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Motivated by recent progress in applying techniques from the field of artificial neural networks (ANNs) to
quantum many-body physics, we investigate to what extent the flexibility of ANNs can be used to efficiently
study systems that host chiral topological phases such as fractional quantum Hall (FQH) phases. With benchmark
examples, we demonstrate that training ANNs of restricted Boltzmann machine type in the framework of
variational Monte Carlo can numerically solve FQH problems to good approximation. Furthermore, we show by
explicit construction how n-body correlations can be kept at an exact level with ANN wave functions exhibiting
polynomial scaling with powern in system size. Using this construction, we analytically represent the paradigmatic
Laughlin wave function as an ANN state.
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I. INTRODUCTION

The quest for methods to solve, at least approximately,
the quantum many-body problem has been a major focus of
research in physics for many years. The paramount issue in
this context is the exponential complexity of the wave function,
which severely limits the system sizes tractable with exact
diagonalization. An important challenge for the study of larger
quantum many-body systems is to efficiently parametrize the
physically relevant states. Along these lines, Carleo and Troyer
[1] recently demonstrated the potential of artificial neural
networks (ANNs) as an ansatz for variational wave functions.
There, the synaptic coupling strengths between the physical
(visible) and auxiliary (hidden) spin variables (neurons) of
the ANN play the role of the variational parameters, and the
quantum state is obtained by tracing out the auxiliary variables.

The purpose of this work is to harness the flexibility
of ANNs to study chiral topological phases (CTPs) in two
spatial dimensions (2D), such as fractional quantum Hall
states [2–4] and chiral spin liquids [5–7] in the framework
of variational Monte Carlo (VMC). Furthermore, we analyt-
ically demonstrate how CTP model wave functions can be
exactly represented with ANNs at polynomial cost. This is of
particular relevance as these exotic phases so far have fairly
successfully eluded efficient numerical methods: Quantum
Monte Carlo approaches to finding CTP ground states are
generically stymied by the negative-sign problem, and funda-
mental limitations regarding the exact representability of such
complex many-body states with tensor networks have been
proven [8,9]. However, despite these difficulties, it is fair to say
that impressive progress has been made in the computational
treatment of CTPs, e.g., using matrix product states at the
expense of exponential scaling of resources in only one of the
spatial directions [10–12], and tree-tensor network methods
[13–15]. Another promising direction is to resort to tensor
network states of mixed-state density matrices, the effective
temperature of which decreases with increasing resources [16].

Furthermore, Monte Carlo techniques have been successfully
applied using, e.g., the fixed-phase method [17,18], and to
sample various observables from CTP model wave functions
(see, e.g., [19] and references therein).

Below, we study 2D lattice systems hosting CTPs within the
ANN architecture of restricted Boltzmann machines (RBMs;
see Fig. 1 for an illustration) [1]. Using VMC techniques to
train the network, we investigate the efficiency of this method
in finding the ground state of chiral spin liquid and lattice
fractional quantum Hall models such as the Kapit-Mueller
model [20,21]. As a benchmark for small systems, we compare
our VMC results to exact diagonalization. Remarkably, we find
that systems whose size exceeds the scope of exact diagonal-
ization can be solved with the ANN approach by increasing
the number of variational parameters polynomially with system
size [22]. Besides this numerical study, we construct a modified
RBM architecture, coined cluster neural network quantum
states (CNQSs; see Fig. 2 for an illustration), to capture CTP
model states. While many tensor network methods rely on the
truncation of entanglement in real space, the CNQS ansatz
is based on limiting the number of particles that are directly
correlated in the wave function as a means to contain its
complexity. For example, the Laughlin state as a paradigmatic
representative of CTPs is characterized by the constraint of
simultaneously maximizing the relative angular momentum
between any pair of particles. Such two-body constraints of
Jastrow form are exactly captured by a CNQS with quadratic
scaling (see Fig. 2), as we show analytically. Three-body
constraints which appear in non-Abelian phases such as the
Moore-Read state [23] require a CNQS ansatz with a cubic
effort in system size.

