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Engineering topological phases in the Luttinger semimetal α-Sn
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α-Sn is well known as a typical Luttinger semimetal with a quadratic band touching at the � point. Based
on the effective k · p analysis as well as first-principles calculations, we demonstrate that multiple topological
phases with a rich diagram, including topological insulator, Dirac semimetal, and Weyl semimetal phases, can
be induced and engineered in α-Sn by external strains, magnetic fields, and circularly polarized light (CPL).
Intriguingly, not only the conventional type-I Weyl nodes but also type-II Weyl nodes and double-Weyl nodes
can be generated directly from the quadratic semimetal by applying a magnetic field or CPL. Our results apply
equally well to other Luttinger semimetals with similar crystal and electronic structures, and thus open an avenue
for realizing and engineering multiple topological phases on a versatile platform.
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I. INTRODUCTION

Recently, topological phases have been significantly ex-
tended from gapped topological insulators [1,2], such as
quantum spin Hall states [3–5], quantum anomalous Hall
states [6–9], three-dimensional topological insulators [10–12],
and topological superconductors [13–17], to gapless topo-
logical semimetals, such as Weyl semimetals [18–40], Dirac
semimetals [41–53], and nodal-line semimetals [54–62]. Un-
like topological insulators, topological semimetals have stable
bulk-band-touching points or closed lines in the Brillouin zone,
leading to the emergence of low-energy quasiparticles, known
as Weyl fermions, Dirac fermions, and nodal-line fermions,
respectively. Both Dirac and Weyl semimetals manifest topo-
logically protected surface Fermi arcs and exotic transport
properties originating from the chiral anomaly, such as neg-
ative magnetoresistance and chiral magnetic effects [63–73].
Dirac semimetals and nodal-line semimetals require special
symmetries, such as time-reversal symmetry (TRS), inversion
symmetry (IS), and crystal symmetries [41,47,51,57,58,74],
while Weyl semimetals can be in a stable existence without
any symmetries.

Weyl nodes have been experimentally observed in several
materials, for example, the TaAs family [30–34,36,37] and
WTe2 family [75–81], but most of them are not ideal systems
to study the intrinsic properties of Weyl semimetals because
of the following considerations: (1) The Weyl nodes are mixed
with topologically trivial bulk bands, so it is hard to distinguish
the Weyl nodes from bulk bands in experiments, which is one
important reason for obtaining qualitatively different transport
measurements [82–84]. (2) All TaAs-family and WTe2-family
materials do not have a simple Hamiltonian to describe their
electronic structure because of the low crystal symmetries
and complex orbitals. Motivated by this consideration, ideal
Weyl semimetals were theoretically proposed in HgTe-class
materials [39,40]. The primitive HgTe-class material is α-Sn
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in which both the TRS and IS are preserved and the conduction
and valence bands quadratically touch at the� point. Moreover,
topological phases in α-Sn films have been confirmed by recent
experiments [49,85–89].

Recently various band engineering techniques were devel-
oped as quite useful tools for tuning electronic structures by
external perturbations, such as strains, magnetic fields, and
light fields. For example, a broad range of in-plane compres-
sive strain can induce ideal Weyl semimetals in HgTe-class
materials [39]. A magnetic field is also an efficient route to
create Weyl semimetals through breaking TRS [67,90–96].
In addition, Floquet topological states recently attracted wide
attention, and especially Floquet topological insulators and
semimetals have been put forward driven by a light field
[97–114].

In this paper, we investigate such a typical Luttinger
semimetal with a quadratic band touching in the presence of
external strains, magnetic fields and circularly polarized light.
It is found that multiple topological phases can be induced in α-
Sn, including Dirac semimetal, topological insulator, and Weyl
semimetal phases. Intriguingly, in the Weyl semimetal phase,
in addition to conventional type-I Weyl nodes, both type-II
Weyl nodes [115–118] and double-Weyl nodes [19,119,120]
can also be generated.

Concretely, an in-plane tensile (compressive) strain trans-
forms α-Sn into a topological insulator (Dirac semimetal),
while a magnetic field or a circularly polarized light (CPL)
incident in the [001] direction gives rise to the coexistence
of single-Weyl nodes and double-Weyl nodes on the high-
symmetry kz axis at different energies. Upon certain perturba-
tions, each double-Weyl node may split into two single-Weyl
nodes. Further, when both an in-plane strain and a magnetic
field or a CPL are simultaneously introduced, the system will
display a rich phase diagram, where the number, type, and
location of the Weyl nodes can be engineered. We emphasize
that our results are general and applicable to other Luttinger
semimetals, which provides an efficient way to engineer rich
topological phases in such materials [121,122].
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FIG. 1. (a) Schematic illustration of α-Sn with a diamond crystal
structure. (b) The bulk Brillouin zone (BZ) and its projection on the
(001) surface of α-Sn. (c) The band structure of α-Sn from first-
principles calculations. (d) Schematic illustration of the unoccupied
inverted light-hole (iLH) and occupied heavy-hole (HH) bands of
α-Sn.

This paper is organized as follows. In Sec. II, we first show
the crystal structure and corresponding electronic structure
of α-Sn by first-principles calculations, and then present
the unperturbed Luttinger Hamiltonian for the k · p model
analysis. Strain effects are investigated in Sec. III. In Sec. IV,
we study the Weyl nodes induced by a magnetic field in
the absence and presence of in-plane strains, respectively. In
Sec. V, we consider applying an off-resonant CPL to α-Sn and
derive the photoinduced Floquet Weyl and double-Weyl nodes.
Strain effects will also be discussed there. In Sec. VI, we come
to the discussion and conclusion.

II. CRYSTAL STRUCTURE AND ELECTRONIC
STRUCTURE

Usually, the group-IV compounds with the diamond struc-
ture, such as C, Si, and Ge, are insulators, where the bottom of
the conduction bands comes from the s orbital and the top of the
valence bands come from p orbitals. There is a full energy gap
between conduction and valence bands. The top of the valence
bands is composed of light-hole and heavy-hole bands which
are touching at the � point protected by the cubic symmetry.
Differently, α-Sn is a well-known negative-gap semimetal,
because the s orbital bands go below the p orbital bands to
become occupied and the light-hole bands go up to become
unoccupied with an inverted curvature, schematically shown
in Fig. 1(d). Comparing with C, Si, and Ge, α-Sn has a band
inversion which makes it topologically nontrivial [87].

In order to obtain band structures, first-principles calcula-
tions are performed within density functional theory (DFT)
as implemented in the Vienna ab initio simulation package
(VASP) [123]. The band structure is investigated with the non-
local Heyd-Scuseria-Ernzerhof (HSE) hybrid functional [124].
The cutoff energy for the plane wave expansion is 500 eV
and a k-point mesh of 16 × 16 × 16 is used for the bulk self-

consistent calculations. The spin-orbit coupling (SOC) effect
is taken into account self-consistently. The calculated band
structure of α-Sn is shown in Fig. 1(c), and the quadratic band
touching between the inverted light-hole (iLH) conduction and
heavy-hole (HH) valence bands is clearly seen and protected
by the cubic symmetry. In addition, due to the coexistence
of TRS and IS, all the bands are doubly degenerate, so
the quadratic touching point at the � point has the fourfold
degeneracy, marked by �+

8 , with the ordered basis |J,mj 〉 =
| 3

2 , 3
2 〉,| 3

2 , 1
2 〉,| 3

2 ,− 1
2 〉,| 3

2 ,− 3
2 〉.

In contrast to other group-IV compounds (C, Si, and Ge)
with the diamond structure, �+

8 bands from p orbitals and �−
7

bands dominated by s orbitals are inverted in α-Sn, which
is crucial for the emergence of topological phases. Previous
research mainly focuses on topological insulator and Dirac
semimetal phases of α-Sn [49,50,85,125], but a thorough
investigation of its rich topological phases is still lacking. In
what follows, we will use the effective k · p model analysis
as well as first-principles calculations to show that α-Sn is a
perfect platform to demonstrate rich topological states ranging
from topological insulators to topological semimetals with the
simplest electronic structures under strains, Zeeman fields, and
light fields.

The �+
8 states are the only states near the Fermi level, and

all other regions in the BZ are fully gapped. As a starting point,
we choose the �+

8 state for the k · p model Hamiltonian. The
four low-energy bands around the � point can be effectively
described by the Luttinger Hamiltonian [126]:

HL(k) = h̄2

m

[(
γ1 + 5

2
γ2

)
k2

2
− γ2

∑
i=x,y,z

k2
i J

2
i

− γ3

2
({kx,ky}{Jx,Jy} + c.p.)

]
, (1)

where γi (i = 1,2,3) are dimensionless parameters, “{}” de-
notes an anticommutator, “c.p.” means cyclic permutations,
and the angular momentum operators are given by

Jz =

⎛⎜⎜⎝
3
2 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 − 3

2

⎞⎟⎟⎠,Jx =

⎛⎜⎜⎜⎝
0

√
3

2 0 0√
3

2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

⎞⎟⎟⎟⎠,

Jy =

⎛⎜⎜⎜⎝
0 −

√
3i
2 0 0√

3i
2 0 −i 0

0 i 0 −
√

3i
2

0 0
√

3i
2 0

⎞⎟⎟⎟⎠. (2)

By fitting the first-principles band structure of α-Sn, the
parameters can be determined as γ1 = 14.97, γ2 = 10.61, γ3 =
8.52 [127]. For notational brevity, henceforth, we absorb the
factor h̄2

m
into γi . The Luttinger Hamiltonian will be used as the

unperturbed Hamiltonian throughout the following sections.
In addition, symmetry operations of α-Sn can be expressed
as 4 × 4 matrices acting on the ordered |J,jz〉 basis. For later
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references, we list some of them as

C2x = e−iπJx = iσxτx, C2y = e−iπJy = −iσxτy,

C2z = e−iπJz = iσ0τz, T = e−iπJy K = −iσxτyK,

C4zI = e−i π
2 Jz × (−1) = diag[ei π

4 ,ei 3π
4 ,ei 5π

4 ,ei 7π
4 ]. (3)

Here, K denotes the complex conjugate, and the Pauli ma-
trices σi and τi (i = 0,x,y,z) are used only to simplify the
expression of the 4 × 4 matrices, but not for explicit physical
meanings such as spin or orbital.

