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Correlational latent heat by nonlocal quantum kinetic theory
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A kinetic equation of nonlocal and noninstantaneous character unifies the achievements of transport in dense
quantum gases with the Landau theory of quasiclassical transport in Fermi systems. Large cancellations in the
off-shell motion appear, which are usually hidden in non-Markovian behaviors. The remaining corrections are
expressed in terms of shifts in space and time that characterize the nonlocality of the scattering process. In this
way, it is possible to recast quantum transport into a quasiclassical picture. In addition to the quasiparticle, the
balance equations for density, momentum, energy, and entropy also include correlated two-particle contributions
beyond the Landau theory. The medium effects on binary collisions are shown to mediate the latent heat, i.e., an
energy conversion between correlation and thermal energy. For Maxwellian particles with time-dependent s-wave
scattering, the correlated parts of the observables are calculated and a sign change of the latent heat is reported at
a universal ratio of scattering length to the thermal de Broglie wavelength. This is interpreted as a change from
correlational heating to cooling.
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I. OVERVIEW ABOUT NONLOCAL KINETIC THEORY

A. Extended quasiparticle picture

To extend the validity of the Boltzmann equation to mod-
erately dense gases, Clausius and Boltzmann included the
space nonlocality of binary collisions [1]. After one century,
virial corrections won new interest as they can be incorporated
into Monte Carlo simulation methods [2]. The microscopic
theory of nonlocal corrections to the collision integral has been
pioneered within the theory of gases by many authors [3–19].

In this paper, a correlational latent heat in strongly coupled
nonequilibrium systems is reported based on the development
of a nonlocal extension of the Boltzmann equation. The latter
one is reviewed below in order to make the reader acquainted
with the consistent extensions of the quantum Boltzmann
equation and nonequilibrium thermodynamics beyond the
Landau theory. The result is then reported in Sec. II as an
actual analytical calculation of all corrections to the quantum
Boltzmann equation for a model of time-dependent s-wave
scattering. This highlights the nonlocal corrections derived
earlier and might be of importance to nonequilibrium quantum
systems in cold atoms, plasma physics, and nuclear physics.

In the limit of small scattering rates, the transport equation
for the Green’s function is converted into a kinetic equation of
Boltzmann type by the extended quasiparticle approximation
derived for small scattering rates [20–22]. One introduces an
effective quasiparticle distribution f from which the Wigner
distribution ρ can be constructed,

ρ[f ] = f +
∫

dω

2π

℘

ω − ε

∂

∂ω
[(1 − f )σ<

ω − f σ>
ω ]. (1)

Here, σ> and σ< denote the self-energies describing all
correlations and ε is the quasiparticle energy. The limit of
small scattering rates was first introduced by Craig [23] and
an inverse relation f [ρ] was constructed [24]. For equilibrium

nonideal plasmas this approximation has been employed by
Refs. [25,26] and has been used under the name of the gener-
alized Beth-Uhlenbeck approach by Ref. [27] in nuclear matter
for studies of the correlated density. The name “extended
quasiparticle approximation” was finally used for the study of
the mean removal energy and high-momenta tails of Wigner’s
distribution [28]. The nonequilibrium form has been derived
as the modified Kadanoff and Baym ansatz [29].

B. Nonlocal kinetic equation

The resulting quantum kinetic theory unifies the achieve-
ments of transport in dense gases with the quantum transport
of dense Fermi systems [20–22,30]. The quasiparticle drift of
Landau’s equation,

∂f1

∂t
+ ∂ε1

∂ �k
∂f1

∂�r − ∂ε1

∂�r
∂f1

∂ �k = I in
1 − I out

1 , (2)

is connected with a dissipation governed by a nonlocal and
noninstant scattering integral in the spirit of Enskog correc-
tions. For the scattering out (lost term), it reads

I out
1 =

∑
b

∫
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(2πh̄)3
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(2πh̄)3

2π
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and the scattering in (gain term) by replacing f ↔ 1 − f and
changing the signs of the shifts. The distribution functions and
observables have the arguments

