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Nonperturbative description of the butterfly diagram of energy spectra for materials
immersed in a magnetic field
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We propose a nonperturbative method to calculate the butterfly diagram of energy spectra for materials immersed
in a magnetic field. We apply the proposed method to a crystalline silicon immersed in a magnetic field. It is
shown that the conventional Hofstadter butterfly diagram is of low accuracy not only in the high magnetic field
region of the diagram but also even in the experimentally available magnetic field region. This means that the
present butterfly diagram is regarded as a replacement for the Hofstadter butterfly diagram. We also show that
the correction to the Hofstadter buttery diagram would be observed under the ultrahigh magnetic field that is
available in experiments.
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I. INTRODUCTION

It is well known that the magnetic field dependence of
energy levels of Bloch electrons in a magnetic field has a
recursive structure [1]. Such a characteristic energy spectrum
is referred to as the Hofstadter butterfly diagram and was
first presented by Hofstadter [1]. The Hofstadter butterfly
diagram has been effectively used for describing phenomena
observed in a magnetic field. For example, it is shown that the
characteristic gap structure of the Hofstadter butterfly diagram
plays an essential role in the quantum Hall effect [2–4]. Besides
this, de Haas–van Alphen (dHvA) oscillations and magnetic
oscillations caused by magnetic breakdowns [5–12] can be
described on the basis of the Hofstadter butterfly diagram. The
direct observation of the Hofstadter butterfly diagram is done in
the patterned AlGaAs/GaAs heterostructure [13,14], and also
in the graphene/h-BN moiré superlattice [15–17].

We have recently developed the magnetic-field-containing
relativistic tight-binding approximation (MFRTB) method that
enables us to calculate the electronic structure of materials
immersed in a magnetic field [18–21]. If the MFRTB method is
applied to the two-dimensional square lattice with s electrons,
then we get the relativistic version of the Hofstadter butterfly
diagram, in which two butterfly diagrams overlap each other
due to the Zeeman splitting of spin states [18]. If the Zeeman
splitting of spin states is neglected, then the resultant energy
spectrum coincides with the Hofstadter butterfly diagram [18].
We have also applied this method to a crystalline silicon. It
was shown that nearly flat bands are obtained in the kx-ky

plane of the magnetic first Brillouin zone [18]. This suggests
that the motion of electrons in the plane perpendicular to the
magnetic field is essentially changed corresponding to the
quantization of the orbital motion of electrons in a magnetic

field. It was also found that the magnetic field dependence
of eigenvalues with wave vectors lying in the kx-ky plane
exhibits the butterfly-like energy spectrum [18]. Furthermore,
by means of the MFRTB method, we can not only revisit
the dHvA oscillation and magnetic breakdown phenomena
[19,20] but also predict additional oscillation peaks [21] of the
magnetization that cannot be explained by the conventional
Lifshitz-Kosevich formula [22].

Although the validity of the Hofstadter butterfly diagram
has been confirmed as mentioned above, the confirmation is
limited only to the low magnetic field region of the Hofstadter
butterfly diagram. Note that the magnetic field used in exper-
iments (up to about 45 T) corresponds to the low magnetic
field region of the Hofstadter butterfly diagram. Furthermore,
the Hofstadter butterfly diagram is recognized to be calculated
within the lowest-order perturbation theory [18]. Therefore,
it is expected that the Hofstadter butterfly diagram would be
incorrect in the high magnetic field region or would be of low
accuracy even in the low magnetic field region.

