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Direct extraction of electron parameters from magnetoconductance analysis
in mesoscopic ring array structures
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We report an approach for examining electron properties using information about the shape and size of a
nanostructure as a measurement reference. This approach quantifies the spin precession angles per unit length
directly by considering the time-reversal interferences on chaotic return trajectories within mesoscopic ring arrays
(MRAs). Experimentally, we fabricated MRAs using nanolithography in InGaAs quantum wells which had a
gate-controllable spin-orbit interaction (SOI). As a result, we observed an Onsager symmetry related to relativistic
magnetic fields, which provided us with indispensable information for the semiclassical billiard ball simulation.
Our simulations, developed based on the real-space formalism of the weak localization/antilocalization effect
including the degree of freedom for electronic spin, reproduced the experimental magnetoconductivity (MC)
curves with high fidelity. The values of five distinct electron parameters (Fermi wavelength, spin precession
angles per unit length for two different SOIs, impurity scattering length, and phase coherence length) were
thereby extracted from a single MC curve. The methodology developed here is applicable to wide ranges of
nanomaterials and devices, providing a diagnostic tool for exotic properties of two-dimensional electron systems.
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I. INTRODUCTION

Decades of research in quantum chaos [1–5] have revealed
that scattering from geometric features in ballistic systems,
such as open quantum dots, behaves in the same way as
impurity scattering in bulk diffusive systems in terms of
quantum interference phenomena. These phenomena include
universal conductance fluctuations (UCFs) [1,2] and the weak
localization/antilocalization (WL/WAL) effect [3,4,6–8]. On
the basis of these studies, it has been proposed that the gate-
controllable Rashba spin-orbit interaction (SOI) [9,10] can be
studied quantitatively by considering the time-reversal quan-
tum interference on ballistic square loop arrays fabricated in
pristine semiconductor quantum wells (QWs) [11]. However,
there has been only a qualitative success in this approach so
far [12,13].

The linearity between the Rashba SOI coefficient α and
the averaged internal electric field 〈Ez〉, on the other hand, has
been demonstrated experimentally using bulk two-dimensional
electron systems (2DESs) [14], where Ez is perpendicular to
the heterointerfaces. We define the Rashba Hamiltonian to be
HR = α{kyσx − kxσy}, σx and σy being the Pauli spin matrices.
The particular material system used in the series of studies
was 10-nm-thick InAlAs/InGaAs/InAlAs QWs that are lattice
matched to (001)InP. The Dresselhaus SOI [15] was revealed to
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be negligible relative to the Rashba SOI in this system, unless
α is carefully tuned to be zero by the gate voltage (Vg) [14].

In this study, we revisit our original idea that the electron
properties including the Rashba SOI can be determined us-
ing the shape and size information of a nanostructure as a
measurement reference [11]. We fabricated mesoscopic ring
array (MRA) structures using the same pristine QW wafers
as those used in the previous studies [12,14], but paying a
particular attention to the MRA shape so that the resultant
electron orbitals become chaotic [11,12,16]. The trigger of this
work was really an unexpected observation that the amplitude
of the Altshuler-Aronov-Spivak- (AAS-) type oscillations in
our MRA was diminished when the temperature was lowered
from ∼1 K to the base temperature of the dilution refrigerator
(∼15 mK) in our preliminary experiment. The lack of quanti-
tative models for the observed �σ (B) (oscillating component
of the magnetoconductivity curve) prompted us to build one
ourselves in this work.

MRAs provide an important test bed for exploring quantum
phenomena relevant to charge and spin degrees of freedom
[12,13,17–19]. The main advantage of MRAs over single
Aharonov-Bohm- (AB-) type rings [20] lies in their tol-
erance of mesoscopic fluctuations, while maintaining other
mesoscopic effects of electrons [17]. While the amplitudes
of the regular AB oscillations (associated with the h/e flux
quantum) and the UCF are known to be suppressed according
to O(1/

√
N ) (N = 5408 in our MRAs) by ensemble averaging

[17,21], the amplitude of the AAS-type oscillations [22] is
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unaffected by ensemble averaging. This phenomenon shares
the same physical origin as the WL/WAL effect [14,23–27].
We therefore expect to observe only the AAS-type oscillations
(or the WL/WAL effect) in our measurement, where the regular
AB and UCF effects are substantially diminished.

We investigate the magnetoconductivity (MC) of these
samples at dilution refrigeration temperatures (<1 K) ex-
perimentally. It is found that the semiclassical billiard ball
simulations can reproduce the measured MC oscillations of
the MRA very accurately, including their fine structure and
background components. Our simulations account for the
time-reversal interference on all return trajectories in the given
system [16,23,24], assuming the spin precessions caused by the
Rashba and residual SOIs [14,28,29]. The strengths of the SOIs
are parametrized by the spin precession angles per unit length,
which are twice the SOI-related wave numbers kα ≡ m∗α

h̄2 (m∗
and h̄ being the effective mass and Planck constant h divided
by 2π , respectively) and kc for the Rashba and residual SOIs,
respectively, where the explicit correspondence between the
SOIs and actual motions of spins was maintained.

The methodology we demonstrate here is applicable to
a wide range of nanoscale devices and structures, where
sizes and shapes of the nanostructures can be used as a
measurement reference. For example, it should be useful in
investigating various one-electron interactions H ′ in emerging
two-dimensional (2D) systems such as graphene [30,31],
transition-metal dichalcogenides [32], and oxide interfaces
[33], if nanostructured patterns are introduced to them either
naturally or artificially. We note that one-electron interactions
H ′ here are not limited to the SOIs. They may also be the
Zeeman effect or interactions related to the pseudospin and/or
valley degree of freedom of electrons [31].

