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We study fractional quantum Hall states at filling fractions in the Jain sequences using the framework of
composite Dirac fermions. Synthesizing previous work, we write an effective field theory consistent with all
symmetry requirements, including Galilean invariance and particle-hole symmetry. Employing a Fermi-liquid
description, we demonstrate the appearance of the Girvin-Macdonald-Platzman algebra and compute the
dispersion relation of neutral excitations and various response functions. Our results satisfy requirements of
particle-hole symmetry. We show that while the dispersion relation obtained from the modified random-phase
approximation (MRPA) of the Halperin-Lee-Read (HLR) theory is particle-hole symmetric, correlation functions
obtained from this scheme are not. The results of the Dirac theory are shown to be consistent with the Haldane
bound on the projected structure factor, while those of the MPRA of the HLR theory violate it.
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I. INTRODUCTION

Since the discovery of the fractional quantum Hall effect
(FQHE) [1], a vast amount of theoretical and experimental
work has been done to explore this fascinating phenomenon.
In spite of the effort, the FQHE remains one of the most
challenging problems of condensed matter physics. A major
breakthrough in approaching the problem was the idea of
the composite fermion [2,3], derived from an earlier flux-
attachment approach [4]. Starting from a mean field approxi-
mation, one arrives at an effective field theory of FQH, known
as Chern-Simons (CS) fermionic theory, which was first used
to describe Jain’s sequence of incompressible fractionally
quantized Hall states [5].

The CS fermionic field theory was later used by Halperin,
Lee, and Read (commonly referred to as HLR theory) [6] to
describe FQH states at filling fractions with the even denomi-
nators. A crucial test of the HLR theory was its prediction of
compressible FQH states where the composite fermion forms
a Fermi liquid. This behavior of composite fermions near
half-filling was consequently confirmed experimentally [7–9]
and constitutes one of the greatest triumphs of HLR theory,
lending more credence to the idea that the physical degrees of
freedom of FQH systems near half-filling are indeed composite
fermions.

Despite its phenomenological success, the HLR theory and
the flux-attachment approach to FQH systems in general have
been criticized on various grounds (see, e.g., Ref. [10]). The
most commonly raised criticisms, the wrong energy scale
and the lack of projection to the lowest Landau level, can
be partially addressed by phenomenological modifications of
the HLR theory, the most successful of which is perhaps the
“magnetic modified random-phase approximation,” or MM-
RPA [11]. (As its name reveals, the MMRPA in fact includes
two separate modifications to HLR. The first addresses the
issue of the problem of wrong energy scale [12], and the second
ensures the finiteness of physical observables for massless limit

of electrons with g factor g = 2, a property of the lowest
Landau level [11].) The proposed modifications of HLR do
not, however, address the issue of particle-hole symmetry
(PHS) [13], which has again attracted attention after intriguing
experimental results [14,15] which indicate that the composite
fermion density is less than the electron density if ν > 1

2 , in
contrast with the expectation from the HLR theory.

The PHS is a focus of this paper. In the lowest Landau level
limit, with only two-body interaction, the projected Hamilto-
nian has this symmetry. Particle-hole conjugation maps a FQH
state with filling factor ν to another state with filling factor
1 − ν, and PHS imposes stringent constraints on physical
observables in the two states. For example, the projected
density-density interaction is invariant under particle-hole
conjugation. There is a more subtle relationship between the
finite-wave-vector Hall conductivities of the two states [16].
Although the symmetry is realized only in the limit of very high
magnetic field, any theory pretending to describe the quantum
Hall effect should be capable of accommodating the symmetry.
There is also some experimental evidence that particle-hole
symmetry is relevant in real experiments [14,15].

The fact that the process of flux attachment breaks particle-
hole symmetry by attaching magnetic fluxes to particles,
but not holes, has received early attention. Kivelson, Lee,
Krotov, and Gan [17,18] performed a simple calculation of the
conductivity tensor σij using a random-phase approximation
(RPA) of the HLR theory and obtained a result which does not
satisfy constraints implied by particle-hole symmetry. The lack
of explicit PHS is also apparent in the asymmetric treatment
of Jain’s sequences states of HLR theory, where states with
filling fraction ν = N

2N+1 and ν = N+1
2N+1 are mapped to different

composite fermion (CF) states with filling fractions νCF = N

and νCF = N + 1, respectively. (Note, however, that the wave
functions obtained in the composite fermion approach show a
high degree of particle-hole symmetry [19,20].)

Motivated by the importance of PHS, one of us has recently
proposed an explicitly particle-hole symmetric theory of the
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FQH effect, the Dirac composite fermion theory [21]. A
distinctive feature of this theory is that, in gapless ν = 1

2
state, PH conjugation maps a composite fermion to itself,
only reversing the direction of its momentum (similar to time
reversal for ordinary fermions). With this assumption, the Dirac
quality of the composite fermion (its Berry phase π around the
Fermi circle) is an unavoidable consequence of the properties
of the square of the particle-hole conjugation operator [22,23].
Numerical simulation provides the most nontrivial check for
the this Berry phase [23], which is starting to be explored
experimentally [24]. (It has been argued that Jain’s CF wave
function also incorporates a π Berry phase [19,25].) The Dirac
composite fermion theory partially explains the experimentally
measured disparity between the density of electrons and den-
sity of the composite fermions [8,14,26]. The proposal of the
Dirac composite fermion theory has stimulated the conjecture
about a large web of field-theoretic dualities in 2+1 dimensions
[27–30].

In light of the above, an important question arises about
whether or not the HLR theory is fundamentally inconsistent
with particle-hole symmetry. As mentioned, early attempt
[17] to check PHS within the HLR theory was unsuccessful.
However, a recent reanalysis [31] finds that for some physical
quantities, including the Hall conductivity in the presence of
particle-hole symmetric disorder and the location of magne-
toroton minima, the HLR theory gives particle-hole symmetric
results that coincide with those of the Dirac composite fermion
theory. The authors of Ref. [31] made a conjecture that the
HLR theory has an emergent particle-hole symmetry in the
infrared and it is indistinguishable from the Dirac composite
fermion theory as far as physical observables are concerned.
Reexamining this claim is another goal of this paper.

In this work, we compute various physical quantities for
fractional quantum Hall states in the Jain sequences with
filling factors ν = N

2N+1 and N+1
2N+1 . Treating 1/N as a small

parameter, we develop an efficient method to compute corre-
lation functions in the Dirac composite fermion theory. We
then compare with the HLR theory (in its phenomenologically
most successful improved version, the MMRPA theory) and
check for the presence of particle-hole symmetry. We find,
unsurprisingly, that the results derived from the Dirac com-
posite fermion theory satisfy the requirements of PHS. The
situation with the HLR theory turns out to be quite intriguing.
As we expect, the correlation functions computed from the
HLR theory are not particle-hole symmetric. We also observe
a violation of the Haldane bound on the leading q4 coefficient
of the projected static structure factor [32,33]. Surprisingly,
however, the dispersion relation of the neutral excitations is
particle-hole symmetric (to leading and next-to-leading order
in the large-N expansion), and moreover coincides with the
result obtained from the Dirac composite fermion theory by
setting all Landau’s parameters to zero. Thus, we conclude that
the claim of Ref. [31] about emergent particle-hole symmetry
of the HLR theory is invalid as far as current versions of the
latter are concerned, but it is unclear if it can be made valid
again by, say, additional improvements to the HLR theory on
top of those already made in the MMRPA.

The layout of the paper is as follows. In Sec. II we review
the framework of the Dirac composite fermions. We derive
the Lagrangian of the effective field theory describing FQH

states with filling fraction given by Jain’s sequence ν± = 1
2 ±

1
2(2N+1) and emphasize its origins in particle-hole symmetry
and Galilean invariance. In Sec. III we present the Fermi-liquid
formalism which is the main computational framework of this
paper. We derive a set of recursion relations and boundary
conditions that enable us to compute response functions and
dispersion relations in closed form. In Sec. IV we derive
from the Dirac composite fermion theory the long-wavelength
limit of the celebrated Girvin-Macdonald-Platzman algebra
and demonstrate the crucial role of the dipole moment of
the composite fermions in this derivation. We discuss the
dispersion relation of the neutral excitations of the theory in
Sec. V and compare with the results from HLR theory and the
numerical work [34]. In Sec. VI we compute the susceptibility
and the Hall conductivity and comment on their relations to
various topological quantities. In both Secs. V and VI, we
point out the expectations based on particle-hole symmetry
and whether or not they are satisfied in the different theories
under consideration. We conclude in Sec. VII. The Appendix
contains additional technical details.

