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We study the magnetic and charge dynamical response of a Hubbard model in a two-leg ladder geometry
using the density matrix renormalization group (DMRG) method and the random phase approximation within the
fluctuation-exchange approximation (FLEX). Our calculations reveal that FLEX can capture the main features
of the magnetic response from weak up to intermediate Hubbard repulsion for doped ladders, when compared
with the numerically exact DMRG results. However, while at weak Hubbard repulsion both the spin and charge
spectra can be understood in terms of weakly interacting electron-hole excitations across the Fermi surface, at
intermediate coupling DMRG shows gapped spin excitations at large momentum transfer that remain gapless
within the FLEX approximation. For the charge response, FLEX can only reproduce the main features of the
DMRG spectra at weak coupling and high doping levels, while it shows an incoherent character away from this
limit. Overall, our analysis shows that FLEX works surprisingly well for spin excitations at weak and intermediate
Hubbard U values even in the difficult low-dimensional geometry such as a two-leg ladder. Finally, we discuss the
implications of our results for neutron scattering and resonant inelastic x-ray scattering experiments on two-leg
ladder cuprate compounds.
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I. INTRODUCTION

Thirty years since the discovery of high critical temperature
superconductivity in cuprates, understanding the microscopic
mechanism leading to pairing remains a challenge. Progress
on this problem has been hindered mainly by the lack of a
viable numerical solution of the two-dimensional Hubbard
model [1], which shows competition between different phases
in the weakly hole-doped regime, including d-wave supercon-
ductivity, pseudogap, and charge-density-wave (stripes) phases
[2–4]. The limited knowledge about the ground state of this
model has made the study of its magnetic and charge exci-
tations and their doping dependence even more challenging
[5–8]. In this context, a set of surprising experimental results
have emerged from recent resonant inelastic x-ray scatter-
ing measurements (RIXS) [4,9]. In the hole-doped cuprate
families [10–16], high-energy magnons or paramagnons on
the antiferromagnetic zone boundary persist from the parent
compounds into the heavily overdoped regime, showing little
doping dependence up to 40% hole doping, where the system
is believed to exhibit Fermi-liquid-like behavior. This observa-
tion is in contrast to neutron scattering experiments [17–19],
which find that the low-energy magnetic excitations gradually
disappear around wave vector q = (π,π )/a with doping into
the overdoped regime. These observations have shown that
assessing the role of both the low- and high-energy magnetic
excitations in the superconductivity of cuprates still deserves
further attention.

Because of these challenges, the study of quasi-one-
dimensional (1D) cuprate systems such as two-leg ladders has
become of interest as a simpler starting point for understanding
the layered two-dimensional systems [20–22]. One of the rea-
sons is that numerical calculations can be done more accurately
for model Hamiltonians in 1D or quasi-1D systems. Indeed,
different many-body techniques have successfully unveiled
interesting properties of the Hubbard model in a two-leg ladder
geometry such as an unusual spin gap in the undoped state
[23,24], and superconducting d-wave-like tendencies in the
weakly doped regime [25].

Experiments have verified many theoretical predictions
for these quasi-1D systems. For example, NMR [26–28]
and neutron scattering experiments [29] have observed a
robust gap upon doping in the so-called “telephone num-
ber” compound Sr14−xCaxCu24O41 [30], while superconduc-
tivity with a critical temperature of Tc = 12 K has been
reported in the same material under high pressure [31,32].
These results provide considerable support to the notion that
superconductivity in cuprates in the weakly doped regime
originates from antiferromagnetic spin fluctuations. The mag-
netic excitations of the ground state of the cuprate two-
leg ladders have also been measured to a high degree of
accuracy in the undoped regime. Neutron scattering ex-
periments have observed both one-triplon and two-triplon
excitations [33,34], which are the analog of magnon and
bimagnon excitations in the layered systems. Recent RIXS
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experiments have also successfully observed the two-triplon
excitations [35].

Much less is known about the cuprate two-leg ladders at
high doping levels. In the layered systems, one expects that
spin excitations behave like weakly interacting particle-hole
excitations governed by the underlying free-particle kinetic
energy, with a minor influence from the Hubbard interaction
U . If this notion is correct, then this high doping limit
should be adequately described by the random phase approx-
imation (RPA) [7,36]. Indeed, many studies have assumed
weak correlations in doped cuprates in the layered geometry
[37–44], and used the RPA to study the spin and charge exci-
tations in comparison to neutron and Raman scattering exper-
iments, as well as the formation of a d-wave superconducting
state.