II. EXPERIMENT

A. Fabrication and MC measurement of MRAs

The lattice-matched In0.52Al0.48As/In0.53Ga0.47As
(10 nm)/In0.52Al0.48As QW samples were grown on
semi-insulating (001)InP substrate by metal-organic chemical
vapor deposition (MOCVD) [Fig. 1(d)]. The Rashba SOI
coefficient α was controllable by the external gate voltage
from negative to positive values and the Dresselhaus SOI was

found to be small (γ � 3.5 eV Å
3
) in our wafers [14].

Hall bars of the size 125 × 250 μm2 were defined by pho-
tolithography and wet etching using citric acid–H2O2 solution.
The MRA pattern was fabricated by electron beam lithography
with an acceleration voltage of 100 kV and reactive ion etching
using the electron cyclotron resonance (ECR) plasma in a BCl3

ambient. The MRA pattern covered the entire Hall bar as in
Fig. 1(c). The sample surface was subsequently coated with a
20-nm-thick HfO2 layer for the gate insulation by atomic layer
deposition (ALD). Finally, a Au top gate (150 nm thick), which
covers the entire Hall bar, was deposited using a 3-nm-thick
Ti layer as a wetting layer. The actual devices consisted of
5408 rings (52 × 104), interconnected with neighboring rings,
in a 125 × 250 μm2 Hall bar device as in Fig. 1(c). The hard
wall potential formed by the reactive ion etching defines the
MRA shape [Fig. 1(d)]. The sheet carrier densities NS and
electron mean-free paths � of the pristine bulk 2DES varied
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FIG. 1. MRA sample fabricated by nanolithography. (a) An ex-
ample of chaotic billiard ball trajectory within the MRA that returns
to the initial point indicated by red filled circle (CG). (b) Scanning
electron micrograph of the fabricated MRA. Colors were added to the
original image for clarity. The reddish-colored region contributes to
the electron transport, whereas the bluish-colored regions are isolated
areas that do not contribute to the transport. The dark lines and
curves are the ditches created by reactive ion etching, where squares
drawn inside the circles are just to adjust the proximity effect in the
electron beam lithography. (c) Illustration showing the arrangement
of the MRA in a Hall bar device. (d) Cross-sectional illustration of
the MRA device along the white line segment indicated in (b) and
the MOCVD-grown epitaxial layer structure. The doping densities
(n1, n2) are (1.5 × 1024 m−3, 2.5 × 1024 m−3) and (2.0 × 1024 m−3,
2.0 × 1024 m−3) for the first (Sec. II B) and second (Sec. IV D)
samples in the main text, whose sample names are KH3-1 and KH1-3,
respectively.

from 1.3 × 1016 to 2.4 × 1016 m−2 and from 1.1 to 2.2 μm,
respectively, for gate voltages from 0.2 to 1.4 V [16,34,35].

Figures 1(a) and 1(b) depict the shape and size of our
MRA structure, where Fig. 1(a) also shows an example of
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FIG. 2. Gate dependence of the MC curves of MRA. (a)–(c) (Colored curves) Experimental MC curves (�σ ) at selected gate voltages
(Vg) corresponding to the horizontal lines A–C, B ′, and C ′ in (d). (Black dashed curves) �σ generated by the “chaos only” model [see (e)]
maximizing the r2 values with the corresponding experimental MC curves (see Sec. III D). (d)–(f) Image plots of �σ from (d) the experiment
at a dilution refrigeration temperature, (e) the “chaos only” model, and (f) the “chaos+impurity” model. kα values in (a)–(c), (e), and (f) are
related to Vg by kα = −0.9614 × (Vg − 0.8547) (rad/μm).

chaotic return trajectories within the MRA (see S1 in the
Supplemental Material [36] for more detailed information).
The convex curvature introduced in the MRA shape, as in
Fig. 1(b), makes the trajectories inherently chaotic. This is an
important improvement from our previous studies [11,12,16].

The MC measurements of the MRA samples were per-
formed using the standard ac lock-in method in a dilution
refrigerator at temperatures below 1 K. The excitation voltages
in the measurement were so controlled that the excited energies
were well below the thermal energy kBT .

B. Gate dependence of MC curves in MRA

Shown in Figs. 2(a)–2(c) (colored curves) are examples of
experimental MC curves with several different Vg measured at
the base temperature of the dilution refrigerator (T = 15 mK
at the mixing chamber). The dashed curves in these figures
represent the simulation results of the “chaos only” model
as discussed in Sec. III. The electron temperature Tel [37] in
these measurements was ∼100 mK (S2 in the Supplemental
Material [36] and Sec. IV D). We define the oscillating compo-
nent of the MC curve as �σ (B) = σ (B) − σ0.16 mT at each Vg,
where σ0.16 mT is the conductivity value at B = 0.16 mT. This
B value was chosen to be at 1

4 of the primary h/2e oscillation
period (phase π/2) as the amplitude of the main oscillation
(cosine wave) becomes zero [±cos(π/2) = 0], where h and e

are Planck’s constant and elementary charge, respectively.
The observed �σ (B) reflected the AAS-type quantum

interference and the WL/WAL effect, as expected. We rec-
ognize the AAS-type oscillations clearly in the data with
Vg = 0.35, 0.85, and 1.35 V [Figs. 2(a) and 2(c)]. The period of
oscillation turned out to be �B = h/(2eS0) = 0.64 mT, where

S0 = 1.8 × 1.8 μm2 is the typical encircling area for a closed
loop within a unit ring of the MRA. The negative MC effect
around B = 0 mT in Fig. 2(c) is the manifestation of the
strong Rashba SOI induced by 〈Ez〉. In contrast, the primary
h/2e oscillation of �σ (B) appears convex downward around
B = 0 mT for Vg = 0.85 V [Fig. 2(a)], where the Rashba
SOI is minimized by realizing 〈Ez〉 = 0 V/m. A small and
sharp peak (WAL peak) is still noticeable around B = 0 mT in
Fig. 2(a). This is due to a relatively long phase coherent length
of electrons (realized by Tel ≈ 100 mK) and finite residual
SOI [14,28,29]. The latter should not be attributed to the
Dresselhaus SOI automatically because the Dresselhaus SOI
was negligible relative to the Rashba SOI in our particular
InGaAs/InAlAs QWs that are lattice matched to (001) InP [14].
While physical phenomena related to the interplay between the
Rashba and Dresselhaus effects [38–40] are not a focus in this
work for this reason, the simulation analysis presented here is
still useful for such studies if relevant experimental data are
available from other material systems.