II. EFFECTIVE FIELD THEORY OF FQH NEAR
HALF-FILLING

A. Review of the Dirac composite fermion

Let us begin with a heuristic overview of the composite
Dirac fermion. We start in flat space first. Working to lowest
order in the derivative expansion, the action, as proposed in
Ref. [21], is

S(ψ,a,A) =
∫

i

2
ψ̄γ 0

↔
D0ψ + i

2
vF ψ̄γ i

↔
Diψ

− 1

4π
adA + 1

8π
AdA, (1)

where Dμ = ∂μ − iaμ. For the Dirac matrices we choose the
representation γ 0 = σ 3, γ i = σ 3σ i, i = 1,2. Both the Dirac
field and the gauge field a are dynamical, while A is an external
background field. vF is a phenomenological parameter of Dirac
composite fermion theory (replacing the effective mass in
HLR theory). Consider for the moment a background constant
magnetic field. Since a appears linearly, it simply acts as a
Lagrange multiplier, enforcing a constant composite fermion
density and a vanishing current

ψ†ψ = B

4π
→ NCF = Nφ

2
, ψ̄γ iψ = 0. (2)

Note that (unlike in the usual flux-attachment approach) the
number of composite fermions NCF is always half the magnetic
flux Nφ , even away from half-filling. We can also calculate the
charge density by taking δS/δA0,

J 0 = B − b

4π
→ Ne = Nφ

2
− nφ

2
. (3)

In particular, we can move away from half-filling by turning
on a nonzero background b.1

1That means restricting the integration over a sector with a fixed
total flux of b.
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One can work out the filling factors that correspond to
composite fermions forming an integer quantum Hall state.
Recall that if we consider zero fermion number to be the zeroth
Dirac Landau level half-filled and that each Landau level has
|nφ| states, so if we fill all negative levels, the zeroth, and N

positive-energy Landau levels the composite fermion number
is |nφ|(N + 1/2), which implies nφ = ± Nφ

2N+1 . From this we
can directly calculate the filling fraction

ν = Ne

Nφ

= 1

2
∓ 1

4N + 2
=

{
N

2N+1 : nφ > 0
N+1

2N+1 : nφ < 0
(4)

yielding either the standard or conjugate Jain series.
It is possible to convince oneself that the shift of these

states comes out correctly as well. If we are in a curved
background, we must account for the quantum Hall shift by
coupling to background curvature. Following Ref. [35], this
requires covariantizing our spinor derivative to Dμ = ∂μ −
iaμ + i

2σ 3ωμ (as the composite Dirac fermion is spin half)
and shifting A → A + 1

2ω,

S(ψ,a,ω,A) =
∫

iψ̄γ μDμψ − 1

4π
ad

(
A + 1

2
ω

)

+ 1

8π

(
A + 1

2
ω

)
d

(
A + 1

2
ω

)
. (5)

Consider now the composite fermion on a sphere. Due to
coupling to curvature, the N th Dirac Landau level has |nφ| +
2N states, meaning we must generate two Chern-Simons terms
when integrating out the fermions:

±N + 1/2

4π
ada + N (N + 1)

4π
adω, (6)

where the sign depends on the sign of nφ . It is now trivial to
perform the Gaussian integral over a to find the topological
action

N

2N + 1

1

4π
AdA + N (N + 2)

2N + 1

1

4π
Adω, nφ > 0 (7)

N + 1

2N + 1

1

4π
AdA + (N + 1)(1 − N )

2N + 1

1

4π
Adω, nφ < 0 (8)

reproducing both the correct Hall conductance and topological
shift for both Jain states found in Ref. [36].

B. Further constraints

As a candidate for the low-energy effective theory, the Dirac
action we have considered so far is incomplete for a few
reasons. Since it is an effective field theory for electrons in
the lowest Landau level it must inherit all of the symmetries of
the lowest-Landau-level (LLL) problem, including Galilean
symmetry. The problem of modifying the Dirac action to
make it into a low-energy effective theory satisfying Galilean
invariance can be solved by using the apparatus of Newton-
Cartan geometry [35]. For completeness, we explain how to
construct a Galilean theory of the Dirac composite fermion
here, mostly without proof (for details see Ref. [35]) First of
all, we find that the time derivative term is not invariant under
Galilean boosts as it is written (in the standard Newton-Cartan

conventions)

vμ

2
ψ†↔

Dμψ,vμ → vμ + δvμ. (9)

However, the existence of a strong magnetic field provides us
with a preferred reference frame, the drift velocity

uμ = εμνρFνρ

2B
=

⎛
⎜⎝

1

Ey/B

−Ex/B

⎞
⎟⎠. (10)

We can therefore construct the time derivative with u:

i
uμ

2
ψ†↔

Dμψ = i

2
ψ†↔

Dtψ + i
εijEj

2B
ψ†↔

Diψ. (11)

The second term on the right-hand side can be interpreted as
interaction energy of the electric field with dipoles [35] E · d,
with the density of electric dipole moment d given by

di = − i

2B
εij ψ̄γ 0

↔
Djψ ≡ 1

B
εijT

0j , (12)

where T 0j is the momentum density carried by the composite
fermion. This is in contrast to the naive action (1) where ψ

does not couple directly to the external gauge field. One can
say that each composite fermion quasiparticle with momentum
p carries a dipole moment with respect to the external electric
field orthogonal to the momentum,

d = −�2
Bp × ẑ. (13)

The composite fermion dipole moment has been discussed in
earlier works [37,38].

There are additional constraints that come from inheriting
the symmetries of the theory of massless fermion with g factor
equal to 2 [35]. First of all, the electromagnetic gauge field
is shifted by a term proportional to the vorticity of the drift
velocity,

A → A − 1

2
(∇ × u)dt = A + ∇ · E

2B
dt, (14)

and the spin connection the composite fermion couples to also
gets a term proportional to this vorticity, such that even in flat
space

ω = −∇ · E

2B
dt. (15)

This means that even in flat space the Chern-Simons terms can
be collected into one object

A = A − 1

2
(∇ × u)dt + 1

2
ω = A + ∇ · E

4B
dt, (16)

giving the flat space action (with no long-range interactions)

S(ψ,a,A) =
∫

iψ†Dtψ + ivF ψ†σ iDiψ + i

2
uiψ†↔

Diψ

− 1

4π
adA + 1

8π
AdA, (17)

where

Dμ = ∂μ − iaμ + i

2
σ 3ωμ . (18)
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C. Large-N counting

Before proceeding with further modifications, we pause
here for a discussion of the large-N limit and the scaling of
various quantities with N .

We are interested in the electromagnetic response of a
system with ν = 1

2 + O(N−1), for energy and momentum of
order O(1/N ). Space and time derivatives thus count as 1/N :

∂t ∼ ∂x ∼ 1

N
. (19)

For example, the difference between A and A [Eq. (16)] is
relatively of order 1/N2. One can view the term AdA as
containing terms of different powers of N ,

AdA ∼ 1

N
A2 + 1

N3
A2 + · · · (20)

(we are interested only in terms quadratic in A). The linear
response over external perturbations of Aμ is given by the
polarization tensor of the system as �μν . The contact term
AdA thus contributes terms of order 1/N and 1/N3 to �μν .
For a rotationally invariant system, due to charge conservation,
there are three independent components of �μν : the suscep-
tibility χ ∼ �00, the Hall conductivity σH ∼ ω−1�0⊥, and
the transverse response function �⊥⊥, where ⊥ denotes the
spatial direction perpendicular to the momentum. In this paper
we will be interested in χ and σH . Due to the presence of
the factor ω−1 ∼ N in its definition, the Hall conductivity that
arises from AdA contains terms of order 1 and 1/N2. In fact,
it can be computed explicitly from Eq. (16) to be

σH (ω,q)|AdA = 1

4π

(
1 − q2

4

)
. (21)

This up to the factor of 1
2 matches with the exact result for the

Hall conductivity of a full Landau level [16]. Thus, the 1
8π
AdA

term in Eq. (17) encodes one half of the response function
of a full Landau level (the ν = 1 state). The susceptibility
χ , formally of order 1/N , turns out to be zero in the term
AdA. Physically, the full Landau level is completely inert to
fluctuations of the scalar potential in the LLL limit.