This paper is structured as follows. In Sec. II, we discuss
how variational wave functions are obtained from the RBM
architecture. Thereafter, in Sec. III we apply this RBM varia-
tional ansatz to numerically study chiral topological phases and
introduce the CNQS architecture in Sec. IV to obtain analytical
insights into how CTP model states can be exactly described
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FIG. 1. Graphical representation of the restricted Boltzmann ma-
chine (RBM) network for the variational wave function [see Eq. (1)].
The physical spins (in the blue shaded area S) are denoted by
σj ,j = 1, . . . ,N , and the auxiliary variables (in the green shaded
area A) are denoted by green dots aj ,j = 1, . . . ,M , with M = αN .
The coupling strengths on the links between i and j (solid lines) are
labeled wij , while the local fields are denoted by bi (dashed lines) for
the auxiliary variables and by cj (dash-dotted lines) for the physical
spins.

with ANNs. Finally, a concluding discussion is presented in
Sec. V. Technical details about the numerical methods we use
in this work are provided in the Appendix.

II. RESTRICTED BOLTZMANN MACHINE STATES

The general ANN framework considered here is that of an
RBM consisting of a set of N physical spins {σ1, . . . ,σN } = S
coupled to a set A of M classical Ising spins called the
auxiliary (hidden) variables via a set W of complex param-
eters [1]. The network energy of the RBM is then defined
as Enw(S,W,A) = ∑

j σj cj + ∑
i(
∑

j wjiσj + bi)ai , where
wij ∈ W are the couplings between the auxiliary and the
physical spins, while bi,cj ∈ W play the role of a complex
local field for the auxiliary variables ai = ±1 and the physical
spins σj = 0,1, respectively. The network energy Enw does
not have the meaning of a physical energy but specifies
the connectivity of the RBM via the functional form of a
Boltzmann weight. The defining constraint of an RBM is
that there are no direct couplings within A which allow

FIG. 2. Sketch of the cluster neural network quantum state
(CNQS) architecture with cluster size n = 2 and m = 1 [see Eq. (3)].
The physical spins (in the blue shaded area S) are denoted by σi . The
auxiliary variables (in the green shaded areaA) are denoted by aij . The
coupling strengths on the links between i �= j (dash-dotted lines) are
labeled wij and w̃ij , while the local fields (solid lines) at aij are labeled
bij . For n > 2 (not shown), m auxiliary variables aν

i1,...in
,ν = 1, . . . m

are associated with every cluster of n distinct sites labeled i1, . . . ,in.

us to analytically trace out the auxiliary variables, yielding
the explicit form of the variational wave function at fixed
couplings W:

ψW (S) =
∑
{ai }

e−Enw(S,W,A)

= e− ∑
j cj σj

∏
i

2 cosh

⎛
⎝∑

j

wijσj + bi

⎞
⎠. (1)

Choosing a constant density α of auxiliary variables per phys-
ical spin, i.e., M = αN , the number of variational parameters
scales as αN2.

III. CHIRAL TOPOLOGICAL PHASES FROM RBM STATES

We now demonstrate how the RBM variational wave func-
tion [see Eq. (1)] approach can be used to solve systems hosting
CTPs. Concretely, we study the lattice model introduced by
Kapit and Mueller [21] on a 2D square lattice. Considering
the limit of hard-core bosons, the model Hamiltonian can be
readily cast into the spin-1/2 form,

H =
∑
jk

Jj,kS
+
j S−

k , (2)

where the spin operators S±
j = Sx

j ± iS
y

j at site j = (xj ,yj )

replace the bosonic creation and annihilation operators â
†
j and

âj , respectively. Introducing the complex notation zj = xj +
iyj for the 2D lattice indices j , the complex coupling matrix
elements Jj,k take the form [21] Jj,k = W (z) eiπφ (yk−yj )(xk+xj ),
with z = zk − zj = x + iy, and the exponentially decaying
prefactor W (z) reads W (z) = (−1)x+y+xy exp {−π (1−φ)

2 |z|2},
where φ is the magnetic flux per plaquette. The single-particle
states of the Kapit-Mueller Hamiltonian constitute a lattice
version of the lowest Landau level in the continuum, and the
appearance of fractional quantum Hall states as its many-body
ground states has been proven in several studies [21,24,25].
In our present numerical study, we consider a quarter filling
of the lattice with hard-core bosons (i.e., N/4 spin-up sites
in the spin language) at flux φ = 1/2. At these parameters, a
bosonic ν = 1

2 Laughlin phase and the corresponding chiral
spin liquid phase in the spin language are the ground states of
this model. Specifically, we consider the Hamiltonian of Eq. (2)
in a cylinder geometry, with periodic boundary conditions in
the y direction. As chiral edge states appear in this geometry,
reaching variational energies close to the actual ground-state
energy implies that these edge states are also well captured by
the RBM wave function (1).

