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Coulomb scattering rates of excited states in monolayer electron-doped germanene
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Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene
exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy.
They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes,
depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through
the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy
dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to
those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence
ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the
wave vector k.
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I. INTRODUCTION

A lot of two-dimensional (2D) materials have been suc-
cessfully synthesized since the first discovery of graphene in
2004 using the mechanical exfoliation of Bernal graphite [1].
They are very suitable for exploring diverse physical, chemical,
and material properties. Specifically, the 2D group-IV systems
possess a high-symmetry honeycomb lattice and nanoscale
thickness, in which few-layer graphenes have been verified to
exhibit rich and unique properties, such as massless and mas-
sive fermions [2–5], quantized Landau levels [6–9], magneto-
optical selection rules [10–13], and quantum Hall effects
[14–17]. Recently, few-layer germanene, silicene, and tinene
were, respectively, grown on [Pt(111), Au(111), and Al(111)]
surfaces [18–21], [Ag(111), Ir(111), and ZrBi2] surfaces
[22–24], and the Bi2Te3(111) surface [25]. Monolayer ger-
manene and silicene, with a stable

√
3 × √

3 geometric struc-
ture, have been clearly identified from scanning tunnel mi-
croscopy measurements [20,21]. Such systems possess buck-
led structures and significant spin-orbital couplings (SOCs),
leading to rich and unique essential properties [26,27]. They are
expected to present unusual Coulomb excitations and deexcita-
tions arising from many-particle electron-electron interactions.
The Coulomb scattering rates of the excited states in monolayer
electron-doped germanene are chosen for a model study in
this work, especially for their relations with single-particle and
collective electronic excitations.

For germanene, silicene, and graphene, the low-lying elec-
tronic structures mainly arise from the outermost pz orbitals
[4,27]. The Dirac-cone structures, being created by the hexag-
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onal symmetry, might be separated or gapless as a result of
significant or negligible SOCs. From an effective Hamilto-
nian of the tight-binding model [discussed later in Eq. (1)]
[27–30], germanene and silicene are predicted to be narrow-
gap semiconductors with band gaps of Eg ∼ 93 and ∼7.9 meV,
respectively, reflecting the strengths of SOCs. Moreover, the
first-principles calculations indicate that the extra Ge adatoms
on monolayer germanene could form dumbbell reconstruction
structures [31], and there exist very complicated energy bands
initiating from the distinct high-symmetry points. On the other
hand, graphene has linear valence and conduction bands inter-
secting at the Dirac point in the absence of SOC. The calculated
band structures could be examined from the angle-resolved
photoemission spectroscopy (ARPES) measurements, as done
for few-layer germanene grown on a Au(111) surface [19].
Experimental observations indicate that the multiple Dirac-like
energy dispersions might be caused by the folding of ger-
manene’s Dirac cones. High-resolution ARPES measurements
also provide complete information on the energy widths of the
excited states [19,32,33].

Electron-electron interactions are one of the mainstream
topics in condensed-matter systems [34–38] since they are
responsible for a lot of physical properties, e.g., the effective
Coulomb potential, the impurity screening, the correlation en-
ergy, the effective mass, and the mean free path. The Coulomb
interactions create the many-particle electronic excitations
and thus have strong effects on the energies and lifetimes of
quasiparticle states. Previous calculations predicted that mono-
layer electron-doped germanene exhibits diverse momentum-
and frequency-dependent phase diagrams [38]. Rich Coulomb
excitations, as shown Figs. 1(a) and 1(b) at EF = 0.2 eV, cover
the anisotropic excitation spectra, the intraband single-particle
excitations (SPEs), the interband SPEs, the strong acoustic
plasmon at small momenta q’s, the second kind of plasmon
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FIG. 1. The momentum- and frequency-dependent excitation
spectra of germanene with EF = 0.2 eV under (a) θq = 0◦ and
(b) 30◦, in which θq is the angle between the transferred momentum
and �M [Fig. 2(b)]. The second and third kinds of plasmon modes
are, respectively, indicated by the blue and purple arrows in (a) and
(b). kF,x is the Fermi momentum along �M .

