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Influence of point defects on the thermal conductivity in FeSi
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The unique transport properties of B20 FeSi have been investigated for decades. The progress in theoretical
calculations allows the explanation and prediction of more and more of such properties. In this paper we investigate
the lattice thermal conductivity of FeSi. Calculation for pristine FeSi severely overestimates the lattice thermal
conductivity compared to experiment. We point out that the defect concentration can be considerably larger than
indicated by the Hall coefficient. The defect formation energies are calculated and it is found that a substantial
amount of iron vacancies can form at thermal equilibrium. These will lead to an increased phonon scattering.
To explain the thermal conductivity of FeSi, we consider phonon-phonon, isotope, and phonon-defect scattering
to assess possible scattering mechanisms. The calculated thermal conductivities indicate that phonon-defect
scattering is important in order to explain the reported experimental values.
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I. INTRODUCTION

Cubic FeSi is a material where a number of properties
exhibit unique temperature dependencies. One example is the
closing of the narrow band gap at elevated temperatures, such
that FeSi becomes metallic [1–6]. Further examples are the
magnetic susceptibility, which tends to zero at low tempera-
tures but follows a Curie-Weiss law for high temperatures [7]
and the Seebeck coefficient, which peaks and reaches values
up to 1200 μV/K at T < 50 K [8]. The unusual property vs
temperature dependence has been discussed in terms of the
thermal disorder of the atoms [9,10] and in terms of effects
beyond the Kohn-Sham density functional theory (KS-DFT)
description of the electronic structure [11,12]. We recently
studied [10] the anomalous 14% downward shift of the acoustic
phonon peak that occurs when the temperature of FeSi is raised
above 750 K [13]. The effect, which is beyond the expected
phonon softening, can be explained within KS-DFT if thermal
expansion combined with thermal disorder of the atoms is
taken into account [10].

In the present work we focus on the lattice thermal con-
ductivity, κ�, of FeSi. Considering how KS-DFT seems able
to describe the phonon properties of FeSi [10], it would be
interesting to see whether the same conclusion applies to the
lattice thermal conductivity. Understanding the thermal con-
ductivity of FeSi is a challenging task where phonon-phonon,
electron-phonon, as well as phonon-defect interactions, will
influence the κ� of FeSi differently. Experimental data on the
κ of FeSi are limited. Buschinger [14], Ou-Yang [15], and Sales
et al. [8] report values up to 300 K and 200 K, respectively,
where phonon anharmonicity is significant. Interestingly, the
measured thermal conductivities show considerable discrep-
ancies at low temperatures. Both Buschinger and Sales et al.
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performed measurements on polycrystalline and single-crystal
samples and found that the κ of polycrystalline FeSi at 50–
70 K is almost double that of the single crystal [8,14]. This
is unusual, because polycrystalline materials usually exhibit
larger grain-boundary scattering than single crystals. Sales
et al. attribute this fact to electron-phonon scattering [8].
While measured Hall coefficients would indicate that the
defect concentration is also larger in the single-crystal sample,
point-defect scattering is ruled out as a possible source of the
inverted thermal conductivity due to the overall low carrier
concentration [8].

The aim of the present paper is to show that the point-defect
concentration can be larger than what would be estimated from
the Hall coefficient. Consequently, it can play an important
role in lowering the thermal conductivity, as a complementary
or alternative mechanism to the electron-phonon coupling.
Predictive evaluation of κ� in the presence of defects that can be
comparable with experimental observations is possible thanks
to a recently developed ab initio Green’s function approach
[16–18]. The presence of defects can have a large influence
on phonon scattering and thus lower the thermal conductivity.
We identify the iron vacancy as the most prominent intrinsic
defect in FeSi by calculating the defect formation energies.
We calculate the phonon-defect scattering rates and the re-
sulting concentration-dependent lattice thermal conductivity
of defect-laden FeSi and show that defect concentrations
around cdef = 0.5–1 % are enough to substantially lower the
thermal conductivity and achieve a better agreement with
experiment.