We initialize the RBM with a set of random parameters W ,
generally using α = 4, and search for the ground state of the
Hamiltonian (2) by minimizing the energy expectation value
of the RBM state (1) using the stochastic reconfiguration (SR)
method to update the RBM wave function [1,26–29]. In Table I,
we compare the results we obtain from exact diagonalization
(ED) to those from the RBM ansatz for various system sizes.
For system size Lx × Ly = 8 × 8, the Hilbert space dimension
after taking into account particle number conservation and
translation symmetry is 6.1 × 1013 and thus beyond the scope
of direct study with ED. However, for such larger systems we
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TABLE I. Comparison between the ground-state energy of the
Kapit-Mueller Hamiltonian [see Eq. (2)] in cylinder geometry ob-
tained with exact diagonalization (ED) and variational Monte Carlo
(VMC) for different system sizes Lx × Ly . In the ED column,
the values marked with an asterisk are interpolated from shorter
cylinders with the same circumference. The last column shows
the relative deviation of the VMC result from the ED, defined as
�Erel = (EED − EVMC)/EED.

Size ED VMC �Erel

4 × 4 −3.8776 −3.8769(3) 1.7 × 10−4

6 × 4 −5.8773 −5.8767(3) 1.0 × 10−4

8 × 4 −7.8773 −7.8764(3) 1.1 × 10−4

4 × 6 −5.7125 −5.7019(8) 1.9 × 10−3

6 × 6 −8.712∗ −8.7010(8) 1.3 × 10−3

4 × 8 −7.6632 −7.658(1) 6.7 × 10−4

8 × 8 −15.663∗ −15.652(2) 6.9 × 10−4

interpolate the expected ground-state energy by noticing that
the deviation of the ground-state energy from −N/4 up to small
fluctuations depends on only the circumference of the cylinder
(see values marked with an asterisk in Table I). With our VMC
calculations, we reach down to the ground-state energy up to a
relative deviation �Erel on the order of 10−4 to 10−3, where the
difference to the exact energy is found to be least at the smallest
circumference Ly = 4, owing to the smaller influence of the
metallic edge effects at longer aspect ratios.

In Fig. 3, we show an example of the variational energy of
the RBM wave function towards the exact ground-state energy
(red horizontal line) as a function of the number of SR iterations
for a cylinder of size Lx = 6,Ly = 4.

IV. CLUSTER NEURAL NETWORK QUANTUM STATES
AND CHIRAL TOPOLOGICAL PHASES

To gain analytical insight into how ANN states can exactly
represent model wave functions for CTPs, we now construct
a modified RBM architecture coined cluster neural network
states. To this end, we associate a fixed number m of aux-
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FIG. 3. Energy expectation value E = 〈ψW |H |ψW 〉/〈ψW |ψW 〉
as a function of the stochastic reconfiguration (SR) iterations for
system size 6 × 4. For this system size, the expectation values are
calculated using a sample of 10 000 configurations drawn with a
standard Metropolis algorithm. The inset shows the final SR iterations,
and the horizontal red line marks the exact ground-state energy
from ED.

iliary variables to every subset of n physical spins, termed
a cluster of size n. We illustrate our construction for the
case n = 2,m = 1, where an auxiliary variable aij ∈ {−1,1}
is associated with every bond between two distinct physical
sites (spins) i �= j (see Fig. 2) to which it is coupled by
the complex weights wij ,w̃ij ∈ W . The network energy of
this RBM is then defined as Enw(S,W,A) = ∑

i<j (wijσi +
w̃ij σj + bij )aij , where bij ∈ W are the complex local fields
for the auxiliary variables. The explicit form of the variational
wave function at fixed couplings W then reads

ψW (S) =
∑
{aij}

e−Enw(S,W,A)

=
∏
i<j

2 cosh(wijσi + w̃ij σj + bij ). (3)

The generalization of this CNQS to larger n,m is straightfor-
ward with the number of couplings in W as well as of the
auxiliary variables in A scaling as mNn. The generalization of
the product structure of ψW in Eq. (3) then contains m factors
for each cluster labeled by n indices i1 < i2 · · · < in, capturing
n-body correlations.