[the undamped mode at large q’s by the blue arrow in Fig. 1(a)],
and the third kind of plasmon accompanied by the intraband
Landau damping [the purple arrow in Fig. 1(b)]. They might
become the effective deexcitation channels of the excited
electrons (holes), depending on the wave vectors, valence
(conduction) states, and Fermi energies. The main features and
mechanisms of the Coulomb decay rates and the significant
differences among the emergent 2D materials is worthy of a
systematic investigation.

The screened exchange energy characterized by Matsub-
ara’s Green’s functions is used to calculate the Coulomb
scattering rates of the excited states in monolayer electron-
doped germanene, in which the deexcitation channels are
evaluated from the random-phase approximation (RPA). The
decay processes and their dependence on the wave vector,
valence and conduction states, and Fermi energy (doping
density) are explored in detail. A comparison with monolayer
graphene is also made. This work shows that the intraband
SPEs, the interband SPEs, and the distinct plasmon modes play
critical roles in determining the deexcitation behaviors. The
unusual Coulomb decay rates are revealed as the oscillatory
energy dependence, the strong anisotropy, the nonequivalent
valence and conduction Dirac points, and the similarity to
a 2D electron gas for the low-energy conduction electrons
and holes. The predicted Coulomb decay rates could be
directly verified from the high-resolution ARPES measure-
ments on the energy widths of the quasiparticle state at low
temperatures [19,32,33].

This work is organized as followings. The zero-field Hamil-
tonian and the RPA self-energy of monolayer electron-doped
germanene are derived and discussed in Sec. II. Section III cov-
ers the evaluated Coulomb decay rates, the fundamental mech-
anisms, the experimental examinations, and the comparisons

FIG. 2. (a) Geometric structure of monolayer germanene shown
in the top and side views, (b) the first Brillouin zone, and (c) low-lying
energy bands along the high-symmetry points, accompanied by those
near the Dirac points in the inset.

with graphene. Section IV gives concluding remarks, accom-
panied by the effects due to the electron-hole asymmetry,
the measured

√
3 × √

3 structure, and the predicted dumbbell
reconstruction structures.

II. THE RPA SELF-ENERGY

Monolayer germanene has a buckled hexagonal lattice
with a Ge-Ge bond length of b = 2.32 Å, as shown in
Fig. 2(a). There are two equivalent sublattices, A and B,
separated by a distance of l = 0.66 Å (details are given in
[38]). The low-lying electronic structure is dominated by 4pz

orbitals. The Hamiltonian, which is built from the subspace
spanned by the four spin-dependent tight-binding functions, is
expressed as

H = −t
∑

〈i,j〉,α
c
†
iαcjα + i

λso

3
√

3

∑

〈〈i,j〉〉,α,β

νij c
†
iασ z

αβcjβ

− i
2

3
λR

∑

〈〈i,j〉〉,α,β

μij c
†
iα(�σ × d̂ij )cjβ . (1)

The first term, the summation over all the pairs 〈i,j 〉 of the
nearest-neighbor lattice sites, is the kinetic energy with a
hopping integral of t = 0.86 eV [27]; c†iα (cjα) can create (anni-
hilate) an electron with spin polarization α (β) at the ith (j th)
site. The second term represents the effective SOC with the
summation over all pairs 〈〈i,j 〉〉 of the next-nearest-neighbor
sites, and its strength is λSO = 46.3 meV. �σ = (σx , σy , σz) is the
Pauli spin matrix. νi,j = ( �di × �dj )/| �di × �dj |, where νi,j = +1
and −1, respectively, correspond to the counterclockwise and
clockwise cases from the cross product of the two nearest-
neighbor bonding vectors �di and �dj . The third term denotes
the Rashba SOC with λR = 10.7 meV, ui,j = +1 (−1) for the
A (B) lattice sites, and d̂ij is the unit vector connecting two
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sites, i and j , in the same sublattice [Fig. 2(a)]. State energies
are characterized by Ec,v(k) [Eh(k )], where c and v represent
conduction and valence states, respectively. They remain dou-
bly degenerate for the spin degree of freedom in the presence of
SOC, in which there exists spin-up- and spin-down-dominated
configurations.