In this context, quasi-1D systems provide an excellent
opportunity to explore how both spin and charge excitations
systematically evolve with doping throughout the Brillouin
zone. These same systems also offer a means to assess the
degree to which RPA can capture various response functions
that be evaluated with exact numerical techniques such as
density matrix renormalization group (DMRG) [45,46]. With
this motivation, in this work we compute the dynamical spin
and charge response functions of the single-band Hubbard
model on a two-leg ladder geometry using DMRG [47,48].
We then compare the spin and charge structure factors to
those obtained with a fully self-consistent RPA formalism, in
which the interacting Green’s function is obtained within the
fluctuation-exchange approximation (FLEX) [49–52] and the
vertex corrections are neglected [53–55]. The RPA formalism
[38,56,57] was initially developed for weakly interacting
systems and is expected to become an increasingly good
approximation as the doping level increases. FLEX has been
applied to the case of the one-band Hubbard model for cuprates
[53,54,58–64], and has been generalized to the multiband case
(see Refs. [49,65]). Our calculations reveal that, while FLEX
describes well the spin response from weak to intermediate
values of the Hubbard U , it fails to reproduce the dispersion of
the main features in the strong coupling regime. On the other
hand, FLEX can reproduce the charge response only at weak
coupling and high doping. Nevertheless, FLEX works surpris-
ingly well in the spin sector up to an intermediate U even in
the more challenging low-dimensional geometry of a two-leg
ladder where the correlation effects are larger due to a narrower
bandwidth.

This work is organized as follows: Sections II and III
introduce the model and the methods, respectively. Section
IV presents the main results. Section IV A explores the
pairing symmetry in the ground state of the two-leg ladder
system. Section IV B presents results for the charge and
spin dynamical structure factors of the Hubbard two-leg
ladder in the weak coupling regime. Sections IV C and
IV D explore the excitation spectra in the intermediate and
strong coupling regimes. Finally, Sec. V provides a sum-
mary of the results with a sketch of the range of validity
for the FLEX approximation, a discussion about the im-
plications of our results for neutron scattering and RIXS
experiments on two-leg ladder cuprate compounds, and our
conclusions.

II. MODEL

The Hamiltonian of the Hubbard model defined on a two-leg
ladder is

H =

⎛
⎜⎜⎜⎝−tx

∑
〈i,j〉
σ,γ

c
†
i,γ,σ cj,γ,σ − ty

∑
i,σ

c
†
i,0,σ ci,1,σ

⎞
⎟⎟⎟⎠ + H.c.

+ U
∑
i,γ

ni,γ,↑ni,γ,↓, (1)

where c
†
i,γ,σ (ci,γ,σ ) creates (annhilates) an electron at leg

γ = 0,1 on site i = 0, . . . ,L/2 − 1 and with spin σ = ↑, ↓.
L is the total number of sites, with L/2 sites on each leg,
and U is the strength of the Hubbard interaction. Following
standard notation, tx and ty represent the nearest-neighbor
hopping parameters in the x (along the leg) and y (along the
rung) directions of the ladder. For simplicity, we denote the
wave vector in the y direction as qrung = 0,π/a and the wave
vector in the x direction as q. For our DMRG calculations,
we consider a ladder with open boundary conditions along the
leg direction, while our FLEX calculations assume periodic
boundary conditions along the leg direction and two sites in
each rung are treated as two orbitals within each unit cell. In
both cases, we adopt symmetric hopping integrals tx = ty = t .
Throughout we take t = 1 as our unit of energy and a = 1 as
our unit of length.

III. METHODS

Many techniques ranging from exact diagonalization to
DMRG [24] to bosonization [66–70] have been used to study
the physics of the Hubbard two-leg ladder. However, to our
knowledge, a comparison between the FLEX treatment of a
two-leg Hubbard ladder and an exact numerical approach like
DMRG has not been carried out.

A. FLEX

In this section, we summarize the multiorbital FLEX for-
malism used to compute the single particle and anomalous
self-energies. Our notation follows that used in Refs. [49–
52], which also provide a more detailed discussion of the
formalism.

The central quantities in the Eliashberg equations with
FLEX interactions are the single particle Gl1l2 (k) and anoma-
lous Fl1l2 (k) Green’s functions, the single particle �l1l2 (k)
and anomalous �l1l2 (k) self-energies, and the particle-hole
susceptibility χl1l2l3l4 (q). Allowing for a nonzero anomalous
self-energy is necessary to obtain meaningful results below the
superconducting critical temperature Tc. This also simplifies
the comparison with DMRG calculations for the ground
state. Above, lj are orbital-like indices (lj = 1 for leg 0 and
lj = 2 for leg 1) and we have used the 4-vector notation
with k ≡ (k,iωn) and q ≡ (q,iωm), where ωn = π

β
(2n + 1)

and ωm = π
β

2m are used for fermion and boson Matsubara
frequencies, respectively. For our two-leg ladder problem, we
have a two-orbital unit cell (equivalent to a single rung of
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the ladder) and the Green’s functions and self-energies are
2 × 2 matrices in orbital space. For the particle-hole irreducible
susceptibility, the four indices can be grouped as A = (l1l2) and
B = (l3l4), such that χA,B(q) can be written as a 4 × 4 matrix
in orbital space with (l1l2) = (11,22,12,21) for the rows and
(l3l4) = (11,22,12,21) for the columns:

χp =

⎛
⎜⎜⎜⎜⎝

χ
p

11,11 χ
p

11,22 χ
p

11,12 χ
p

11,21

χ
p

22,11 χ
p

22,22 χ
p

22,12 χ
p

22,21

χ
p

12,11 χ
p

12,22 χ
p

12,12 χ
p

12,21

χ
p

21,11 χ
p

21,22 χ
p

21,12 χ
p

21,21

⎞
⎟⎟⎟⎟⎠. (2)

Here, we use the subscript p = 0,s (p = 0,c) for the ir-
reducible spin (charge) susceptibility, or s (c) for the spin
(charge) susceptibility. The irreducible spin and charge sus-
ceptibilities are equal in the normal state but different in the
superconducting state due to nonzero anomalous self-energies.
The dynamical spin and charge susceptibilities are respectively
calculated from the RPA-like formula in a generalized matrix
form as follows:

χs(q) = [1 − χ0,s(q)Us]−1χ0,s(q),
(3)

χc(q) = [1 + χ0,c(q)Uc]−1χ0,c(q),

where 1 denotes a 4 × 4 identity matrix, and Us and Uc are the
spin and charge interaction matrices. Note that this matrix-RPA
form generates Feynman diagrams beyond the ring diagrams
summed in the usual RPA-like formula [71].

Since the Hamiltonian (1) only contains the onsite Hubbard
interaction, the interaction matrices take a simple form

Us = Uc =

⎛
⎜⎜⎜⎝

U 0 0 0

0 U 0 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠. (4)

V n and V a define the effective FLEX interactions entering into
the equations for the normal �l1l2 (k) and anomalous �l1l2 (k)
self-energies, respectively. Due to the form of the interaction
matrix used here, these have the simple form

V n(q) = 3U 2

2
χs(q) + U 2

2
χc(q) − U 2χ0,G(q) + U1, (5)

V a(q) = 3U 2

2
χs(q) − U 2

2
χc(q) − U 2χ0,F (q) + U1, (6)

where χ0,G = (χ0,s + χ0,c)/2, χ0,F = (χ0,s − χ0,c)/2 and
each matrix is now defined in a 2 × 2 subspace of the original
two-orbital basis

χp =
(

χ
p

11,11 χ
p

11,22

χ
p

22,11 χ
p

22,22

)
. (7)

The remaining susceptibilities do not enter into the formalism
and do not need to be computed at this point. This means
that the particle and the hole must be in the same orbital
at the interaction vertex. For example, this happens in the
particle-hole ring diagram, where we do not have the interor-
bital Hubbard interaction in the Hamiltonian. In this case,
interorbital propagation is still allowed because of the hopping

along the rungs of the two-leg ladder, and the Green’s functions
are not diagonal in the orbital space.

Introducing the shorthand notation χ
0,s
l,m(q) ≡ χ

0,s
ll,mm(q), the

irreducible spin (charge) susceptibilities are given by

χ
0,s
l,m = − T

N

∑
k

[Glm(k + q)Gml(k) + Flm(k + q)F ∗
ml(k)],

χ
0,c
l,m = − T

N

∑
k

[Glm(k + q)Gml(k) − Flm(k + q)F ∗
ml(k)],

where F ∗ denotes the complex conjugate of F . Since the FLEX
interactions for our model Hamiltonian satisfy V

n(a)
ll′,mm′ (q) =

V
n(a)
l,m δll′δmm′ the normal and anomalous self-energies can also

be written in a compact form without any summation over the
orbital index as

�lm(k) = T

N

∑
q

V n
l,m(q)Glm(k − q) (8)

and

�lm(k) = T

N

∑
q

V a
l,m(q)Flm(k − q). (9)

Equations (3)–(9) constitute the set of matrix FLEX equa-
tions, which we solve self-consistently together with Dyson’s
equation in the Nambu-orbital space. Since the momentum
and frequency sums are in a convolution or cross-correlation
form, we use fast Fourier transforms (FFT) to speed up the
computation. We use a 128 × 1 k grid and five times the
bandwidth as the energy cutoff for the Matsubara frequencies.
During the self-consistent loop, we also adjust the chemical
potential μ to keep the total electron filling n fixed. The total
density is computed from the electron Green’s function as

n = 2T

N

∑
l,k,n

Gll(k,iωn)eiωn0+
, (10)

where 0+ denotes a positive infinitesimal number. Note that the
Hartree-Fock contribution to the self-energy for our model is
�HF

11 (k) = Unσ
11 and �HF

22 (k) = Unσ
22, which is independent

of momentum and Matsubara frequency and independent of
orbital index due to the degenerated orbitals. This contribution
can therefore be absorbed into the chemical potential that is
adjusted to fix the electron filling n. A very low temperature
T = 0.01t is used in FLEX calculations, except that at half-
filling T = 0.05t is used to avoid the magnetic instability due
to the tendency to antiferromagnetic order at low temperature.