III. STRAIN EFFECTS: TENSILE AND
COMPRESSIVE STRAINS

Strains serve as a useful tool to engineer electronic struc-
tures in condensed matter systems, such as the strain-induced
ideal Weyl points in HgTe-class materials [39]. Considering
the similar inverted band structure between α-Sn and HgTe,
it seems natural and interesting to investigate various strain
effects in α-Sn. In this section, we consider applying an
in-plane biaxial strain to α-Sn, which reduces the original cubic
symmetry O7

h to a tetragonal symmetry D19
4h [50]. Depending

on the type of the strains, say, compressive or tensile, different
topological phases are expected to emerge correspondingly, as
we explicitly show below.

For simplicity and without loss of generality, we consider
a strain applied in the xy plane, which changes the in-plane
lattice constant to a = (1 + δ)a0, with δ > 0 for the tensile
strain and δ < 0 for the compressive strain. It can be treated as
a perturbation described by the following Hamiltonian:

Hstrain = ε

(
J 2

z − 5

4

)
, (4)

where ε is determined by the strength of the strain and ε < 0
(ε > 0) for tensile (compressive) strain [39]. Based on the
reduced crystal symmetry, we naturally concentrate on the kz

axis, where the total Hamiltonian becomes

H (kz) =
(

γ1

2
+ 5

4
γ2

)
k2
z − (

γ2k
2
z − ε

)
J 2

z − 5

4
ε. (5)

Since [Jz,H (kz)] = 0, Jz is a good quantum number and
thus all the bands can be labeled by their Jz eigenvalues.
Without strain, Jz = ± 3

2 [Jz = ± 1
2 ] bands are doubly degen-

erate with a downward [upward] parabolic dispersion E =
( γ1

2 − γ2)k2
z [E = ( γ1

2 + γ2)k2
z ], forming a four-band quadratic

touching at the � point, as shown by the band structures in
Figs. 2(a) and 2(b). Consequently, unstrained α-Sn lies in the
semimetal phase with a quadratic touch.

Under a tensile strain with ε < 0, the doubly degenerate
Jz = ± 3

2 (�+
7 ) bands and Jz = ± 1

2 (�+
6 ) bands are pushed

down and up, respectively, generating a full energy gap
between conduction bands and valence bands in the whole BZ,
as can be seen from the band structures in Figs. 2(d) and 2(e)
under 1% tensile strain with ε = −0.07 eV. The topological
property of this insulator phase can be characterized by the
Z2 index [128]. Thanks to the preserved IS, its Z2 index can
be simply obtained through the product of parities at time-
reversal invariant momenta [128]. A detailed calculation yields
a nontrivial Z2 = 1, as expected, because of the inversion of
�+

8 and �−
7 bands with opposite parities in unstrained α-Sn.

This indicates that the in-plane tensile strain changes α-Sn into
a three-dimensional topological insulator [85].

In contrast, under a compressive strain with ε > 0, the
doubly degenerate Jz = ± 3

2 (�+
7 ) bands and Jz = ± 1

2 (�+
6 )

bands are pushed up and down, respectively, which inevitably
results in two four-band crossing points at k±

D = (0,0,±kD)

with kD =
√

ε
γ2

, as shown in Figs. 2(g) and 2(h) under −1%

compressive strain with ε = 0.07 eV. These two crossings are
unavoidable since the 
6 and 
7 bands belong to different two-
dimensional irreducible representations and the hybridization
between them is strictly forbidden. Moreover, by expanding the
Hamiltonian around k±

D to linear order of relative momentum
q, we obtain:

H (k±
D + q) = ±{cqz − σz[vzqzτz + v⊥(qxτx + qyτy)]}, (6)

where a constant shift term has been dropped and c = γ1kD ,
vz = 2γ2kD ,v⊥ = √

3γ3kD , andσi and τy (i = x,y,z) are Pauli
matrices. This low-energy effective Hamiltonian describes a
Dirac fermion consisting of a pair of Weyl fermions with
opposite chiralities. The two Dirac points at k±

D are related
to each other by TRS or IS. As a result, a stable 3D Dirac
semimetal phase is induced in α-Sn by a compressive in-plane
strain. Similar analysis shows that a strain along the (111)
direction can also transform α-Sn into a Dirac semimetal [50],
which has already been experimentally realized [49].

As a further evidence, we have constructed maximally
localized Wannier functions on the basis of first-principles
calculations [129–131], to show the existence of topological
surface states for strained α-Sn. On the surface, H atoms are
used to remove the nonphysical dangling bonds. In Figs. 2(f)
and 2(i), the local density of states (LDOS) on the (001)
surface are plotted for the topological insulator phase and
Dirac semimetal phase, respectively. We can see that there is
a single Dirac cone state within the energy band gap at the �

point for the topological insulator phase in Fig. 2(f), and that
there is a gapless linear-dispersion bulk state clearly indicating
the Dirac semimetal phase in Fig. 2(i), where the two bulk
Dirac nodes on the kz axis are projected to the same surface
momentum �, in obvious contrast to the unstrained α-Sn with
quadratic-dispersion bulk states.

Based on the above analysis, we now present the complete
phase diagram of α-Sn as a function of the applied in-plane
strain in Fig. 2(c), where a tensile (compressive) strain changes
α-Sn from a zero-gap semiconductor to a topological insulator
(Dirac semimetal).

IV. WEYL SEMIMETALS INDUCED BY
MAGNETIC FIELDS

It is well known that Dirac points may split into pairs of
Weyl points when either TRS or IS is broken [18–40]. So if
we break TRS by an external magnetic field, Weyl semimetal
phases are expected to emerge from the Dirac semimetal phase
in compressively strained α-Sn. Interestingly, based on the
k · p model analysis, we find that Weyl points can be induced
even directly from unstrained α-Sn in the trivial semimetal
phase and from tensile-strained α-Sn in the topological
insulator phase. In this section, we investigate such Weyl
semimetal phases in both unstrained and strained α-Sn under
an external magnetic field.
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FIG. 2. The band structure of α-Sn obtained from the effective k · p model analysis: (a) without strain, (d) under 1% tensile strain, and (g)
under 1% compressive strain. The band structure of α-Sn from first-principles calculations: (b) without strain, (e) under 1% tensile strain, and
(h) under 1% compressive strain. LDOS on the (001) surface for α-Sn (f) under 1% tensile strain and (i) under 1% compressive strain. (c) The
complete phase diagram of α-Sn as a function of an in-plane strain.

For a small magnetic field B, we can neglect orbital Landau
level effects and only consider the Zeeman effect. Since the
energy scale of the atomic spin-orbit coupling is much larger
than those of the perturbations introduced by external fields, the
total angular momentum eigenstates still act as a useful basis.
Therefore, the Zeeman coupling of the Luttinger semimetal
α-Sn to B can simply be effectively described by [126]

Hz = eh̄

m
(κB · J + qB · J3), (7)

where the dimensionless parameters κ = 11.84 and q =
−0.30 are effective Landé g factors for α-Sn [127]. Since
κ � q, the q term can be safely omitted in the following
calculations. For convenience, we absorb the factor eh̄

m
into κ .

Generally speaking, the number and locations of the in-
duced Weyl points depend on the direction of the magnetic
field. For simplicity and clarity, we will only consider applying
the magnetic field along some high-symmetry axes of un-
strained and strained α-Sn, respectively. Before the following
analysis, we make an estimation of the range of the magnitude
of B, where the negligence of the orbital Landau effects re-

mains valid. For the Landau level effect to be manifest, a rough
criterion B � 1

μ
(μ is electron mobility) must be satisfied,

which results from the condition that an electron should be able
to complete at least a few orbits before losing its momentum
due to scattering [132]. However, considering the anomalously
high mobility of α-Sn (∼105 cm2 V−1 s−1) [133], the above
condition amounts to B �∼ 0.1 T. Therefore, to neglect the
orbital effect in α-Sn, the magnetic field should not be much
greater than 0.1 T. For other Luttinger semimetals with smaller
electron mobilities or larger Landé g factors, the range of
the magnetic field could be larger. It is worth mentioning
that the physics will become quite different when Landau
levels are formed in a quite strong magnetic field, as shown
in Refs. [134,135].

A. Unstrained α-Sn

First, we apply the magnetic field along the [001] direction
to unstrained α-Sn, and the Hamiltonian on the kz axis becomes

H (kz) = (
1
2γ1 + 5

4γ2
)
k2
z − γ2k

2
z J

2
z + κBJz, (8)
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FIG. 3. (a) Band structure and (c) locations of Weyl points on the
kz axis of α-Sn under a magnetic field B = 1 T in the [001] direction,
where single-Weyl (double-Weyl) nodes are represented by circles
(squares), and different colors stand for different chiralities. (b) Band
structure and (d) locations of Weyl points in the presence of HI with
α = 0.2. (e) Berry curvature configuration of the pair of single-Weyl

points between Jz = 3
2 and Jz = 1

2 bands at (0,0, ±
√

κB

2γ2
≈±0.0029 Å

−1
).

(f) Berry curvature configuration of the two single-Weyl points in the
kx = 0 plane in the kz > 0 region.

where the last term represents the Zeeman coupling. Since Jz

still commutes with H (kz), the energy bands can be labeled by
the Jz eigenvalue, with

E± 3
2

= γ1

2
k2
z − γ2k

2
z ± 3

2
κB,

E± 1
2

= γ1

2
k2
z + γ2k

2
z ± 1

2
κB. (9)

The Zeeman splitting between the two downward dispersive
Jz = ± 3

2 bands is larger than those between upward dispersive
Jz = ± 1

2 bands. Consequently, the most pushed up Jz = 3
2

band will inevitably intersect with Jz = ± 1
2 bands, leading to

four two-band crossings, as illustrated in Fig. 3(a) with B = 1
T. Two crossing points reside between Jz = 3

2 and 1
2 bands at

k±
sw = (0,0,±ksw) with ksw =

√
κB
2γ2

, and the other two between

Jz = 3
2 and − 1

2 bands at k±
dw = (0,0, ± kdw) with kdw =

√
κB
γ2

.