In this paper, we propose a method to calculate the butterfly
diagram by means of the nonperturbative theory, which is
hereafter referred to as the extended MFRTB (ext-MFRTB)
method. In the ext-MFRTB method, the hopping integral in
the presence of a magnetic field is described beyond the
approximation of using the so-called Peierls phase factor
[1,23] due to the nonperturbative theory. We apply the ext-
MFRTB method to the crystalline silicon. It is shown that
the discrepancy between the present butterfly diagram and the
Hofstader one is caused by not only the anomalous Zeeman
effect but also the Paschen-Back effect. In addition, we discuss
the possibility of confirming the discrepancy experimentally
by taking the recent progress of solid-state experiments under
ultrahigh magnetic field [24–27] into consideration.
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The outline of this paper is as follows. In Sec. II, we
explain the reason why the nonperturbative method is needed
for calculating the electronic structure of materials immersed
in a magnetic field. In Sec. III, the ext-MFRTB method is
proposed by using a nonperturbative method. It is shown that
the application range of the ext-MFRTB method is extended
from the low magnetic field to a high magnetic field region as
compared with that of the Hofstadter and MFRTB methods. In
Sec. IV, we apply the ext-MFRTB method to the crystalline
silicon immersed in a magnetic field. It is shown that the
butterfly diagram is much corrected by the ext-MFRTB method
not only in the high magnetic field region but also in the low
magnetic field region. In Sec. V, we give concluding remarks.

II. DIFFICULTY OF ADOPTING THE PERTURBATION
THEORY FOR THE CALCULATION OF THE

BUTTERFLY DIAGRAM

We first explain the difficulty of adopting the perturbation
theory for the electronic structure calculations of materials
immersed in a magnetic field. Let us start with the Dirac
equation for an electron that moves in both a uniform magnetic
field and periodic potential of the crystal:[

cα · {p + eA(r)} + β mc2 +
∑

n

∑
i

vai
(r − Rn − di)

]

×�k(r) = E(k)�k(r), (1)

where A(r) and vai
(r − Rn − di) are the external vector po-

tential of a uniform magnetic field B that is parallel to the
z axis and scalar potential caused by the nucleus of atom
ai , respectively. Vectors Rn and di denote the translation
vector of the lattice and vector specifying the position of
atom ai , respectively. In Eq. (1), c, e, and m denote the
velocity of light, elementary charge, and rest mass of electrons,
respectively, and the matrices α = (αx, αy, αz) and β stand
for the usual 4 × 4 matrices. The subscript of �k(r) is the
wave vector that belongs to the magnetic first Brillouin zone
[18]. Suppose that the wave function �k(r) is expanded
by means of relativistic atomic orbitals for atoms immersed
in a uniform magnetic field. Namely, we have �k(r) =∑

ξ

∑
n

∑
i C

ξ

k(Rn + di)ψ
ai,Rn+di

ξ (r), where C
ξ

k(Rn + di) is

the expansion coefficient, and ψ
ai,Rn+di

ξ (r) denotes a rela-
tivistic atomic orbital for an atom ai that is immersed in a
uniform magnetic field and is located at Rn + di . By neglecting
both overlap integrals involving different centers and hopping
integrals involving three different centers, matrix elements of
the Hamiltonian are given by [18]

HRmjη,Rniξ

= (
ε

ai , 0
ξ + 	ε

ai, di

ξ

)
δRm,Rn

δj,iδη,ξ + (1 − δRm,Rn
δj,i)

× e−i eB
h̄

(Rnx+dix−Rmx−djx )(Rmy+djy )

× T
aj ai

ηξ (Rn − Rm + di − dj ) (2)

with

T
aj ai

ηξ (Rl + di − dj )

=
∫

ψ
aj , 0
η (r)†

vaj
(r) + vai

(r − Rl − di + dj )

2

×ψ
ai, Rl+di−dj

ξ (r)d3r, (3)

where T
aj ai

ηξ , ε
ai , 0
ξ , and 	ε

ai, di

ξ denote the hopping integral,
atomic spectrum, and energy of the crystal field in the presence
of a magnetic field, respectively. Hereafter, T

aj ai

ηξ is referred to
as the magnetic hopping integral.

In order to clarify the difficulty of using the perturbation
theory, we hereafter give approximate forms of T

aj ai

ηξ and ε
ai , 0
ξ

that are obtained by the perturbation theory. Let us consider
the Dirac equation for an isolated atom that is located at the
origin and is immersed in a uniform magnetic field:[
cα · {p + eA(r)} + βmc2 + vai

(r)
]
ψ

ai, 0
ξ (r) = ε

ai , 0
ξ ψ

ai , 0
ξ (r).