Chiral topological phases from CNQSs. As a concrete ex-
ample, we now demonstrate how the above CNQS construction
can be used to exactly represent chiral topological states. As
a paradigmatic example, we explicitly parametrize a chiral
spin liquid ground state of a spin-1/2 system, or, equivalently,
the ν = 1/2 bosonic Laughlin state in the language of hard-
core bosons. The desired state |ψL〉 in the complex position
representation zj = xj + iyj is written as

ψL(z1, . . . ,zp) =
p∏

i<j=1

(zi − zj )2e
− |zi |2+|zj |2

p−1 , (4)

where p is the number of particles. In our spin-1/2 representa-
tion, where we choose σi ∈ {0,1}, the positions of the up spins,
i.e., sites with σi = 1, are simply identified with the positions
zi of hard-core bosons. In order to represent |ψL〉 as a CNQS,
it is helpful to rewrite Eq. (4) as

ψL(S) =
N∏

i<j=1

[
1 +

(
(zi − zj )2e

− |zi |2+|zj |2
p−1 − 1

)
σiσj

]
, (5)

where in the CNQS language only pairs i,j (two-clusters)
with both sites occupied (σi = σj = 1) contribute a non-
trivial factor to the wave function. Equation (5) is of the
general Jastrow form

∏N
i<j=1(cijσi + dijσj + eijσiσj + fij )

with arbitrary complex coefficients c,d,e,f . Simple parameter
counting shows that any such state can be exactly represented
as a CNQS with n = m = 2. This already tells us that the exact
Laughlin wave function ψL is part of the variational space for
n = m = 2.

Going beyond this general argument, we analytically find
that even withm = 1 andwij = w̃ij = −2bij , i.e., with a single
complex parameter per ij pair, the ij factor of the CNQS wave
function (3) can be decomposed as

cosh(wijσi + w̃ij σj + bij )

= cosh(bij )

(
1 +

[
cosh(3bij )

cosh(bij )
− 1

]
σiσj

)
. (6)
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Comparing Eq. (6) to Eq. (5), we find that any Laughlin wave
function up to a global prefactor can be exactly represented
with analytically determined parameters bij .

V. CONCLUDING DISCUSSION

Using ANN constructions for variational quantum many-
body wave functions has already led to several promising in-
sights, including the parametrization of states with volume law
entanglement [30], the approximate representation of p + ip

superconductors [31], the exact representation of topological
stabilizer states [32], a numerical study of the 2D Hubbard
model [33,34], and that on the relation between ANN states
and conventional tensor networks [35].

Here, we have shown that RBM states can be efficiently
used as an ansatz to describe chiral topological phases both
at the numerical level and at an exact analytical level. With
small-scale numerical benchmark studies not imposing any
symmetry constraints except particle number conservation, we
could already significantly exceed the system sizes amenable
to direct study with exact diagonalization. However, due to
the expected polynomial cost of our RBM simulations [22],
even larger systems sizes should be tractable. This may be of
particular importance for gapless topological phases exhibiting
severe finite-size effects [36]. Moreover, as generally shown in
Ref. [1], the ANN approach is capable of describing unitary
time evolution. This may open up the possibility to study
dynamical aspects such as nonequilibrium response functions
and quantum transport properties of CTPs, where comparably
large system sizes are required to clearly observe topologically
quantized features and where capturing quantum correlations
beyond area-law entanglement is important.