The two crossings between 3
2 and 1

2 bands are stabilized by
C2z symmetry, because 3

2 and 1
2 bands have C2z eigenvalues

i and −i, respectively, and the hybridization between them
is prohibited. Moreover, the low-energy effective two-band
Hamiltonian around k±

sw to q order is derived as

H 3
2 , 1

2
(k±

sw + q) = ±[γ1kswqz − 2γ2kswqzσz

−
√

3γ3ksw(qxσx + qyσy)], (10)

where the constant shift term has been dropped and the
Pauli matrices σi act in the ( 3

2 , 1
2 ) subspace. This Hamiltonian

describes a pair of single-Weyl points with opposite chiralities
χk±

sw
= ∓1 (see the Appendix), which feature linear dispersions

in all three directions. The two Weyl points are related to each
other through IS, and act as a monopole-antimonopole pair of
Berry curvature in momentum space, as shown in Fig. 3(e).

The band crossings between 3
2 and − 1

2 are more interesting.
The low-energy effective Hamiltonian around k±

dw to q2 order
is obtained as

H 3
2 ,− 1

2
(k±

dw + q) = ±γ1kdwqz −
√

3γ2

2

(
q2

x − q2
y

)
σx

−
√

3γ3qxqyσy ∓ 2γ2kdwqzσz, (11)

where kdw � q is assumed and the Pauli matrices σi act
in the ( 3

2 ,− 1
2 ) subspace. This Hamiltonian describes a pair

of double-Weyl points with chiralities χk±
dw

= ∓2 (see the
Appendix), whose energy dispersion is linear in the kz direction
and quadratic in the kx and ky directions [19,119,120]. If we
introduce a perturbation such as a linear inversion-breaking
term,

HI = α
[
kx

{
Jx,J

2
y − J 2

z

} + c.p.
]
, (12)

then each double-Weyl point will split into two single-Weyl
points, as illustrated by Figs. 3(c) and 3(d). Our reason for
choosing this perturbation lies in that upon introducing HI ,
the original diamond-like symmetry of α-Sn is reduced to the
zinc-blende-like symmetry of HgTe-class materials, and our
analysis can be directly applied to these materials. The single-
Weyl points split from double-Weyl points are symmetry-
protected, as proved below by a similar argument to that in
Ref. [95].

In the gapped kz = 0 plane, the 3
2 band exists above the − 1

2
band, so at the � point, the higher band and the lower band
have C4zI (=diag[ei π

4 ,ei 3π
4 ,ei 5π

4 ,ei 7π
4 ]) eigenvalues ei π

4 and
ei 5π

4 , respectively. While in the gapped kz = π (=∞) plane, the
3
2 band rests below the − 1

2 band, and thus at the (0,0,π ) point,
C4zI eigenvalues of the higher and lower bands are inverted to
that at �. As a result, going from kz = 0 to kz = π planes, the
C4zI eigenvalue of the lower band has changed from ei 5π

4 to
ei π

4 . According to Ref. [119], the change of these eigenvalues
is related to the difference of the Chern number between kz = 0
and kz = π planes:

ei π
4

ei 5π
4

= −1 = iCkz=0−Ckz=π . (13)

This implies that two (mod four) single-Weyl points must exist
between kz = 0 and kz = π planes for the 3

2 and − 1
2 bands.

If we suppose one of them is located at (kxw,kyw,kzw), then
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TABLE I. Properties of induced Weyl points in the coexistence of strain and magnetic field B in the [001] direction.

Bands and conditions Location Heff χ Type(
3
2 , 1

2

)
, ε > − κB

2

(
0,0, ± ks1 = ±

√
κB+2ε

2γ2

) ±ks1[γ1qz − 2γ2qzσz − √
3γ3(qxσx + qyσy)] ∓1 single(

3
2 ,−1

2

)
, ε > −κB

(
0,0, ± kd1 = ±

√
κB+ε

γ2

) ±γ1kd1qz −
√

3γ2
2

(
q2

x − q2
y

)
σx − √

3γ3qxqyσy ∓ 2γ2kd1qzσz ∓2 double(
1
2 , −3

2

)
, ε > κB

(
0,0, ± kd2 = ±

√
ε−κB

γ2

) ±γ1kd2qz −
√

3γ2
2

(
q2

x − q2
y

)
σx − √

3γ3qxqyσy ± 2γ2kd2qzσz ±2 double(−1
2 , −3

2

)
, ε > κB

2

(
0,0, ± ks2 = ±

√
2ε−κB

2γ2

) ±ks2[γ1qz + 2γ2qzσz + √
3γ3(qxσx + qyσy)] ±1 single

C2z symmetry will lead to another Weyl point of the same
chirality at (−kxw,−kyw,kzw). Moreover, although TRS, C2x ,
and C2y symmetries are separately broken by B in the [001]
direction, their combinations C2xT and C2yT remain as special
symmetries, since the T operation flips B and C2x (or C2y)
flips it back. Thus, unless kxw = 0 or kyw = 0, C2xT and
C2yT symmetries will generate two additional Weyl points
with the same chirality at (−kxw,kyw,kzw) and (kxw,−kyw,kzw),
which will produce altogether four Weyl points, and obviously
contradicts the Chern number argument. Therefore, the only
way is that two single-Weyl points of the same chirality
should exist in the kx = 0 or ky = 0 plane between kz = 0
and kz = π planes. For example, in the presence of the linear
inversion-breaking term HI, with α = 0.2, two Weyl points
can be found in the kx = 0 plane in the kz > 0 region, which
is schematically shown in Fig. 3(d), and further verified by
the Berry curvature configuration in Fig. 3(f). Without the
perturbation HI , they coincide with each other on the positive
kz axis and constitute a double-Weyl point in Fig. 3(c).

A similar argument can be applied to the two single-Weyl
points between kz = 0 and kz = −π planes, which are related
to those in the kz > 0 region by C4zI symmetry, as shown
by the Weyl points in the ky = 0 plane in the kz < 0 region
in Fig. 3(d). However, they have opposite chiralities, because
the inversion operation inverses chirality. They constitute the
other double-Weyl point in the negative kz axis, as shown in
Fig. 3(c), which forms a charge-two monopole-antimonopole
pair with that on the positive kz axis.

It is worth mentioning that the single-Weyl nodes on the
kz axis are pinned at the same energy by the C4zI symmetry
connecting them. In addition, the remaining four single-Weyl
nodes in the ky = 0 and kx = 0 plane also reside at the same
energy, since they are related to each other by the C2z or C4I

symmetry, or a combination of them.
So under a magnetic field B in the [001] direction, two Weyl

points and two double-Weyl points are generated for unstrained
α-Sn. In the presence of some additional perturbations, each
double-Weyl point splits into two Weyl points in the kx = 0
or ky = 0 plane, thus leading to altogether six Weyl points in
α-Sn. When B is applied along the [100] or [010] direction,
identical analysis can be carried out due to the C3,111 symmetry
of the crystal.

B. Strained α-Sn

When B is applied to strained α-Sn, the number of generated
Weyl points will depend on both the direction of B and
the relative magnitude between Zeeman-induced and strain-
induced band splittings. Moreover, in consideration of the

broken C3,111 symmetry due to the in-plane strain, α-Sn should
exhibit different phases under the magnetic field in the [001]
and [100] directions. In this section, we will first consider the
[001] case and then the [100] case.

1. Magnetic field B in the [001] direction

When B is applied along the [001] direction to strained
α-Sn, the Hamiltonian on the kz axis can be written as

H (kz) =
(

γ1

2
+ 5γ2

4

)
k2
z − 5ε

4
− (

γ2k
2
z − ε

)
J 2

z + κBJz.

(14)

Jz is still a good quantum number, and the energy spectra in
the Jz basis are simply given by

E± 3
2

= γ1

2
k2
z − (

γ2k
2
z − ε

) ± 3

2
κB,

E± 1
2

= γ1

2
k2
z + (

γ2k
2
z − ε

) ± 1

2
κB. (15)

Depending on the relation between strain-induced and
Zeeman-induced band splittings, 0, 2, 4, 6, or 8 two-band
crossings are found, as demonstrated by the evolution of band
structures in Fig. 4. After the explicit derivation of the low-
energy k · p effective Hamiltonian, as listed in Table I, these
band crossings are found to be single-Weyl or double-Weyl
points. The single-Weyl points reside between 3

2 and 1
2 bands

or between − 1
2 and − 3

2 bands. They are protected by the intact
C2z symmetry, since the crossing bands have different C2z

eigenvalues. In contrast, double-Weyl points occur between
3
2 and − 1

2 bands or between 1
2 and − 3

2 bands, and they may
split into single-Weyl points when extra perturbations are
introduced.

2. Magnetic field B in the [100] direction

When B is applied along the [100] direction to strained α-
Sn, things become different due to the broken C3,111 symmetry.
For a better demonstration of the underlying physics, we first
consider the Zeeman effect and then include the in-plane strain
effect. According to above discussion on the Zeeman effect in
unstrained α-Sn, the application of magnetic field B along the
[100] direction should give rise to a pair of single-Weyl points
and a pair of double-Weyl points on the kx axis.

The inclusion of a strain in the xy plane preserves C2x

symmetry, so the single-Weyl points should still stay in the
kx axis since they are protected by C2x symmetry. Depending
on the direction of the strain (compressive or tensile), they
move towards opposite directions on the kx axis, as we show
in detail below. On the kx axis, the total Hamiltonian is
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FIG. 4. B-ε phase diagram of Weyl points generated in strained α-Sn under the magnetic field B in the [001] direction, where single-Weyl
(double-Weyl) nodes are represented by circles (squares), and different colors stand for different chiralities.

given by

H (kx) =
(

γ1

2
+ 5

4
γ2

)
k2
x − γ2k

2
xJ

2
x + ε

(
J 2

z − 5

4

)
+ κBJx.