We will compute it by first integrating over ψ and then
integrating over aμ in the saddle-point approximation. The
saddle-point value of a is ∼ A/N [see Eqs. (5) and (6)]. Thus,
we can estimate

adA ∼ A2

N2
. (22)

By evaluating the term adA to next-to-leading order in 1/N ,
we will have get terms up to A2/N3 inclusively. To that order
one can replace A by A in the adA term, but not in the AdA
term.

The fermion couples, through various fermion bilinears,
to aμ, ui , and ωμ. Ignoring ωμ for now, integrating over the
fermion one obtains schematically, to quadratic order

a2 + au + u2, (23)

where the coefficients are of order one. Since a,u ∼ A/N ,
the fermion loops contribute A2/N2 to the partition function,
comparable to the term adA. We will compute this loop to
next-to-leading order in 1/N . To that order, when calculating

the drift velocity ui , there is no difference if one uses in Eq. (10)
the improved gauge potential (16) or the unimproved one.

Thus, evaluating the fermion loop up to the next-to-leading
order, one will be able to find the O(1), O(1/N ), and O(1/N2)
terms in σH , and the O(1/N2) and O(1/N3) terms in the
susceptibility. It may seem strange that a next-to-leading order
calculation would give us the Hall conductivity with a precision
of 1/N2; this is because the O(1) term is completely trivial
(equal to 1/4π ).

The spin connection ω is of order A/N2, according to
Eq. (15), and is 1/N smaller than aμ. Thus, it may appear
that its contribution will be only 1/N suppressed compared to
the terms in Eq. (23), and has to be taken into account in a
next-to-leading-order calculation. However, the operator that
ω couples to, ψ†σ 3ψ , has vanishing matrix elements between
states near the Fermi surface, so the diagrams containing it
are further suppressed by additional powers of 1/N . Thus, ωμ

affects the fermionic loop only in the next-to-next-to-leading
order in 1/N , and can be safely ignored in our calculations.

D. Coulomb interactions

The one piece missing in our theory is the inclusion of
long-range Coulomb interactions. As discussed in Ref. [16],
including long-range interactions for electrons requires modi-
fying the effective field theory (17) as follows. First, we must
obviously include a density-density interaction term

−α

2

∫
dt d2x d2y

δρ(x)δρ(y)

|x − y| . (24)

However, as explained in Ref. [16], this addition alone is not
sufficient. One should also add contact terms, whose form
is exactly fixed by particle-hole symmetry. According to the
recipe of Ref. [16], the effect of these additional terms is to
replace A in all terms in Eq. (17) except for the AdA term by

Ã = A +
∑

n

Cn∇2nδBdt, (25)

where Cn are constants that can be determined from the
electron two-body interaction potential. In some sense these
terms constitute the Fock (as opposed to Hartree) contribution
to the self-consistent scalar potential acting on each electron
(for details see Ref. [16]). This modification is not essential
for the calculation of the susceptibility (in which only A0 is
perturbed), but important for that of the Hall conductivity.

Since δB ∼ A/N , to the order we are working only the C0

term contributes, and the action can be written as

S(ψ,a,A) =
∫

i

2
ψ†↔

Dtψ + i

2
vF ψ†σ i

↔
Diψ

+ i

2
uiψ†↔

Diψ − 1

4π
adÃ + 1

8π
AdA

− α

2

∫
dt d2x d2y

δρ(x)δρ(y)

|x − y| (26)

with

Ã = A + C0δBdt, C0 =
√

πα

4
√

2
, (27)

where we have given the value of C0 for the Coulomb potential.
It is convenient to split various quantities into the average (or
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equilibrium) piece and a perturbation piece, e.g., the electron
density is given by ρ = ρ̄ + δρ where the average and the
perturbations of the density are given by

ρ̄ = B − b0

4π
, δρ = 1

4π

∇ × (δ 
A − δ
a), (28)

where b0 = ± B
2N+1 is the effective magnetic field felt by the

composite fermions. In what follows, we find it useful to
rewrite the long-range density-density Coulomb interaction
interaction by introducing a Hubbard-Stratonovich transfor-
mation via the field φ:

L =
∫

d2x
(

i

2
ψ̄γ 0

↔
D0ψ + ivF

2
ψ̄γ i

↔
Diψ

− 1

4π
adÃ + 1

8π
AdA + i

2
uiψ†↔

Diψ

)

+
∫

d2x
1

4π
φ 
∇ × (δ 
A − δ
a)

+ 1

4πα

∫
d2q

(2π )2

φ(−q)φ(q)

q
, (29)

where we have also performed a Fourier transform on the last
term. As φ is the Hartree contribution to the scalar potential,
for the drift velocity in Eq. (29) one should use

ui = εij (Ẽj + ∂jφ)

B
, (30)

where Ẽj = ∂j Ã0 − ∂0Aj .
In principle, the Lagrangian (29) can be used for calculation.

One can, for example, develop an RPA by integrating over ψ

in the Fermi liquid ground state of the latter, keep only the
quadratic terms in the result. This requires the calculation of
the fermion loop diagrams involving insertions of the current

operator ψ̄γ μψ or the momentum density ψ̄γ i
↔
Diψ .

E. A little trick

If one is interested in the regime of small energy and
momentum, e.g., when these are suppressed by a factor of 1/N

with N being a large number, then one can employ a useful
mathematical trick developed in Ref. [39]. One can show that

the following two fermionic theories are equivalent at large N

for any ui :

i

2
ψ̄γ 0

↔
D0ψ + ivF

2
ψ̄γ i

↔
Diψ + i

2
uiψ†↔

Diψ

≈ i

2
ψ̄γ 0

↔
D̃0ψ + ivF

2
ψ̄γ i

↔
D̃iψ, (31)

where on the right-hand side

D̃μ = ∂μ − iãμ, ã0 = a0 + m∗
2

uiu
i, ãi = ai − m∗ui ,

(32)

where m∗ = kF /vF is the effective mass. The sign “≈” in
Eq. (31) means that if one integrates over the fermion, the
resulting functionals of aμ and ui coincide to leading and next-
to-leading order in 1/N (provided the energy and momentum
scales are of order 1/N ).

In Ref. [39] this equivalent is checked by direct calculation.
The physical basis for the equivalence (31) is the proportional-
ity between the momentum density and the current density: for
quasiparticles near the Fermi surface, the former is m∗ times
the latter. This fact allows us to absorb the u-coupling to ψ

into the gauge field a.
Using this equivalence, we can rewrite the Lagrangian (26)

as

L =
∫

d2x
( i

2
ψ̄γ 0

↔
D̃0ψ + ivF

2
ψ̄γ i

↔
D̃iψ

− 1

4π
adÃ + 1

8π
AdA

)

−
∫

d2x
1

4π
φ 
∇ × (δ
a − δ 
A)

+ 1

4πα

∫
d2q

(2π )2

φ(−q)φ(q)

q
. (33)

One by-product of (31) is that the composite fermion is not
directly coupled to φ. Integrating φ out and redefining ãμ →
aμ for brevity, we arrive at the final form of the Lagrangian:

L = LCF +
∫

d2x
(
− 1

4π
adÃ + 1

8π
AdA − m∗

8πB
ẼiẼ

i
)

− α

16π

∫
d2q

(2π )2

qiqk

[
εij (δaj − δAj ) − m∗

B
Ẽi

]
(−q)

[
εkl(δal − δAl) − m∗

B
Ẽk

]
(q)

q − m∗
2B

αq2
, (34)

where

LCF =
∫

d2x
i

2
(ψ̄γ 0

↔
D0ψ + vF ψ̄γ i

↔
Diψ),

Dμ = ∂μ − iaμ. (35)

For convenience, here we recall our notations for vari-
ous modified gauge potentials and gauge fields appearing

in Eq. (34):

A = A + ∇ · E

4B
dt, Ã = A +

√
πα

4
√

2
δB dt,

Ẽi = ∂iÃ0 − ∂0Ai. (36)

III. SEMICLASSICAL APPROXIMATION

In this section we develop a semiclassical approximation
which is the main calculation tool of this paper. This allows
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FIG. 1. A deformed Fermi surface.

one to effectively carry out the integration over the fermions.
The goal is to analyze Jain’s states at fillings ν = N

2N+1 , N+1
2N+1

where the Dirac composite fermion forms integer quantum
Hall states with filling fraction νCF = ±(N + 1

2 ).
Since we are interested in states near half-filling ν ∼ 1

2 ,
we will take N to be large and use 1/N as an expansion
parameter. Here, the composite fermion lives in an average
magnetic field of order 1/N . The cyclotron frequency of the
composite fermion (the parameter ωb introduced below) goes
to zero in the large-N limit (in the case of Coulomb interaction
as 1/N up to a logarithm), and the radius of the semiclassical
orbit of a composite fermion diverges as N . The regime of
nontrivial physics is ω ∼ ωb, q ∼ 1/R = O(N−1).