The data in Fig. 2(b) (Vg = 0.55 and 1.15 V) represent
the cases where the primary h/2e oscillation is diminished
substantially by carefully adjusting the SOI strength by the
gate voltage [11,12,16]. This adjustment was made by setting
the spin precessions per side of polygonal closed loops to some
special angles [41]. For example, such angles are given to be
(1 ± 0.576)π and (1 ± 0.178)π in a square loop considering
only the Rashba SOI [11]. The corresponding angle in this
work was found to be 2kαL ≈ 0.33π rad using the side
length L = 1.8 μm and kα = 0.29 rad/μm (see Sec. IV A),
which is in qualitative agreement with the smallest found in
the simple square-loop model (0.424π ) [11]. An equivalent
physical phenomenon was predicted for open quantum dots as
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well [8]. As a result, the WAL peaks in Fig. 2(b) are composed
exclusively of the higher harmonic oscillations (h/2ne with
n � 2).

C. Onsager symmetry relevant to 〈Ez〉
The image plot of the experimental MC data, setting the

abscissa and ordinate as B and Vg, respectively, is displayed in
Fig. 2(d) to show how the MC curves evolve with Vg. In this
plot, we clearly see the phase flips in the primary h/2e MC
oscillations across the horizontal lines B and B ′ as we vary
Vg. These boundaries (B and B ′) correspond to the special
spin precession angles that diminish the h/2e oscillation,
as discussed in the preceding section. The WL-to-WAL–like
transition of the AAS effect was more traditionally observed by
the introduction of strong SOI scatterers [42,43]. The similar
phenomenon observed here, on the other hand, should be
regarded as an evidence of coherent spin precession by the
Rashba SOI.

We notice that Fig. 2(d) is roughly symmetric about the
horizontal line A at Vg = 0.85 V in addition to the more com-
monly known symmetry about the vertical line at B = 0 mT.
Both symmetries are results of the Onsager reciprocity [44] or
a generalized version of it. While the latter is known as the
regular Onsager relation, i.e., �σ (〈Ez〉,B) = �σ (〈Ez〉,−B),
the former, associated with flipping the relativistic magnetic
field BSOI(k), i.e., �σ (〈Ez〉,B) ≈ �σ (−〈Ez〉,B), is an obser-
vation that has never been reported elsewhere in mesoscopic
ring systems.

The observation of the approximate symmetry
�σ (〈Ez〉,B) ≈ �σ (−〈Ez〉,B) is surprising considering
the highly gate-dependent conditions in our experiment,
such as the carrier density, mobility, gate depletion, and the
effective impurity arrangement within the MRA. We attribute
the robustness of the �σ (〈Ez〉,B) ≈ �σ (−〈Ez〉,B) relation
to the universal nature of chaos. This means that �σ is rather
unaffected by specific details of the electron trajectories. We
conclude that 〈Ez〉 = 0 V/m is realized at Vg = 0.85 V from
the observation of this symmetry.

III. SEMICLASSICAL BILLIARD BALL SIMULATION

A. Justification of the present model

The observation of the variation of the Onsager relation
�σ (〈Ez〉,B) ≈ �σ (−〈Ez〉,B) urged us to develop a semi-
classical billiard ball simulation [1,3,5,8,16,23,24] on our
MRA system to understand the experimental results more
quantitatively. The main improvements in the present model,
relative to our previous ones [11,12,16], include the following:
(1) The MRA shape in this work provides chaotic billiards
inherently, whereas the trajectories in the previous MRA shape
[16] are categorized to be “regular” (integrable), which is
not ideal in the framework of a semiclassical approximation.
(2) The coordinate points at which we start billiards in this work
are homogeneously distributed over the conductive region of
the MRA, the reddish-colored region in Fig. 1(b) (see S1 in
the Supplemental Material [36] for more information). (3) The
precise definition of “return” for billiard ball trajectories is
fixed in such a way that quantitative values of �σ can be
obtained directly from the simulation.

We adopted the real-space approach (Boltzmannian picture
in Ref. [45]), which turned out to be exact in describing
the diffusive WL/WAL effect of a quasi-2DES [23,24]. The
validity of this approach in our semiballistic MRA system is
conjectured from the accumulated knowledge in the quantum
chaos research [1–5]. A series of successful results in this
work can be regarded as an elaborate experimental proof of
this conjecture.

In practicing the idea, the processes of scattering are
simplified to two of the followings in our MRA: (1) specular
reflection of electrons by the hard wall boundaries that define
the MRA shape and (2) isotropic probabilistic scattering at a
rate of dl/�ex for an infinitesimal length of electron passage
dl with an extrinsic scattering length �ex. It can be understood
that the latter, primarily representing the impurity scattering in
the pristine 2DES (but the value is somewhat reduced by the
fabrication process), is considered additionally to the former
(scattering from geometric features [1]). It turned out that
these two processes are required minimally for reproducing
the experimental MC curves quantitatively in our MRAs. It
can be said that this bold simplification was made possible by
the fact that the actual MRA shape sensed by the 2D electrons
was not much altered by the external gate voltage (or gate
depletion) at least for the given Vg range.