(16)

None of angular momentum operators Jx,y,z commute with
H (kx), so we can no longer use their eigenvalues to label each
band. Instead, we label them by their energies at the � point as
E1(�) < E2(�) < E3(�) < E4(�). Band crossings are found
only between E3 and E4 bands, which are located at k±

w1 =
(±kx1,0,0), with kx1 given as

kx1 =
√√

κ2B2 + ε2 − ε

2γ2
, (17)

as concretely illustrated in Fig. 5(a) with B = 2 T and ε =
−0.01 eV. These crossing points always exist regardless of
the value of ε. It is also verified that E3 and E4 bands
have C2x (=iσxτx) eigenvalues −i and i, respectively, and
thus band hybridization between them is forbidden. Instead
of analytically deriving the complex low-energy effective
Hamiltonian around each crossing point, we numerically plot
the energy dispersion around k+

w1 in the inset of Fig. 5(a) as well
as the Berry curvature in Fig. 5(c), which indeed corresponds
to a pair of Weyl fermions. Note that it has a large tilt in the
kz direction and is a type-II Weyl fermion [75,81,115–118].
Moreover, according to Eq. (16), a compressive [tensile] strain
with ε > 0 [ε < 0] pushes the pair of single-Weyl points
towards [away from] each other on the kx axis, as illustrated
in Fig. 5(e) [Fig. 5(f)].

We continue to study the fate of the double-Weyl points on
the kx axis after including strain effects. Under a compressive
strain, each double-Weyl point is found to split apart into two
Weyl points in the ky = 0 plane, and by increasing ε, they
evolve along the path denoted by oriented dashed lines in
Fig. 5(e), where pairs of Weyl points approach each other but
never merge. These Weyl points are protected by the combined
C2yT symmetry as proved below. In the C2yT invariant ky = 0
plane, the Hamiltonian satisfies

(C2yT )H (kx,0,kz)(C2yT )−1 = H (kx,0,kz). (18)

In the Jz basis, C2y = iσxτy and T = iσxτyK , where K means
complex conjugate. Their product yields C2yT = K , and the

Eq. (17) can be simplified as

H (kx,0,kz)
∗ = H (kx,0,kz). (19)

For a generic two-band Hamiltonian expanded by Pauli matri-
ces, H (kx,0,kz) = ∑

i=0,x,y,z diσi , where di are functions of kx

and kz, the above condition restricts that dy = 0. Occurrence
of band crossings requires dx = dz = 0, which can be satisfied
by tuning the two parameters kx and kz in the ky = 0 plane.
Once they are formed, small perturbations can only shift them
within the plane but cannot destroy them unless they meet each
other and annihilate in pairs.

When the compressive strain is considered before the
Zeeman effect, the Weyl points would have a clear physical
picture induced from the Dirac points along the direction of
magnetic field B. At kz = kD , the total Hamiltonian is obtained
as

H (kx) = κBJx +
(

γ1

2
+ 5

4
γ2

)
k2
x − γ2k

2
xJ

2
x + γ1ε

2γ2

− γ3kx

√
ε

γ2
{Jz,Jx}. (20)

Jx,y,z are not good quantum numbers and the four bands are
labeled by their energies at the � point as E1(�) < E2(�) <

E3(�) < E4(�). It is found that only E2 and E3 bands intersect
with each other at k±

w2 = (±kx2,0,kD), where

kx2 =

√√√√√
4γ3ε2 + γ 4

2 κ2B2 − 2γ 2
3 ε

γ 3
2

. (21)

This expression analytically gives the location of the Weyl
points in the ky = 0 plane in the kz > 0 region, as verified
by the concrete band structure in Fig. 5(b) with B = 2 T and
ε = 0.01 eV. Analogously, the splitting of the Dirac point at k−

D
generates the other two Weyl points in the kz < 0 region. We
have also numerically calculated the band structure around k+

w2
in the inset of Fig. 5(b) and the corresponding Berry curvature
configuration in Fig. 5(d) as a further proof. Equation (20) also
conforms to the finding that these Weyl points never meet each
other and annihilate. This can be explained by the notion that
once a compressive in-plane strain is imposed, regardless of its
value, Dirac points always emerge on the kz axis, and a nonzero
magnetic field B along [100] direction inevitably splits it and
gives rise the above Weyl points.
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FIG. 5. With the application of a magnetic field B = 2 T in the
[100] direction. (a) Band structure on the kx axis under a tensile strain
ε = −0.01 eV, where a pair of Weyl points are found between the
third and fourth band. Inset: dispersion around the single-Weyl point.
(b) Band structure at kz = kD under a compressive strain ε = 0.01 eV,
where a pair of Weyl points exist between the second and third bands,
which results from the splitting of the Dirac point in the kz > 0 region.
Inset: dispersion around the single-Weyl point. (c) and (d) Berry
curvature configurations of the Weyl points in (a) and (b), respectively.
(e) and (f) Illustrations of the evolutions of single-Weyl (solid circles)
and double-Weyl (solid squares) points with the increasing strength
of a compressive and a tensile strain, respectively.

However, under a tensile strain, each double-Weyl point
splits into two Weyl points in the kz = 0 plane which evolves
with increasing strength of the strain along the dashed path in
Fig. 5(f) until pairs of Weyl points meet and annihilate with
each other on the ky axis. These Weyl points are protected by
the combined C2zT symmetry. Since C2zT (=iσxτxK) is an
antiunitary operator that squares to one, it can be represented
by K through basis transformation. Then a similar argument
can be made on the stability of a generic two-band crossing in
the kz = 0 plane. In addition, the disappearance of these Weyl
points under a large tensile strain is due to the fact that such
a strain generates a full gap between the lower two bands and

upper two bands (or E2 and E3), which survives under the
small Zeeman splitting. Thus no gapless points such as Weyl
points can be found between the second and third band.

Finally, we sweep through the whole BZ, and no more Weyl
points are found. So, when the magnetic field B is applied along
the [100] direction to strained α-Sn, two Weyl points are always
induced on the kx axis, which are protected by C2x symmetry.
For a compressively strained α-Sn in the Dirac semimetal
phase, four additional Weyl points are always generated on
the ky = 0 plane, which originate from the splittings of Dirac
points and are protected by the combined C2yT symmetry. In
contrast, for a tensile-strained α-Sn in the topological insulator
phase, four additional Weyl points can be found on the kz = 0
plane only under a small tensile strain, which are protected by
C2zT symmetry but will annihilate in pairs and totally vanish
beyond a critical tensile strain strength.

V. WEYL SEMIMETALS INDUCED BY A CIRCULARLY
POLARIZED LIGHT

Strictly speaking, for α-Sn with such an anomalously high
mobility, which is quite easy to enter the quantum limit, we
should also take orbital Landau level effects into consideration
even with a relatively low magnetic field. This poses much diffi-
culty in analyzing the energy spectrum of α-Sn. Differently, an
off-resonant circularly polarized light (CPL) is an alternative
TRS-breaking scheme to generate Weyl points, and it has been
widely used in photoinduced Floquet topological semimetal
phases [99–114]. For simplicity, in this section, we investigate
the case where the applied CPL propagates along the [001]
direction. Since the CPL breaks TRS, it is expected that Weyl
points may split from Dirac points in compressively strained
α-Sn with the Dirac semimetal phase [100–102]. However,
based on the k · p model analysis under the off-resonant
approximation, we find that Weyl points can be generated from
not only compressively strained α-Sn, but also unstrained and
tensile-strained α-Sn.

For a CPL incident along the [001] direction, as shown in
Fig. 6(a), the vector potential A is given as

A = A(cos ωt,η sin ωt,0), (22)

where η = +1 (−1) denotes right (left) CPL, A represents the
amplitude of the vector potential, and ω is the frequency of the
CPL. The time-dependant periodic Hamiltonian H (k,t) can
be obtained by taking the Peierls substitution k → k + eA
(henceforth, e is absorbed into A for simplicity). For calcu-
lational convenience, we introduce the following five 4 × 4 �

matrices:

�1 = 1√
3

(
J 2

x − J 2
y

) = σxI,

�2 = 1

3

(
2J 2

z − J 2
x − J 2

y

) = σzτz,

�3 = 1√
3
{Jx,Jy} = σyI,

�4 = 1√
3
{Jz,Jx} = σzτx,

�5 = 1√
3
{Jy,Jz} = σzτy, (23)
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FIG. 6. (a) Schematic illustration of applying a CPL to α-Sn.
(b) Band structure of unstrained α-Sn under a right CPL (η = 1) with

A = 0.03 Å
−1

and ω = 0.6 eV. Insets: dispersions of the Weyl points
between ± 1

2 bands and between 3
2 and 1

2 bands, respectively. (c) and
(d) Berry curvature configurations of the single-Weyl points between
± 1

2 bands and between the second and third bands, respectively.

where σi and τi are conventional Pauli matrices, and �1...5 sat-
isfy the Clifford algebra {�i,�j } = 2δi,j . With these matrices,
the Luttinger Hamiltonian can be rewritten as

HL(k) = γ1

2
k2 −

√
3γ2

2

(
k2
x − k2

y

)
�1

− γ2

2

(
2k2

z − k2
x − k2

y

)
�2

−
√

3γ3(kxky�3 + kzkx�4 + kykz�5). (24)

For an off-resonant light, i.e., when ω is large compared to
the system’s energy scale, the off-resonant approximation can
be taken [103,136], and the system can be described by the
following effective static Hamiltonian:

Heff (k) = H0(k) + �H0 +
∑
n�1

[H−n,Hn]

nω
+ O

(
1

ω2

)
,

(25)

where Hn = 1
T

∫ T

0 H (t)einωtdt is the Fourier component in

the frequency space. �H0 = A2

2 (γ1 + γ2�2) describes the cor-
rection to the zeroth-order Hamiltonian in the presence of a
CPL. The [H−n,Hn]

nω
term stems from virtual photon absorption

and emission processes, which belongs to a second-order

perturbation and can be derived as

[H−1,H1]

ω
= ηA2

ω

{−2
√

3γ 2
2 kxky�12 + 3γ2γ3

[(
k2
x + k2

y

)
�13

+ kykz�14 + kzkx�15
] −

√
3γ2γ3

× [( − k2
x + k2

y

)
�23 − kykz�24 + kzkx�25

]
− 3γ 2

3 kz(kx�34 − ky�35 − kz�45)
}
, (26)

[H−2,H2]

2ω
= 3ηA4γ2γ3

8ω
�13, (27)

and

[H−n,Hn]

nω
= 0,(n > 2), (28)

where �ab ≡ − 1
2i

[�a,�b]. Based on the reduced crystal sym-
metry, we focus on the kz axis with the following effective
Hamiltonian:

Heff (kz) = γ1

2

(
k2
z + A2

) −
(
γ2k

2
z − ε − γ2

2
A2

)
�2

+ 3ηA2

ω
γ 2

3 k2
z�45 + 3ηA4

8ω
γ2γ3�13, (29)

where an in-plane strain term is included. Here, �2 = σzτz,
�45 = −σ0τz, and �13 = −σzτ0, so Heff (kz) is diagonal in the
Jz basis and each band can still be labeled by its Jz eigenvalue.
The γ2

2 A2�2 term plays the role of an effective compressive
strain, which pushes up (down) the down-dispersive Jz = ± 3

2
(the up-dispersive Jz = ± 1

2 ) bands. The �45 term modifies the
parabolic dispersion of each band, where the coefficient before
k2
z is changed by − 3

ω
ηA2γ 2

3 (+ 3
ω
ηA2γ 2

3 ) for the Jz = 3
2 and

− 1
2 (Jz = − 3

2 and 1
2 ) bands. The �13 term acts as a Zeeman-like

term which splits both Jz = ± 3
2 bands and Jz = ± 1

2 bands. De-
pending on ε, A, and ω, different numbers of Weyl points can
be generated, whose detailed information is listed in Table II.
All the single-Weyl points are protected by C2z symmetry
because the corresponding crossing bands have different C2z

eigenvalues. In contrast, similarly to the discussion in previous
sections, the double-Weyl points may split into single-Weyl
points when introducing extra perturbations. It should be
emphasized that there always exists a pair of single-Weyl points
between the Jz = ± 1

2 bands irrespective of the values of ε or
ω, whose location only depends on A.

As a concrete example, in Fig. 6(b), we present the band
structure of unstrained α-Sn under a right CPL (η = 1) with

A = 0.03 Å
−1

and ω = 0.6 eV (∼8 × 1014 Hz), where three
pairs of single-Weyl points and two pairs of double-Weyl points
can be found on the kz axis, which agrees with Table II. We
also plot the low-energy dispersions of the single crossing
points between the Jz = ± 1

2 bands and between the Jz = 3
2

and 1
2 bands in the inset of Fig. 6(b) as well as their Berry

curvature configurations in Figs. 6(c) and 6(d), respectively.
By decreasing A, the pair of Weyl points between the Jz = ± 1

2
bands move towards each other on the kz axis until they finally
annihilate at the � point when A = 0, while for other pairs
of Weyl points, by decreasing A, although they also move
towards each other, whether they annihilate or not depends
on the direction of strain. For a tensile strain, they will meet
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TABLE II. Properties of Weyl points induced in α-Sn by a strain in the xy plane and circularly polarized light
incident in the [001] direction.

Bands Conditions Location on the kz axis Type(
3
2 , 1

2

)
ε > − γ2A2

2 and γ2 > − 3ηA2γ 2
3

ω
±

√
ε+(γ2A2/2)

γ2+(3ηA2γ 2
3 /ω)

single(
3
2 ,− 1

2

)
ε > −γ2A

2
(

1
2 − 3ηγ3A2

8ω

) ±
√

ε

γ2
+ A2

2 − 3ηγ3A4

8ω
double(

1
2 ,− 1

2

)
always exist ±

√
γ2A2

8γ3
single(

1
2 ,− 3

2

)
ε > −γ2A

2
(

1
2 + 3ηγ3A2

8ω

) ±
√

ε

γ2
+ A2

2 + 3ηγ3A4

8ω
double(− 1

2 ,− 3
2

)
ε > − γ2A2

2 &γ2 >
3ηA2γ 2

3
ω

±
√

ε+(γ2A2/2)
γ2−(3ηA2γ 2

3 /ω)
single

and annihilate in pairs at the � point for a nonzero critical A,
while for a compressive strain, they will not meet until A = 0,
where they overlap with each other and constitute Dirac points,
thus recovering the Dirac semimetal phase.

So tunable Weyl semimetal phases can be induced from
(un)strained α-Sn under a CPL propagating in the [001]
direction, where the number and locations of generated Weyl
points can be easily manipulated by both the strain and the
CPL. Compared to previous studies on photoinduced Weyl
semimetal phases from Dirac materials, our proposal does not
require a Dirac semimetal phase as a prerequisite, and instead
both type-I and type-II Weyl points can be induced directly
from α-Sn.

VI. CONCLUSION

In summary, through the effective k · p model analysis
and first-principles calculations, we have shown that multiple
topological phases can be induced in α-Sn in the presence of
external strains, magnetic fields, and circularly polarized light.
An in-plane biaxial tensile (compressive) strain changes α-Sn
into a topological insulator (Dirac semimetal). A magnetic
field or circularly polarized light alone can drive α-Sn into a
Weyl semimetal phase, where type-I Weyl nodes, type-II Weyl
nodes, and double-Weyl nodes can all be generated. Further,
we present a rich phase diagram with tunable number, type, and
locations of Weyl nodes by considering an in-plane strain and a
magnetic field or circularly polarized light simultaneously. Our
results can also be applied to other Luttinger semimetals. Our
findings suggest the Luttinger materials as a versatile platform
to realize and engineer various topological phases.

Note added. Recently we became aware of the paper [122]
which also investigated an irradiated three-dimensional Lut-
tinger semimetal and found Floquet Weyl and double-Weyl
nodes.
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APPENDIX: CALCULATION OF THE MONOPOLE
CHARGE FOR BOTH SINGLE-WEYL AND

DOUBLE-WEYL NODES

In this section, we explicitly derive the monopole charge
of the Weyl nodes in the main text. Both a single-Weyl node
and a double-Weyl node can be described by a two-band
Hamiltonian:

h(k) =
∑

i

di(k)σi, (A1)

where σi=x,y,z are Pauli matrices. The dispersions of the
conduction and valence bands are given by ±d, with d =√
d2

x + d2
y + d2

z . The three-dimensional Berry curvature of
the valence bands can be written as � = (�x,�y,�z) =
(Fyz,Fzx,Fxy), with [137]

Fij = 1

2d3
εabcda∂idb∂jdc. (A2)

Then the monopole charge χ of each node can be obtained by
integrating the Berry curvature over a sphere that encloses the
node

χ = 1

2π

∫
�

dS · �. (A3)

Concretely, we first consider the single-Weyl nodes in our
paper, which take the form

hs(k) = vxkxσx + vykyσy + vzkzσz. (A4)

The dispersions ES = ±
√∑

i v
2
i k

2
i are linear in all three direc-

tions. By Eq. (A2), we get

�s = vxvyvz

2d3
(kx,ky,kz) = sgn[vxvyvz]

k̃

2̃k3
, (A5)

where k̃ ≡ (|vx |kx,|vy |ky,|vz|kz). Via Eq. (A3), we obtain

χs = sgn[vxvyvz]. (A6)

Based on Eq. (A6) the chirality of each single-Weyl node in
the main text can now be readily obtained. For example, for the
single-Weyl node in Eq. (9), vx(k±

sw) = vy(k±
sw) = ∓√

3γ3ksw,
and vz(k±

sw) = ∓2γ2ksw, and thus χk±
sw

= ∓1.
We go on to study the double-Weyl nodes in our paper with

the form

hD(k) = vx

(
k2
x − k2

y

)
σx + 2vykxkyσy + vzkzσz. (A7)
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The dispersions are now given by E =
±

√
v2

z k
2
z + v2

x(k2
x − k2

y)2 + 4v2
yk

2
xk

2
y , which takes a linear

form in the kz direction and a quadratic form in both the kx

and ky directions. Similarly, through Eq. (A2), we obtain

�d = vxvyvz

(
k2
x + k2

y

)
d3

(kx,ky,2kz). (A8)

It can be seen from Eq. (A8) that whether �d points inwards
or outwards depends on sgn[vxvyvz]. In order to derive the
monopole charge of each double-Weyl node, instead of choos-
ing a sphere, we now choose a closed surface composed of two
infinitely large kx-ky planes at kz = 0+ and 0−, respectively,
and two infinitesimal side surfaces. By calculating the Berry
curvature flux threading this closed surface, we obtain

χd = 1

2π

∫
dkxdky(�+

z − �−
z ) = 2 sgn[vxvyvz]. (A9)

This expression can also be understood from the fact that the
monopole charge of the node equals the change of the Chern
number of the two-dimensional slice when it passes through the
node. Now the chirality of the double-Weyl node in this paper
can be determined by Eq. (A9). Take the double-Weyl node in
Eq. ((10) for instance; the velocities are given by vx(k±

dw) =
−

√
3

2 γ2, vy(k±
dw) = −

√
3

2 γ3, and vz(k±
dw) = ∓2γ2kdw, leading

to χk±
dw

= ∓2.
In addition, the calculations get simplified for an isotropic

Luttinger semimetal with γ2 = γ3. In this case the velocities in
the kx-ky plane are isotropic as vx = vy = v⊥, and thus both
the single-Weyl and double-Weyl nodes can be written in the

compact form [138]

H =
[

vzkz v⊥(k−)N

v⊥(k+)N −vzkz

]
, (A10)

where k± = kx ± iky , and N = 1 (N = 2) describes a
single-Weyl (double-Weyl) node. The dispersions of the
conduction and valence bands are given by ±E with
E =

√
(vzkz)2 + [v⊥(k⊥)N ]2. The eigenstate of the valence

band is obtained as

|u−〉 =
[ − sin( θ

2 )
eiNϕ cos( θ

2 )

]
, (A11)

where cos θ = vzqz

E
and tan ϕ = qy

qx
. For an arbitrary two-

dimensional sphere enclosing the node, the Berry connection
is defined as A = (Aθ,Aϕ), with [137,139]

Aθ = i〈u−|∂θ |u−〉 = 0,

Aϕ = i〈u−|∂ϕ|u−〉 = −N cos2

(
θ

2

)
. (A12)

The Berry curvature can then be determined as

Fθϕ = ∂θAϕ − ∂ϕAθ = N sin θ

2
. (A13)

Finally, by integrating the Berry curvature over the two-
dimensional sphere, the monopole charge is given by

χ = sgn(vz)

2π

∫ 2π

0
dϕ

∫ π

0
dθFθϕ = sgn(vz)N, (A14)

where sgn(vz) comes from opposite integration directions of θ

for positive and negative vz values. Now the chirality of each
Weyl node can be simply determined as sgn(vz)N .

