. Particle concentration cp as a function of the assem-
bly concentration c̄ obtained with Monte Carlo calculations in the
canonical ensemble, at T = 400 K, for a 30-particle assembly with
different sizes (2.2, 4.4, and 6.6 nm; see text for details). Dashed lines
are guidelines, and dotted lines correspond to the two-phase domains
obtained in the semi-grand-canonical calculations.

that the relative number of surface sites is higher in smaller
nanoparticles. For concentrations c̄ above 0.34, the smaller
nanoparticles (2.2 nm in diameter) contain almost only B

atoms. Therefore, an increase of the assembly concentration
will only influence the 4.4 and 6.6 nm subassemblies.

For 0.46 < c̄ < 0.6, the concentrations of the particles in
the 4.4 and 6.6 nm subassemblies are independent of c̄. All
particles in the 6.6 nm subassembly have a concentration close
to 0.3. The 4.4 nm subassembly splits into two populations
with compositions close to either cI = 0.58 or cII = 0.98. In
this composition range, an increase of the concentration c̄ only
implies a change of the number of particles between these two
populations.

For a composition above c̄ = 0.6, both the 2.2 and 4.4 nm
subassemblies are almost saturated in B atoms. For 0.6 < c̄ <

0.72, the 6.6 nm particle subassembly is in a single-population
state, and the particle concentration is linearly increasing with
c̄, as expected from the conservation of the number of B atoms.
Finally, above c̄ = 0.75, a two-population domain takes place
for the largest particles.

To highlight the consequences of a size distribution, we now
summarize how the above results compare with the behavior of
infinite assemblies of monodisperse particles obtained in the
semi-grand-canonical calculations (see Sec. III B). First, we
found in both cases that the equilibrium particle concentration
is size-dependent. Second, particles of a given size forming a
subassembly may all have the same composition or be split
into two populations with different equilibrium compositions
cI and cII. The latter compositions are close to the semi-grand-
canonical equilibrium compositions c1 and c2. We also found
that the concentration ranges where each subassembly is in
a two-population state can differ significantly from the semi-
grand-canonical prediction. This results from the difference
between the equilibrium composition of each subassembly and
the average composition. This difference is expected to be large
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in the present work, where surface segregation occurs because
the fraction of surface sites is directly related to the particle
size.

V. THERMODYNAMICS OF ISOLATED PARTICLES

We have shown in the previous section that, when assem-
blies of particles with identical size are considered, the canon-
ical equilibrium can be characterized by a coexistence of two-
particle populations that differ by their averaged concentration,
a behavior formally similar to the phase separation observed in
bulk alloys. In this part, we consider the stability of an isolated
particle, and we question whether a phase separation can be
observed within the particle. To allow a meaningful comparison
with the bulk case, and with the results obtained on particle
assemblies (Sec. III B), the same binary Lennard-Jones system
is used (Table I) for which A and B atoms have the same size
and a segregation of B atoms at the surface is expected. We
only consider in this section large enough nanoparticles so that
a core region and a surface region can be distinguished. Our
aim is to analyze whether a two-phase state can be properly
defined in the particle and how a phase diagram can be built in
this context.

We consider spherical particles of a given radius in the
canonical ensemble where the number of A and B atoms,
the temperature, and the pressure are fixed quantities. For
the concentrations investigated here, the concentration fields
observed in the particle have a radial symmetry, and the
equilibrium can be analyzed in terms of radial concentration
profiles.

Equilibrium concentration profiles for different particle
diameters D are presented in Fig. 11. The same average
concentration c̄ = 0.5 is used, and the temperature T = 500 K
is chosen well below the bulk critical temperature (T bulk

c =
750 K). As expected, the larger particles (D � 15 nm) display
two homogeneous regions whose concentrations are close
to the bulk solubility limits (dashed lines), and the volume
fraction of these regions is close to the value 0.5 predicted by
the lever rule. In addition, a segregation of B atoms is observed
at the particle surface. The concentration profile inside smaller

FIG. 11. Averaged radial concentration profiles of 5, 8, 15, and
20 nm isolated particles with c̄ = 0.5 at 500 K. c+ and c− correspond
to the solubility limits of the bulk alloy (dotted lines).

particles (5 � D � 8 nm) is qualitatively different. Indeed,
a similar low-concentration phase is observed in the core
of the particle (c = c−), but the concentration profile then
continuously increases to reach a value close to 1 at the surface.
This means that for small particles, the high-concentration
phase (expected in the bulk case) does not appear due to the
segregation of B atoms at the surface. In brief, at c̄ = 0.5, and
at a temperature 250 K below the bulk critical temperature,
the equilibrium state of a particle can only be described as
a mixture of two homogeneous phases (with concentrations
close the bulk solubility limits) if the particle diameter is above
8 nm.