(4)

If the effect of the magnetic field, ecα · A(r), is treated as
the perturbation, then we can derive the perturbation correc-
tions for the unperturbed eigenvalue ε̄

ai

nlJ and eigenfunction
φ

ai

n�JM (r), where subscripts n, l, J , and M are the principal,
azimuthal, total angular momentum, and magnetic quantum
numbers, respectively. Specifically, within the second-order
perturbation theory, we have

ε
ai , 0
ξ = ε̄

ai

nlJ + eh̄B

2m

{
2J + 1

2l + 1
M + λlM

(2l + 1)2
S2

nlJ xnl

− 2λlMM

(2l + 1)3
S2

nlJ x2
nl

}
, (5)

ψ
ai, 0
ξ (r) = φ

ai

n�JM (r) ±
√

λlM

2l + 1
SnlJ

×
(

xnl + M

l + 1/2
x2

nl

)
φ

ai

n�J∓1M (r) (6)

with

xnl = eh̄B/2m

ε̄
ai

nlJ − ε̄
ai

nlJ−1

∣∣∣∣
J=l+1/2

(7)

for the case of J = l ± 1/2. Here λlM = (l + 1/2 − M)(l +
1/2 + M), and SnlJ denotes the overlap integral between the
radial parts of φ

ai

n�JM (r) and φ
ai

n�J−1M (r). In Eq. (7), xnl is
defined as the ratio of eh̄B/2m that represents the extent of the
Zeeman splitting to ε̄

ai

nlJ − ε̄
ai

nlJ−1 that represents the spin-orbit
splitting.

If the zeroth-order approximation is adopted for both the
eigenvalue and eigenfunction, then we have ε

ai , 0
ξ ∼ ε̄

ai

nlJ and

ψ
ai, 0
ξ (r) ∼ φ

ai

n�JM (r). This zeroth-order approximation leads to
the butterfly diagram that is the same as the Hofstadter one for
the two-dimensional square lattice model with s electrons [18].
On the other hand, the first-order correction for the eigenvalue
is taken into account in the MFRTB method [18]; i.e., the
eigenvalue is approximated by

ε
ai , 0
ξ = ε̄

ai

nlJ +
(

eh̄B

2m

)
2J + 1

2l + 1
M. (8)

Here note that the correction term just corresponds to the
anomalous Zeeman effect. Since the eigenfunction is approx-
imated within the zeroth order in the MFRTB method as well
as in the Hofstadter method, the magnetic hopping integral can
be approximated by

T
aj ai

n′l′J ′M ′,nlJM (R) = e−i eB
2h̄

RxRy t
aj ai

n′l′J ′M ′,nlJM (R), (9)
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where Rx and Ry denote the x and y components of R,
respectively, and t

aj ai

n′l′J ′M ′,nlJM (R) denotes a hopping integral
in the absence of a magnetic field. The hopping integral
t
aj ai

n′l′J ′M ′,nlJM (R) can be calculated by means of the relativistic
version of the so-called Slater-Koster table [18]. It should be
noted that Eq. (9) corresponds to the well-known approxima-
tion of using the Peierls phase factor [1,23]. Equation (9) is
widely used as the approximation of the magnetic hopping
integral [23].

It is noticed from Eqs. (5) and (6) that perturbation
correction terms for the eigenvalue and eigenfunction are
expressed in terms of power series of xnl that is defined by
Eq. (7). This means that the perturbation theory becomes
invalid in the high magnetic field region such that xnl > 1.
Therefore, we can say that the correctness of the Hofstadter
butterfly diagram gets worse with increasing magnetic field.
For example, the spin-orbit splittings of p states for C and Si are
about 0.0083 eV and 0.0294 eV, respectively[28]. Therefore,
the magnetic fields that satisfy xnl = 1 are about 144 T and
509 T for C and Si, respectively. Since the recent progress
of the electromagnetic flux compression method enables one

to perform solid-state experiments in the ultrahigh magnetic
field up to 730 T [24–27], it is expected that the failure or
incorrectness of the Hofstadter butterfly diagram would be
observed by experiments.