The free-carrier density and temperature can greatly enrich
the electronic excitations of monolayer germanene. Under the
perturbation of Coulomb interactions, electrons are excited
from the occupied states to the unoccupied ones during the
dynamic charge screening. For an intrinsic germanene, only
the interband SPEs, described by the imaginary part of the
dielectric function, can survive at zero temperature. The
collective excitations are revealed in the loss function as a
prominent peak when the free-carrier density or temperature is
sufficiently high [38]. The extrinsic germanene, with electron
doping, is predicted to exhibit three kinds of plasmon modes.
There exist intraband and interband SPEs [Figs. 1(a) and
1(b)], in which the former and the latter are, respectively,
associated with the conduction and valence carriers. The first
kind of plasmon, which behaves as a 2D acoustic mode at
small transferred momenta, will make a large contribution
to Coulomb decay rates. At large q’s, it experiences heavy
interband Landau damping and then disappears. Specifically,
the second and third kinds of plasmons come to exist only under
sufficiently large momenta. The above-mentioned single- and
many-particle excitation channels are available in the inelastic
Coulomb scatterings, as discussed later.

The incident electron beam or electromagnetic field has
strong interactions with charge carriers and thus creates
the excited electrons (holes) above (below) the Fermi level.
Such intermediate states could further decay via the inelastic
electron-electron scatterings. The Coulomb decay rate 1/τ is
dominated by the effective interaction potential V eff between
two charges, in which the dynamic e-e interactions can be
understood from the RPA. By using the Matsubara Green’s
functions [39], 1/τ is evaluated from the quasiparticle self-
energy, the screened exchange energy


(k,h,ikn) = − 1

β

∑

q,h′,iωm

V eff (q,iωm; k,h,h′)G(0)

× (k + q,h′,ikn + iωm), (2)

where β = (kBT )−1, ikn = i(2n + 1)π/β (complex fermion
frequency), iωm = i2mπ/β (complex boson frequency),
and G(0) is the noninteracting Matsubara Green’s function.
V eff (q,iωm; h,h′,k)=Vq |〈h′,k+q|ei �q·�r |h,k〉|2/[ε(q,iωm)] =
V (q; h,h′,k)/[ε(q,iωm)] is the screened Coulomb interaction
with the band-structure effect, where Vq is the 2D bare
Coulomb potential energy and ε(q,iωm) is the RPA dielectric
function. It should be noted that the SOC leads to the
superposition of the spin-up and spin-down components.
However, it does not need to deal with the spin-up- and
spin-down-dependent Coulomb decay rates separately since
they make the same contribution. That is, it is sufficient
to explore the wave-vector-, conduction- and valence-, and
energy-dependent self-energy [Eq. (2)]. Under the analytic
continuation ikn → Eh(k), the self-energy can be divided into

the line part and the residue part:


(k,h,Eh(k)) = 
x(k,h) + 
(line)(k,h,Eh(k))

+
(res)(k,h,Eh(k)) (3)

in which


x(k,h) = −
∑

q,h′
V (q; h,h′,k)nF (Eh′

(k + q)) (4)


(line)(k,h,Eh(k))

= − 1

β

∑

q,h′,iωm

[V eff (q,iωm; k,h,h′) − V (q; h,h′,k)]

×G(0)(k + q,h′,Eh(k) + iωm) (5)

and


(res)(k,h,Eh(k))

= − 1

β

∑

q,h′,iωm

[V eff (q,iωm; k,h,h′) − V (q; h,h′,k)]

× [G(0)(k + q,h′,ikn + iωm)

−G(0)(k + q,h′,Eh(k) + iωm)]. (6)

The imaginary part of the residue self-energy determines the
Coulomb decay rate and is defined as

Im
(res)(k,h,Eh(k)) = −1

2τ (k,h)

=
∑

q,h′
Im[−V eff (q,ωde; k,h,h′)]