B. DMRG

We employ the DMRG correction-vector method through-
out this paper [47]. Within the correction-vector approach, we
use the Krylov decomposition [48] rather than the conjugate
gradient. An application of the method to Heisenberg and
Hubbard ladders at half-filling can be found in Ref. [72], while
Ref. [73] presents a study of the pairing tendencies at finite hole
doping. In this work, a L = 48 × 2 ladder has been simulated,
using m = 1000 DMRG states with a truncation error kept
below 10−5. The spectral broadening in the correction-vector
approach was fixed at η = 0.08t . The DMRG implementation
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used throughout this paper has been discussed in detail in [72];
technical details are in the Supplemental Material [74].

At each frequency ω, we compute the dynamical spin
structure factor of the two-leg ladder in real space

Sj,c(ω + iη) = 〈�0|Sz
j

1

ω − H + Eg + iη
Sz

c |�0〉, (11)

for all sites of the lattice, where Eg is the energy of the ground
state |�0〉 of the Hamiltonian H . An analogous definition exists
for the dynamical charge structure factor N (q,ω), where the
contribution from the static average densities is subtracted:

Nj,c(ω + iη) = 〈�0|(nj − 〈nj 〉) 1

ω − H + Eg + iη

× (nc − 〈nc〉)|�0〉. (12)

Above, j ≡ (jx,jrung) corresponds to the two coordinates of the
site on the ladder, where jrung = 0 (1) for the lower (upper) leg
of the ladder. The center site is c ≡ (L/4 − 1,0). The above
quantities are then Fourier transformed to momentum space
giving two components (for brevity, we report the formulas
only for the dynamical spin structure factor)

S((q,qrung = 0),ω) =
√

2

L/2 + 1

L/2−1∑
jx=0

sin((jx + 1)q)

×[S(jx ,0),c(ω + iη) + S(jx ,1),c(ω + iη)],

S((q,qrung = π ),ω) =
√

2

L/2 + 1

L/2−1∑
jx=0

sin((jx + 1)q)

×[S(jx ,0),c(ω + iη) − S(jx ,1),c(ω + iη)],

(13)

where the quasimomenta q = πn
L/2+1 , with n = 1, . . . ,L/2, are

appropriate for open boundary conditions on each leg.

IV. RESULTS

A. Ground-state pairing properties

We begin by studying the ground-state pairing properties
obtained with DMRG and FLEX (the latter at low but finite
temperature) approaches. Figure 1(a) shows the FLEX super-
conducting gap as a function of space index j and leg index (α
for leg 0 and β for leg 1), indicating the d-wave-like character
of the superconducting ground state, which is characterized by
a nonzero order parameter at sufficiently low temperatures and
a gap sign change between site (jx,jrung) = (1,0) and (0,1).
As opposed to the FLEX approach that works in the grand
canonical ensemble, our finite-size DMRG simulations are
performed at fixed number of electrons present in the system,
and thus one cannot have a nonzero superconducting order
parameter 〈�r (i)〉, where

�r (i) = 1√
2

(ci,0,↑ci,1,↓ − ci,0,↓ci,1,↑) (14)

for local singlet operators on a rung of the ladder. However,
DMRG calculations have shown that in the weakly hole-
doped regime, the doped Hubbard ladder exhibits dominat-
ing superconducting tendencies: rung-singlet superconducting
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FIG. 1. (a) Superconducting gap function (in units of t) computed
with FLEX as a function of space and leg index (α corresponds to
lower leg, while β to upper leg). Here, U/t = 6.0, electron filling n =
0.96. The inset in (a) is a pictorial representation of the pairing gap at
first few sites of the two-leg ladder, with one of the electron fixed at site
0 of the lower leg. The upward triangle means a positive gap and the
downward triangle means a negative gap and the size of the triangle is
proportional to the gap magnitude. (b) Rung-rung, rung-leg, and rung-
diagonal pair singlet correlation functions computed with DMRG as a
function of the distance from the center of the ladder. Here,U/t = 6.0,
n = 0.875. (c) Maximal anomalous self-energy (in units of t) in the
first Brillouin zone computed in FLEX as a function of electron filling
and different values of U , as indicated. (d) Pairing strength computed
with DMRG as a function of electron filling, for different values of
U , as indicated. The pairing strength is computed from the rung-rung
pair singlet correlation functions as D̄ = ∑j=12

j=6 P (j )/P (1), where
P (j ) = 〈�†

r (c)�r (c + j )〉. The persistent background at U/t = 2
over a wide range of doping originates in short distance correlations
even in the noninteracting limit.

correlations have the slowest power-law decay as a function
of distance [25]. This is the typical behavior of quasi-one-
dimensional systems, and one assumes that the system is quasi-
long-range ordered. DMRG computations have also shown
that superconducting quasiorder has d-wave-like character. We
report the results showing this behavior in Fig. 1(b), which
shows the pair-pair singlet correlations as a function of the
distance d along the leg of the ladder, fixing the Hubbard
repulsion to strong coupling U/t = 6 and the electron filling
to n = 0.875. We first fix the creation of a singlet pair of
electrons on a rung at the center of the ladder [see the definition
of the destruction operator in Eq. (14)]. We then consider
three different possibilities for the pair-pair correlations by
destroying the pair (1) along a rung [Eq. (14)], (2) along
diagonal, and (3) along a leg at a distance d from the center. The
operators destroying singlet pairs along the last two directions
at a position i on the ladder are defined as follows:

�d (i) = 1√
2

(ci,0,↑ci+1,1,↓ − ci,0,↓ci+1,1,↑),

�l(i) = 1√
2

(ci,0,↑ci+1,0,↓ − ci,0,↓ci+1,0,↑). (15)
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Pair-pair correlations are d-wave-like, showing a change of
sign going from the rung-rung to the rung-leg directions. This
result agrees with the d-wave character of the superconducting
ground state found in FLEX. Within the FLEX approach,
the superconducting pairing strength can be quantified by
evaluating the maximum of the anomalous self-energy [see
Fig. 1(c)]. For low hole doping (≤10%), pairing tendencies
increase when the Hubbard repulsion strength U/t is increased
above intermediate values, U/t � 3.

Moreover, notice the occurrence of a nonzero peak in the
maximal anomalous self-energy for electron filling n = 0.666
and strong Hubbard repulsion U/t = 6. Unlike the pairing
state in low hole-doping cases, where 〈�l〉 and 〈�r〉 have op-
posite sign but similar magnitude from the FLEX calculation,
for n = 0.666 and U = 6 one has |〈�l〉| � |〈�r〉|, i.e., the
pairing along the rungs dominates. The result at this filling n is
reproducible with larger k grid, higher-frequency cutoff, and
stronger U (no pairing for U/t � 10, however) in the FLEX
calculations, but the pairing is quite sensitive to even a small
deviation to the filling n, which does not coincide with quarter
filling n = 0.5. (The van Hove singularity gives diverging
density of states at the Fermi level of the noninteracting bands
at quarter filling.) We can explain the occurrence of this peak
at this particular value of the electronic doping by speculating
that, in the FLEX approach, the chemical potential is almost
touching the lower edge of the antibonding band, which is
then populated by only few electrons. In this configuration,
the divergence of the density of states (van Hove singularity)
is enhancing the pairing effects in the system.

Figure 1(d) computes the pairing correlation strength with
DMRG, which we estimate by evaluating the quantity D̄ =∑12

i=6 P (i)/P (1). (Note that 6 and 12 are arbitrary lower and
upper bounds in the sum. The results are qualitatively similar
if we modify these bounds; choosing 6, as opposed to, e.g., 1,
reduces artificial short-distance effects while 12, as opposed
to, e.g., 24, reduces edge effects.)

Similar to FLEX, DMRG results also show that pairing
intensities are robust up to an electron doping which is close
to n � 0.6. Except for the anomalous peak in the FLEX
self-energy, we observe overall a good qualitative agreement
between the pairing strength evolution with doping found in
DMRG and the maximum of anomalous self-energy computed
within the FLEX approach. In particular, pairing tendencies for
small hole doping intensify as one increases the Hubbard U

interaction from weak to strong coupling. In fact, low-energy
charge fluctuations are suppressed while spin fluctuations
become more robust for an increasing Hubbard U . In this
regime, hole pairing along the rungs of the ladder dominates
[20].

B. Spin and charge excitations at weak coupling

Figures 2 and 3 display the spin and charge dynamical
structure factors, respectively, for our two-leg Hubbard ladder
in the weak Hubbard U regime (U/t = 2) for three different
values of the electron filling: half-filled n = 1.0, corresponding
to the undoped regime; n = 0.9166, corresponding to the
weakly hole-doped regime (�8%); finally n = 0.666, corre-
sponding to a heavily hole-doped regime (�33%). In each
figure, spectra computed with DMRG appear in panels (a)–(c)
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FIG. 2. Magnetic excitation spectrum S(q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. U/t = 2.0,
as indicated. The electron doping n = N/L is shown in each panel.
DMRG used m = 1000 states and η = 0.08. FLEX also used η =
0.08. FLEX used Padé analytic continuation to obtain the complex
function S(q,ω + iη). In FLEX, qrung = 0(π ) component is obtained
from χs

+(−) = χ
0,s
+(−)/(1 − Uχ

0,s
+(−)), where χ

0,s
+(−) = χ

0,s
1,1 + (−)χ 0,s

1,2 .
Here, + (−) denotes the qrung = 0 (π ) component.

[with the response along the direction (q,0) in the Brillouin
zone reported] and in panels (g)–(i) [with the momentum
along the direction (q,π )]. Analogously, the panels (d)–(f) and
(l)–(n) report the spectra along the same momentum directions
computed with FLEX approximation.