III. EXTENDED MFRTB METHOD

In order to avoid the above-mentioned difficulty of the
perturbation theory, T

aj ai

ηξ and ε
ai , 0
ξ are evaluated by means

of the nonperturbative method in the ext-MFRTB method.
Specifically, we consider matrix elements of the Hamiltonian
of Eq. (4) by using atomic orbitals in the absence of a magnetic
field [i.e., φ

ai

n�JM (r)] as basis functions. In the derivation of
matrix elements, only the outermost atomic orbitals are taken
into consideration, and the small component of φ

ai

n�JM (r) is
approximated by g

ai

nlJM (r) ≈ σ · p f
ai

nlJM (r)/2mc, where σ ,
f

ai

nlJM (r), and g
ai

nlJM (r) denote the Pauli matrix and the large
and small components of φ

ai

n�JM (r), respectively [29]. By
diagonalizing the resultant matrix, we obtain the eigenvalues
and eigenfunctions that correspond to unperturbed atomic
states (n, l, J,M) and (n, l, J − 1,M) with J = l + 1/2 and
M �= ±J :

ε
ai , 0
ξ = ε̄

ai

nlJ + ε̄
ai

nlJ−1

2
+ eh̄B

2m
M ± ε̄

ai

nlJ − ε̄
ai

nlJ−1

2

√
1 + 2

M

J
xnl + (J 2 − M2)S2

nlJ + M2

J 2
x2

nl, (10)

ψ
aiξ

0 (r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ
ai

nlJM (r) + η
ai

nlJMϕ
ai

nlJ−1M (r)√
1 + (

η
ai

nlJM

)2
for (n,l,J,M), M �= ±J ,

ϕ
ai

nlJ−1M (r) + η
ai

nlJ−1Mϕ
ai

nlJM (r)√
1 + (

η
ai

nlJ−1M

)2
for (n,l,J − 1,M),

(11)

η
ai

nlJM = −η
ai

nlJ−1M

= J

SnlJ (J 2 − M2)xnl

⎧⎨
⎩1 + M

J
xnl −

√
1 + 2

M

J
xnl + (J 2 − M2)S2

nlJ + M2

J 2
x2

nl

⎫⎬
⎭, (12)

where the upper and lower signs in Eq. (10) correspond to
(n, l, J,M) and (n, l, J − 1,M), respectively. Concerning the
eigenvalues and eigenfunctions that correspond to unperturbed
atomic states (n, l, J, ± J ) with J = l + 1/2, we have

ε
ai , 0
ξ = ε̄

ai

nlJ ± eh̄B

4m
(2J + 1), (13)

ψ
aiξ

0 (r) = ϕ
ai

nlJ±J (r). (14)

Substituting Eqs. (11) and/or (14) into Eq. (3), we can get
the approximate form of the magnetic hopping integral. In the
cases of l = 0 and 1, the resultant expressions are summarized
in Table I. Since the mixing coefficient η

ai

nlJM approaches
zero in the limit of the low magnetic field, approximate forms
listed in Table I coincide with Eq. (9) in the limit of the low
magnetic field. Therefore, we can say that approximate forms
listed in Table I are regarded as the correction to Eq. (9) that
just corresponds to the approximation of using the Peierls phase
factor [1,23].

It can be confirmed that Eqs. (10)–(14) are reduced to
results of the perturbation theory in the case of xnl � 1.
This means that Eqs. (10)–(14) include the corresponding
expressions based on the perturbation theory in the case of
the low magnetic field. Furthermore, Eq. (10) is approximated
by (ε̄ai

nlJ + ε̄
ai

nlJ−1)/2 + (eh̄B/2m)(M ± 1/2) in the case of
xnl 	 1 (high magnetic field case). The second terms of
this expression and Eq. (13) just correspond to the energy
shift of the Paschen-Back effect [30]. Therefore, Eqs. (10)
and (13) and the magnetic hopping integrals listed in Ta-
ble I are recognized as the corrected expressions that in-
clude not only the Zeeman effect but also the Paschen-Back
effect.