In Fig. 12, we analyze in more detail the equilibrium state of
a rather large nanoparticle (diameter D = 15 nm). For this par-
ticle size, the coexistence at equilibrium of two homogeneous
phases is investigated when changing the average particle
concentration [Fig. 12(a)] and the temperature [Fig. 12(b)].
When the shell of the particle contains a homogeneous phase, a
plateau (close to c+) is observed in the radial concentration pro-

FIG. 12. Concentration (a) and temperature (b) dependence of the averaged radial concentration profiles in a particle with a diameter equal
to 15 nm. c+ and c− correspond to the solubility limits of the bulk alloy (dotted lines). Part (c) is a comparison between the concentration
measured in the center of the particle (dashed line) and the solubility limit of the bulk alloy (solid line) for c̄ = 0.5.
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file. More precisely, we have considered that a homogeneous
shell phase was detected as soon as an inflection point could be
measured in the concentration profile. Figure 12(a) shows that
at T = 500 K, the equilibrium microstructure of a nanoparticle
with an average concentration above 0.4 is made of two
homogeneous phases with concentrations that are close to
the bulk solubility limits (c−,c+). This is no longer the case
for concentrations below 0.4, and the concentration profile is
continuously increasing between the value of the core phase
and 1 at the surface. This behavior is similar to that presented
in Fig. 11 for small particles, and it originates from the strong
segregation of B atoms at the surface.

Figure 12(b) shows that the concentration profile inside of
a nanoparticle with an average concentration c̄ = 0.5 qualita-
tively changes with temperature. The microstructure contain-
ing two homogeneous phases is stable at low temperature, and
then a transition toward the microstructure composed of only
one homogeneous phase at the core is observed at T = 600 K.
Note finally that for the temperature above the bulk critical
temperature, the concentration profile is not constant because
of the strong segregation of B atoms at the surface. In that
situation, a rather homogeneous core concentration can still be
defined even if its value is far from the average composition
expected in the bulk case.

The evolution of the concentration of the core of the particle
as a function of the temperature is presented in Fig. 12(c) (red
dashed line) for c̄ = 0.5. Below the bulk critical temperature
T bulk

c , the core concentration is close to the solubility limit.
Above T bulk

c , the core concentration continuously increases to
concentrations closer to the average concentration c̄ = 0.5. An
important point is that the transition between these two regimes
is continuous. The discontinuity observed in bulk systems at
the transition cannot be observed in nanoparticles because of
their finite-size character.

The results presented in Fig. 12 show that, even for rather
large nanoparticles (D = 15 nm), the equilibrium configura-
tion is quite complex but can be approximately described in
terms of one or two homogeneous phases supplemented by
a heterogeneous layer of B atoms at the surface. Therefore,
for large enough particle sizes, a composition-temperature
phase diagram can be constructed to defined domains in
which two homogeneous phases are simultaneously observed
at equilibrium. This phase diagram is presented in Fig. 13
(red dashed line). It is clear that in a nanoparticle of 15 nm
in diameter, the two-phase stability region is much smaller
than in the bulk case. This large difference is due to the
size effect of the nanoparticle combined with a rather strong
segregation of B atoms at the surface. Indeed, all the B atoms
that have segregated at the surface are no longer available to
form a two-phase state within the particle. Note, however, that
contrary to bulk alloys, the limits of the two-phase domain do
not correspond to the phase concentrations observed within
the particle. Therefore, additional graphs such as the one
presented in Fig. 12(c) are necessary to fully describe the
internal state of the particle. As an example, when comparing
Figs. 12(c) and 13, it appears clear that, even if the particle
size effect strongly modifies the two-phase domain limits, the
core concentration that is observed when the concentration
profile displays a two-phase structure deviates only slightly
from the low concentration limit of the bulk phase diagram. A

FIG. 13. Composition-temperature phase diagram for a bulk alloy
and for an isolated particle with a diameter equal to 15 nm (see text
for details).

complete description would also require a detailed description
of the segregation process, which is beyond the scope of the
present paper (see, for example, Refs. [1,19]).