We reiterate that in this limit, one can show that the RPA
and semiclassical calculations are equivalent up to leading and
next-to-leading orders in 1/N expansion [40]. However, in
what follows we will focus on the semiclassical formalism
which would allow us to derive closed form results. It will
also allow us to generalize the Dirac composite fermion
theory by introducing short-range interactions through Lan-
dau parameters of the Fermi-liquid model. Note that even
though this generalization can also be incorporated in the RPA
approximation, the implementation would be prohibitively
complicated.

A. Quantization of the Fermi surface fluctuations

In this method we look at the fluctuations of the shape
of the Fermi surface, bosonize, and study the commutation
algebra governing these fluctuations. This procedure was
studied previously by by Haldane [41] (see also Refs. [42–44]).
Here, we recall a simple and intuitive semiclassical derivation
of this algebra motivated by considering Poisson brackets of
operators in magnetic fields (for details see Ref. [45]). In the
next subsection we will rederive this algebra using the quantum
Boltzmann’s equation.

We assume that low-energy, long-wavelength excitations of
a Fermi liquid can be described by fluctuations of the shape of
the Fermi surface (Fig. 1), parametrized by an infinite number
of fields u(θ ) or un:

kF (t,x,θ ) = k0
F + u(t,x,θ ) = k0

F +
∞∑

n=−∞
un(t,x) einθ . (37)

The quasiparticle distribution function np(t,x) is one in-
side the Fermi line and zero outside the line: for p =
(p cos θ, p sin θ ),

np(t,x) = θ (kF (t,x,θ ) − p), (38)

where θ is the step function.
The commutation relation between the un’s can be deter-

mined from a semiclassical matching calculation. For each
function on the phase space F (x, p), one defined an operator
F ,

F =
∫

d2x d2p
(2π )2

F (x,p)np(x), (39)

where np(x) is the quasiparticle distribution function, defined
above. Obviously, F is a functional of un. To linear order in
un,

F =
∫

d2x
∫

|p|<kF

d2p
(2π )2

F (x, p)

+ kF

∫
d2x

∫ 2π

0
dθ F (x, kF nθ )u(x, θ ) (40)

with nθ = (cos θ, sin θ ).
Let us take two operators, F and G, corresponding to two

phase-space functions F (x ,p) and G(x ,p). We impose the
following condition on the commutation relation between F

and G:

[F,G] = −i

∫
d2x d2p
(2π )2

{F,G}(x,p)np(x), (41)

where the {F,G} is the classical Poisson bracket between F

and G,

{F,G} = ∂F

∂pi

∂G

∂xi

− ∂G

∂pi

∂F

∂xi

− bεij ∂F

∂pi

∂G

∂pj

, (42)

where we have allowed for the existence of an external
magnetic field b much smaller than the scale set by the Fermi
momentum (b � k2

F ). Expanding both sides of Eq. (42) in
series over u, one can determine the commutation relation for
u. For example, the leading constant term in the commutator
of u follows from

k2
F

∫
d2x d2x′

∫
dθ dθ ′ F (x, kF nθ )G(x,kF nθ ′ )[u(x ,θ ), u(x′, θ ′)] = −i

∫
d2x

∫
|p|<kF

d2p
(2π )2

{F,G}(x, p). (43)

Using Stokes’ theorem, the right-hand side can be transformed to an integral over the boundary of the Fermi disk. At the end we
find

[u(x,θ ), u(x′,θ ′)] = i(2π )2

kF

[
−ni(θ )

∂

∂xi

+ b

kF

∂

∂θ

]
[δ(x − x′)δ(θ − θ ′)] + O(u), (44)
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In terms of un, the formula reads as

[um(q), un(q′)] = 2π

kF

[
−bm

kF

δm+n,0 + δm+n,−1qz̄ + δm+n,1qz

]
(2π )2δ(q + q′) + O(u), (45)

where qz = 1
2 (q1 − iq2),qz̄ = 1

2 (q1 + iq2). Note that the al-
gebra depends only on the size of the Fermi surface kF ,
but not on any dynamic properties (Fermi velocity, Landau’s
parameters, etc.). These only enter the Hamiltonian. Assuming
the composite fermions form a Fermi liquid, the Hamiltonian
of the system is

H = vF kF

4π

∫
d2x

∞∑
n=−∞

(1 + Fn)un(x)u−n(x), (46)

where Fn are the Landau parameters. Within the theory (46),
one can rescale vF and all 1 + Fn simultaneously so that the
products vF (1 + Fn) remain constants without changing any
physics. Note that there is no relation between the effective
mass m∗ = kF /vF and the Landau parameter F1: Galilean
invariance is enforced by the dipole electric moment of the
composite fermion.

For Coulomb interactions, the composite fermions form a
marginal Fermi liquid, and one should take Fn to be the Landau
parameters evaluated at the scale of the energy gap. For a Jain
state at large N , these Landau parameters are expected to be
proportional to ln N with the same prefactor. In this case, all
the logarithms can be absorbed into the effective mass m∗,
and all correlation functions are free from ln N divergences
when expressed in terms of the new m∗. This is consistent with
the cancellation of infrared divergences in electromagnetic
response functions found in Ref. [46]. We will not consider
ln N to be a large parameter and will keep Fn as free parameters
in our further discussion.

The Hamiltonian (46) and the commutation relations (45)
form our theory of the neutral excitations in the fractional
quantum Hall fluid. This theory involves an infinite number of
fields un, reminiscent of higher-spin relativistic field theories
[47,48]. Using commutator (45), we obtain the linearized
equation of motion for un(ω,q):

[ω + sgn(b0)n(1 + Fn)ωb]un

= vF [qz(1 + Fn−1)un−1 + qz̄(1 + Fn+1)un+1], (47)

where ωb is the cyclotron frequency of the composite fermion,

ωb = |b0|
m∗

. (48)

We ignore nonlinear terms like unδb in Eq. (47).

B. Derivation from quantum Boltzmann equation

We now repeat the derivation of the commutation relation,
but this time from the perspective of the quantum Boltzmann
equation. This will simplify considerations of boundary con-
ditions and as an added bonus we will be able to look at the
response of the system to external fields. The derivation follows
closely to the bosonization of Fermi liquid [41,43,49,50].

Let us again consider a fractional quantum Hall system in
the Jain’s sequence with filling fraction ν = N

2N+1 , N+1
2N+1 , which

corresponds to a composite fermion with finite density ρ̄CF =
k2
F

4π
= B

4π
in background magnetic field b0 = ±B/(2N + 1).

In the large-N limit, i.e., ν ∼ 1
2 , the effective magnetic field

is small (b0 ∼ k2
F /N ), allowing us to describe the system as

a Fermi liquid with small deformations [40]. In other words,
the composite Dirac fermions form a two-dimensional Fermi
surface with radius kF .

We now take the system to be in an effective electric field
given by b(x,t) with average value b0 and perturbation δb =
εij ∂iδaj and electric field ei = −∂0δai , where we have adopted
the temporal gauge a0 = 0. We will assume that δb(x,t) and

e(x,t) are weak and slowly varying [∼O(1/N)].