We can extend the applicable range of the MFRTB method
from the low magnetic field region (xnl � 1) to the high
magnetic field region (xnl 	 1) if we adopt Eqs. (10) and (13)
and Table I as ε

ai , 0
ξ and T

aj ai

n′l′J ′M ′,nlJM . Thus, the present method,
which is referred to as the ext-MFRTB method, enables us to
obtain the butterfly diagram that includes not only the Zeeman
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TABLE I. Magnetic hopping integrals T
aj , ai

nl′J ′M ′, nlJM
(R) calculated by using Eqs. (11) and (14). In this table, ηα and ηβ are defined by

ηα = η
ai

n1
3
2

1
2

= −η
ai

n1
1
2

1
2

and ηβ = η
ai

n1
3
2 − 1

2

= −η
ai

n1
1
2 − 1

2

, respectively. Here, note that t
aj , ai

nl′J ′M ′, nlJM
(R) can be calculated by means of the

relativistic version of the Slater-Koster table [18].

(n,l′,J ′,M ′) (n,l,J,M) Hopping integrals T
aj , ai

nl′J ′M ′, nlJM
(R)

(n,0, 1
2 , 1

2 ) (n,0, 1
2 , 1

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

1
2 , n0 1

2
1
2
(R)

(n,0, 1
2 , 1

2 ) (n,0, 1
2 ,− 1

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

1
2 , n0 1

2
−1
2

(R)

(n,0, 1
2 , 1

2 ) (n,1, 1
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

1
2 , n1 1

2
1
2
(R) − ηαt

aj , ai

n0 1
2

1
2 , n1 3

2
1
2
(R)}/√1 + η2

α

(n,0, 1
2 , 1

2 ) (n,1, 1
2 ,− 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

1
2 , n1 1

2
−1
2

(R) − ηβt
aj , ai

n0 1
2

1
2 , n1 3

2
−1
2

(R)}/
√

1 + η2
β

(n,0, 1
2 , 1

2 ) (n,1, 3
2 , 3

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

1
2 , n1 3

2
3
2
(R)

(n,0, 1
2 , 1

2 ) (n,1, 3
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

1
2 , n1 3

2
1
2
(R) + ηαt

aj , ai

n0 1
2

1
2 , n1 1

2
1
2
(R)}/√1 + η2

α

(n,0, 1
2 , 1

2 ) (n,1, 3
2 ,− 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

1
2 , n1 3

2
−1
2

(R) + ηβt
aj , ai

n0 1
2

1
2 , n1 1

2
−1
2

(R)}/
√

1 + η2
β

(n,0, 1
2 , 1

2 ) (n,1, 3
2 ,− 3

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

1
2 , n1 3

2
−3
2

(R)

(n,0, 1
2 ,− 1

2 ) (n,0, 1
2 , 1

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

−1
2 , n0 1

2
1
2
(R)

(n,0, 1
2 ,− 1

2 ) (n,0, 1
2 ,− 1

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

−1
2 , n0 1

2
−1
2

(R)

(n,0, 1
2 ,− 1

2 ) (n,1, 1
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

−1
2 , n1 1

2
1
2
(R) − ηαt

aj , ai

n0 1
2

−1
2 , n1 3

2
1
2
(R)}/√1 + η2

α

(n,0, 1
2 ,− 1

2 ) (n,1, 1
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

−1
2 , n1 1

2
−1
2

(R) − ηβt
aj , ai

n0 1
2

−1
2 , n1 3

2
−1
2

(R)}/
√

1 + η2
β

(n,0, 1
2 ,− 1

2 ) (n,1, 3
2 , 3

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

−1
2 , n1 3

2
3
2
(R)