B. Details of billiard ball simulation

In the adopted semiclassical approximation, the propaga-
tion amplitude of an electron, that is, the path-integral represen-
tation of the Feynman propagator, is replaced by a summation
over classical paths. These classical paths may be considered
as a random walk. We let a billiard ball (electron) start at some
point r1 within the conductive region of MRA [Fig. 1(b) and
S1 in the Supplemental Material [36]] with some azimuthal
angle θ1 and generate closed loops associated with this initial
condition multiple times whenever the billiard ball returns to
r1. In generating these closed loops, a cutoff Lmax is introduced
for the total ballistic length of the billiard trajectories. The
definition of return is that the electron passes by the initial
point r1 more closely than some predetermined distance �r .
For example, if the first closed loop associated with the given
initial condition (r1,θ1) is r1 → r2 → · · · → rN1 → r1, the
second one with the same initial condition may be r1 → r2 →
· · · → rN1 → rN1+1 → · · · → rN2 → r1, where the distance
between the line segment rN1 → rN1+1 and the point r1 is
smaller than �r . Scattering takes place both deterministically
(from the geometric feature) and probabilistically (according
to dl/�ex) using a pseudo-random-number generator [24].
The number of closed loops generated from a single initial
condition seldom exceeded 10 for Lmax = 3000 μm. The
number of all closed loops generated in this way, from all
initial conditions, was confirmed to be proportional to the
value of �r chosen, provided �r is sufficiently smaller than
a typical distance between the collisions (∼0.5 μm in our
case). We chose �r = 0.05 μm in this study to maximize
the efficiency and accuracy of the calculation simultaneously.
The number of all initial conditions used was 244 224 (S1 in the
Supplemental Material [36]). The numbers of all closed loops
generated ranged from 196 228 for �ex = 10 μm to 309 461
for �ex = 1 μm (Lmax = 3000 μm).
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Next, we define the nominal return count density W0(�ex,Lmax) by (number of all closed loops)/(number of all initial
conditions ×2�r). For Lmax = 3000 μm, we found W0 = 12.67 and 8.035 μm−1 for �ex = 1 and 10 μm, respectively. The
modified return count density W (B,kα,kc,�ex,Lφ) is defined as follows using i to index all the closed loops generated:

W (B,kα,kc,�ex,Lφ) =
∑

i

{
Ai(kα,kc) × cos(2eBSi/h̄) × (1 + cosθi) × exp(−Li/Lφ)

}
(number of all initial conditions) × (2�r)

, (1)

where Si , Li and θi are the encircling area, total length of
the billiard ball trajectory, and difference between the initial
and final (returning) azimuthal angles, associated with the
ith closed loop, respectively. Various quantum-mechanical
modifications to the simple Boltzmannian picture [45] are
Ai(kα,kc), the Aharonov-Casher correction due to spin pre-
cession [11–13] (kα = m∗α

h̄2 and kc being halves of the spin
precession angles per unit length by the Rashba and resid-
ual SOIs, respectively); cos(2eBSi/h̄), the Aharonov-Bohm
correction due to the threading magnetic flux; (1 + cosθi),
non-back-scattering correction for the billiard loop [23,46];
and exp(−Li/Lφ), phenomenological prescription of electron
phase decoherence, respectively. Ai(kα,kc) is given by a half
of the trace of R2

tot [16,24], letting Rtot be the total spin
rotation operator by the SOIs for a given closed loop (in
either the clockwise or counterclockwise direction). We note
that Ai(kα,kc) is real and −1 � Ai(kα,kc) � 1. We also note
exp(−Li/Lφ) = exp(−ti/τφ), letting ti ≡ Li/vF. Thus, our
Lφ differs from the traditional diffusive decoherence length
�φ = √

Dτφ .
One may be concerned whether our experiment/analysis is

in ballistic or diffusive regime. The dissipative damping usually
depends on time as exp(−t/τφ) without assuming ballistic
or diffusive regime. Then, τφ � τe corresponds to ballistic
transport where �φ = Lφ = vFτφ . On the other hand, τφ � τe

corresponds to diffusive transport where �φ = √
Dτφ . Within

this standard picture, the diffusive phase coherence length
�φ is given by

√
Lφ�/2 ≈ 10 μm, where � is the mean-free

path. The bottom line is that one does not have to assume
diffusive/ballistic regimes a priori [47,48].

We can convert W to the quantum correction term to the
electrical conductivity �σsim using the following equation that
is proven to be correct for the WL/WAL effect in a quasi-2DES
[23–27]:

�σsim(B)

σ0
= −λF

π
× W (B,kα,kc,�ex,Lφ), (2)

where λF is the Fermi wavelength and σ0 is the electrical
conductivity of the MRA in the classical limit. σ0 is assumed
to be constant in the given range of the magnetic field, where
ωcτ � 1 (ωc is the cyclotron frequency).