At weak Hubbard repulsion (U/t = 2), FLEX calculations
well reproduce the magnetic excitation spectra computed with
DMRG. In the qrung = π component in the undoped regime
[panels (g) and (l)], one can observe the typical one-magnon
V-shape-like dispersion around (π,π ), where the majority of
the spectral weight is located. Notice that, even though the
spectral weight is already concentrated at low energy for
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FIG. 3. Charge excitation spectrum N (q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. U/t = 2.0,
as indicated. The electron doping n = N/L is shown in each panel.
DMRG used m = 1000 states and η = 0.08. FLEX used also η =
0.08 in the Padé analytic continuation.
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U/t = 2 [72], the side branches corresponding to weakly
interacting electron-hole excitations across the “Fermi surface”
(which become gapless at scattering momenta q � π/3 and
q � 2π − π/3) are correctly captured by FLEX. In the qrung =
0 component, the dispersion and spectral weight of magnetic
excitations, which correspond to intraband electron-hole exci-
tations in the U/t = 0 case, are also correctly reproduced. The
DMRG results, however, seem to indicate that a pseudogap
for momentum transfers around q = (π,0) is already forming
[Figs. 2(a) and 2(d)].

In the weakly doped regime, incommensurate peaks at
positions proportional to the electronic density develop around
(π,π ) (see also Ref. [73]). In this frequency-momentum
region, also notice the difference in spectral weight distribution
between DMRG in Figs. 2(h) and FLEX in 2(m): FLEX shows
that the magnetic spectral intensity is even more substantial at
very low energy, while the DMRG results show a maximum
around ω � 0.6t . A similar behavior is observed for the gapless
magnetic excitation branches at q � (π ± π/3,0) [see panels
2(b) and 2(e)]. These follow closely the dispersion of intraband
electron-hole excitations in the U/t = 0 case, as observed in
the undoped regime.

In the overdoped regime, n = 0.666 (bottom row of panels
in Fig. 2), the FLEX approximation correctly captures the
dispersion of magnetic excitations, which behave as weakly
interacting electron-hole excitations. Notice the difference in
spectral weight intensity between DMRG and FLEX results:
the spectra along both directions in the Brillouin zone are plot-
ted using the same color intensity, and this makes the DMRG
result appear very weak. In particular, FLEX overestimates the
spectral weight of the magnetic excitations, as was the case for
small doping.

We now discuss the charge excitations reported in Fig. 3: for
all the dopings investigated N (q,ω) computed with DMRG are
well captured by FLEX. In particular, FLEX describes well the
gapless excitations and the concentration of spectral weight at
high energy in both qrung = 0 and π components. However, as
opposed to the case of the magnetic spectra, DMRG predicts
a more substantial spectral weight than FLEX.

The spectral features shown by DMRG and FLEX can be
easily understood in terms of noninteracting electron-hole ex-
citations across the Fermi surface of the ladder. Notice that, for
U/t = 0 and in the undoped regime n = 1.0, both antibonding
(higher energy) and bonding (lower energy) bands are partially
filled by electrons with filling n1 = 1

3 (kF = π/3 measured
from k = 0) and n2 = 2

3 (kF = 2π/3 measured from k = 0),
respectively. The charge response along the direction (q,π )
corresponds to excitations across bonding and antibonding
bands. These describe the prominent excitation arc starting
from q = 0 and ω � 2t , reaching a maximum for q = π and
ω � 6t , where electrons from the bottom of the bonding band
are excited to the top of the antibonding band [see Figs. 3(g)
and 3(l)].

The low-energy part of the spectrum has a mushroomlike
shape, and describe electron-hole excitations within the energy
interval 2ty giving the energy separation between bonding
and antibonding bands. Notice that electrons in the partially
filled antibonding band can be excited to states in the bonding
band for small energy and large momentum transfers as well.
One can observe finally the presence of gapless excitations
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FIG. 4. Magnetic excitation spectrum S(q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. U/t = 4.0,
as indicated. The electron doping n = N/L is shown in each panel.
DMRG used m = 1000 states and η = 0.08. FLEX used also η =
0.08 in the Padé analytic continuation.

for momenta (π,π ), (k∗,π ), and (2π − k∗,π ) with k∗ � π/3.
These correspond to the minimum and maximum momentum
transfer allowed at zero energy for electron-hole excitations,
respectively. The charge response along the direction (q,0)
corresponds at U/t = 0 to electron-hole excitations within the
bands of the ladder, which are both partially filled as stated
above.

At finite hole dopings, much of the observations given above
can be repeated. Notice, however, the appearance of incom-
mensurate peaks around (π,π ) [see Figs. 3(g)–3(n)], which
also change position as a function of electron filling, similarly
to the case in the magnetic excitation spectra. At the same time,
both DMRG and FLEX confirm that Fermi-surface effects
give incommensurate peaks around (q = 2kF,0) = (2π/3,0)
and (4π/3,0) [see Figs. 3(a)–3(f)].

C. Spin and charge excitations at intermediate coupling

In the regime of intermediate Hubbard U (U/t = 4), the
main features of the magnetic excitation spectra are also well
captured by FLEX for all the dopings investigated, as shown
in Fig. 4.