(n,0, 1
2 ,− 1

2 ) (n,1, 3
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

−1
2 , n1 3

2
1
2
(R) + ηαt

aj , ai

n0 1
2

−1
2 , n1 1

2
1
2
(R)}/√1 + η2

α

(n,0, 1
2 ,− 1

2 ) (n,1, 3
2 ,− 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n0 1
2

−1
2 , n1 3

2
−1
2

(R) + ηβt
aj , ai

n0 1
2

−1
2 , n1 1

2
−1
2

(R)}/
√

1 + η2
β

(n,0, 1
2 ,− 1

2 ) (n,1, 3
2 ,− 3

2 ) e−i eB
2h̄

RxRy t
aj , ai

n0 1
2

−1
2 , n1 3

2
−3
2

(R)

(n,1, 1
2 , 1

2 ) (n,0, 1
2 , 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n0 1

2
1
2
(R) − ηαt

aj , ai

n1 3
2

1
2 , n0 1

2
1
2
(R)}/√1 + η2

α

(n,1, 1
2 , 1

2 ) (n,0, 1
2 ,− 1

2 ) e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n0 1

2
−1
2

(R) − ηαt
aj , ai

n1 3
2

1
2 , n0 1

2
−1
2

(R)}/√1 + η2
α

(n,1, 1
2 , 1

2 ) (n,1, 1
2 , 1

2 )

e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n1 1

2
1
2
(R) − ηαt

aj , ai

n1 3
2

1
2 , n1 1

2
1
2
(R)

−ηαt
aj , ai

n1 1
2

1
2 , n1 3

2
1
2
(R) + η2

αt
aj , ai

n1 3
2

1
2 , n1 3

2
1
2
(R)}/(1 + η2

α)

(n,1, 1
2 , 1

2 ) (n,1, 1
2 ,− 1

2 )

e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n1 1

2
−1
2

(R) − ηαt
aj , ai

n1 3
2

1
2 , n1 1

2
−1
2

(R)

−ηβt
aj , ai

n1 1
2

1
2 , n1 3

2
−1
2

(R) + ηαηβt
aj , ai

n1 3
2

1
2 , n1 3

2
−1
2

(R)}/
√

(1 + η2
α)(1 + η2

β )

(n,1, 1
2 , 1

2 ) (n,1, 3
2 , 3

2 ) e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n1 3

2
3
2
(R) − ηαt

aj , ai

n1 3
2

1
2 , n1 3

2
3
2
(R)}/√1 + η2

α

(n,1, 1
2 , 1

2 ) (n,1, 3
2 , 1

2 )

e−i eB
2h̄

RxRy {taj , ai

n1 1
2

1
2 , n1 3

2
1
2
(R) − ηαt

aj , ai

n1 3
2

1
2 , n1 3

2
1
2
(R)

+ηαt
aj , ai

n1 1
2

1
2 , n1 1

2
1
2
(R) − η2

αt
aj , ai

n1 3
2

1
2 , n1 1

2
1
2
(R)}/(1 + η2

α)

(n,1, 1
2 , 1

2 ) (n,1, 3
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effect (low magnetic field case) but also the Paschen-Back
effect (high magnetic field case).

IV. APPLICATION OF THE EXT-MFRTB METHOD TO
THE CRYSTALLINE SILICON IMMERSED IN A

MAGNETIC FIELD

In order to confirm the validity of the ext-MFRTB method,
we apply this method to the crystalline silicon immersed in a
magnetic field. Eigenvalues are calculated by diagonalizing
the Hamiltonian matrix Eq. (2) by taking into account the
magnetic Bloch theorem [18]. In the calculation, we take into
consideration magnetic hopping integrals between the outer-
most shells of the nearest-neighbor atoms. Namely, atomic or-
bitals with (n, l, J,M) = (3,0,1/2, ± 1/2), (3,1,1/2, ± 1/2),
(3,1,3/2, ± 1/2), and (3,1,3/2, ± 3/2) are considered. With
respect to the tight-binding parameters of the crystalline silicon
for the zero-magnetic-field case, we adopt the same ones used

in the previous paper [18]. We suppose that the magnetic field
is parallel to the c axis and its magnitude is given by

B = 16πh̄

ea2

p

q
, (15)

where a (=0.543 nm) denotes the lattice constant, and p and
q are relatively prime integers [18]. Substituting the value
of a into this expression, we have B = 1.122 × 105(p/q)
T. Therefore, the value of p/q that yields xnl = 1 is about
0.00454.