ε1 ≡ εa(�k,�r,t),
ε2 ≡ εb( �p,�r + �
2,t),

ε3 ≡ εa(�k − �q + �
K,�r + �
3,t + 
t ),

ε4 ≡ εb( �p + �q + �
K,�r + �
4,t + 
t ), (4)

with the transferred momentum �q.
In the scattering out (scattering in is analogous) one can

see the distributions of quasiparticles f1f2 describing the
probability of a given initial state characterized by momenta k

and p for the binary collision partners. The hole distributions
(1 − f ) are the probability that the requested final states are
empty. Both combine in the final-state occupation factors
(1 − f3)(1 − f4) + f3f4 = 1 − f3 − f4. The scattering rate
covers the energy-conserving δ function, and the differential
cross section is given by the modulus of the T matrix |T |
reduced by the wave-function renormalizations [31], which
are higher order in small scattering rates.

The corrections to the quantum Boltzmann equation are
expressed in terms of shifts in space and time that characterize
the nonlocality of the scattering process [32]. These 
’s are
derivatives of the scattering phase shift φ of the T matrix TR =
|T |eiφ , according to the following list,

�
K = 1

2

∂φ

∂�r , 
E = −1

2

∂φ

∂t
, 
t = ∂φ

∂ω
,

�
2 = ∂φ

∂ �p − ∂φ

∂ �q − ∂φ

∂ �k , �
3 = −∂φ

∂ �k ,

�
4 = −∂φ

∂ �q − ∂φ

∂ �k , �
r = 1

4
( �
2 + �
3 + �
4). (5)

As special limits, this kinetic theory includes the Landau
theory as well as the Beth-Uhlenbeck equation of state [33,34]
which means correlated pairs. The medium effects on binary
collisions are shown to mediate the latent heat, which is the
energy conversion between correlation and thermal energy
[22,35]. In this respect, the seeming contradiction between
particle-hole symmetry and time-reversal symmetry in the
collision integral was solved [36]. Compared to the Boltzmann
equation, the presented form of virial corrections only slightly
increases the numerical demands in implementations [37–39]
since large cancellations in the off-shell motion, which are
usually hidden in non-Markovian behaviors, appear. Details on
how to implement the nonlocal kinetic equation into existing
Boltzmann codes can be found in Ref. [39]. In this way, it
is possible to recast quantum transport into a quasiclassical
picture suited for simulations.

C. Balance equations

The balance equations for density, momentum, energy, and
entropy include quasiparticle contributions and the correlated
two-particle contributions beyond the Landau theory. A num-
ber of attempts have been made to modify the Boltzmann
equation so that its equilibrium limit would cover at least
the second virial coefficient [5,40,41]. Corrections to the
Boltzmann equation have the form of gradients or nonlocal

contributions to the scattering integral. The nature of two-
particle correlations induces gradients and therefore nonlocal
kinetic and exchange energies [42,43].

We multiply the kinetic equation (2) with a variable ξ1 =
1,�k,ε1, − kB ln[f1/(1 − f1)] and integrate over momentum.
It results in the equation of continuity, the Navier-Stokes
equation, the energy balance, and the evolution of the entropy,
respectively. All these conservation laws or balance equations
for the mean thermodynamic observables have the form [44,45]

∂〈ξ qp + ξmol〉
∂t

+ ∂
( �j qp

ξ + �jmol
ξ

)
∂�r = I gain, (6)

consisting of a quasiparticle part,

ξ qp =
∫

d3k

(2πh̄)3
ξ1f1, (7)

and the correlated or molecular contribution,

ξmol =
∫

d3kd3pd3q

(2πh̄)9
D
t

ξ1 + ξ2

2
. (8)

The latter one leads to the statistical interpretation as if two
particles form a molecule. The rate of binary processes D =
|T |22πδ(ε1 + ε2 − ε3 − ε4 + 2
E)(1 − f3 − f4)f1f2/h̄ is
weighed with the lifetime of the molecule 
t , respectively.
We suppress the obvious sum over sort indices for the sake of
legibility.