In the undoped regime [Figs. 4(g) and 4(l)], we again
observe a V-shape-like dispersion band around (π,π ), where
the majority of the spectral weight is concentrated. How-
ever, while side branches corresponding to weakly interacting
electron-hole excitations across the “Fermi surface” appear
still gapless or weakly gapped at scattering momenta q �
π/3 and q � 2π − π/3 in FLEX, these are gapped in the
DMRG spectra. We can explain this behavior by observing
that larger Hubbard U couplings start to affect first large
momentum transfers in electron-hole quasiparticle excitations.
Analogously, in the qrung = 0 component, the dispersion of the
magnetic excitation branches at q � π ± π/3 appear gapped
in the DMRG spectral while they remain gapless in FLEX
[Figs. 4(a) and 4(d)]. Both DMRG and FLEX give a gapped
spectrum at q = 0 in the qrung = 0 component, however. In
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FIG. 5. Charge excitation spectrum N (q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. U/t = 4.0,
as indicated. The electron doping n = N/L is shown in each panel.
DMRG used m = 1000 states and η = 0.08. FLEX used also η =
0.08 in the Padé analytic continuation.

the weakly doped regime, discrepancies between DMRG and
FLEX magnetic spectra greatly reduce, both in the qrung = π

and 0 components. Finally, an excellent agreement between
DMRG and FLEX results is observed in the overdoped regime,
n = 0.666 [Figs. 4(c), 4(f), 4(i), 4(n)]. As in the weak Hubbard
U regime, we notice a discrepancy in the spectral weight of the
magnetic excitations between DMRG and FLEX. Specifically,
for all the dopings investigated at intermediate U , DMRG
reports a slightly higher magnetic spectral weight of the
magnetic excitations in the qrung = 0 component. Instead, in
the qrung = π component, FLEX reports a magnetic spectral
weight in very good agreement with DMRG spectra.

Next, we consider the charge excitations spectra in Fig. 5.
In the undoped case, we can observe in the DMRG results
[Figs. 5(a) and 5(g)] that a more substantial Mott charge gap
is present in the system in both the qrung = 0,π components.
However, the FLEX approach misses this information, where
we can only observe an incoherent band of excitations above
some low-energy excitations which are still gapless. The
picture that emerges from the DMRG-FLEX comparison im-
proves slowly with doping. In the large doping regime, one can
see that the FLEX approach begins to capture the low-energy
behavior of the DMRG spectra correctly. The high-energy
bands deviate less significantly from the DMRG results. We
have verified that only at larger hole dopings (�50%) we start
to see good qualitative agreement between DMRG and FLEX
results. Overall, the FLEX significantly underestimates the
dynamical charge response comparing to DMRG. We stress
that the magnitude of N (q,ω) is much smaller than S(q,ω)
from both DMRG and FLEX calculations for U/t > 2, and
this indicates that pairing is dominated by the spin fluctuations.

D. Spin and charge excitations at strong coupling

We finally consider the strong Hubbard U limit (U/t =
6). In this case, both magnetic and charge excitation spectra
computed with FLEX present qualitative differences from the
spectra computed with DMRG, as expected.
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FIG. 6. Magnetic excitation spectrum S(q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. In this figure
U/t = 6.0, as indicated. The electron doping n = N/L is shown in
each panel. DMRG used m = 1000 states and η = 0.08. FLEX used
also η = 0.08 in the Padé analytic continuation.

In the qrung = π component in the undoped regime
[Figs. 6(g) and 6(l)], one can again observe a V-shape-like
dispersion around (π,π ) in both DMRG and FLEX magnetic
excitation spectra. However, we notice that the spectral weight
distribution is different, while at intermediate, up to high ener-
gies, the dispersion of the magnetic excitations are completely
different in the two approaches. At finite doping, the agreement
between DMRG and FLEX does not improve significantly: in
the weakly doped regime, both the qrung = 0 and π spectra span
along the same interval of energies. However, the dispersion
of low-energy excitations is qualitatively different in the entire
Brillouin zone. In the large doping regime, the situation for
the qrung = π component of the spectrum is very different:
FLEX spectrum is gapped in both qrung = 0,π components,
while DMRG shows gapless excitations. Last, we only begin
to see qualitative similarities between the two approaches
for the qrung = 0 spectra at large doping. We also mention
a difference between DMRG and FLEX approached at low
T : while pairing fluctuations are included, there is no finite
pairing order in DMRG because a finite lattice size is used;
for FLEX, the anomalous self-energies are not zero and may
affect the S(q,ω) shown in Figs. 6(e), 6(m), 6(f), and 6(n).
Finally, we consider the charge excitations spectra in Fig. 7.
In the FLEX approach, the N (q,ω) spectrum looks completely
incoherent and featureless. Instead, DMRG results show that
the spectra are rich, with both high-energy bands above
the Mott gap, and dispersive gapless excitations. For large U ,
the FLEX approximation fails to give an accurate result for the
dynamical charge response, which is an order of magnitude
smaller than the dynamical spin response according to DMRG.