C. “Chaos only” and “chaos+impurity” models

The first simulation, denoted as the “chaos only” model, was
performed considering only the chaotic trajectories inherent to
the MRA shape, where a sufficiently large value of 10 μm
was used for �ex. It turned out that the introduction of �ex was
necessary for eliminating “regular” (integrable) trajectories
completely. However, the value of �ex could be chosen rather
arbitrarily as far as �(≈1 μm) � �ex � Lφ , where � is the
mean-free path in the pristine 2DES. The second simula-

tion, denoted as the “chaos+impurity” model, was performed
using relatively small values of �ex (approximately 1 μm),
treating it as a fitting parameter. In both simulations, the
strength of the Rashba SOI was incorporated as the spin
precession angle per unit length, given by 2kα(rad/μm), where
kα ≡ m∗α/h̄2 in the pristine bulk 2DES [11]. Similarly, we
denote the spin precession angle per unit length due to the
residual SOI by 2kc(rad/μm) [14]. The residual SOI was
emulated using the cubic Dresselhaus Hamiltonian H

(3)
D± =

± γ

4 k3{σxcos(3θ ) + σysin(3θ )} (double sign in same order)
employing the following symmetrization procedure, although
we reiterate that the origin of it can not be the Dresselhaus SOI
automatically (Sec. II B). Namely, the symmetrized �σ (B)
was given by the average of �σ (B)s between one obtained
with a pair of Hamiltonians (HR,H

(3)
D+) and the other obtained

with the other pair (HR,H
(3)
D−). This procedure is to eliminate

a particular symmetry hidden in these Hamiltonians when
they are combined (H ′ = HR + H

(3)
D±) [24]. In any case, our

experiment was unable to resolve the difference between these
two possible combinations of the Hamiltonians, i.e., (HR,H

(3)
D+)

or (HR,H
(3)
D−).

Given a direction of the electron passage by a unit vector
(cosθ,sinθ ), the spin precession axes associated with HR and
H

(3)
D± are given by unit vectors (sinθ,−cosθ ) and (±cos3θ, ±

sin3θ ), respectively (double sign in same order). It is reminded
that the corresponding spin precession angles per unit length
are given by 2kα and 2kc, respectively. The value of the cutoff
length (Lmax = 3000 μm) used in this work is large enough
to cover the phase coherent length Lφ = vFτφ up to 500 μm
considering exp(−Lmax

Lφ
) = 2.5 × 10−3 � 1 for Lmax/Lφ = 6,

where vF and τφ are the Fermi velocity and phase coherent
time, respectively.

D. Extraction of parameters by maximizing r2

The extraction of the parameters in the billiard ball simula-
tion was performed by maximizing the value of the coefficient
of determination r2 between the experimental and simulated
�σ (B)s for given ranges of the magnetic field, ruling out the
cases of negative correlation between them. The definition of
r2 we used is

r2 =
{∑

i (xi − x̄i) · (yi − ȳi)
}2∑

i (xi − x̄i)2 · (yi − ȳi)2 , (3)

where {xi} and {yi} are the sets of data to be compared to
each other. The maximization of the r2 value can be done
independently of the value of λF in Eq. (2). Therefore, the
value of λFσ0/π was obtained deterministically by equating
the variances of the experimental and theoretical �σ (B)s after
optimizing the other parameters kα , kc, �ex, and Lφ . A rational
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FIG. 3. r2 values (see Sec. III D) calculated between the measured and simulated MC curves at Vg = 0.85 V, where kα = 0 rad/μm, as a
function of kc and L. The magnetic field ranges used in the calculation of r2 are |B| � 0.32 mT and |B| � 1.42 mT in the “chaos only” and
“chaos+impurity” models, respectively. (a) Result in the chaos only model (�ex = 10 μm). (b) Result in the chaos+impurity model (�ex = 1 μm).
Only the regions corresponding to r2 � 0.95 and r2 � 0.98 with positive correlation are color scaled in (a) and (b), respectively.

approach to extract these parameter values is discussed in the
next section.

IV. RESULTS AND DISCUSSION

Because of the vast R4 parameter space (kα , kc, �ex, and
Lφ) to be explored for a unique theoretical �σ (B) curve, one
should make the maximum use of physical insight in searching
the right sets of the parameter values efficiently. We present
below the final refined version of our procedure, after an
appreciable number of trials and errors, where cross-checks
of the results among experiment, “chaos only” model and
“chaos+impurity” model, were routinely made.

A. Extraction of the kα vs Vg relation by “chaos only” model

In our most successful procedure of parameter extraction,
we first extracted the kα vs Vg relation using the chaos only
model, where the linearity between kα and Vg is assumed
based on the experimentally verified relation α ∝ 〈Ez〉 [14].
As a prerequisite for this extraction, the experimental �σ (B)
at Vg = 0.85 V, where kα = 0 is realized, was analyzed with
only two parameters kc and Lφ . Here, we obtained kc =
0.171 rad/μm and Lφ = 90 μm as in Fig. 3(a). Fixing these
values temporarily, we extracted the kα vs Vg relation first.
A naive justification of this approach is that kc and Lφ are
not dependent on Vg explicitly, whereas kα has a more direct
dependence on Vg. We await more quantitative values of kc and
Lφ until the next subsection, where the chaos+impurity model
is discussed.

In extracting the kα vs Vg relation, an equation kα = −a ×
(Vg − b) was assumed and the values of a and b were deter-
mined in such a way that the sum of the r2 values for all 25 pairs
of theoretical and experimental �σ (B)s in the gate-voltage
range 0.2 V � Vg � 1.4 V becomes maximum. The magnetic
field range used in this procedure was |B| � 0.32 mT, which
corresponds to a single period of h/2e oscillation. This is
because the chaos only model cannot reproduce the envelope

part of the MC oscillation as in Fig. 5. Here, we obtained
a = 0.9614 rad/μm V and b = 0.8547 V. These values are
translated to the kα values of 0.524 and −0.629 rad/μm at
Vg = 0.2 and 1.4 V, respectively. The reason for the narrowness
of the range of B used here (|B| � 0.32 mT) is explained as
follows. A sensitive feature in the chaos only model turned out
to be the WAL feature observed around B = 0 mT in �σ (B).
Theoretically, this WAL feature is most largely affected by the
closed loops originating from the inherent chaotic trajectories,
which encircle relatively large areas, hence the narrowness of
the range in B used in the analysis.