The fact that certain CTP model states can naturally be
parameterized with polynomial cost within the ANN approach
is generally promising, as their exact parametrization with
the most well known tensor network methods such as matrix
product states requires exponential cost in at least one spatial
direction [37]. However, it remains an open question whether
the fundamental limitation [9] to the representability of non-
trivial CTPs with tensor network states using finite resources in
the thermodynamic limit can be overcome with ANN states. An
important challenge and interesting direction of future research
hence is to devise ANN architectures that are flexible enough to
parametrize even in the thermodynamic limit CTPs and other
strongly correlated topological phases with no known exact
tensor network representative.

Note added. Recently, two related papers appeared [38,39].
Clark constructs a mapping [38] between RBM states and
correlator product states, with relevance for CTP states such
as Laughlin wave functions. Glasser et al. [39] establish a
correspondence between string-bond network states and RBM
states, also presenting VMC data for the ν = 1/2 Laughlin
phase but studying a different model Hamiltonian [40] from
the one in this paper.
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APPENDIX

1. Stochastic reconfiguration

In the following we provide a brief description of the
stochastic reconfiguration (SR) method [26,27,41]. The prob-
lem the SR method addresses is the minimization of the energy
expectation value within the subspace of the variational wave
functions. In order to carry out this minimization procedure
we interpret the variational state as effectively depending on
2Nw real parameters, which are the real and imaginary parts of
the Nw complex weights. We denote with the real vector w a
certain configuration of real and imaginary parts of the weights
and with |ψ̂w〉 = |ψw〉√〈ψw |ψw〉 the normalized variational state for
this set of values. We adopt the following convention: wj for
j = 2	 − 1 is the real part of the 	 th complex weight, and
for j = 2	 it is the imaginary part of the 	 th complex weight,
where 	 = 1, . . . ,Nw. In the VMC algorithm, after the samples
from the probability distribution 〈ψ̂w|ψ̂w〉 have been generated
and the energy expectation value Ew = 〈ψ̂w|H |ψ̂w〉 has been
calculated, an updating step dw in parameter space is made
such that Ew+dw is reduced. The SR method ensures an optimal
direction ofdw by effectively implementing an imaginary-time
evolution projected onto the variational manifold [1]. In the
following, we discuss the practical implementation of this
method to first order in the imaginary-time step dτ , as used
in our present simulations.

Let us introduce the local tangent space Tw at point w to the
manifold of variational states parametrized by the weights wk

(k = 1, . . . ,2Nw). Tw is spanned by the nonorthogonal basis
states:

|jw〉 = ∣∣∂wj
ψ̂w

〉 − |ψ̂w〉〈ψ̂w

∣∣∂wj
ψ̂w

〉
. (A1)

Notice that 〈ψ̂w|jw〉 = 0 ∀ j = 1, . . . ,2Nw. We again point out
that the derivatives ∂wj

are derivatives with respect to the real
parts for odd j = 2	 − 1 and with respect to the imaginary
parts of the complex weight 	 for even j = 2	. We denote with
(Sw)j,k = 〈jw|kw〉 the components of the local metric tensor at
w, also referred to as the covariance matrix, which take the
form

(Sw)j,k = 〈
∂wj

ψ̂w

∣∣∂wk
ψ̂w

〉 − 〈
∂wj

ψ̂w

∣∣ψ̂w

〉〈
ψ̂w

∣∣∂wk
ψ̂w

〉
. (A2)

With τ being the imaginary time and assuming that the wave
function depends on τ through the variational parameters
wk(τ ), the imaginary-time evolution is governed by the equa-
tion

|ψ̂w(τ+dτ )〉 = e−dτH |ψ̂w(τ )〉. (A3)

Expanding the left-hand side of the above equation to first order
in dτ , we obtain

|ψ̂w(τ+dτ )〉 	|ψ̂w(τ )〉 + dτ

2Nw∑
k=1

ẇk(τ )
[∣∣∂wk

ψ̂w(τ )
〉

− |ψ̂w(τ )〉
〈
ψ̂w(τ )

∣∣∂wk
ψ̂w(τ )

〉]
,
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where the second term in the sum subtracts the variation of
the state parallel to |ψ̂w(τ )〉 (to keep the norm fixed) and ẇk

denotes the imaginary-time derivative of wk . The right-hand
side expanded to first order reads

e−dτH |ψ̂w(τ )〉 	 |ψ̂w(τ )〉 − dτ H |ψ̂w(τ )〉. (A4)