V. DISCUSSION AND CONCLUSIONS

Figure 8 summarizes our results in a diagram of the region
of n-U/t parameter space where we find qualitative agreement
between FLEX approximation and numerically exact DMRG
results. From the analysis, it has emerged that the FLEX
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FIG. 7. Charge excitation spectrum N (q,ω) for a L = 48 × 2
ladder from DMRG [(a)–(c) for qrung = 0, (g)–(i) for qrung = π ] and
FLEX [(d)–(f) for qrung = 0, and (l)–(n) for qrung = π ]. U/t = 6.0,
as indicated. The electron doping n = N/L is shown in each panel.
DMRG used m = 1000 states and η = 0.08. FLEX used also η =
0.08, in the Padé analytic continuation.

approach works better for magnetic than charge excitations.
Nevertheless, we found that spin excitations are affected: the
magnetic excitations became more gapped by increasing values
of the Hubbard U , and only in the large-U regime became
qualitatively different from the spectrum produced by weakly
interacting electron-hole excitations.

Our results further show that the magnetic excitations in
the intermediate coupling regime are qualitatively similar to
those found at strong coupling, for all dopings investigated.
The same observation does not hold for the charge excitations.
Indeed, when the Hubbard repulsion is of the order of the
bonding/antibonding bandwidth, smaller hole-doping concen-
trations are sufficient to transfer much of the charge spectral
weight to low-energy intraband excitations. We can naively
explain these observations by noting that Hubbard U interac-
tions directly affect the charge degrees of freedom while it only
indirectly affects the spin degrees of freedom of the system
via the antiferromagnetic exchange interaction. Moreover, the
FLEX approximation is expected to fail at large U .
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FIG. 8. (a) Sketch of the range of qualitative agreement between
FLEX approximation for N (q,ω), when compared with numerically
exact DMRG results. (b) Same as in (a) but referred to S(q,ω). Notice
that DMRG-FLEX qualitative agreement range is larger for S(q,ω),
in the range of parameters investigated in this work.

Our results are also of direct relevance to inelastic neutron
scattering (INS) and resonant inelastic x-ray scattering (RIXS)
experiments on two-leg ladder cuprates [34,35,75–78]. The
S(q,ω) spectra in the undoped case at strong coupling are in
good qualitative agreement with available experimental INS
data, showing one-triplon and two-triplon excitations [34,35].
We believe that the dispersive incommensurate features found
in our magnetic excitation spectra at finite hole doping may
be detectable by INS in two-leg ladders telephone number
compounds (La,Sr,Ca)14Cu24O41.

Concerning the dynamical charge structure factors, our
DMRG results show good qualitative agreement with a recent
RIXS experiment on the hole-doped two-leg ladder cuprate
compounds (La,Sr,Ca)14Cu24O41 [75]. In this experimental
work, two kinds of excitations appear in the RIXS spectra.
One is attributed to an interband excitation across the Mott
gap, observed at 2–4 eV with a dispersion relation that is
independent of the hole-doping concentration of the ladder.
The second excitation appears as a continuum below the Mott
gap energy 2 eV when holes are doped, and its intensity is
found to be proportional to the hole-doping concentration. We
observe this same qualitative behavior in our N (q,ω) spectra
in the strong coupling regime in both the qrung = 0 and π

components for small hole doping up to 10% [see Figs. 7(g) and
7(h)]. Moreover, the spectral weight of N (q,ω) is redistributed
to low-energy intraband excitations in the overdoped regime
[see spectra for U/t = 6 and n = 0.666, corresponding to
33% hole doping in Fig. 7(i)]. In our N (q,ω) spectra, we
found that most of the charge spectral weight appears in a
low-energy band, that is quite dispersive across the Brillouin
zone in contrast to the results shown in Ref. [75].

Our study, although not applicable directly to 2D materials,
could provide the motivation for future studies of spin and
charge dynamical spectra of doped multileg Hubbard ladders.
Indeed, a recent RIXS study at Cu L3 edge of 2D cuprates
has reported [15] the occurrence of a collective gapped
charge mode in the electron-doped regime, as opposed to the
hole-doped case. The nature of these excitations is still under
debate due to the difficulty of making theoretical predictions
for spin and charge dynamical correlations functions of the 2D
Hubbard model. In this context, the spin and charge dynamical
correlations functions of the 2D Hubbard model as a function of
doping were studied in Ref. [7], where the authors compared
RPA with determinant quantum Monte Carlo. Recently,
Ref. [79] computed the dynamical charge and spin spectra of a
four-leg ladder t-J model with DMRG. We believe that future
investigations of multileg Hubbard ladders (which are closer
to the 2D limit) comparing fermionic-sign-free approaches
like DMRG with more sophisticated analytical techniques,
such as FLEX, are important and should be pursued.
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