The temporal usage of the parameter values for kc and Lφ

was also justified by observing the stability of the resultant
values of a and b against some changes in the values of kc

and Lφ . The upper limit (bound) for the possible value of kc

is 0.29 rad/μm because this is the value of |kα| around which
the primary h/2e oscillation was diminished substantially as
in Fig. 2(b), but the effect from kc is not visible. We note that
the total spin precession angle can be understood as a kind of
vector sum between kc and kα . Therefore, most MC curves are
governed by either of the two parameters, kc or kα , whichever
larger. The image plot of the MC curves obtained by the chaos
only model is given in Fig. 2(e).

B. Extraction of parameters by “chaos+impurity” model

We define the questions to be answered in the
“chaos+impurity” model as follows: (1) Can we confirm the
kα vs Vg relation that we obtained in the chaos only model?
(2) Can we refine the temporal values of kc and Lφ and extract
new parameter values �ex and λF properly?

To answer these questions, we first refitted the data at
Vg = 0.85 V (kα = 0 rad/μm) using only kc and Lφ as free
fitting parameters in the magnetic field range |B| � 0.32 mT,
but now assuming �ex = 1 μm instead of 10 μm as used in the
chaos only model. The primary purpose of this first procedure
is to obtain a reasonable value of kc, where �ex = 1 μm was
chosen rather arbitrarily from the bulk transport information
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FIG. 4. Parameter extraction from the “chaos+impurity” model.
(a) (Colored curves) Replot of the experimental �σ s shown in
Figs. 2(a)–2(c). Each curve was shifted vertically for clarity. (Black
dotted curves) �σ s generated by the chaos+impurity model maxi-
mizing the r2 values with the corresponding experimental MC curves.
(b)–(d) Various parameter values extracted from the chaos+impurity
model as a function the gate voltage Vg. These parameters are
(b) the Fermi wavelength λF, (c) electron phase coherent length Lφ ,
and (d) extrinsic scattering length �ex. The dotted curve in (b) was
obtained from Eq. (4) for the pristine bulk 2DES using the kα vs Vg

relation extracted in Sec. IV A.

(0.1 μm � � � 10 μm) [16,34,35]. The extracted kc value
was almost unaffected by small variations of �ex around 1 μm,
which justifies our rather ad hoc approach chosen here. As
a result, we obtained kc = 0.121 rad/μm and Lφ = 300 μm
from the MC curve at Vg = 0.85 V as in Fig. 3(b). Because kc

has a dominant role in the MC curves only near Vg = 0.85 V,
where the values of kα are smaller than kc, we terminate the
investigation of the kc value here and use this value for fitting
the rest of the MC curves as well. The kc value obtained
here is apparently converted to the bulk Dresselhaus parameter

γ = 6.57 eV Å
3

assuming the Dresselhaus Hamiltonian H
(3)
D±.

This value is slightly larger than our previous estimate γ <

3.5 eV Å
3

[14], but more consistent with the result of a thinner
QW [40]. We also note the controversial argument about the
value of γ in general III-V materials against the previously

believed one (γ ∼ 25 eV Å
3
) [49].

All 25 experimental data with different Vg’s were then fitted
with �ex and Lφ only, employing the kα vs Vg relation obtained
in the chaos only model. The range of the magnetic field
considered here was |B| � 1.42 mT, which is the maximally
available range in the measurements at the base dilution
refrigeration temperature (Tel ≈ 100 mK). The image plot
of the MC curves obtained in the chaos+impurity model is
displayed in Fig. 2(f), which shows precise agreement with the
experimental results shown in Fig. 2(d) [see also the individual
fittings of the MC curves in Fig. 4(a)].

The excellent fidelities of the MC curves in the
chaos+impurity model in simulating the experimental ones
are discussed more quantitatively as follows. We note that
the average value of r2 (± standard deviation) among the

25 pairs between the experimental and theoretical �σ (B)s
was 0.9858 ± 0.0083 for the chaos+impurity model (|B| �
1.42 mT), whereas that for the chaos only model (|B| �
0.32 mT) was 0.9885 ± 0.0090. More specifically, the differ-
ence between the theoretical and experimental �σ (〈Ez〉,B)’s
at each (Vg, B) point was typically 1

10 of the standard deviation
of �σ (〈Ez〉,B) (either theoretical or experimental) using B as
the independent variable.

The obtained values of Lφ and �ex, as plotted in Figs. 4(c)
and 4(d), respectively, are found to be reasonable physi-
cally. For example, Lφ = vFτφ ≈ 250 μm and �ex ≈ 0.9 μm
at Vg = 0.85 V are consistent with the τφ value estimated
at Tel ≈ 100 mK (∼3 × 10−10 s) [Fig. 6(b) and S2 in the
Supplemental Material [36]] and the mobility μ value of the
pristine bulk 2DES, respectively. We note that �ex ≈ 0.9 μm in
the chaos+impurity model is translated to μ ≈ 4 m2/Vs of the
bulk mobility, which qualitatively agrees with μ ≈ 7.6 m2/V s
of the pristine bulk 2DES obtained in separate experiments
[16,34,35].