II. METHODS

To calculate the thermal conductivity the linearized Boltz-
mann transport equation in the relaxation time approximation
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is used.

κl = 1

3

∑
j

∫
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(2π )3
Cjqv

2
jqτjq, (1)

where jq represent the phonon branch and wave vector, Cjq
is the mode contribution to the volumetric heat capacity and
vjq the phonon group velocity. The total scattering rate can be
calculated using Matthiessen’s rule
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τ def
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The anharmonic scattering rate, (τ 3p
jq )−1, is obtained from the

second- and third-order interatomic force constants (IFCs)
[19]. The harmonic and anharmonic IFCs of the unperturbed
system were calculated in a 3 × 3 × 3 and 2 × 2 × 2 supercell
with 3 × 3 × 3 and 5 × 5 × 5 k-point meshes, respectively.
Thermal conductivities including three-phonon and isotope
scattering were calculated using the almaBTE code [20]. The
results were compared to those obtained from the PHONO3PY

code [21] and a very good agreement was obtained.
The IFCs are obtained by expanding the interatomic forces

around the atomic equilibrium positions up to third order
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Similar to our earlier work on the harmonic IFCs [10] we recast
this as

Fm = −
∑

n

ũnφ
mn − 1

2

∑
nh

ũnhψ
mnh, (4)

where ũ are 3 × 9 and 3 × 27 dimensional matrices, respec-
tively. φmn and ψmnh are the independent IFCs written as vec-
tors and ũ represent symmetry-dependent linear combinations
of the displacements. m, n, and h are atomic indices and α are
Cartesian coordinates.

The forces on the atoms are the result of the displace-
ments of all atoms in the supercell. The main advantage of
obtaining the IFCs by inverting Eq. (4) is that the forces
on the atoms can be obtained by displacing all atoms in
the supercell simultaneously. At thermal equilibrium, the
probability of a set of displacements is solely a function of
temperature. Thereby temperature-dependent effective IFCs
and temperature-dependent phonon properties can be obtained
[10,22]. Compared to 10 K, a 3% softening of the main
acoustic peak in FeSi is experimentally observed at 200 K [13].
Using the method of temperature-dependent effective IFCs
we have previously reproduced the phonon softening in FeSi,
and shown that both thermal expansion and thermal disorder
contribute [10]. To investigate the role of thermal disorder on
the lattice thermal conductivity we consider configurations,
where all atoms are displaced by a finite amount in random
directions with the amplitude of 0.015 Å at the calculated unit

cell volume of 88.1 Å
3
. The convergence of the obtained third-

order IFCs and the resulting thermal conductivity was moni-
tored with respect to the number of stochastic displacements.
Calculating forces for 1100 configurations of finite stochastic
displacements gives a κ� at 200 K that is 24 W m−1K−1. Using
1600 and 1800 configurations we obtain a converged value

FIG. 1. Band structure, imaginary and real parts of the Green’s
function computed using the three-dimensional (3D) tetrahedron
method as implemented in almaBTE [20] with a 22 × 22 × 22 sam-
pling grid. Second-order IFCs of defect-free FeSi are obtained with a
supercell size of 3 × 3 × 3.

of 25 W m−1K−1. We have further calculated the IFCs and
thermal conductivity using standard sequential displacements
[19], where the second- and third-order force are calculated
by sequentially displacing the atoms one at a time or in pairs,
respectively. Hereby a κ� = 21 W m−1K−1 is obtained. As a
phonon softening will reduce the average phonon velocities,
Eq. (1), it is at first sight surprising that the effective IFCs lead
to a higher lattice thermal conductivity. However, the phonon
softening is an indication of weaker interatomic interactions,
which will be reflected in both lower second-order, φ and
lower third-order, ψ , IFCs. While the lower second-order IFCs
lead to the observed phonon softening, and consequently lower
phonon velocities, the lower third-order IFCs will lead to lower
scattering rates and enhanced κ�. To investigate a possible
role of thermal expansion, we furthermore calculated κ� at the

experimental low-temperature volume (89.6 Å
3
). The volume

difference exceeds the 200 K volume expansion, which amount

to only 0.2 Å
3

[23]. Using 1800 configurations we obtain
a converged value of 25 W m−1K−1, thereby ruling out an
influence of thermal expansion at least up to 300 K.