The low-energy physics of the Fermi liquid is described by
a distribution function

nk(t,x) = n0(k) + δnk(t,x), (49)

with n0 being the equilibrium fermionic distribution function

n0(k) = �(kF − k). (50)

The quantum Boltzmann equation in the collisionless limit then
describes the evolution of perturbations δnk(t,x):

∂δnk(t,x)

∂t
+ 
v(k) · 
∇xδnk(t,x) + 
e(x) · 
∇kδnk(t,x) + (
v(k) × 
b(x)) · 
∇kδnk(t,x) + 
v(k) · 
e(x)

∂n0(k)

∂εk
= 0, (51)

where 
v(k) = 
∇kεk is the group velocity derived from the dispersion relation εk. Since we are interested in the regime of frequency
and momentum which are close to the Fermi surface, we can substitute

δnk(t,x) = u(θ,x,t)δ(kF − k), (52)

where θ is the direction of k on the Fermi surface (Fig. 1). Linearizing, we can rewrite the Boltzmann equation in terms of
u(θ,x,t):

∂u(θ,x,t)

∂t
+ vF 
nθ · 
∇xu(θ,x,t) − sgn(b0)ωb

∂u(θ,x,t)

∂θ
− 
nθ · 
e(x) = 0, (53)

where 
nθ is defined as a unit vector normal to the Fermi surface at angle θ , the cyclotron frequency ωb is given by ωb = |b0|
kF /vF

,

and we have ignored the higher-order terms 
e · 
∇kδnk(t,x) and [
v(k) × δ
b(x)] · 
∇kδnk(t,x).
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Performing a Fourier transform

u(θ,x,t) =
∫

d3q

(2π )3
u(θ,q,ω)eiqμxμ

, (54)

Eq. (53) turns into

−iωu(θ,q,ω) + ivF 
nθ · 
qu(θ,q,ω) − sgn(b0)ωb

∂u(θ,q,ω)

∂θ
− 
nθ · 
e(q,ω) = 0. (55)

Similar to before we perform a mode decomposition as

u(θ,q,ω) =
∞∑

n=−∞
un(q,ω)einθ , (56)

which gives us the final equation of motion in the form of a
recursion relation relating un+1 to un = un−1:

0 = [ω + sgn(b0)nωb]un − B

|b0|ωb(q̃z̄un+1 + q̃zun−1)

+ω(δn,1δaz + δn,−1δaz̄), (57)

where we use the short formun forun(q̃,ω) and we have defined

�B = 1√
B

, δaz = 1

2
(δa1 − iδa2),

q̃i = qi�B, δaz̄ = 1

2
(δa1 + iδa2). (58)

This equation of motion is the same as the system described
by Hamiltonian (46) and commutation relations (45) when the
Landau parameters are zero. Turning these on, the recursion
relation becomes [45]

0 = [ω + sgn(b0)n(1 + Fn)ωb]un

− B

|b0|ωb[q̃z̄(1 + Fn+1)un+1 + q̃z(1 + Fn−1)un−1]

+ω(δn,1δaz + δn,−1δaz̄). (59)

Equation (47) is nothing but Eq. (59) without δai , i.e., without
the fluctuations of the background field.

Finally, with the mode decomposition the composite
fermion density ρCF and current J i

CF can be rewritten as

ρCF =
∫

d2k
(2π )2

nk(t,x) = ρ̄CF + kF

2π
u0,

J i
CF(x,t) =

∫
d2k

(2π )2
(1 + F1)nk(t,x)vi(k)

=
∫

d2k
(2π )2

(1 + F1)nk(t,x)
ki

m∗ ,

J 1
CF =k2

F (1 + F1)

4πm∗ (u1 + u−1),

J 2
CF = ik2

F (1 + F1)

4πm∗ (u1 − u−1), (60)

and the continuity equation ∂0ρCF + ∂iJ
i
CF = 0 turns into

Eq. (59) for n = 0.

C. Boundary conditions and electromagnetic responses

So far in our discussion we have not included the elec-
tromagnetic field. In order to analyze the electromagnetic
responses of the system as well as to arrive at a closed set
of equations, we go back to the Lagrangian (34), we need to
emphasize that the effective mass m∗ needs to be replaced
by m∗/(1 + F1) in the appearance of Landau parameters. We
consider the equations of motion for aμ. The equations of
motion for a0 give us the familiar constraint of composite
fermion density

ρCF = B + 
∇ × δ 
A
4π

, (61)

while the equations of motion for ai in momentum space are

J i
CF(q) = εij Ẽj (q)

4π
+ α

8π
εij qj

×
[
εklqk[δal(q) − δAl(q)] − m∗

(1+F1)B qkẼ
k(q)

]
q − m∗

2(1+F1)B αq2
.

(62)

With the help of Eq. (60), we can rewrite these constraint
equations as

1+F1

2π

B

m∗
u1 = i

Ẽz

2π
− iα

4π (1 − m∗
2(1+F1)B αq)

qz

q

×
[
εij qiδaj − εij qiδAj − m∗

B(1+F1)
qiẼ

i

]
,

1+F1

2π

B

m∗
u−1 = − i

Ẽz̄

2π
+ iα

4π (1 − m∗
2(1+F1)B αq)

qz̄

q

×
[
εij qiδaj − εij qiδAj − m∗

B(1+F1)
qiẼ

i

]
.

(63)

These relations as well as the continuity equation can be
considered as boundary conditions which along with the
equation of motion (59) provide us a closed set of equations
which can be solved. Note that the continuity equation is
automatically satisfied by the Bianchi identity and does not
provide an independent constraint.

Finally, we can also derive the electromagnetic current
in the composite Dirac fermion theory from the action via
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Jμ = δS/δAμ giving

ρ = ρ̄ + 1

4π

(
1 + 1

4B
∂i∂

i
)

( 
∇ × δ 
A − 
∇ × δ
a)

−
(

1 + 1

4B
∂i∂

i
)


∇ · 
d, (64a)

J i = J i
CF − εij ej

4π
+ 1

16πB
∂i∂

i( 
∇ × δ 
A − 
∇ × δ
a)

+ C0

4π
εij ∂j ( 
∇ × δ 
A + 
∇ × δ
a)

+ ∂0di + 1

4B
∂0∂i


∇ · 
d − C0ε
ij ∂j


∇ · 
d, (64b)

where di is the dipole moment of composite fermion given by

di = m∗
(1 + F1)

εij

B
J

j

CF. (65)

This completes the derivation of our semiclassical framework.
The dynamics of the composite Fermi-liquid theory is given
by the recursion relation (59) and constraint equations (61) and
(63). The electromagnetic responses of the theory can then be
read off from Eq. (64)

IV. GIRVIN-MACDONALD-PLATZMAN ALGEBRA

The Girvin-Macdonald-Platzman (GMP) algebra generally
refers to the commutation algebra governing the density
operator of a fractional quantum Hall system projected to
the lowest Landau level [51]. Because of the projection, one
can show that the resulting projected density operators are no
longer commuting and their commutator is proportional to the
projected density operator. In momentum space, the algebra
takes the form

[ρ(k),ρ(k′)] ∼ sin(k × k′)ρ(k + k′). (66)

The GMP commutation relation also appears in other contexts.
It has been derived under the guise of W∞ algebra in Ref. [52],
where it was interpreted as the dynamical symmetry of area-
preserving diffeomorphisms. It also plays a role in the non-
commutative field-theory description of fractional quantum
Hall system [53–55] and in the Hamiltonian description of
the FQHE [56].

The Dirac composite fermion theory is, by construction, an
effective theory for interacting electrons projected to the lowest
Landau level. In this section, we show that we can reproduce the
algebra, at leading order in the momentum expansion, directly
from the Dirac composite fermion theory. As we will see, the
fact that the composite fermion has electric dipole moment
plays a crucial role in the appearance of the GMP algebra.

In what follows, we assume a constant background magnetic
field δAi = 0. Starting from Eq. (64) and keeping only the
leading and next-to-leading terms in the 1/N expansion, we
can rewrite the charge density operator as

ρ(x) = B − b(x)

4π
− ∂idi(x), (67)

where di is the electric dipole moment density of the composite
Dirac fermion defined in (65). We also know that di is
related to composite fermion momentum density T 0i by di =

B−1εijT
0j . Using the canonical anticommutation relation for

ψ and ψ†, one can easily derive the commutator of T 0i =
− i

2ψ†
↔
Diψ :

[T 0i(x), T 0j (y)] = i
∂

∂yi

[T 0j δ(x − y)] − i
∂

∂xj

[T 0iδ(x − y)]

+ iεij b(x)ψ†(x)ψ(x)δ(x − y). (68)

Using this equation and Eq. (67), one finds

[ρ(k),ρ(k′)] = i�2
B

2π
(k × k′)ρ(k + k′), (69)

where we have put in the density of the composite fermions
(61). This is the long-wavelength limit of the GMP algebra.