The resultant values of λF, as plotted in Fig. 4(b), present a
ground for the validity of the present approach. In this regard,
we recall the following equation, deduced for the pristine bulk
2DESs [14]:

kα = αm∗

h̄2 = |e|me

2εSε0h̄
2

(
aSOm∗

me

)(
N∗

S − NS
)
, (4)

where the value of the intrinsic constant for the Rashba
effect aSOm∗/me is evaluated to be 1.17 eV Å

2
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FIG. 5. MC curve of MRA in a wide magnetic field range.
(a), (b), (d), (e) Red curves represent the same experimental �σ

data of MRA taken at Tel ∼ 500 mK, where kα is tuned to be zero
by Vg. (b) and (e) are the magnifications of (a) and (d), respectively,
for a narrower magnetic field range. Black dotted curves in (a) and
(b) are the r2 maximized �σ in the “chaos+impurity” model using
only a partial set of the closed-loop trajectories that fall in the areal
range S/S0 � 0.5 [the hatched region in (c)]. Black dotted curves
in (d) and (e) are the r2 maximized �σ in the chaos+impurity
model using all the closed-loop trajectories [the hatched region in
(f)]. (c), (f) Black solid and dashed curves are the areal distributions
of the nominal and weighted return counts, respectively [the latter
with exp(−Li/Lφ)], using �S = 0.05 μm2 for the histogram bin.
Parameter values used in this simulation are kc = 0.121 rad/μm,
�ex = 0.94 μm, and Lφ = 75 μm.
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curves. (b) Temperature dependence of the phase coherence times
extracted from the chaos+impurity model (colored solid circles). τee,
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ring
φ [Eqs. (5), (7), and (8)] are plotted by the blue dashed,

green dotted, and green dashed lines, respectively.

NS = N∗
S = 1.9 × 1016 m−2, letting N∗

S be the carrier density
at which 〈Ez〉 = 0 V/m is realized in the pertinent 2DES (sam-
ple KH3-1), and εS = 13.1 is the relative dielectric constant for
In0.53Ga0.47As. Here, me and ε0 are the free-electron mass and
dielectric constant in vacuum, respectively. Equation (4) can
be used to connect the values between λF ≡ √

2π/NS and kα ,
which in turn provides the λF vs Vg relation independently
of the present procedure of parameter extraction. The values
of λF thus obtained are plotted by the black dotted curve in
Fig. 4(b), which are in good agreement with those obtained in
the chaos+impurity model.

The limitation of the present model is discussed next. The
observed Vg dependencies of Lφ and �ex as in Figs. 4(c) and
4(d), respectively, are only qualitatively physical. Lying at the
bottom of the discrepancy is the assumption that the shape and
size of the MRA are unchangeable with Vg. However, the
exact shape of the MRA is of course variable through the gate
depletion. Detailed analyses of the classical conductivities σ0

as a function of Vg may shed light on this issue in the future
research. In this work, we report only that our σ0 (quantitatively
equivalent to σ0.16 mT in Sec. II B) increased monotonically
from 6.8 to 14.2 in the unit of 2e2/h for Vg from 0.2 to
1.4 V, respectively, without following the ∼√

NS behavior as
expected from the Einstein relation σ0 = e2N0(EF)D. Here,
the electronic density of states at the Fermi energy N0(EF) is
constant with Vg and the diffusion constant D is supposed to
obey the ∼√

NS behavior with fixed MRA shape and �ex.

C. Origin of the background component in the MC curves

Plotted in Figs. 5(a) and 5(d) are the MC data of the
same MRA sample as above, but with a wider magnetic
field range (|B| � 5 mT), where kα was tuned to be zero
by the gate. Although the measurement here was per-
formed at the base temperature of the dilution refrigerator
(15 mK at the mixing chamber), Tel judged from the value

Lφ = 75 μm (τφ = 8.81 × 10−11 s) turned out to be rather
high (∼500 mK) because proper low-pass filtering was not
employed in the MC measurement. This is why the small
WAL peak around B = 0 mT is absent in Figs. 5(a), 5(b), 5(d),
and 5(e). Surprisingly, the chaos+impurity model was able to
reproduce the experimental results for a magnetic field range
as wide as 8�B, where �B = h/2eS0.

Plotted in Figs. 5(c) and 5(f) are the areal histograms
of the closed loops generated by the chaos+impurity model,
both for nominal count (solid curve) and weighted count
with exp(−Li/Lφ) (dashed curve). We note that the other
quantum modifications, such as Ai(kα,kc) and (1 + cosθi) as in
Eq. (1), are not included in the dashed curve in Figs. 5(c) and
5(f). Discovered clearly here is the fact that the background
component of the MC curves with a wide magnetic field range
is governed by the closed loops with relatively small encircling
areas (S � 0.5S0, S0 being 3.24 μm2) in the chaos+impurity
model [black dashed curves in Figs. 5(a) and 5(b)].

D. Temperature dependence of τφ in MRA

Let us finally consider the temperature dependence of the
MC curves of MRA. For this study, we used the same MRA
shape and layer structure as in Figs. 1(b) and 1(d), but the
wafer had slightly different doping (the exact wafer used here
is sample KH1-3 in Ref. [14]). Shown in Fig. 6(a) are the
traces of the MC curves (colored solid curves) obtained at
seven different temperatures below 1 K that are monitored
at the mixing chamber, where kα was tuned to be zero by
the gate. We note that most of the external conditions in
our MRA are temperature independent below 1 K. Only Lφ

is highly sensitive to temperature because of the electron
phase decoherence in the quasi-2D and one-dimensional (1D)
systems [6,50,51]. Thus, we analyzed the given MC curves
using Lφ as the only variable parameter (black dotted curves)
using the chaos+impurity model. The other parameter values
used were kc = 0.150 rad/μm and �ex = 1.3 μm.

Plotted in Fig. 6(b) are the values of the phase coherent times
τφ converted from the extracted Lφ values using Lφ = vFτφ

(NS = N∗
S = 1.06 × 1016 m−2 and m∗ = 0.047me [14]), as a

function of temperature measured at the mixing chamber (T ).
A separate study indicated that the Tel agrees with T only above
100 mK in our system, if proper low-pass filtering is employed
(S2 in the Supplemental Material [36]). Consistent with this is
the saturation of the τφ values below T ≈ 100 mK in Fig. 6(b).
We find the disappearance of the WAL peak around B = 0 mT
above T ∼ 480 mK in Fig. 6(a). We can recall our estimation
of Tel ∼ 500 mK in Fig. 5, where the WAL peak was not visible
either.