×{nB(−ωde)[1 − nF (Eh′
(k + q))]

− nB (ωde)[nF (Eh′
(k + q))]}

= −1

2τe(k,h)
+ −1

2τh(k,h)
. (7)

ωde = Eh(k) − Eh′
(k + q) is the deexcitation energy. nB and

nF are the Bose-Einstein and Fermi-Dirac distribution func-
tions, respectively. Equation (7) indicates that an initial state
of (k,h) can be deexcited to all the available (k + q,h′) states
under the Pauli exclusion principle and the conservation of
energy and momentum. The excited states above and below the
Fermi level are, respectively, related to the electron and hole
decay rates [the first and second terms in Eq. (7)]. From detailed
calculations, the zero-temperature Coulomb decay rates of the
excited electrons and holes are

1

τe(k,h)
+ 1

τh(k,h)
= −2

∑

q,h′
Im[−V eff (q,ωde; k,h,h′)]

×{−�(ωde)�[Eh′
(k + q) − EF ].

+�(−ωde)�[EF − Eh′
(k + q)]},

(8)

where EF is the Fermi energy. � is the step function that
describes the available deexcitation channels. In addition, the
decay rate is double the energy width of the quasiparticle state.
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FIG. 3. The available deexcitation channels of the specific ex-
cited states are indicated for (a) the conduction electrons, (b) the
conduction holes, and the valence holes scattered into the (c) same and
(d) distinct bands. (e) The relations between the deexcitation energies
and transferred momenta.

III. COULOMB DECAY RATES

Germanene displays a feature-rich band structure due to
significant SOC and the buckled honeycomb lattice. The
conduction band is symmetric to the valence one about zero
energy under an effective Hamiltonian in Eq. (1) [Fig. 2(c)].
These two bands present parabolic energy dispersions near the
K point [Fig. 2(b)], in which the separated Dirac points have
an energy spacing of ED = 93 meV because of SOC [inset in
Fig. 2(c)]. The state energy Eh(k) is measured from the middle
of the energy spacing. Energy bands are gradually changed into
linear dispersions with the increase of state energy. The band
structure is anisotropic at sufficiently high energies (|Ec,v| >

0.2 eV), as observed along the K� and KM directions. With
the increasing wave vector, the former exhibits more obvious
changes compared with the latter. The anisotropic energy
spectrum will play an important role in the Coulomb scatterings
related to the available deexcitation channels.

The Fermi energy dominates the main features of electronic
excitations and thus determines the Coulomb decay channels.
When EF is in the middle of energy spacing, the excited
electrons or holes at zero temperature can decay into conduc-
tion or valence band states only by using the interband SPEs.
The increase in EF creates the intraband SPEs and plasmon
modes and induces the drastic changes in the interband SPEs.
Such Coulomb excitations can greatly diversify the decay
channels. As for the excited conduction electrons, the final
states during the Coulomb deexcitations lie between only the
initial states and the Fermi momentum [red arrow in Fig. 3(a)],
according to the Pauli exclusion principle and the conservation
of energy and momentum. The available deexcitation channels,
the intraband SPEs, make the most important contributions
to the Coulomb decay rates for the low-lying conduction

FIG. 4. The Coulomb decay rates of the quasiparticle states
along the special directions of (a) KM and (b) K� are taken into
consideration under EF = 0.2 eV.

electrons, corresponding to the orange part in Fig. 3(e). But
when the initial-state energy is high, the interband SPEs and
the second or third kind of plasmon modes might become the
effective deexcitation mechanisms [discussed later in Figs. 4(c)
and 5(a)]. Concerning the excited holes in the conduction band,
they can be deexcited to the conduction states [c → c; blue
arrow in Fig. 3(b)] through the intraband SPEs, mainly owing
to the low deexcitation energies and transferred momenta, as
shown by the green part in Fig. 3(e). On the other hand, the
valence holes present two kinds of decay processes: v → v

and v → c in Figs. 3(c) and 3(d), respectively. Their available
decay channels cover intraband SPEs, interband SPEs, and the
second or third kind of plasmon modes and the interband SPEs
and acoustic plasmon modes, respectively, corresponding to
the blue and red parts in Fig. 3(e). Specifically, the latter
has large deexcitation energies at small momenta and is thus
expected to exhibit efficient and unusual Coulomb decay rates.