The usual quasiparticle currents of the observables read

�j qp
ξ =

∫
d3k

(2πh̄)3
ξ1

∂ε1

∂ �k f1, (9)

and the molecular currents we have obtained as [22,44,45]

�jmol
ξ = 1

2

∫
d3kd3pd3q

(2πh̄)9
D(ξ2 �
2 − ξ3 �
3 − ξ4 �
4). (10)

It is the balance of observables carried by the different spatial
offsets.

To present explicit formulas, the total quasiparticle stress
tensor formed by the quasiparticles reads


qp
ij =

∫
d3k

(2πh̄)3

(
kj

∂ε

∂ki

+ δij ε

)
f − δijE

qp, (11)

with the quasiparticle energy functional [22],

Eqp =
∫

d3k

(2πh̄)3
f1(k)

k2

2m

+ 1

2

∫
d3kd3p

(2πh̄)6
f1(k)f2(p)Re T (ε1 + ε2,k,p,0), (12)

instead of the Landau functional which is valid only in a local
approximation.

The molecular contributions (10) to the stress tensor reads

mol
ij = 1

2

∫
d3kd3pd3q

(2πh̄)9
D

× [(kj − qj )
3i + (pj + qj )
4i − pj
2i]. (13)

This momentum tensor is the balance of the momenta carried
by the corresponding spatial offsets weighted with the rate to
form a molecule D.
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For the density ξ = 1 we do not have a gain I gain. The
momentum gain ξ = kj reads

I
gain
Kj =

∫
d3kd3pd3q

(2πh̄)9
D
Kj . (14)

Dividing and multiplying by 
t under the integral, we see
that the momentum gain is the probability D
t to form a
molecule multiplied with the force �
K/
t exercised during
the delay time 
t from the environment by all other particles.
This momentum gain (14) can be exactly recast together with
the term of the drift into a spatial derivative [22,45],∫

d3k

(2πh̄)3
ε

∂f

∂�rj

+ I
gain
Kj = ∂Eqp

∂�rj

, (15)

of the quasiparticle energy functional (12). Analogously, the
energy gain,

I
gain
E =

∫
d3kd3pd3q

(2πh̄)9
D
E, (16)

combines with the drift into the total time derivative of the
quasiparticle energy functional (12),∫

d3k

(2πh̄)3
ε
∂f

∂t
− I

gain
E = ∂Eqp

∂t
. (17)

The only remaining explicit gain is the entropy gain,

I
gain
S = −kB

2

∫
d3kd3pd3q

(2πh̄)9
D ln

f3f4(1 − f1)(1 − f2)

(1 − f3)(1 − f4)f1f2
,

(18)

while the momentum gain and energy gain are transferring
kinetic into correlation parts and do not appear explicitly.
In Ref. [44] it is proved that this entropy gain is always
positive, establishing the Boltzmann H-theorem including
single-particle and two-particle quantum correlations. In other
words, the additional gain on the right-hand side of the balance
equations (6) might be due to an energy or force feed from the
outside or the entropy production by collisions.

II. MODEL WITH TIME-DEPENDENT INTERACTION

So far we have summarized the nonlocal extensions of
the quantum Boltzmann equation. Now, as an exploratory
example and result, we want to consider a pointlike interaction
where the T matrix is dominated by the s-wave channel with a
single time-dependent scattering length asc(t). One might think
of cold atoms where the time-dependent magnetic field �B(�r,t)
near the Feshbach resonance determines this scattering length
[46],

asc(�r,t) ≈ a

(
1 − �

| �B(�r,t)| − B

)
. (19)

In such a way the binary T matrix becomes an externally
controlled function of time and space. We consider two atoms
with their center-of-the-mass momentum K = k + p and their
difference momentum κ = mb

M
k − ma

M
p, where M = ma + mb

and μ−1 = m−1
a + m−1

b . The sum of energies before (k,p) and

after the collision (k − q,p + q) reads

ε1 + ε2 = K2

2M
+ κ2

2μ
,

ε3 + ε4 = K2

2M
+ κ2 + q2

2μ
− �q · �κ

μ
. (20)

In the dilute gas the medium effect on the binary interaction
caused by the Pauli blocking is negligible so that we can use
the free-space T matrix,