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[4] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[5] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.

W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318, 766
(2007).

[6] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys.
Rev. Lett. 101, 146802 (2008).

[7] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z.
Fang, Science 329, 61 (2010).

[8] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo,
K. Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X.
Chen, J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L.
Lu, X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).

[9] H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64,
227 (2015).

[10] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[11] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Nat. Phys. 5, 438 (2009).

[12] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X.
L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang,

I. R. Fisher, Z. Hussain, and Z.-X. Shen, Science 325, 178
(2009).

[13] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[14] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys.

Rev. Lett. 104, 040502 (2010).
[15] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 82,

184516 (2010).
[16] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[17] Q. L. He, L. Pan, A. L. Stern, E. C. Burks, X. Che, G. Yin,

J. Wang, B. Lian, Q. Zhou, E. S. Choi, K. Murata, X. Kou, Z.
Chen, T. Nie, Q. Shao, Y. Fan, S.-C. Zhang, K. Liu, J. Xia, and
K. L. Wang, Science 357, 294 (2017).

[18] X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov,
Phys. Rev. B 83, 205101 (2011).

[19] G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett.
107, 186806 (2011).

[20] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129
(2011).

[21] A. A. Burkov and L. Balents, Phys. Rev. Lett. 107, 127205
(2011).

[22] A. A. Burkov, M. D. Hook, and L. Balents, Phys. Rev. B 84,
235126 (2011).

[23] G. B. Halász and L. Balents, Phys. Rev. B 85, 035103
(2012).

195139-11

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/science.1148047
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1080/00018732.2015.1068524
https://doi.org/10.1080/00018732.2015.1068524
https://doi.org/10.1080/00018732.2015.1068524
https://doi.org/10.1080/00018732.2015.1068524
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1038/nphys1270
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1126/science.1173034
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1103/PhysRevB.81.125318
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1126/science.aag2792
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.84.235126
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103


ZHANG, WANG, RUAN, YAO, AND ZHANG PHYSICAL REVIEW B 97, 195139 (2018)

[24] A. A. Zyuzin, S. Wu, and A. A. Burkov, Phys. Rev. B 85,
165110 (2012).

[25] L. Lu, L. Fu, J. Joannopoulos, and M. Soljacic, Nat. Photonics
7, 294 (2012).

[26] T. Das, Phys. Rev. B 88, 035444 (2013).
[27] J. Liu and D. Vanderbilt, Phys. Rev. B 90, 155316 (2014).
[28] H. Zhang, J. Wang, G. Xu, Y. Xu, and S.-C. Zhang, Phys. Rev.

Lett. 112, 096804 (2014).
[29] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,

Phys. Rev. X 5, 011029 (2015).
[30] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C.

Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang,
H. Zheng, J. Ma, D. S. Sanchez, B. Wang, A. Bansil, F. Chou,
P. P. Shibayev, H. Lin, S. Jia, and M. Z. Hasan, Science 349,
613 (2015).

[31] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma,
P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X.
Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).

[32] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang,
B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran,
Z. Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen,
Nat. Phys. 11, 879 (2015).

[33] B. Q. Lv, B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard,
X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti,
V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and
H. Ding, Nat. Phys. 11, 724 (2015).

[34] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang,
C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P. P. Shibayev,
M. L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M.
Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil,
T. Neupert, V. N. Strocov, H. Lin, S. Jia, and M. Z. Hasan,
Sci. Adv. 1, e1501092 (2015).

[35] N. Alidoust, S. Y. Xu, I. Belopolski, G. Bian, H. Zheng, D.
S. Sanchez, T. Neupert, M. Z. Hasan, Z. Yuan, and C. Zhang,
Nat. Phys. 11, 748 (2015).

[36] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia,
A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373
(2015).

[37] N. Xu, H. M. Weng, B. Q. Lv, C. E. Matt, J. Park, F. Bisti,
V. N. Strocov, D. Gawryluk, E. Pomjakushina, and K. Conder,
Nat. Commun. 7, 11006 (2016).

[38] L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J. D. Joannopoulos, and
M. Soljačić, Science 349, 622 (2015).

[39] J. Ruan, S. K. Jian, H. Yao, H. Zhang, S. C. Zhang, and D.
Xing, Nat. Commun. 7, 11136 (2016).

[40] J. Ruan, S.-K. Jian, D. Zhang, H. Yao, H. Zhang, S.-C. Zhang,
and D. Xing, Phys. Rev. Lett. 116, 226801 (2016).

[41] Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng,
X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).

[42] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele,
and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).

[43] Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B
88, 125427 (2013).

[44] Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng,
D. Prabhakaran, S. K. Mo, H. Peng, and P. Dudin, Nat. Mater.
13, 677 (2014).

[45] Y. L. Chen, Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M.
Weng, D. Prabhakran, S. K. Mo, Z. X. Shen, and Z. Fang,
Science 343, 864 (2014).

[46] M. Neupane, S. Y. Xu, R. Sankar, N. Alidoust, G. Bian,
C. Liu, I. Belopolski, T. R. Chang, H. T. Jeng, and H. Lin,
Nat. Commun. 5, 3786 (2014).

[47] B. J. Yang and N. Nagaosa, Nat. Commun. 5, 4898 (2014).
[48] S. Y. Xu, C. Liu, S. K. Kushwaha, R. Sankar, J. W. Krizan,

I. Belopolski, M. Neupane, G. Bian, N. Alidoust, and T. R.
Chang, Science 347, 294 (2015).

[49] C.-Z. Xu, Y.-H. Chan, Y. Chen, P. Chen, X. Wang, C. De-
joie, M.-H. Wong, J. A. Hlevyack, H. Ryu, H.-Y. Kee, N.
Tamura, M.-Y. Chou, Z. Hussain, S.-K. Mo, and T.-C. Chiang,
Phys. Rev. Lett. 118, 146402 (2017).

[50] H. Huang and F. Liu, Phys. Rev. B 95, 201101 (2017).
[51] P. Tang, Q. Zhou, G. Xu, and S.-C. Zhang, Nat. Phys. 12, 1100

(2016).
[52] J. Wang, Phys. Rev. B 95, 115138 (2017).
[53] G. Hua, S. Nie, Z. Song, R. Yu, G. Xu, and K. Yao,

arXiv:1801.02806.
[54] R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, Phys. Rev. Lett.

115, 036807 (2015).
[55] Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, Phys. Rev.

Lett. 115, 036806 (2015).
[56] G. Bian, T.-R. Chang, H. Zheng, S. Velury, S.-Y. Xu, T. Neupert,

C.-K. Chiu, S.-M. Huang, D. S. Sanchez, I. Belopolski, N.
Alidoust, P.-J. Chen, G. Chang, A. Bansil, H.-T. Jeng, H. Lin,
and M. Z. Hasan, Phys. Rev. B 93, 121113 (2016).

[57] C. Fang, H. Weng, X. Dai, and Z. Fang, Chin. Phys. B 25,
117106 (2016).

[58] R. Yu, Z. Fang, X. Dai, and H. Weng, Front. Phys. 12, 127202
(2017).

[59] Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, and Z. Wang, Phys.
Rev. B 96, 041103 (2017).

[60] W. Chen, H.-Z. Lu, and J.-M. Hou, Phys. Rev. B 96, 041102
(2017).

[61] S. Li, Z.-M. Yu, Y. Liu, S. Guan, S.-S. Wang, X. Zhang, Y. Yao,
and S. A. Yang, Phys. Rev. B 96, 081106 (2017).

[62] Y. Sun, Y. Zhang, C.-X. Liu, C. Felser, and B. Yan, Phys. Rev.
B 95, 235104 (2017).

[63] H. Nielsen and M. Ninomiya, Phys. Lett. B 105, 219 (1981).
[64] C.-X. Liu, P. Ye, and X.-L. Qi, Phys. Rev. B 87, 235306

(2013).
[65] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[66] P. Hosur and X. Qi, C.R. Phys. 14, 857 (2013).
[67] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M.

Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Science
350, 413 (2015).

[68] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang,
H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen,
Phys. Rev. X 5, 031023 (2015).

[69] C. L. Zhang, S. Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G.
Bian, N. Alidoust, C. C. Lee, and S. M. Huang, Nat. Commun.
7, 10735 (2016).

[70] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić,
A. Fedorov, R. Zhong, J. Schneeloch, G. Gu, and T. Valla,
Nat. Phys. 12, 550 (2016).

[71] A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133
(2012).

[72] M.-C. Chang and M.-F. Yang, Phys. Rev. B 91, 115203
(2015).

[73] M. M. Vazifeh and M. Franz, Phys. Rev. Lett. 111, 027201
(2013).