The Coulomb decay rates are very sensitive to the quasipar-
ticle state (k, h). As to the excited conduction electrons, the
c → c intraband process is available as state energy gradually
increases from the Fermi level. The intraband SPEs make the

FIG. 5. The available deexcitation spectra due to the specific
states indicated by the arrows in Figs. 4(a) and 4(b) are shown for
(a) θq = 0◦ and (c) θq = 30◦. (b) and (d) The details of the θq -
dependent deexcitation energies. The curves are defined by the
conservation of energy and momentum.
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main contributions to this process [the orange part in Fig. 3(e)];
therefore, the decay rate monotonously grows with Ec, as
shown in Figs. 4(a) and 4(b) by the orange curves. When the
excited states are close to EF (|Ec − EF | � 0.5EF ), 1/τe is
roughly proportional to (Ec − EF )2ln|Ec − EF |, according to
the numerical fitting. Such an energy dependence is character-
istic of a 2D electron gas [40,41]. This is not surprising since
as Ec → EF , the deexcitation energy is essentially linear in
q whether the energy band has a linear or a quadratic energy
dispersion. Furthermore, the low-momentum-frequency intra-
band SPEs are the only deexcitation channels. It is for such
reasons that the widths of germanene and an electron gas near
the Fermi level share a similar character.

For the higher-energy conduction states, the Coulomb decay
rates depend on the anisotropic energy bands. Along the
KM direction [Fig. 4(a)], 1/τe increases and then reaches a
saturated value after Ec > 3EF (orange arrow). But for the
K� direction [Fig. 4(b)], it gets large with the further increase
of Ec (green arrow). This important difference between the
two directions lies in whether the interband SPEs are the effec-
tive deexcitation channels. The higher-energy electronic states
have stronger energy dispersions along K� [Fig. 2(c)], so that
their deexcitation energies at large transferred momenta are
consistent with those of the interband SPEs. For example,
the conduction state of Ec = 3EF along K� has a lot of
deexcitation channels, indicated by the green curve in Fig. 5(a)
at θq = 0◦. Similar results are revealed in different momentum
directions, e.g., the green curves at θq = 30◦ in Fig. 5(c).
The effective deexcitation channels cover the intraband and
interband SPEs. The latter is responsible for the enhanced
Coulomb decay rates in the high-energy conduction states
along K�. On the other hand, the Ec = 3EF conduction
electron along KM has lower deexcitation energies and thus
exhibits only intraband SPEs, as illustrated by the orange
curves in Figs. 5(a) and 5(c).

The deexcitation behaviors of the excited holes strongly
depend on whether they belong to conduction or valence states.
Concerning the conduction holes, the Coulomb decay rates
are isotropic, as indicated by the almost identical τ−1

h,c−c’s
along KM and K� [green curves in Figs. 4(a) and 4(b)].
Furthermore, the energy dependence is similar to that of the
low-lying conduction electrons (2D electron gas). Such results
directly reflect the fact that the intraband SPEs are the only
available deexcitation channels, e.g., the gray curves related to
the conduction Dirac point [Figs. 5(a) and 5(c)]. Specifically,
the K point [gray arrow in Fig. 4(b)] has the largest Coulomb
decay rate among all the excited conduction holes.