Another, semiclassical, approach to the GMP algebra works
as follows. Recall also from Eq. (60) that the composite fermion
current can be written in terms of the semiclassical operator
n 
p(
y) as

J i
CF(x) =

∫
d2y

d2p
4π2

δ(x − y)
pi(1 + F1)

m∗
np(y). (70)

Combining these equations we have

ρ(x) = B − b(x)

4π
− 1

B

∫
d2y

d2p
4π2

εij ∂

∂xi
δ(x − y)pjnp(y).

(71)

Noting the resemblance of the second term to the operators
defined in Sec. III A, we define the operator F̂ (x):

F (y,p) = εij ∂

∂xi
δ(x − y)pj ,

F̂ (x) =
∫

d2y
d2p
4π2

F (y,p)np(y), (72)

and rewrite the density as

ρ(x) = B − b(x)

4π
− 1

B
F̂ (x). (73)

We can now perform a Fourier transform and utilize commuta-
tion relations (41) to derive the GMP algebra at leading order
[Eq. (69)], again taking into account the constraint (61).

Note that for our derivation of the GMP algebra, the con-
tribution of the electric dipole moment of the Dirac composite
fermion to the charge density is of crucial importance. We note
that this algebra can also be derived in the old dipolar model of
Ref. [57] [see Eqs. (6) and (36) therein]. The GMP algebra also
comes out naturally in a recently proposed “bimetric” theory
of the nematic phase transition [58].

V. COLLECTIVE EXCITATIONS

In this section we look at the neutral excitations of the Dirac
composite fermion near half-filling. The methodology and the
calculations of these sections were previously laid out in [40].
After a short review, we generalize the calculation to include a
long-range Coulomb interaction. We also compare our results
to that of HLR [31] and Jain’s work [34] qualitatively. We see
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that, qualitatively, our results fit quite well with experimental
data [59,60].

We start with the recursion relation (59) and constraint
equations (61) and (63) and turn off external sources A0 =
0, δAi = 0. We have

[
ω̃ + sgn(b0)n(1 + Fn)

]
un

= B

2|b0| q̃[(1 + Fn+1)un+1 + (1 + Fn−1)un−1]

−ω̃(δn,1δaz + δn,−1δaz̄), (74a)

u±1 = ± α

4 B
|b0| (1 + F1)ωb�B(1 − |b0|

2B(1+F1)ωb�B
αq̃)

× q̃(δaz − δaz̄), (74b)

where using rotational symmetry have put qz = qz̄ = q

2 (qx =
q, qy = 0) and ω̃ = ω

ωb
such that un = un(q̃,w̃). Note also

that since u0 is nothing but the fluctuations of the composite
fermion density, in the absence of deviations from the back-
ground magnetic field δB = 0, Eqs. (60) and (61) imply that
u0 = 0. It is also convenient to define rescaled momentum and
interaction strength z and λ:

B

|b0| q̃ = z, λ = α

4 B2

b2
0
ωb(1 + F1)�B

. (75)

In what follows, we will assume that ν < 1
2 , that is, we

specialize to the case of ν = N
2N+1 . The case of ν = N+1

2N+1

follows in a similar fashion. We now replace b0 = B
2N+1 and

sgn(b0) = 1. The above equations simplify as

[ω̃ + n(1 + Fn)]un = z

2
[(1 + Fn+1)un+1 + (1 + Fn−1)un−1]

− ω̃(δn,1δaz + δn,−1δaz̄), (76)

u±1 = ± λz

1 − 2λz
(δaz − δaz̄). (77)

For simplicity, we now assume that the only nonzero Lan-
dau parameter is F1, and Fn = 0 for n �= ±2, although the
technique we will describe can be used if there are any
finite number of nonzero Landau parameters. Equation (76)
is now a recursion relation, whose solution for |n| > 1 with
the requirement that un → 0 when n → ±∞ is

un = F (ω̃,z)Jn+ω̃(z), n > 1 (78a)

un = G(ω̃,z)(−1)nJ−n−ω̃(z), n < −1 (78b)

where F (ω̃,z) and G(ω̃,z) are two unknown functions to be
determined. Plugging this ansatz into the recursion relation
(76), we see that the equations for n = ±2, ± 1 determine
u±1, δaz, and δaz̄:

u1 = F (ω̃,z)

1 + F1
J1+ω̃(z), (79a)

u−1 = −G(ω̃,z)

1 + F1
J1−ω̃(z), (79b)

δaz = F (ω̃,z)

2ω̃

[
−2(1 + F1 + ω̃)J1+ω̃(z)

1 + F1
+ zJ2+ω̃(z)

]
,

(79c)

δaz̄ = G(ω̃,z)

2ω̃

[
−2(1 + F1 − ω̃)J1−ω̃(z)

1 + F1
+ zJ2−ω̃(z)

]
.

(79d)

Finally, plugging these into the two constraint equations (77),
we arrive at a relationship between the undetermined functions
F (ω̃,z) and G(ω̃,z):

F (ω̃,z)

G(ω̃,z)
= J1−ω̃(z)

J1+ω̃(z)
, (80)

as well as a final constraint, implicitly defining the dispersion
relation ω̃(z):

J1−ω̃(z) = λz

2(1 − 2λz)ω̃

{
J1−ω̃(z)

J1+ω̃(z)

×
[
−2(1 + F1 + ω̃)J1+ω̃(z)

1 + F1
+ zJ2+ω̃(z)

]

−
[
−2(1 + F1 − ω̃)J1−ω̃(z)

1 + F1
+ zJ2−ω̃(z)

]}
.

(81)

Note that if we turn off the long-range interaction (λ = 0),
F1 drops out from the formulas and the dispersion relation
simplifies to [45]

J1−ω̃(z) = 0, G(ω̃,z) = 0, (82)

which corresponds to un = 0 for n < 0, or

J1+ω̃(z) = 0, F (ω̃,z) = 0, (83)

which corresponds to un = 0 for n > 0.
For given values of the Landau parameters Fn and inter-

action strength λ we can solve these equations numerically.
The dispersion relation for two different cases can be seen
in Fig. 2. Note that the qualitative shape of these curves can
depend strongly on the parameters. Here, we will comment on
some of the more salient features of the dispersion relation.

(1) An important feature of the neutral excitations of the
composite Dirac fermion theory is their particle-hole symme-
try. We can show explicitly that the dispersion curves of the
particle-hole duals ν± = 1

2 ± 1
2(2N+1) are exactly equal since

the solution of (74) with sgn(b0) = −1 can be obtained from
the solution with sgn(b0) = 1 by the map

un ↔ u−n, δaz ↔ δaz̄. (84)

One may expect that the HLR theory, being not manifestly
particle-hole symmetric, would give rise to different spectra of
neutral excitations for the ν− and ν+ states. However, this is not
true, for a reason that we do not completely understand. In the
Appendix, we demonstrate that the dispersion relation in HLR
theory [31] is also PH symmetric up to next-to-leading order
in 1/N expansion. Furthermore, the HLR dispersion coincides
with the dispersion derived in this section when the Coulomb
interaction and Landau parameters are both turned off (λ =
0 and Fn = 0). This seems to support the assertion made in
Ref. [31] that the HLR theory has an emergent particle-hole
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FIG. 2. Dispersion relation of neutral excitations of the Jain series ν = 1
2 ± 1

2(2N+1) . The solid and dashed lines represent the dispersions
with and without the Coulomb interactions. The N dependence of these curves is only through the rescaling of the x axis. (a) F1 = 0.5, Fn>1 =
0, λ = 1. (b) Fn = 0, λ = 0.05.

symmetry in the IR. However, as we will see in Sec. VI B, the
correlation functions computed from the HLR theory violate
particle-hole symmetry.

(2) The energy gap for exciting any of the modes is
independent of the interaction strength λ. This can be seen
directly from the recursions relation and constraint equations
(76) and (77), where the λ dependence completely drops out
at zero momentum z = 0. Explicitly, the energy gap of the nth
mode �n is given by

�n = (1 + Fn)ωb. (85)

(3) In the large-N limit, the slope of the dispersion curve
of the lowest mode at q = 0 is generically negative. Solving
Eqs. (76) and (77) perturbatively in the rescaled momentum
parameter z, we see that the lowest mode has a dispersion
which goes as

ω2(q)

�2
= 1 − (2N + 1)2

24(1 − �2/�3)
q2�2

B + · · · , (86)

where in deriving the above, we have assumed that the mode
n = 2 has the smallest gap. Note that this result is independent
of the λ, the strength of the Coulomb interaction.