Both the τφ values themselves and their dependence on
temperature were found to agree with predictions based on
the Fermi liquid theory [50,51]. It is known that electron-
electron scattering is responsible for τφ , not electron-phonon
scattering, at low temperatures such as below 1 K [6]. The
electron-electron scattering mechanisms that dominate de-
phasing consist of large-energy-transfer scattering and small-
energy-transfer (Nyquist) scattering. We denote the decoher-
ence times associated with these mechanisms by τee and τN, re-
spectively, where the total τφ is obtained by τ−1

φ ≈ τ−1
ee + τ−1

N .
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The expression of τ−1
ee is given as [6,50]

τ−1
ee = π

4

(kBT )2

h̄EF
ln

EF

kBT
, (5)

which is plotted with a blue dashed line in Fig. 6(b) using
EF = 54 meV for the Fermi energy. It turned out that τ−1

ee is
negligible relative to τ−1

N in the investigated temperature range.
We have different expressions for τ−1

N for a diffusive 2DES and
a quasi-1D wire system [50,51]

τN(2D)
−1 = kBT

2πh̄

λF

�
ln

π�

λF
(6)

and

τN(1D)
−1 = τAAK

−1 = 1

2

(
kBT

W

√
π

h̄m∗
λF

�

)2/3

, (7)

respectively, where � and W are the mean-free path in the
pertinent system (pristine 2DES or quasi-1D wire) and the
width of the quasi-1D wire, respectively. It is noted that a
factor 1

2 in the right-hand side of Eq. (7) is through the
time-dependent phase factor which is well established by now
[27,52–55]. The apparent agreement between the experimental
τφ and theoretical τN(2D) using unphysical � = 21.1 nm for
T � 100 mK [τN(2D) is also given by the green dashed line in
Fig. 6(b), the same plot as for τ

ring
φ of Eq. (8)] was also found

in a zero-dimensional (0D) open quantum-dot system [6,56].
The more recent (and correct) exposition for the τφ ∼ T −1

behavior in nontrivial geometries as in the present case is in
Refs. [56–62].

Plotted in Fig. 6(b) with the green dotted line is τAAK as
a function of temperature, substituting � = 85 nm, which is
deduced from the experimental σ0 of the MRA assuming the
Einstein relation, and W = 0.5 μm in Eq. (7). Here, the values
obtained (τAAK) agree qualitatively well with the experimental
results (τφ) in the given temperature range, although the exper-
imental results did not follow the predicted T −2/3 dependence
in τAAK.

Recently, much progress has been made in the study of
electron decoherence (by the electron-electron interaction) in
complex geometries [57–60] with some verification in experi-
ments [61,62]. These studies demonstrate that the decoherence
by the electron-electron interaction is geometry dependent. In
ring arrays, it has then been shown that, in the high-T regime,
i.e., when �φ is smaller than the ring perimeter L, electrons
following trajectories encircling and not encircling the ring
have a τφ ∝ T −1 and a τφ ∝ T −2/3 dependence, respectively.
Within this theoretical framework, the T −1 dependence ex-
tracted in our study suggests that the dephasing time τφ plotted
in Fig. 6 is dominated by contributions from electron going
along trajectories encircling the ring and giving rise to the

magnetoconductance oscillations. To further analyze our data,
we fitted τφ vs T with the T −1 law expected for electrons
encircling the ring, given by

τ
ring
φ = 64

π3

h̄

kB

αdNc�

LT
, (8)

where Nc = kFW
π

is the number of modes in the rings and αd

is a dimension dependent factor. Using α1 = 2, W = 0.5 μm
and L = 6.4 μm, we obtained an elastic scattering length �

of 167 nm for τ
ring
φ in Fig. 6(b). We find that this value (� =

167 nm) is in better agreement with � = 85 nm deduced from
the experimental σ0 of the MRA assuming the Einstein relation.
We were thus led to similar conclusions as in Ref. [61], despite
the apparent differences in the device details aside from their
ring structures. Such observation supports the important role
of the electron trajectories encircling the rings, as suggested
by theories [57–60], in predicting the correct temperature
dependence of phase coherent time.

V. CONCLUSIONS

We demonstrated an approach of examining electron prop-
erties directly from chaotic trajectories in mesoscopic ring
array (MRA) structures. In experiments, we measured the gate
and temperature dependencies of the magnetoconductivities
(MCs) of MRAs that were fabricated in InGaAs quantum wells
(QWs), of which the Rashba spin-orbit interaction (SOI) is gate
controllable. The gate dependence of the MC curves showed
an Onsager symmetry related to the SOI, i.e., �σ (〈Ez〉 ,B) =
�σ (−〈Ez〉,B), which facilitated our semiclassical billiard ball
simulation, providing the gate-voltage value that annihilates
the Rashba SOI. Applying the real-space formalism of the
weak localization/antilocalization effect based on the time-
reversal interferences on all the chaotic return trajectories
in our MRAs, we were able to reproduce the experimental
MC curves with high fidelity. Various electron parameters
(Fermi wavelength, strength of the residual SOI, probabilistic
scattering length, and phase coherence length) in addition to
the Rashba SOI were thereby extracted from a single MC curve
quantitatively. The approach demonstrated here is applicable to
a wide variety of mesoscopic and nanostructured materials and
provides a diagnostic tool for investigating the exotic properties
of two-dimensional electrons.
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