Equating the two terms and multiplying from the left by 〈jw(τ )|
(i.e., projecting the imaginary-time evolution onto the tangent
space Tw(τ )), we obtain (we drop the τ dependence now for
simplicity)

2Nw∑
k=1

ẇk

[〈
∂wj

ψ̂w

∣∣∂wk
ψ̂w

〉 − 〈
∂wj

ψ̂w

∣∣ψ̂w

〉〈
ψ̂w

∣∣∂wk
ψ̂w

〉]
= −〈

∂wj
ψ̂w

∣∣H |ψ̂w〉 + 〈
∂wj

ψ̂w

∣∣ψ̂w

〉〈ψ̂w|H |ψ̂w〉,
which can be rewritten in vector notation as

Sw

dw

dτ
= −Fw, (A5)

where Sw is the 2Nw × 2Nw metric tensor [see Eq. (A2)] and
Fw is the force vector, whose components are given by

Fj (w) = 〈
∂wj

ψ̂w

∣∣H |ψ̂w〉 − 〈
∂wj

ψ̂w

∣∣ψ̂w〉〈ψ̂w|H |ψ̂w〉. (A6)

Introducing the imaginary-time step size γ , we then have

dw = − γ S−1
w Fw. (A7)

At each imaginary-time step the covariance matrix and the
force-vector elements are calculated from the samples of
〈ψ̂w|ψ̂w〉 by computing the local variational derivative esti-
mators [1,26,27,41]

Ok(S) = ∂

∂wk

ln (〈S|ψw〉) (A8)

at spin configuration S and using

Sk,k′(w) = 〈O∗
k Ok′ 〉 − 〈O∗

k 〉〈Ok′ 〉, (A9)

Fk(w) = 〈O∗
k Eloc〉 − 〈Eloc〉〈O∗

k 〉, (A10)

with Eloc(S) = 〈S|H |ψw〉
〈S|ψw〉 and the angle brackets denoting the

Monte Carlo average over the samples.
The step dw calculated in Eq. (A7) is a complex vector with

2Nw components which correspond to the variations of the real
and imaginary parts of the Nw complex weights. Denoting with
u	 the 	 th complex weight, the SR update du	 = duR

	 + i duI
	

is calculated from dw as

duR
	 = Re(dw2	−1) − Im(dw2	),

duI
	 = Re(dw2	) + Im(dw2	−1). (A11)

2. Efficient calculation of the step in parameter space

Rather than explicitly evaluating the S-matrix inverse for
calculating the step in parameter space from Eq. (A7), it is
numerically more efficient to solve the linear system

Sw dw = − γ Fw (A12)

for dw. We adopt the MINRES-QLP algorithm [28], which is
an iterative linear solver based on the Lanczos method. Lanczos
tridiagonalization requires the calculation of the Krylov space,

which involves matrix-vector multiplications of the form Swv,
where v is a generic vector with 2Nw entries. Since the
explicit calculation of the S matrix has a computational cost of
O(NsN

2
w), with Ns being the number of samples, we exploit

the product structure of the covariance matrix to avoid its
explicit calculation [1]. At every SR iteration, for each sample
Sn we store the local variational derivative estimator Oj (Sn)
defined in Eq. (A8) in the Ns × 2Nw matrix O, with elements
(O)nj = Oj (Sn). After O has been evaluated, we compute

u = O v, (A13)

where u is a Ns-component vector with elements

(u)n =
2Nw∑
j=1

(∂wj
ψw)(Sn)

ψw(Sn)
(v)j . (A14)

Then the evaluation of v ′ = 1
Ns

O†u leads to

(v ′)k =
2Nw∑
j=1

1

Ns

Ns∑
n=1

O∗
j (Sn) Oj (Sn) (v)j

=
2Nw∑
j=1

〈O∗
k Oj 〉 (v)j ,

and it is sufficient to shift these components by

(v ′)k → (v ′)k − 〈O∗
k 〉

2Nw∑
j=1

〈Oj 〉 (v)j

to retrieve v ′ = Swv at an overall computational cost of
O(NsNw).