The butterfly diagrams are obtained by calculating the
magnetic field dependence of eigenvalues that are associated
with wave vectors lying in the kx-ky plane of the magnetic
first Brillouin zone [18]. We calculate four kinds of butterfly
diagrams. (a) One [Fig. 1(a)] is calculated by the MFRTB
method with neglecting the Zeeman term of Eq. (8). Namely,
the butterfly diagram obtained by this method corresponds to
the original Hofstadter butterfly diagram. (b) The second one
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FIG. 1. Butterfly diagrams calculated by the (a) Hofstadter method, (b) MFRTB method 1, (c) MFRTB method 2, and (d) ext-MFRTB.
These four calculation methods are summarized in Table II.

[Fig. 1(b)] is calculated by the MFRTB method. (c) The third
one [Fig. 1(c)] is calculated by using Eqs. (10) and (13) as the
atomic spectrum instead of Eq. (8). The difference between
Fig. 1(b) and Fig. 1(c) comes from the different treatment
of the atomic spectrum. (d) The fourth one [Fig. 1(d)] is
calculated by the present method (ext-MFRTB method), i.e.,
by using Eqs. (10) and (13) as the atomic spectrum, and by
using Table I in calculating magnetic hopping integrals. Note

that the difference between Fig. 1(c) and Fig. 1(d) comes from
the different treatment of the magnetic hopping integral. For
convenience, these calculation methods are summarized in
Table II.

In the low magnetic field (low p/q) limit, the energy gap
appears around −6 eV for all butterfly diagrams [Figs. 1(a)–
1(d)]. This gap corresponds to the original energy band gap
of the crystalline silicon. Comparing Fig. 1(a) with Fig. 1(b),

195135-7



HIGUCHI, HAMAL, AND HIGUCHI PHYSICAL REVIEW B 97, 195135 (2018)

TABLE II. Calculation methods performed in this study.

Atomic Magnetic hopping
spectrum integral

(a) Hofstadter method ε̄
ai

nlJ Eq. (9)

(b) MFRTB method 1 Eq. (8) Eq. (9)

(c) MFRTB method 2 Eqs. (10) and (13) Eq. (9)

(d) ext-MFRTB method Eqs. (10) and (13) Table I

the butterfly diagram in Fig. 1(b) increases or decreases with
the magnetic field due to the Zeeman term [the second term of
Eq. (8)].

Figure 1(c) is similar to Fig. 1(b) in the low magnetic
field region. This is because Eq. (8) is close to Eq. (10) or
Eq. (13) in the low magnetic field region, as shown in Fig. 2. It
is also found from Fig. 1(b) and Fig. 1(c) that the butterfly
diagram in the higher- (> 0 eV) and lower-energy ranges
(< − 15 eV) of Fig. 1(b) are similar to those of Fig. 1(c)
even in the high magnetic field region. This implies that
the eigenstates with the higher and lower energies contain
atomic states of (n, l, J,M) = (3,1,3/2, ± 3/2),(3,0,1/2,

±1/2), with relatively high weight because Eq. (8) is identical
with Eq. (13) for these atomic states. On the other hand, the
discrepancy between the butterfly diagrams of Fig. 1(b) and
Fig. 1(c) becomes clear in the middle-energy range at the
high magnetic field region. This is because Eq. (10) with
(n, l, J,M) = (3,1,3/2,−1/2) and (3,1,1/2,1/2) approaches
zero with increasing magnetic field, while Eq. (8) incorrectly
decreases or increases with the magnetic field (Fig. 2). Due to
this correction, the discrepancy between Fig. 1(b) and Fig. 1(c)
becomes clear in the middle-energy range at the high magnetic
field region.