To consider phonon-defect scattering rates, we take the
perturbation of the IFCs into account using a Green’s function
approach [24], where τ−1

jq is given as

1

τ def
jq

= −cdefVuc

ωiq
�{〈

jq
∣∣(I − Vg+)−1

V
∣∣jq

〉}
, (5)

where cdef is the volumetric concentration of the point defects,
Vuc the volume of the unit cell, and ω the angular frequency of
phonons. g+ is the retarded Green’s function of the unperturbed
crystal and V the perturbation matrix. The Green’s function,
Fig. 1, used in Eq. (5) is computed using the tetrahedron
method as implemented in the almaBTE code [20]. For the iron
vacancy considered here, V will be due to the perturbation of
the harmonic IFCs.
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We calculated the defect formation energies of the intrinsic
defects using the supercell approach within DFT [25]. The
defect formation energy is given by

ED(q) (μe) = Ef,D(q) −
∑

α

nα
μα + qμe, (6)

where Ef,D(q) is the defect formation energy with respect to the
reference states

Ef,D(q) = E
(q)
D − Ebulk −

∑
α

nαEα. (7)

The energy to exchange n atoms of kind α with the reservoir
is captured in the chemical potentials 
μα . Furthermore, the
defect formation energy depends on the charge state of the
defect and the electron chemical potential μe. In the binary
system of FeSi we first determine the allowed chemical poten-
tials corresponding to Fe- and Si-rich growth conditions. More
information on the computational procedure for calculating the
defect formation energies and the applied corrections can be
found in Ref. [26].

We performed all calculations using the DFT code VASP

[27] and the Perdew-Burke-Ernzerhof exchange correlation
functional [28]. We relaxed the atomic positions and volume
of the unit cell until the energy was converged up to 10−8 eV
per unit cell, which also minimized the forces in the cell. The
defect formation energies were calculated in a 3 × 3 × 3 cubic
supercell with 216 atoms to avoid defect-defect interactions
and a 4 × 4 × 4 k-point mesh.

III. RESULTS AND DISCUSSION

The thermal conductivity of pristine B20 FeSi from five
independent calculations with different mesh sizes are shown
in Fig. 2. A q-point mesh of 20 × 20 × 20 can fulfill the
convergence requirements of both scattering rate τ−1 and
thermal conductivity κ� for T > 40 K. The calculated thermal
conductivity is also compared to experiment [8,15] in Fig. 2.

FIG. 2. Thermal conductivity of pure FeSi, where only three-
phonon scattering was considered in Eq. (2), and natural FeSi, where
three-phonon and isotope scattering were considered in Eq. (2),
computed using the single-mode relaxation-time approximation as
implemented in almaBTE [20].

Experimentally the lattice thermal conductivity at 200 K is
found in a relatively narrow range between 9–12 W m−1K−1.
Our calculation, taking only phonon-phonon and isotope
scattering into account, gives a κ� = 21 W m−1K−1, thus
clearly overestimating the thermal conductivity. The electronic
contribution, κe, was subtracted from the experimental κ by
applying the Wiedemann-Franz law using a Lorentz number
of L = 2.44 × 10−8 W�K−2. The correction however only
amounts to about κe ≈ 1 W m−1K−1 at 200 K and even less
for lower temperatures. Therefore, the discrepancy between the
calculated and measured κ� cannot be attributed to uncertainty
in the value of κe.