TR(t) = 2πh̄2asc(t)

μ

1

1 + i asc(t)
h̄

√
2μ(� − K2/2M)

, (21)

which one obtains by solving the T -matrix equation with a run-
ning coupling constant [47]. Due to the pointlike interaction,
the corresponding set of 
’s given by Eqs. (5) becomes


t (t) = − ascμ

κ
(
1 + a2

scκ
2/h̄2

) ,

�
K (t) = 1

asc

∂asc

∂�r
κ2

2μ

t, 
E(t) = − 1

asc

∂asc

∂t

κ2

2μ

t,

�
3(t) = �
4 =
�K

M

t, �
2 = 0. (22)

The value of �
3,4 is a free flight of the interacting pair
during 
t .

Now we calculate all the thermodynamic quantities. Since
the T matrix and all shifts are independent of the transferred
momentum q, one can easily integrate∫

d3q

(2πh̄)3
δ(ε1 + ε2 − ε3 − ε4) = μκ

2π2h̄3 . (23)

For Maxwellian distributions of equal temperature T and
densities of the two species na and nb,

f1f2 = nanb

(2πh̄2)3

T 3(μM)3/2
e
− K2

2MT
− κ2

2μT , (24)

one can trivially perform the K integration since all shifts and
the T matrix are only dependent on κ . Then, the correlated
density, energy (8), and momentum tensor (13) become

nmol(t) = 1

2

∫
dκ

(2πh̄)3
D̃, mol

ij (t) = δijT nmol,

Emol = 1

2

∫
dκ

(2πh̄)3
D̃

(
3

2
T + κ2

2μ

)
, (25)

and the energy gain (16) and momentum gain (14) are

I
gain
E (t)
�I gain
K (t)

}
=

∫
dκ

(2πh̄)3
D̃

κ2

2μ

{− ∂asc
∂t

,
∂asc
∂�r ,

(26)

where we used

D̃ = −4π5/2h̄6

μ3T 3
nanbx

3 e
− κ2

2μT

(1 + asc
2κ2/h̄2)2

, (27)

and introduce with the de Broglie wavelengthλ2 = 2πh̄2/2μT

the time-dependent variable

x2(t) = 2π
a2

sc(t)

λ2
. (28)

All correlated currents are zero in this example.
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The various κ integrations are straightforward with the help
of the error function,

xξ (x) =
√

2

π

∫ ∞

0
dt

e
− t2

x2

1 + t2
=

√
π

2
ex−2

erfc(x−1). (29)

The final results then read

nmol(x) = nanb

π h̄3

(μT )3/2
x2ξ ′(x),

mol
ij (x) = δijT nmol(x),

Emol(x) = 3

2
nmol(x)T + T x2

(
nmol(x)

x

)′
,

I
gain
E (x)
�I gain
K (x)

}
= 2T x2

(
nmol(x)

x

)′{− ∂asc
∂t

,
∂asc
∂�r ,

(30)

where we denote the prime as a derivative with respect to x.
The quasiparticle energy (12) becomes

Eqp(x) = 3
2T (na + nb) + 4T nmol(x), (31)

which shows the expected three translational degrees of free-
dom for the free particles and eight degrees of freedom for the
correlated molecules. The latter can be understood as twice
the three translational degrees of freedom of the two colliding
particles and two additional rotational degrees of freedom if
the two particles form a bound state that is seen as a classical
dumbbell.

The molecular energy behaves as

Emol = nmolT

{
1
2 + 4√

πx
+ o(x−2),

7
2 − 6x2 + o(x3),

(32)

in the high- and low-temperature limit, respectively [Eq. (28)].
Compared with the quasiparticle part (31), the high-
temperature limit (32) brings an additional degree of freedom
by the correlational contribution. It can be seen as an additional
internal degree of freedom such as the two-particle dumbbell
state gains an additional third fictitious particle by correlations.