On the other hand, the decay rates of the valence holes
exhibit unusual k dependences. The valence Dirac point has
a significant decay rate [purple arrow in Fig. 4(b)], being
much higher than that of the conduction one. It presents only
the v → c decay process, in which the deexcitation channels
mainly come from the interband SPEs and the undamped
plasmon modes, as indicated by the purple curves in Figs. 5(a)
and 5(c). They create the important difference between the
valence and conduction Dirac points. With the increase of
the valence-state energy, two decay processes, v → c and
v → v, contribute to the Coulomb decay rates simultaneously.
As to the former, the available range of the strong acoustic
plasmon grows and then decreases quickly for the low-lying

valence holes, leading to an unusual peak structure in τ−1
h,v−c

at small Ev’s [the red curve in Figs. 4(a) and 4(b)]. For
example, the Ev = −0.4EF valence state along KM has the
widest plasmon-decay range, associated with the blue curves in
Figs. 5(a) and 5(c), so it can exhibit fast Coulomb decay [blue
arrow in Fig. 4(a)]. The plasmon-induced deexcitations are
almost absent for the deeper valence states (e.g.,Ev < −1.5EF

along KM). The interband SPEs also make some contributions
to τ−1

h,v−c, and they dominate the Coulomb decay rates of the
deeper-energy states, e.g., the red curves along KM and K� at
Ev < −2EF . Specifically, for the v → v process, the excited
valence holes [the blue curves in Figs. 4(a) and 4(b)] behave as
the excited conduction electrons (the orange curves) in terms of
the k dependence and the deexcitation channels. The intraband
SPEs are the dominating mechanisms in determining τ−1

h,v−v of
the low-lying valence states (Ev > −2EF ). They are replaced
by the intraband SPEs and interband SPEs for the deeper
valence states along K�. This accounts for the anisotropic
Coulomb decay rates along K� and KM .

The effective deexcitation channels deserve closer exam-
ination. Each excited state could decay along any direction,
as clearly indicated by the summation of q in Eq. (7), in
which the transferred momentum is a function of q (mag-
nitude) and θq (azimuthal angle in the range of 2π ). By
means of the specific excitation spectrum, it might exhibit
several dispersion relations (less than six) in the q-dependent
deexcitation energies for a fixed θq . The main reason is that
the Coulomb excitations and energy bands possess hexagonal
symmetry; that is, the excitation spectra are identical for θq ,
θq + π/3, θq + 2π/3, θq + 3π/3, θq + 4π/3, and θq + 5π/3.
For example, the excited valence hole state, with the highest

Coulomb decay rate along KM (K�), shows three (four)
independent dispersive functions (blue curves) for θq = 0◦
(θq = 30◦). The other excited states in Figs. 5(a) and 5(c)
exhibit similar behaviors. The total deexcitation regions consist
of θq-dependent dispersion relations; that is, they are very
sensitive to the direction and magnitude of q, as expected
from the basic scattering pictures. Specifically, Figs. 5(a)
and 5(c) clearly show that the excited states along KM and
K� do not utilize the second and third plasmons as the
effective deexcitation channels since the deexcitation energies
are insufficient. However, the excited electrons along K�, with
energies higher than 5EF , could decay via the second kind of
plasmon mode (not shown). If they are in between KMand
K�, their energies larger than 3EF will be able to deexcite via
the third kind of plasmon mode.

The wave-vector- and Fermi-energy-dependent Coulomb
scattering rates, as clearly shown in Figs. 6(a)–6(f), deserve
closer examination. The decay rates of the valence holes exhibit
oscillatory energy dependence along any wave-vector direc-
tions, mainly owing to the complicated deexcitation channels.
The strongest Coulomb scatterings, being associated with the
undamped acoustic plasmons, appear at valence states below
the Dirac point [the dashed blue curves in Figs. 6(a), 6(c),
and 6(e)]. The valence-state decay rates strongly depend on
the direction of k, in which they are, respectively, lowest
and highest along KM and K�. Apparently, anisotropic
Coulomb decay rates exist for any valence-state energies. This
is closely related to the strong anisotropy of the deeper valence
band [Fig. 2(c)]. As for conduction holes and electrons, the

195302-5



SHIH, CHIU, WU, DO, AND LIN PHYSICAL REVIEW B 97, 195302 (2018)

FIG. 6. The wave-vector-dependent Coulomb scattering rates of
(a) the valence holes and (b) the conduction holes and electrons at
EF = 0.2 eV. Similar plots at (c) and (d) EF = 0.3 eV and (e) and
(f) 0.1 eV.

Coulomb scattering rates, as measured from that of the Fermi-
momentum state, present monotonous energy dependences.
The anisotropic deexcitations come to exist only for the higher-
energy conduction states.