3. Metric rescaling of step length

In our numerical simulations we used a time-dependent
imaginary-time step γ and adopted a local metric rescaling
(LMR) technique for the optimization of its length [42], as
we explain below. At each imaginary-time step, the length
of the step in parameter space is rescaled according to the
local metric in order to keep the effective step length in the
variational manifold constant despite the nonorthogonal frame.
Let us consider a generic real function fw which depends on
the variational parameters w through the state |ψ̂w〉, i.e., a real
function on the variational manifold embedded in the Hilbert
space. This function could be the energy expectation value, the
squared modulus of the overlap of |ψ̂w〉 with a given state, or
the distance between A|ψ̂w〉 and B|ψ̂w〉, with A and B being
some operators. Our problem is to find the optimal variation
dw of the variational parameters in the context of minimizing
fw. To this end we Taylor expand to first order

fw+ε dw 	 fw + ε dw · ∇wfw, (A15)

where ε is a free small parameter chosen to be small enough
that the above first-order approximation is justified. We want
to find dw such that fw+ε dw is minimal, under the constraint
of a fixed step length on the variational manifold, as measured
by dsw+dw for a variation w → w + dw. Explicitly, we get

dsw+dw =
√∑

i,j

dw∗
i (Sw)i,j dwj = 1, (A16)
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where (Sw)i,j are the components of the metric (or covariance
matrix) defined before [see Eq. (A2)]. In the following we
drop the subscripts in dsw+dw and Sw for simplicity. This
constrained optimization problem amounts to the minimization
of the function

L(dw,λ) = dw · ∇wfw + λ(ds2 − 1), (A17)

yielding the system

∇dwL = ∇wfw + 2λ S dw = 0,

∂λL = ds2 − 1 = 0.

From the first equation we have

dw = − 1

2λ
S−1∇wfw ≡ 1

2λ
δw, (A18)

where we have introduced the bare step in parameter space
δw = −S−1∇wfw. Plugging this result into the second equa-
tion, we obtain

λ = ± 1
2

√
δw†S δw, (A19)

which we call the LMR factor. Since we want the variation of
the function fw to be negative, we pick the positive root for λ

and finally arrive at

dw = − S−1∇wf√
(S−1∇wf )†S(S−1∇wf )

. (A20)

At each SR iteration the bare step in parameter space δw is
calculated, and its length is rescaled with the LMR factor λ

to make the effective step length in the variational manifold
constant. The rescaled step dw of Eq. (A20) is then multiplied
by the free parameter ε in order for the first-order expansion
of Eq. (A15) to be valid. In the simulations we have used the

SR method; thus we substitute ∇wfw → Fw, where Fw is the
force vector defined in Eq. (A6). The bare step then becomes
δw = −S−1 Fw, and the effective update of the weights is
ε dw = ε δw√

δw†S δw
= γ δw. The ε parameter is generally chosen

to be time dependent. We started with an initial value ε = 0.1,
and close to the end we reduced it by a factor of 10 for a more
accurate minimum search.

4. Regularization of the metric tensor

Finally, we discuss some common issues related to the
inversion of the S matrix. The matrix elements of S are
calculated as Monte Carlo averages, and they are subject to
statistical fluctuations. These may lead to very small, not even
positive eigenvalues of S, which could amplify the fluctuations
in the force vector when S−1 Fw is calculated, leading to nu-
merical instabilities of the SR scheme. One can adopt different
regularization schemes to avoid those numerical instabilities
[1,27]. One scheme amounts to adding a term proportional to
the identity matrix, shifting all the diagonal elements by the
same amount

Sreg. = S + λreg.I, (A21)

and the other one is a rescaling of the diagonal elements

(Sreg.)k,k = (1 + λreg.) (S)k,k. (A22)

We found it useful to adopt the identity regularization of
Eq. (A21) for the first (∼500) iterations and then to switch
to the second scheme [Eq. (A22)] towards the end of the
simulation. With this choice we found better stability and
smoother convergence towards the ground state, probably due
to the fact that the diagonal regularization does not modify the
ratio between the eigenvalues of the S matrix.
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