The disagreement between experiment and theory is some-
what surprising as the inclusion of phonon-phonon and isotope
scattering has proven highly reliable for the calculation of κ�

in semiconductors [29–32]. In this context, it is notable that
a similar poor agreement between theory and experiment has
been found for FeSb2 [33], a compound that shows several
features which resemble those observed in FeSi [34]. The
disagreement would indicate that further scattering mecha-
nisms, in addition to three-phonon and isotope scattering, are
important. Electron-phonon coupling has been used to explain
the unusual κ in the 50–70 K temperature range, where the
polycrystalline κ is almost double that of the single-crystal
sample [8]. However, both the two measurement series by Sales
and the two by Buschinger et al., which disagree widely at
low temperatures, agree well at 200 K [8,14]. It would thus
seem that if electron-phonon coupling plays an important role
at 50–70 K, other mechanisms must contribute to lowering
κ� at temperatures above 200 K. We have two main reasons
for suspecting point-defect scattering of phonons to play an
important role in lowering κ�. First, it has recently been
shown how the order-of-magnitude reduction of lattice thermal
conductivity in doped 3C-SiC in the same temperature range
can be explained by point-defect scattering [35]. Second, point
defects occur in thermodynamic equilibrium in any material
due to configurational entropy and the defect concentration
in semiconductors can be orders of magnitudes larger than
indicated by the Hall coefficients. Uncharged defects and, more
importantly, compensating electron donor and acceptor defects
can occur even for defects with the same chemical identity. One
example of this is in Bi2S3, where the simultaneous presence
of Ge(+1)

Bi and Ge(−1)
Bi prohibits Ge doping [36].

To find the most stable defects, we calculated the defect
formation energies of the intrinsic defects in FeSi. The results
are shown in Table I. The defect formation energies were
calculated under both Si- and Fe-rich conditions, representing
the extrema of the chemical potential domain in which a stable
B20 structure is formed. The two types of defects introducing
the largest structural distortion in the crystal structure are
expected to be interstitial defects and vacancies. The intrinsic
interstitial defects have an especially high formation energy,
Table I, leading to a negligible concentration of this type of
defect. We therefore do not expect this type of defect to have
a significant impact on the lattice thermal conductivity. On the
other hand, the Fe vacancy, �Fe, has very low defect formation
energies, especially under Si-rich growth conditions. The �Fe

defect leads to a substantial relaxation towards the vacancy
of four of the seven surrounding Si atoms, Fig. 3. With a
growth temperature of 1300 K [8] even a Ef,�Fe ≈ 0.4 eV
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TABLE I. Defect formation energies of intrinsic defects in FeSi
at the valence band maximum at charge states between −1 and 1.
The vacancy �Fe has the lowest formation energy in Si- and Fe-rich
growth conditions.

Si-rich (eV) Fe-rich (eV)

Defect −1 0 1 −1 0 1

�Fe 0.24 0.16 0.15 0.43 0.35 0.35
SiFe 1.03 0.88 0.78 1.41 1.26 1.16
�Si 3.06 2.92 2.89 2.87 2.73 2.70
FeSi 3.19 3.03 2.98 2.81 2.64 2.60
SiInt 5.35 5.19 5.11 5.54 5.39 5.30
FeInt 5.98 5.84 5.76 5.79 5.65 5.57

means that a simple Boltzmann distribution would predict a
defect concentration of approximately 3%. While this value
is not necessarily an accurate estimation of the actual defect
concentration in the measured FeSi samples, it is probable
that the defect concentration can be substantially higher than
the estimation based on the Hall coefficient. That the Hall
coefficient is not necessarily a good measure of the actual
defect is further underlined by the fact that the �(+1)

Fe and �(−1)
Fe

charged defects, regardless of the growth conditions, are very
close in energy. This in turn will lead to similar concentrations
of�(+1)

Fe and�(−1)
Fe and a cancellation of their contribution to the

number of carriers in the system. Figure 4 shows the scattering
rates due to isotope scattering, phonon-phonon scattering at
200 K, and �Fe defects at a low concentration of cdef =
3 × 1018 cm−3. We have not separately studied the scattering
from the charged �Fe defects as their local relaxations, in
accordance with the expectation that the additional charge FeSi
will be delocalized, are very similar to that of the noncharged
defect, Fig. 3.