It is relevant to observe the oscillatory energy dependence
and the anisotropic behavior at higher Fermi energy. Electronic
excitations and Coulomb decay rates are very sensitive to the
changes in free-carrier densities, as revealed in Fig. 6. The
momentum-frequency excitation spectra are drastically altered
by the Fermi energy. For example, a fully undamped intraband
plasmon, almost isotropic excitations, and an obvious excita-
tion gap between the intra- and interband SPEs are revealed
at a sufficiently low Fermi level, e.g., excitation spectra at
EF = 0.1 eV [38]. These are directly reflected in the Coulomb
decay rates. For larger EF , the available momentum-frequency
deexcitation range of the strongest acoustic plasmons and the
interband SPEs is enhanced since they could coexist. This
leads to a stronger dependence of decay rates on the state
energy and direction of k, as clearly indicated in Fig. 6(c) at
EF = 0.3 eV and Fig. 6(e) at EF = 0.1 eV. The EF -induced
differences are further illustrated by the Coulomb decay rates
of the specific states. For example, the largest decay rates
are, respectively, 0.074 and 0.081 eV along KM and K�

at EF = 0.3 eV, while they become 0.022 and 0.024 eV at
EF = 0.1 eV. Furthermore, the conduction and valence Dirac
points present similar differences in the magnitude of decay
rate and anisotropic behavior.

The effective Hamiltonian in Eq. (1) and the RPA self-
energy in Eqs. (2)–(8) are suitable for monolayer germanene,
silicene, and graphene, with pz-dominated band structures.
The first system possesses the smallest hopping integral and

the largest SOC, so that the essential properties are relatively
easily tuned by the external factors, e.g., the carrier doping,
electric field, and magnetic field. Specifically, graphene, with
the strongest hopping integral (∼2.6 eV), exhibits a pair
of linearly intersecting valence and conduction bands at the
gapless Dirac points in the absence of SOC, in which the iso-
tropic Dirac-cone structure is further used to investigate the
rich and unique physical properties [42–45]. However, there
are important differences between germanene and graphene in
electronic excitations and Coulomb decay rates. Germanene
is predicted to present the anisotropic excitation spectra, the
second and third kinds of plasmons, a fully undamped acoustic
plasmon under low doping, and the SOC-dependent excitation
boundaries. Such features are absent in graphene [38]. The
theoretical calculations have been done for the excited conduc-
tion and valence electrons in graphene, indicating the isotropic
behavior and vanishing Coulomb decay rate at the Dirac point
[45]. Apparently, the calculated results are different from those
in this work.

The predicted scattering decay rates can be examined from
the high-resolution ARPES measurements, as successfully
done for potassium adsorption on monolayer graphene [33].
The ARPES spectra are measured along the KM and K�

directions for various doping concentrations in monolayer
electron-doped graphene, clearly indicating the quasiparticle
energy dispersions and the linewidth variations. They are
further utilized to get the doping-dependent momentum dis-
tribution curves (MDCs). The Lorentzian peak structures are
centered at the quasiparticle energies, and they present the full
width at half maximum identified as −2Im
(res) (the scattering
rate). The SPEs and plasmons, as well as the electron-phonon
scatterings at finite temperatures, are proposed to explain
the unusual energy dependences of MDC linewidths. The
ARPES measurements at low temperatures could provide the
Coulomb-scattering-dominated MDCs to verify the theoretical
predictions. The experimental examinations on monolayer
electron-doped germanene are useful in understanding the
main features of Coulomb decay rates and the critical deex-
citation mechanisms.