(4) An interesting feature of the dispersion relation of the
neutral excitation is the dependence of the relative height of the
first two minima on the strength of the Coulomb interaction.
For example, for F1 = 0.5 and λ = 1 [Fig. 2(a)] the first
minima of each mode are higher than the second minima. The
situation is reversed when F1 = 0 and λ = 0.05 [Fig. 2(b)].
Generally, when λ is small, we see the first minima are lower
than the second and the height of the minima flip when λ

becomes of order one. There is also an intermediate range
of values for λ where some of the minima disappear. At large

N, λ ∼ N−1, so the first minimum is lower than the second
one.
The most precise measurement of the dispersion of the neutral
excitations was done by Kukushkin et al. in 2009 [59]. Looking
at Fig. 4 in that paper,2 it would appear that the second
minimum of the dispersion curve is lower than the first.3 Our
model can give this kind of behavior only for large λ and
moderate F1.

VI. ELECTROMAGNETIC RESPONSE

In this section, we look at the electromagnetic response
functions of the composite Dirac fermions in Jain’s states
ν± = 1

2 ± 1
2(2N+1) , using the semiclassical approach laid out

in Sec. III. We will then explicitly check the particle-hole
symmetry of the results and compare to the results from HLR
and Jain’s theories.

We again start with the recursion relation (59) and the
constraint equations (63). The computation follows just as in
Sec. V, however, in this section, we turn on the external field
δAμ in order to compute the response functions. Explicitly, if
we assume F2 to be the only nonzero Landau parameter, we
again assume the ansatz (78) for u|n|>2 and solve for the remain-
ing fields u±1, az, az̄ as well as the unknown functions F (ω̃,z)
and G(ω̃,z) by substituting the ansatz into the recursion and

2Note that the different curves in Fig. 4 of Ref. [59] are the
dispersions of the lowest neutral excitation for three different filling
fractions, whereas the curves in Fig. 2 are the dispersions of the first
three lowest excitations at the same filling fraction.

3It is worth pointing out that the measurements of Ref. [59] are not
sufficiently precise to definitely determine which minimum is lower.
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constraint equations. The case with more Landau parameters
turned on is a slight generalization of the above.

Finally, we read off the electromagnetic response of the
system from Eqs. (64) which give the electromagnetic density
and currents in terms of external field δAμ. The polarization
tensor �μν which encodes the linear response of the system to
the EM fields is defined as

δJμ(ω,q) = �μν(ω,q)δAν(ω,q), (87)

where δJμ = Jμ − J̄ μ is the deviation of the currents from
their values at equilibrium given by ρ̄ = ν

2π
B and J̄ i = 0.

The explicit calculation can be derived from a straightfor-
ward modification of the presentation in Sec. V. We therefore
skip it and quote the results. Note that using this method, it is
possible to derive the response functions in closed analytic
form if there are only a finite number of nonzero Landau
parameters. Here, we will only report the first few terms in
a gradient expansion in small momenta q.

A. Susceptibility

We first look at the susceptibility of the system, which is
given by

χ (ω,q) = �00(ω,q) = δ

δA0
ρ(ω,q)

∣∣∣
δAμ=0

, (88)

which encodes the response of the electric charge density to
variations of the scalar potential δA0. We can evaluate this
susceptibility in power expansion over q. We see that to order
O(q6) the susceptibility for the ν+ and ν− states depends only
on the two Landau parameters F2 and F3 and is given by

χ+(ω,q) = χ−(ω,q) = −q4�2(2N + 1)ω2(q)

32π [ω2 − ω2
2(q)]

+ (2N + 1)3q6�4

768π

{[
1 − �2

2

(�3−�2)2

]

× �2

ω2 − �2
2

+ �2
2

(�3−�2)2

�3

ω2 − �2
3

}
, (89)

where ω2(q) is given in Eq. (86) and �2,3 by Eq. (85).

B. Projected static structure factor and the Haldane bound

A quantity of interest closely related to the susceptibility is
the projected statistic structure factor s̄(q). It can be evaluated
using the equation [39,51]

s̄(q) = − i

ρ

∫
dω

2π
χ (ω + i ε sgn(ω),q)

= − 1

ρ

∑
ωi>0

Res(χ (ω,q),ω = ωi), (90)

where ε is an infinitesimal positive number. We find

ν±s̄±(q) = (2N + 1)q4�4
B

32
+ (2N + 1)3q6�6

B

768
+ O(αq7).

(91)

Let us define sn through the Taylor expansion s̄ = ∑
sn(q�B )n.

We see that s4 and s6 are independent of the interaction
parameters Fn and λ. The dependence on Landau parameters

first appears in the q7 term. In a previous work [36], we
determined that under certain assumptions, s4 and s6 can be
related to various topological properties of the system.4 Here,
we explicitly verify these claims. In particular, we find that s4

is determined by the Wen-Zee shift S:

s±
4 = ∓S± − 1

8
, (92)

where S+ = −N + 1 and S− = N + 2 are the shifts of the
ν+ and ν− states, respectively. This suggests that the states
ν− and ν+ are chiral and antichiral states in the language of
Ref. [36], respectively: in these states, the Haldane bound [32]
s4 � 1

8 |S − 1| is saturated. As explained in Ref. [36], for the
Haldane bound to be saturated, it is sufficient for excited states
at zero momentum to carry angular momentum of the same
sign. For Jain’s states, this condition is satisfied thanks to the
fact that among un, the creation operators have the same sign
of n while the annihilation operators have the opposite sign.

These results can be compared with those obtained within
the HLR theory. In the MRPA scheme of Ref. [12] (see also the
Appendix of Ref. [16]), one can calculate the electromagnetic
response from the polarization tensor of free fermion in a
magnetic field. One obtains, after straightforward algebra,

χ−(ω,q) = −q4�2
B

4π

ωb

ω2 − 4ω2
b

N2

2N + 1
, (93a)

χ+(ω,q) = −q4�2
B

4π

ωb

ω2 − 4ω2
b

(N + 1)2

2N + 1
. (93b)

The resulting expressions differ from those obtained in the
Dirac composite fermion [Eq. (89)] theory by O(1/N). More
crucially, χ− and χ+ do not coincide, as required by particle-
hole symmetry. Computing the static structure factors, we find

s−
4 = N

8
, (94a)

s+
4 = N + 1

8
. (94b)

Thus, in the HLR theory, the Haldane bound is only satisfied
for the ν+ states and is violated for ν− states.

What is the reason for the violation of the Haldane bound
in HLR theory? The lower bound on s4 is a consequence of
Galilean invariance and the LLL projection [32,33,61]. Since
the MRPA scheme preserves Galilean invariance, the natural
conclusion is that the HLR theory is not consistent with the
LLL projection. To shed light on the violation of the Haldane
bound in the HLR theory, we recall a derivation of this bound
in Ref. [61], where two spectral sum rules were shown to hold:∫ ∞

0

dω

ω2
[ρT (ω) − ρ̄T (ω)] = ηH (0) − ηH (∞)

2ρ
, (95)∫ ∞

0

dω

ω2
[ρT (ω) + ρ̄T (ω)] = s4. (96)

4The assumptions of Ref. [36] can be summarized as the requirement
of Galilean invariance and the ground state satisfying certain chirality
properties.
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Here, ηH (0) is the Hall viscosity at zero frequency, and ηH (∞)
is the Hall viscosity at frequency much larger than the Coulomb
energy scale, but much smaller than the cyclotron energy
(which is infinite in the LLL limit), ρT (ω) and ρ̄T (ω) are
the spectral densities of the holomorphic and antiholomorphic
components of the stress tensor. From the positivity of the
spectral densities one obtains a lower bound

s4 � 1

2ρ
|ηH (0) − ηH (∞)|, (97)

which is saturated when one of the spectral functions vanishes,
as for chiral states. When one takes ηH (∞) = 1

2ρs(∞) with
s(∞) = 1

2 , Haldane’s bound follows. Here, s(∞) may be
interpreted as the spin per particle at energy much larger than
the interaction energy scale. As argued in Ref. [16], the HLR
theory assigns an incorrect (particle-hole asymmetric) value
for s(∞), equal to half the number of flux quanta attached to
each composite fermion: s(∞) = 1. As the result, for chiral
states the HLR theory predict

s4(HLR) = 1
8 |S − 2|, (98)

which reproduces Eqs. (94). Thus, the violation of the Haldane
bound by the HLR theory can be traced back to the wrong
orbital spin it assigns to the composite fermion.