The scattering rates due to defects will scale with the defect
concentration, Eq. (5), and Fig. 4 confirms the impression from
earlier work [16,35] that vacancies induce a large perturbation
of the IFCs and subsequent substantial phonon scattering.
The mass-disorder and point-defect scattering rates show the
expected ω4 trends for Rayleigh scattering. We do not find
a resonance at low frequencies as in earlier work [35], but
nonetheless the scattering from �Fe will start to become
important at 200 K at a defect concentration around cdef ≈
1019 cm−3.

FIG. 3. Local coordination of the Fe atom in FeSi viewed along
the [111] (left) and [101] directions. The arrows indicate the direction
and magnitude of the local relaxations upon formation of a�Fe defect.

FIG. 4. Multiple phonon scattering rates present in FeSi. For
acoustic phonons with long wavelengths 1/τ iso ∝ ω4 for phonon-
isotope scattering and 1/τ�Fe ∝ ω4 for phonon-vacancy scattering.

Figure 5 explores the possibility of explaining the low-
ered thermal conductivity of FeSi as originating from defect
scattering. It is seen that a significant lowering of the lattice
thermal conductivity happens at an onset of defect concentra-
tion around cdef ≈ 0.1% corresponding cdef ≈ 5 × 1019 cm−3,
which is the same order of magnitude as the Hall-coefficient-
based estimation [8]. However, the dominating iron-vacancy
defect �Fe is partly noncharged (non-carrier-inducing). Fur-
thermore, the positively charged defect will partly be com-
pensated by the negative. The defect concentration can be thus
significantly higher than the Hall-coefficient-based estimation.
At a defect concentration cdef ≈ 1%, corresponding cdef ≈
5 × 1020 cm−3, the lattice thermal conductivity is predicted
to be approximately 14 Wm−1K−1, in reasonable agreement
with the experimental data. As argued above, a defect concen-
tration of cdef ≈ 1% is not improbable considering the defect
formation energies of the iron vacancy.

FIG. 5. Thermal conductivity of FeSi at 200 K as a function of
Fe vacancy concentration.
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FIG. 6. Thermal conductivity of FeSi as a function of temperature
at different vacancy concentrations. Experimental values taken from
Refs. [8,15].

It is important to emphasize that we do not rule out electron-
phonon scattering or other additional scattering mechanisms.
Figure 6 shows how a defect concentration of around 1% can
reasonably explain the high-temperature data of Ou-Yang et al.
[15]. If we include a simple diffuse scattering term for grain
boundary scattering

1

τ
gb
jq

= |vjq|
L

, (8)

where |vjq| is the norm of the phonon group velocity for
phonon mode jq and L is the grain size, we obtain a good

agreement with experiment also at low temperatures employ-
ing a rather long L = 20 μm. A similar model would require
an unrealistically large defect concentration of about 4% to ex-
plain the experimental data by Sales et al. between 150–200 K.
Such a model would at the same time strongly underestimate
the thermal conductivity obtained at low temperatures for the
polycrystalline sample. The main idea is that we believe point-
defect scattering, in addition to other scattering mechanisms,
to play a significant role in explaining the thermal conductivity
of FeSi. In this context, and considering the temperature
dependence and magnitude of the Seebeck coefficient in FeSi
[8], it is interesting to note that point defects have also been
related to the colossal Seebeck coefficient observed in FeSb2

[37].

IV. CONCLUSION

We calculated the thermal conductivity of B20 FeSi and
compared the results to experimental values. We find that an-
harmonic phonon-phonon scattering and isotope scattering are
not sufficient to explain the experimentally measured thermal
conductivities. Instead, additional scattering mechanisms have
to be taken into account to achieve a reasonable agreement
between theory and experiment. While we are not ruling out
electron-phonon scattering, we find that the �Fe defect has
a particularly low formation energy. Phonon-defect scattering
due to realistic levels of defect concentrations will significantly
lower the thermal conductivity, in good agreement with high-
temperature thermal conductivity measurements of FeSi.
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