IV. CONCLUDING REMARKS

In this work, the Coulomb scattering rates in mono-
layer electron-doped germanene were investigated using the
screened exchange energy, in which the excitation spectra
are evaluated within the RPA. The excited states cover the
conduction electrons, conduction holes, and valence holes,
creating the decay processes c → c, c → c, and v → c plus
v → v, respectively. The low-lying conduction electrons and
holes present isotropic scattering rates, mainly owing to the
dominating intraband SPEs. Furthermore, they behave as a 2D
electron gas in the energy-dependent Coulomb decay rates.
The other excited states exhibit rich and unique k depen-
dence, including the oscillatory energy dependence and strong
anisotropy. Specifically, the low-energy valence states have the
largest decay rates by means of the undamped acoustic plasmon
modes, especially for that along K�. Such deexcitation modes
also lead to the important difference between the valence and
conduction Dirac points. The deeper valence states and the
higher conduction states have similar deexcitation channels,
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and so do the k-dependent decay rates. The intraband SPEs
are replaced by the intraband SPEs, the interband SPEs, and
the second and third kinds of plasmon modes during the
variation from the KM to K� direction. This is responsible
for the anisotropic decay rates. It is relatively easy to observe
the unusual Coulomb decay rates at higher Fermi energies.
Germanene is different from graphene in excitation spectra
and decay rates, being closely related to the strengths of
the hopping integral and SOC. The theoretical predictions
about energy-band-dominated Coulomb decay rates can be
examined from the APRES measurements on the energy widths
of quasiparticle states.

As to the symmetric electron-hole band structure [Fig. 2(c)],
the momentum- and frequency-dependent excitation spectra
are identical for electron and hole dopings, and so are the
Coulomb scatterings. That is, the Coulomb decay rates of the
excited conduction electrons, conduction holes, and valence
holes are the same as those of the excited valence holes,
valence electrons, and conduction electrons under the inter-
change of electron and hole dopings, respectively. On the
other hand, the asymmetric valence and conduction bands
about the zero energy might be induced by the partial multior-
bital hybridization (the weak sp3 bonding), the complicated
interlayer hopping integrals in a buckled system, and the
significant interactions with the substrate [46,47]. They might
have significant effects on electronic excitations, including the
momentum-frequency ranges of intraband and interband SPEs,
the diversified plasmon modes (with splitting), the existence
of Landau damping (the coexistence of plasmons and SPEs),
the spectral anisotropy due to the momentum direction, and
the distinct excitation spectra for electron and hole dopings
[48]. The available deexcitation channels will become more
complicated; therefore, the main features of Coulomb decay
rates, the oscillatory energy dependence, and the anisotropic
behavior, are expected to be greatly enhanced.

The geometric structures strongly affect the energy bands
and thus the electron-electron Coulomb interactions. The
measured

√
3 × √

3 geometric structure [20,21] will induce
the zone-folding effect on the band structure. More energy
subbands and even energy spacings could create complicated

excitation spectra and Coulomb scatterings, such as the various
intraband and interband single-particle excitations and deex-
citations, and the subband-dominated Coulomb decay rates.
Concerning the predicted dumbbell structures [31], the distinct
energy bands near the K , �, and M points arise from the
multiorbital bondings due to the highly buckled structure. Their
band structures are quite different from that of the pristine
system, and so are the other essential properties. The Coulomb
excitations and deexcitations will be dramatically changed in
terms of the momentum-frequency excitation phase diagrams
and the symmetry-point-dependent decay rates.

The RPA is frequently used to study the Coulomb exci-
tations and deexcitations of condensed-matter systems, es-
pecially for high-density carriers in three-, two-, and one-
dimensional materials [34–38,43–45]. This method might
induce poor results at low free-carrier density in certain many-
particle properties, mainly owing to insufficient correlation
effects. Some models have been proposed to modify the
electron-electron interactions, e.g., the Hubbard and Singwi-
Sjolander models for electronic excitation spectra and the Ting-
Lee-Quinn model for Coulomb decay rates [39]. The
time-dependent first-principles methods, accompanied by
the Bethe-Salpeter equation, are further developed to explore
the excitation and deexcitation phenomena in detail [49,50].
Such calculations could account for the experimental measure-
ments on excitation spectra and energy widths under a suffi-
ciently large energy or momentum scale. However, it might
be difficult to provide much information about the critical
mechanisms and pictures from the numerical calculations.
Whether the calculated results are suitable and reliable at low
energy is worthy of detailed examinations.
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