We also find that the quantity s6 is determined completely
by the filling fraction ν, the shift S , the chiral central charge c−
[62], and the orbital spin variance var(s) [63,64] in the manner
described previously in Ref. [36].

C. dc Hall conductivity

The Hall conductivity is defined as

σH (ω,q) = �12(ω,q)

iω
= δ

δA1
J 2(ω,q)

∣∣∣
δAμ=0

. (99)

In Coulomb gauge, where Ei(ω,q) = iωδAi(ω,q), this equa-
tion takes on the familiar form

J 1(ω,q) = σH (ω,q)E2(ω,q), (100)

which is the current density in term of the perpendicular applied
electric field. The dc Hall conductivity is the limit of the Hall
conductivity as the frequency goes to zero:

σH (q) = lim
ω→0

σH (ω,q). (101)

In the case of conductivities, we do not expect the result for
ν+ and ν− to be the same, even in the presence of particle-hole
symmetry. We have

σH
± (q) = N + 1

2 ± 1
2

2π (2N + 1)
∓ 4N2 + 2N + 3 ± (2N + 2)

32π (2N + 1)
q2�2

B

+O(αq3). (102)

The dc Hall conductivity satisfies the relation

σH
± (q) ≈ ν±

2π

(
1 + S± − 2

4
q2�2

B

)
+ · · · , (103)

where ≈ means equal up to next-to-leading in 1/N expansion
and S is the Wen-Zee shift given by S+ = −N + 1 and S− =
N + 2 [36,39,65].

Note that both the q0 and q2�2
B coefficients of dc Hall con-

ductivity are purely topological numbers, determined solely
by the filling fraction ν and the shift S . These results were
first derived5 in Refs. [66–68] for generic fractional quantum
Hall states using nothing but Galilean invariance.6 This is a
nontrivial consequence of the presence of Galilean invariance
in the Dirac composite fermion model.

Note that the inequality of σH
+ and σH

− is to be expected.
Indeed, the naive expectation from particle-hole symmetry
would be that the sum of the conductivities of the particle-hole
conjugate states ν+ and ν− be equal to the conductivity of the
full Landau level. In momentum space, this relation takes the
form

σH
+ (ω,q) + σH

− (ω,q) = 1

π

1 − e−q2�2
B/2

q2�2
B

. (104)

However, it was shown that in the presence of interactions, the
above equality is modified [16] and we have

σH
+ (ω,q) + σH

− (ω,q) + 1

2π
Ṽ (q)χ (ω,q) = 1

π

1 − e−q2�2
B/2

q2�2
B

,

(105)

where χ (ω,q) is the susceptibility as defined above and Ṽ (q)
is fully determined by the electron-electron interaction. In the
case of the Coulomb interaction Ṽ (q) is given by [16]

Ṽ (q) = 4πα

{
1 − e−q2�2

B/2

q3�2
B

− 1

q2�B

√
π

2

×
[

1 − e−q2�2
B/4I0

(
q2�2

B

4

)]}
, (106)

where I0 is the modified Bessel function of the first kind.
As we have started from the effective Lagrangian con-

structed by taking into account the prescription of Ref. [16],
which explicitly sought to satisfy constraints of the type (105),
our result should satisfy this constraint. We have performed
a test for (105) for a particular case when the only nonzero
Landau parameter is F2. In this case σH

± can be computed
exactly in terms of Bessel functions, though the expressions
are rather cumbersome. We have explicitly checked that rela-
tionship (105) is indeed satisfied up to and including the next-
to-leading order in 1/N . This, along with the equality of the
susceptibilities (89), provides us with two explicit verifications
of particle-hole symmetry in the Fermi-liquid approach, even
in the presence of Landau parameters Fn. We note that HLR
and modified HLR theory pass neither of these two tests of
particle-hole symmetry.

VII. CONCLUSION

In this paper, we have studied the electromagnetic response
of quantum Hall systems in the Dirac composite fermion

5Similar results were derived in Refs. [36,70] using a wave-function
approach.

6In Ref. [66], the Hall conductivity is computed for generic electron
g factor. Setting g = 2 gives the result (103). In Refs. [67,68] the
authors presented the result of Ref. [66] for g = 0.
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theory. We performed a semiclassical calculation to obtain
closed form results in the long-wavelength limit. The results
demonstrate explicitly that the PH symmetry is present in both
response functions and dispersion relations of excited states.
Our calculation of the dispersion relation shows qualitative
agreement with experimental results in both the positions of
the minima and the trend of the dispersion relation curve.

We explicitly confirmed the PH duality relations of response
functions of Ref. [16] in the presence of Coulomb interactions.
The particle-hole symmetry of our results is indeed expected
as we start with a manifest PH-symmetric theory. From
our analytical results, we reproduce the topological quantum
numbers of Jain sates, matching previous work [36].

We have compared our results with the outcome of HLR
theory [31], showing that HLR theory does not satisfy PH
symmetry in electromagnetic response functions, resulting in a
sharp distinction between Dirac composite fermions and HLR.
Nevertheless, the dispersion relation of neutral excitation,
computed from the HLR theory, is particle-hole symmetric
to leading and next-to-leading order in 1/N . Is it possible that
the HLR theory can be modified, e.g., by adding extra terms
to the Lagrangian which contains the external gauge field,
to restore particle-hole symmetry? It would be an extremely
interesting possibility, though currently we do not have any
concrete proposal. It seems that the incorrect value of the
high-frequency Hall viscosity in the HLR theory, identified
in Ref. [16], is the first issue one needs to resolve.

We also derived the GMP algebra from our effective field-
theory picture and demonstrated the crucial role of the electric

dipole moment of the composite fermion. The presence of
the GMP algebra is a signature of the lowest-Landau-level
projection in a theory. In addition to PH symmetry, we consider
the reproduction of both topological quantum numbers and
GMP algebra as a nontrivial independent check for the validity
of Dirac composite fermion as an effective field theory of the
FQH.

Finally, we note that the bosonized approach used in this
paper is sufficiently flexible to accommodate any value of
Landau’s parameters. In particular, it can be used to investigate
the nematic phase transition, where F2 → −1 [69].
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APPENDIX: DISPERSION RELATION OF HLR THEORY

In this Appendix, we show that in the absence of Coulomb
interaction, the dispersion relation of HLR theory [31] coin-
cides with the one in Dirac composite Fermi-liquid theory up
to next-to-leading order in 1/N expansion. Starting from Eq.
(79) of Ref. [31], we can extract the relationship between the
frequency and momentum for ν− as

8πNω̃

sin πω̃
[2NJ1−ω̃(X−)Jω̃+1(X−) + J−ω̃(X−)(X−Jω̃+1(X−) − ω̃Jω̃(X−))] + 8Nω̃ + X2

− = 0, (A1)

where X− = z

√
2N

2N+1 , and the relation for ν+ as

8π (N + 1)ω̃

sin πω̃
[2(N + 1)J1−ω̃(X+)Jω̃+1(X+) + J−ω̃(X+)(ω̃Jω̃(X+) − X+Jω̃+1(X+))] − 8(N + 1)ω̃ + X2

+ = 0, (A2)

where X+ = z

√
2(N+1)
2N+1 . Note the similarity between Eqs. (A1) and (A2) and Eq. (81) in Sec. V. Expanding Eq. (A1) in 1/N and

keeping the leading and next-to-leading terms, we arrive at

8πN (2N + 1)ω̃

sin πω̃
J1−ω̃(z)Jω̃+1(z) = 0. (A3)

Similarly for Eq. (A2) we obtain
8πN (2N + 3)ω̃

sin πω̃
J1−ω̃(z)Jω̃+1(z) = 0. (A4)

Equations (A3) and (A4) give rise to exactly the same
spectrum, determined by the solutions to the equations
Jω̃+1(z) = 0 and J1−ω̃(z) = 0. As equations for ω̃ the so-
lutions to these equations come in pairs of opposite signs.
These equations coincide with (82) and (83) in the absence

of both the Coulomb interaction (λ = 0) and the Landau
parameters (Fn = 0). We therefore see that the dispersion
relation of HLR theory is PH symmetric and equal to the
dispersion derived from composite Dirac fermions found in
Sec. V.
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