Finally, we recall that we have selected in the present
analysis rather large particles to analyze how the usual de-
scription by a phase diagram has to be modified and extended
to describe the equilibrium state of a binary nanoalloy. When
considering small nanoparticles, a description based on the
coexistence of homogeneous phases (eventually supplemented
by a segregation layer) can be irrelevant. As an example, the
concentration profiles corresponding to a nanoparticle 6 nm in
diameter are presented in Fig. 14. In that case, the concentration
profile continuously increases from the center to the outer
shell so that no homogeneous region can be defined within
the particle when the temperature is above 600 K. The proper
description of such situations requires an atomistic approach, in
which the atomic sites of the particle are automatically treated
as nonequivalent. Intermediate approaches could also be of
interest where sites are divided into several sets (surface atoms,

FIG. 14. Concentration profiles calculated at different tempera-
tures in a particle with a diameter equal to 6 nm and an average
concentration equal to 0.65.
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first subsurface atoms, etc.), and in which all sites are assumed
equivalent [19].

VI. CONCLUSION

In this work, we studied the thermodynamics of binary fcc
nanoparticles using a simple atomic pair potential. Equilibrium
states were computed with off-lattice Monte Carlo simulations
in several thermodynamic ensembles.

In the semi-grand-canonical ensemble, the (�μ,T ) phase
diagram and the resulting (c,T ) phase diagram were computed
for particle sizes between 2.2 and 13 nm and compared to the
bulk case. When decreasing the particle size, we obtained a sig-
nificant decrease of the solid/liquid transition temperatures as
well as a growing asymmetry of the solid-state miscibility gap
related to surface segregation effects. The (c,T ) phase diagram
obtained in the semi-grand-canonical ensemble describes the
stability of an infinite assembly of particles of the same size:

(i) Within the one-phase stability regions, all particles are
identical at equilibrium.

(ii) Within the two-phase stability regions, the assembly
splits into two subassemblies with average concentrations
equal to the solubility limits.

Note that this phase diagram gives no information on the
repartition of concentration inside each particle. Additional
diagrams are needed to describe this information.

We then studied the stability of finite assemblies of particles
using a canonical ensemble in which particles only interact
by the exchange of atoms. When considering particles of
identical sizes, we showed, using a general thermodynamic
formulation of the problem, that the equilibrium configuration
is either an assembly of identical particles or a set of two
such assemblies. In the latter case, the concentrations of
the two subassemblies are equal to the semi-grand-canonical
equilibrium compositions only for certain quantified values of
the average concentration. These predictions were confirmed
by simulations of different finite monodisperse assemblies of
particles.

We then modeled the importance of a size distribution by
computing the canonical equilibrium of an assembly composed
of three subassemblies with three different sizes. First, a strong
size effect was evidenced; small particles tend to be enriched

in the segregating B atom because of their larger surface-to-
volume ratio. Second, we found that particles belonging to a
given subassembly can either all adopt the same composition or
be split into two populations. As a conclusion, the equilibrium
of the particle assembly with a size distribution combines a
size effect and the fact that a given particle size may adopt two
configurations.

Finally, we have considered the thermodynamics of an
isolated particle to analyze whether a phase separation can be
defined within a particle. When studying rather large nanopar-
ticles (15 nm in diameter), we showed that the equilibrium
state can still be described by either a homogeneous phase
or a two-phase configuration, supplemented by a segregation
layer. We found that the region in which a two-phase domain
can be identified inside a particle is well below the bulk
phase diagram. However, in this region, the concentration
of the homogeneous core remains very close to the bulk
solubility limit. We also showed that the top-down description
of the stability of nanoparticles based on homogeneous phases
supplemented by surface properties may be irrelevant for small
nanoparticles, especially at high temperature.

The semi-grand-canonical ensemble was essentially used to
rationalize the results obtained within the canonical ensembles
of monodisperse particles. Notwithstanding this point, we
did consider canonical assemblies of polydisperse particles.
This procedure enabled the analysis of the equilibrium state
of particles with prescribed sizes, even though a complete
analysis of such assemblies should of course be done within the
context of out-of-equilibrium thermodynamics. Also, a natural
extension of this work is a systematic study of the consequences
of an atomic-size mismatch on the equilibrium configuration of
nanoparticle. Because the elastic driving force is usually very
anisotropic, a strong impact on the configuration of particles
is expected [25–27]. In addition, such an off-lattice method
could be used to clarify the formation of misfit dislocations at
the nanoparticle interface [6,28].
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