195139-12

https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1038/nphoton.2013.42
https://doi.org/10.1103/PhysRevB.88.035444
https://doi.org/10.1103/PhysRevB.88.035444
https://doi.org/10.1103/PhysRevB.88.035444
https://doi.org/10.1103/PhysRevB.88.035444
https://doi.org/10.1103/PhysRevB.90.155316
https://doi.org/10.1103/PhysRevB.90.155316
https://doi.org/10.1103/PhysRevB.90.155316
https://doi.org/10.1103/PhysRevB.90.155316
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1103/PhysRevLett.112.096804
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1038/nphys3493
https://doi.org/10.1038/nphys3493
https://doi.org/10.1038/nphys3493
https://doi.org/10.1038/nphys3493
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1038/nphys3426
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1126/sciadv.1501092
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/nphys3437
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/ncomms11006
https://doi.org/10.1038/ncomms11006
https://doi.org/10.1038/ncomms11006
https://doi.org/10.1038/ncomms11006
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1038/ncomms11136
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevLett.116.226801
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevB.85.195320
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevLett.108.140405
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1103/PhysRevB.88.125427
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1038/nmat3990
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1126/science.1245085
https://doi.org/10.1038/ncomms4038
https://doi.org/10.1038/ncomms4038
https://doi.org/10.1038/ncomms4038
https://doi.org/10.1038/ncomms4038
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1038/ncomms5898
https://doi.org/10.1126/science.1256742
https://doi.org/10.1126/science.1256742
https://doi.org/10.1126/science.1256742
https://doi.org/10.1126/science.1256742
https://doi.org/10.1103/PhysRevLett.118.146402
https://doi.org/10.1103/PhysRevLett.118.146402
https://doi.org/10.1103/PhysRevLett.118.146402
https://doi.org/10.1103/PhysRevLett.118.146402
https://doi.org/10.1103/PhysRevB.95.201101
https://doi.org/10.1103/PhysRevB.95.201101
https://doi.org/10.1103/PhysRevB.95.201101
https://doi.org/10.1103/PhysRevB.95.201101
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1038/nphys3839
https://doi.org/10.1103/PhysRevB.95.115138
https://doi.org/10.1103/PhysRevB.95.115138
https://doi.org/10.1103/PhysRevB.95.115138
https://doi.org/10.1103/PhysRevB.95.115138
http://arxiv.org/abs/arXiv:1801.02806
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036807
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevLett.115.036806
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1103/PhysRevB.93.121113
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1088/1674-1056/25/11/117106
https://doi.org/10.1007/s11467-016-0630-1
https://doi.org/10.1007/s11467-016-0630-1
https://doi.org/10.1007/s11467-016-0630-1
https://doi.org/10.1007/s11467-016-0630-1
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041103
https://doi.org/10.1103/PhysRevB.96.041102
https://doi.org/10.1103/PhysRevB.96.041102
https://doi.org/10.1103/PhysRevB.96.041102
https://doi.org/10.1103/PhysRevB.96.041102
https://doi.org/10.1103/PhysRevB.96.081106
https://doi.org/10.1103/PhysRevB.96.081106
https://doi.org/10.1103/PhysRevB.96.081106
https://doi.org/10.1103/PhysRevB.96.081106
https://doi.org/10.1103/PhysRevB.95.235104
https://doi.org/10.1103/PhysRevB.95.235104
https://doi.org/10.1103/PhysRevB.95.235104
https://doi.org/10.1103/PhysRevB.95.235104
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevB.91.115203
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201
https://doi.org/10.1103/PhysRevLett.111.027201


ENGINEERING TOPOLOGICAL PHASES IN THE … PHYSICAL REVIEW B 97, 195139 (2018)

[74] Z. Gao, M. Hua, H. Zhang, and X. Zhang, Phys. Rev. B 93,
205109 (2016).

[75] K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan,
H. Huang, H. Zhang, and Z. Xu, Nat. Phys. 12, 1105 (2016).

[76] Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M.
Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang,
X. Wan, and F. Miao, Nat. Commun. 7, 13142 (2016).

[77] I. Belopolski, D. S. Sanchez, Y. Ishida, X. Pan, P. Yu, S.-Y. Xu,
G. Chang, T.-R. Chang, H. Zheng, N. Alidoust, G. Bian, M.
Neupane, S.-M. Huang, C.-C. Lee, Y. Song, H. Bu, G. Wang,
S. Li, G. Eda, H.-T. Jeng, T. Kondo, H. Lin, Z. Liu, F. Song, S.
Shin, and M. Z. Hasan, Nat. Commun. 7, 13643 (2016).

[78] C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y.
Zhang, B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He,
L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang,
S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z.
Fang, Z. Xu, C. Chen, and X. J. Zhou, Phys. Rev. B 94, 241119
(2016).

[79] J. Jiang, Z. Liu, Y. Sun, H. Yang, C. Rajamathi, Y. Qi, L. Yang,
C. Chen, H. Peng, C. Hwang, S. Sun, S.-K. Mo, I. Vobornik, J.
Fujii, S. Parkin, C. Felser, B. Yan, and Y. Chen, Nat. Commun.
8, 13973 (2017).

[80] K. Zhang, C. Bao, Q. Gu, X. Ren, H. Zhang, K. Deng, Y. Wu,
Y. Li, J. Feng, and S. Zhou, Nat. Commun. 7, 13552 (2016).

[81] A. Tamai, Q. S. Wu, I. Cucchi, F. Y. Bruno, S. Riccò, T. K.
Kim, M. Hoesch, C. Barreteau, E. Giannini, C. Besnard, A. A.
Soluyanov, and F. Baumberger, Phys. Rev. X 6, 031021 (2016).

[82] F. Arnold, C. Shekhar, S.-C. Wu, Y. Sun, R. D. Dos Reis,
N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A.
G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H.
Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan,
Nat. Commun. 7, 11615 (2016).

[83] J. Klotz, S.-C. Wu, C. Shekhar, Y. Sun, M. Schmidt, M. Nicklas,
M. Baenitz, M. Uhlarz, J. Wosnitza, C. Felser, and B. Yan,
Phys. Rev. B 93, 121105 (2016).

[84] B. Yan and C. Felser, Annu. Rev. Condens. Matter Phys. 8, 337
(2017).

[85] A. Barfuss, L. Dudy, M. R. Scholz, H. Roth, P. Höpfner, C.
Blumenstein, G. Landolt, J. H. Dil, N. C. Plumb, M. Radovic,
A. Bostwick, E. Rotenberg, A. Fleszar, G. Bihlmayer, D.
Wortmann, G. Li, W. Hanke, R. Claessen, and J. Schäfer,
Phys. Rev. Lett. 111, 157205 (2013).

[86] Y. Ohtsubo, P. Le Fèvre, F. Bertran, and A. Taleb-Ibrahimi,
Phys. Rev. Lett. 111, 216401 (2013).

[87] M. R. Scholz, V. A. Rogalev, L. Dudy, F. Reis, F. Adler, J.
Aulbach, L. J. Collins-McIntyre, L. B. Duffy, H. F. Yang, Y. L.
Chen, T. Hesjedal, Z. K. Liu, M. Hoesch, S. Muff, J. H. Dil, J.
Schäfer, and R. Claessen, Phys. Rev. B 97, 075101 (2018).

[88] F.-F. Zhu, W.-J. Chen, Y. Xu, C.-L. Gao, D.-D. Guan, C.-H.
Liu, D. Qian, S.-C. Zhang, and J.-F. Jia, Nat. Mater. 14, 1020
(2015).

[89] M. Liao, Y. Zang, Z. Guan, H. Li, Y. Gong, K. Zhu, X.-P. Hu,
D. Zhang, Y.-Y. Wang, K. He, X.-C. Ma, S.-C. Zhang, and X.
Qi-Kun, Nat. Phys. 14, 344 (2018).

[90] H. Li, H. He, H.-Z. Lu, H. Zhang, H. Liu, R. MA, Z. Fan, S.-Q.
Shen, and J. Wang, Nat. Commun. 7, 10301 (2016).

[91] C. Z. Li, L. X. Wang, H. Liu, W. Jian, Z. M. Liao, and D. P. Yu,
Nat. Commun. 6, 10137 (2015).

[92] T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P.
Ong, Nat. Mater. 14, 280 (2015).

[93] M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang,
C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong,
Nat. Mater. 15, 1161 (2016).

[94] C. Shekhar, A. K. Nayak, S. Singh, N. Kumar, S. C. Wu,
Y. Zhang, A. C. Komarek, E. Kampert, Y. Skourski, and J.
Wosnitza, arXiv:1604.01641.

[95] J. Cano, B. Bradlyn, Z. Wang, M. Hirschberger, N. P. Ong, and
B. A. Bernevig, Phys. Rev. B 95, 161306 (2017).

[96] T. Oh and B.-J. Yang, arXiv:1709.06796.
[97] N. H. Lindner, G. Refael, and V. Galitski, Nat. Phys. 7, 490

(2011).
[98] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys. Status

Solidi RRL 7, 101 (2013).
[99] A. Narayan, Phys. Rev. B 91, 205445 (2015).

[100] H. Hübener, M. A. Sentef, U. De Giovannini, A. F. Kemper,
and A. Rubio, Nat. Commun. 8, 13940 (2017).

[101] C.-K. Chan, P. A. Lee, K. S. Burch, J. H. Han, and Y. Ran,
Phys. Rev. Lett. 116, 026805 (2016).

[102] C.-K. Chan, Y.-T. Oh, J. H. Han, and P. A. Lee, Phys. Rev. B
94, 121106 (2016).

[103] Z. Yan and Z. Wang, Phys. Rev. Lett. 117, 087402 (2016).
[104] K. Taguchi, D.-H. Xu, A. Yamakage, and K. T. Law, Phys. Rev.

B 94, 155206 (2016).
[105] R. W. Bomantara, G. N. Raghava, L. Zhou, and J. Gong, Phys.

Rev. E 93, 022209 (2016).
[106] R. Wang, B. Wang, R. Shen, L. Sheng, and D. Y. Xing,

Europhys. Lett. 105, 17004 (2014).
[107] M. N. Chen, W. Su, M. X. Deng, J. Ruan, W. Luo, D. X. Shao,

L. Sheng, and D. Y. Xing, Phys. Rev. B 94, 205429 (2016).
[108] X.-X. Zhang, T. T. Ong, and N. Nagaosa, Phys. Rev. B 94,

235137 (2016).
[109] R. W. Bomantara and J. Gong, Phys. Rev. B 94, 235447

(2016).
[110] L. Zhou, C. Chen, and J. Gong, Phys. Rev. B 94, 075443

(2016).
[111] Z. Yan and Z. Wang, Phys. Rev. B 96, 041206 (2017).
[112] M. Ezawa, Phys. Rev. B 96, 041205 (2017).
[113] A. Gupta, arXiv:1703.07271.
[114] H.-Q. Wang, M. N. Chen, R. W. Bomantara, J. Gong, and D.

Y. Xing, Phys. Rev. B 95, 075136 (2017).
[115] A. A. Soluyanov, D. Gresch, Z. Wang, Q. S. Wu, M. Troyer,

X. Dai, and B. A. Bernevig, Nature (London) 527, 495
(2015).

[116] Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha,
X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, Phys. Rev.
Lett. 117, 056805 (2016).

[117] G. Autès, D. Gresch, M. Troyer, A. A. Soluyanov, and O. V.
Yazyev, Phys. Rev. Lett. 117, 066402 (2016).

[118] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev.
B 92, 161107 (2015).

[119] C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev.
Lett. 108, 266802 (2012).