It is found that the butterfly diagram of Fig. 1(d) approaches
that of Fig. 1(c) in the low magnetic field limit. This is
because the mixing coefficient η

ai

nlJM approaches zero in
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simultaneous eigenfunctions of z components of the orbital and spin
angular momentums, which is known as the Paschen-Back effect [30].
Corresponding to this, the normalized mixing coefficients approach
constant values (

√
2/3 or 1/

√
3) as shown in the figure.

the low magnetic field limit (Fig. 3), so that the magnetic
hopping integrals listed in Table I approach the conventional
approximation form Eq. (9). The mixing coefficient rapidly
increases with the magnetic field as shown in Fig. 3. Therefore,
the discrepancy between Fig. 1(d) and Fig. 1(c) becomes clear
not only in the high magnetic field region but also in the low
magnetic field region.

Figures 4(a)–4(d) are the magnified views of Figs. 1(a)–1(d)
around the energy gap, respectively. The range of the horizontal
axis of these figures is set from 0 to 0.005. Since the value of
p/q that yields xnl = 1 is about 0.00454, we can check the
superiority of the present method over previous ones more
strictly in this range. It is found that magnetic field dependen-
cies of unoccupied energy levels (upper side) shown in Fig. 4(a)
are very different from those shown in Figs. 4(b)–4(d) due to
magnetic field dependencies of atomic spectra. On the other
hand, magnetic field dependencies of unoccupied energy levels
shown in Figs. 4(b)–4(d) are similar to each other. This means
that the Paschen-Back effect does not clearly appear in the
unoccupied energy levels for the crystalline silicon. This would
be because these unoccupied energy states do not contain
too much atomic states of (n, l, J,M) = (3,1,3/2, ± 1/2) and
(3,1,1/2, ± 1/2) that are mixed through the Paschen-Back
effect [Eq. (11)].

Similarly to the unoccupied energy levels, the magnetic field
dependencies of occupied energy levels (lower side) shown in
Fig. 4(a) are very different from those in Figs. 4(b)–4(d), which
suggests that the magnetic field dependence of the atomic spec-
trum should be taken into consideration. It is also found that
the occupied energy levels are much revised by using Table I as
the approximate forms of magnetic hopping integrals. Namely,
although occupied energy levels shown in Fig. 4(b) are similar
to those in Fig. 4(c), they are very different from those in
Fig. 4(d). Specifically, the second and third energy levels cross
at around p/q = 0.002 (B ∼ 224 T) in Fig. 4(d), while those
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in Figs. 4(b) and 4(c) do not cross. In addition, the 5th–7th
energy levels shown in Fig. 4(d) cross at around p/q = 0.001
(B ∼ 112 T) in a different way from those in Figs. 4(b) and
4(c). Since the magnetic hopping integrals listed in Table I
are obtained by incorporating the Paschen-Back effect into
the magnetic hopping integral as mentioned in Sec. III, these
characteristic differences are regarded as the emergence of the
Paschen-Back effect in the butterfly diagram of the crystalline
silicon. Thus, the Pashen-Back effect in crystalline silicon is

expected to be observed in ultrahigh magnetic field ranging
from 100 T to 250 T that is experimentally available [24–27].

V. CONCLUDING REMARKS

We develop the first-principles calculation method (ext-
MFRTB method) for materials immersed in a magnetic field
on the basis of the nonperturbative theory. Due to the nonper-
turbative method, both the Zeeman effect and Paschen-Back
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effect are taken into consideration in calculating the electronic
structure of materials immersed in a magnetic field. The most
striking feature of the present method is that we can obtain the
butterfly diagram of energy spectra that is valid for not only
the low magnetic field region but also the high magnetic field
region.

We apply the present method to the crystalline silicon
immersed in a magnetic field. It is found that the conventional
Hofstadter butterfly diagram is corrected by means of the
present method not only in the high magnetic field region but
also in the low magnetic field region. Specifically, the present
method predicts the energy-level crossing of occupied states,

which is regarded as the emergence of the Paschen-Back effect
in the butterfly diagram of the crystalline silicon. This effect
may be observed experimentally. For example, a quantum-well
structure immersed in a magnetic field perpendicular to the
well layer, such as SiO/Si/SiO and SiC/Si/SiC heterostructures
immersed in a magnetic field, seems to be one of the possible
systems.
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