III. EFFECT OF EXTERNAL POWER FEED

In order to check the energy conservation (17) we consider
the effect of the external power feed due to the time-dependent
potential V (t) = 2πh̄2asc(t)/μ. From the retarded and ad-
vanced T matrices in operator notation, T −1

R/A = V (t)−1 −
GR/A, it follows that one can write the real part of the T matrix,
Re T = (TR + TA)/2 = TR(V −1 − Re G)TA. From (12) we
see therefore that the time-dependent potential leads to an extra

FIG. 1. The molecular density (8) (black thick line), energy gain
(16) per external power (33) which is the latent heat (red dashed line),
and correlation energy (8) (thin line) vs the dimensionless scattering
length (28) for Maxwellian particles.

feed,

wE = −1

2

∫
d3kd3p

(2πh̄)3

∂V −1

∂t
|T |2f1f2, (33)

to the energy balance (16),

∂Eqp

∂t
= −I

gain
E + wE, (34)

since ε = k2/2ma and f are independent of time here. For the
considered point-interaction model we get

wE = 4T nmol ∂ ln asc

∂t
. (35)

On the other hand, the derivative of (31) can be calculated
explicitly,

∂Eqp

∂t
= 4T x(nmol)′

1

asc

∂asc

∂t
= −I

gain
E + 4T nmol ∂ ln asc

∂t
,

(36)

and one sees how the extra feed (33) appears such that
indeed (34) holds. This illustrates the proof of energy
conservation (17).

The correlated density in (30) appears as the Beth-
Uhlenbeck equation of state [33,48]. The correlated den-
sity is negative according to the fact that we can only
describe attractive interactions with contact potentials [47].
Then, the two correlated particles form possible bound states.
The density of correlated particles or molecules possesses the
low-temperature limit,

nmol = −nanbλ
3

√
π

4
x3 + o(x4) = −2π2nanba

3
sc + o(T 2),

(37)

which is just the expression of the second virial coefficient
for hard spheres to the pressure. The high-temperature limit,
nmol(x) = −nanbλ

3 π
4 + o(x−1), vanishes with T −3/2.

In Fig. 1 we plot the ratio of the energy gain (16) to the
external power (33) with the analytical results (30). This has the
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merit to be a dimensionless quantity where the time derivative
∂t ln asc(t) drops out. It is now easy to see that the energy
gain (16) and entropy gain (18) are linked for equilibrium
distributions as

T I
gain
S = I

gain
E . (38)

Since the latent heat is the temperature times the entropy
difference occurring during a phase transition, we can consider
the formation of short-living molecules here analogously.
Therefore, the energy gain is the rate of latent heat. Dividing
by the external power, we obtain the ratio of the latent heat to
the interaction strength due to correlations.

It is remarkable that the energy gain relative to the external
pumping changes sign at x0 ≈ 1.8184, which means asc/λ ≈
0.7254. This value is independent of interaction and in this
sense universal for such short-range interactions. For products
of scattering length and temperatures smaller than this value the
correlations lead to an opposite behavior, as expected from the
feed, I gain

E /wE = −1 + 3x2 + o(x), and we have correlational
cooling. For high temperatures the gain approaches half of
the external power I

gain
E /wE = 1/2 − 2/

√
πx + o(x−2) and

we see correlational heating.

IV. SUMMARY

To summarize, when strong correlations are formed there is
a cancellation of off-shell processes in the kinetic equation,
resulting in a proper extended quasiparticle picture. The
remaining modifications of the quantum Boltzmann equation
consist of the nonlocal collision scenario where the offsets
are uniquely determined by the phase shift of the T matrix
and the quasiparticle energies modifying the drift. Besides
the quasiparticle parts of the Landau theory, the resulting
balance equations also show explicit two-particle contribu-
tions of short-living molecules. The energy and momentum
conservation is ensured due to an internal transfer of energy
and momentum analogously to a latent heat. An explicit gain
remains only for the entropy, which can be proved to be positive
[44], ensuring Boltzmann’s H-theorem. The single-particle
entropy can decrease on the cost of the correlated part of
entropy describing the two particles in a molecular state.

For an exploratory example of Maxwellian particles we find
a sign change of the energy gain compared with the external
power feed independent of the interaction. The interpretation as
the rate of latent heat due to correlations is suggested, leading
to correlational heating and cooling.
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