[120] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
T.-R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, D.
Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H. Lin,
and M. Z. Hasan, Proc. Natl. Acad. Sci. USA 113, 1180 (2016).

[121] X. P. Yao and G. Chen, arXiv:1712.06534.
[122] S. A. A. Ghorashi, P. Hosur, and C.-S. Ting, Phys. Rev. B 97,

205402 (2018).
[123] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

195139-13

https://doi.org/10.1103/PhysRevB.93.205109
https://doi.org/10.1103/PhysRevB.93.205109
https://doi.org/10.1103/PhysRevB.93.205109
https://doi.org/10.1103/PhysRevB.93.205109
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13142
https://doi.org/10.1038/ncomms13643
https://doi.org/10.1038/ncomms13643
https://doi.org/10.1038/ncomms13643
https://doi.org/10.1038/ncomms13643
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1103/PhysRevB.94.241119
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13973
https://doi.org/10.1038/ncomms13552
https://doi.org/10.1038/ncomms13552
https://doi.org/10.1038/ncomms13552
https://doi.org/10.1038/ncomms13552
https://doi.org/10.1103/PhysRevX.6.031021
https://doi.org/10.1103/PhysRevX.6.031021
https://doi.org/10.1103/PhysRevX.6.031021
https://doi.org/10.1103/PhysRevX.6.031021
https://doi.org/10.1038/ncomms11615
https://doi.org/10.1038/ncomms11615
https://doi.org/10.1038/ncomms11615
https://doi.org/10.1038/ncomms11615
https://doi.org/10.1103/PhysRevB.93.121105
https://doi.org/10.1103/PhysRevB.93.121105
https://doi.org/10.1103/PhysRevB.93.121105
https://doi.org/10.1103/PhysRevB.93.121105
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1146/annurev-conmatphys-031016-025458
https://doi.org/10.1103/PhysRevLett.111.157205
https://doi.org/10.1103/PhysRevLett.111.157205
https://doi.org/10.1103/PhysRevLett.111.157205
https://doi.org/10.1103/PhysRevLett.111.157205
https://doi.org/10.1103/PhysRevLett.111.216401
https://doi.org/10.1103/PhysRevLett.111.216401
https://doi.org/10.1103/PhysRevLett.111.216401
https://doi.org/10.1103/PhysRevLett.111.216401
https://doi.org/10.1103/PhysRevB.97.075101
https://doi.org/10.1103/PhysRevB.97.075101
https://doi.org/10.1103/PhysRevB.97.075101
https://doi.org/10.1103/PhysRevB.97.075101
https://doi.org/10.1038/nmat4384
https://doi.org/10.1038/nmat4384
https://doi.org/10.1038/nmat4384
https://doi.org/10.1038/nmat4384
https://doi.org/10.1038/s41567-017-0031-6
https://doi.org/10.1038/s41567-017-0031-6
https://doi.org/10.1038/s41567-017-0031-6
https://doi.org/10.1038/s41567-017-0031-6
https://doi.org/10.1038/ncomms10301
https://doi.org/10.1038/ncomms10301
https://doi.org/10.1038/ncomms10301
https://doi.org/10.1038/ncomms10301
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4684
https://doi.org/10.1038/nmat4684
http://arxiv.org/abs/arXiv:1604.01641
https://doi.org/10.1103/PhysRevB.95.161306
https://doi.org/10.1103/PhysRevB.95.161306
https://doi.org/10.1103/PhysRevB.95.161306
https://doi.org/10.1103/PhysRevB.95.161306
http://arxiv.org/abs/arXiv:1709.06796
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1038/nphys1926
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1002/pssr.201206451
https://doi.org/10.1103/PhysRevB.91.205445
https://doi.org/10.1103/PhysRevB.91.205445
https://doi.org/10.1103/PhysRevB.91.205445
https://doi.org/10.1103/PhysRevB.91.205445
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1038/ncomms13940
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevLett.116.026805
https://doi.org/10.1103/PhysRevB.94.121106
https://doi.org/10.1103/PhysRevB.94.121106
https://doi.org/10.1103/PhysRevB.94.121106
https://doi.org/10.1103/PhysRevB.94.121106
https://doi.org/10.1103/PhysRevLett.117.087402
https://doi.org/10.1103/PhysRevLett.117.087402
https://doi.org/10.1103/PhysRevLett.117.087402
https://doi.org/10.1103/PhysRevLett.117.087402
https://doi.org/10.1103/PhysRevB.94.155206
https://doi.org/10.1103/PhysRevB.94.155206
https://doi.org/10.1103/PhysRevB.94.155206
https://doi.org/10.1103/PhysRevB.94.155206
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1103/PhysRevE.93.022209
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1209/0295-5075/105/17004
https://doi.org/10.1103/PhysRevB.94.205429
https://doi.org/10.1103/PhysRevB.94.205429
https://doi.org/10.1103/PhysRevB.94.205429
https://doi.org/10.1103/PhysRevB.94.205429
https://doi.org/10.1103/PhysRevB.94.235137
https://doi.org/10.1103/PhysRevB.94.235137
https://doi.org/10.1103/PhysRevB.94.235137
https://doi.org/10.1103/PhysRevB.94.235137
https://doi.org/10.1103/PhysRevB.94.235447
https://doi.org/10.1103/PhysRevB.94.235447
https://doi.org/10.1103/PhysRevB.94.235447
https://doi.org/10.1103/PhysRevB.94.235447
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.94.075443
https://doi.org/10.1103/PhysRevB.96.041206
https://doi.org/10.1103/PhysRevB.96.041206
https://doi.org/10.1103/PhysRevB.96.041206
https://doi.org/10.1103/PhysRevB.96.041206
https://doi.org/10.1103/PhysRevB.96.041205
https://doi.org/10.1103/PhysRevB.96.041205
https://doi.org/10.1103/PhysRevB.96.041205
https://doi.org/10.1103/PhysRevB.96.041205
http://arxiv.org/abs/arXiv:1703.07271
https://doi.org/10.1103/PhysRevB.95.075136
https://doi.org/10.1103/PhysRevB.95.075136
https://doi.org/10.1103/PhysRevB.95.075136
https://doi.org/10.1103/PhysRevB.95.075136
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.056805
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevLett.117.066402
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevB.92.161107
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1103/PhysRevLett.108.266802
https://doi.org/10.1073/pnas.1514581113
https://doi.org/10.1073/pnas.1514581113
https://doi.org/10.1073/pnas.1514581113
https://doi.org/10.1073/pnas.1514581113
http://arxiv.org/abs/arXiv:1712.06534
https://doi.org/10.1103/PhysRevB.97.205402
https://doi.org/10.1103/PhysRevB.97.205402
https://doi.org/10.1103/PhysRevB.97.205402
https://doi.org/10.1103/PhysRevB.97.205402
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758


ZHANG, WANG, RUAN, YAO, AND ZHANG PHYSICAL REVIEW B 97, 195139 (2018)

[124] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,
8207 (2003).

[125] Y. Xu, B. Yan, H.-J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan,
and S.-C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).

[126] J. M. Luttinger, Phys. Rev. 102, 1030 (1956).
[127] P. Lawaetz, Phys. Rev. B 4, 3460 (1971).
[128] L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
[129] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[130] I. Souza, N. Marzari, and D. Vanderbilt, Phys. Rev. B 65,

035109 (2001).
[131] H.-J. Zhang, C.-X. Liu, X.-L. Qi, X.-Y. Deng, X. Dai, S.-C.

Zhang, and Z. Fang, Phys. Rev. B 80, 085307 (2009).
[132] S. Datta, Electronic Transport in Mesoscopic Systems (Cam-

bridge University Press, Cambridge, 1995).
[133] A. W. Ewald and O. N. Tufte, J. Phys. Chem. Solids 8, 523

(1959).

[134] P. Kim, J. H. Ryoo, and C.-H. Park, Phys. Rev. Lett. 119, 266401
(2017).

[135] C.-L. Zhang, S.-Y. Xu, Z. Lin, Z. Z. Du, C. Guo, C.-C. Lee,
H. Lu, Y. Feng, S.-M. Huang, G. Chang, C.-H. Hsu, H. Liu,
H. Lin, L. Li, C. Zhang, J. Zhang, X.-C. Xie, T. Neupert, M.
Z. Hasan, H.-Z. Lu, J. Wang, and S. Jia, Nat. Phys. 13, 979
(2017).

[136] T. Kitagawa, T. Oka, A. Brataas, L. Fu, and E. Demler, Phys.
Rev. B 84, 235108 (2011).

[137] B. A. Bernevig and T. L. Hughes, Topological Insulators
and Topological Superconductors (Princeton University Press,
2013).

[138] H.-Z. Lu and S.-Q. Shen, Front. Phys. 12, 127201
(2017).

[139] D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

195139-14

https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1103/PhysRevLett.111.136804
https://doi.org/10.1103/PhysRevLett.111.136804
https://doi.org/10.1103/PhysRevLett.111.136804
https://doi.org/10.1103/PhysRevLett.111.136804
https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRev.102.1030
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.4.3460
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.80.085307
https://doi.org/10.1103/PhysRevB.80.085307
https://doi.org/10.1103/PhysRevB.80.085307
https://doi.org/10.1103/PhysRevB.80.085307
https://doi.org/10.1016/0022-3697(59)90408-1
https://doi.org/10.1016/0022-3697(59)90408-1
https://doi.org/10.1016/0022-3697(59)90408-1
https://doi.org/10.1016/0022-3697(59)90408-1
https://doi.org/10.1103/PhysRevLett.119.266401
https://doi.org/10.1103/PhysRevLett.119.266401
https://doi.org/10.1103/PhysRevLett.119.266401
https://doi.org/10.1103/PhysRevLett.119.266401
https://doi.org/10.1038/nphys4183
https://doi.org/10.1038/nphys4183
https://doi.org/10.1038/nphys4183
https://doi.org/10.1038/nphys4183
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1103/PhysRevB.84.235108
https://doi.org/10.1007/s11467-016-0609-y
https://doi.org/10.1007/s11467-016-0609-y
https://doi.org/10.1007/s11467-016-0609-y
https://doi.org/10.1007/s11467-016-0609-y
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959
https://doi.org/10.1103/RevModPhys.82.1959



