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The symmetry adapted density matrix renormalization group (SDMRG) technique has been an efficient method
for studying low-lying eigenstates in one- and quasi-one-dimensional electronic systems. However, the SDMRG
method had bottlenecks involving the construction of linearly independent symmetry adapted basis states as the
symmetry matrices in the DMRG basis were not sparse. We have developed a modified algorithm to overcome this
bottleneck. The new method incorporates end-to-end interchange symmetry (C2), electron-hole symmetry (J ), and
parity or spin-flip symmetry (P ) in these calculations. The one-to-one correspondence between direct-product
basis states in the DMRG Hilbert space for these symmetry operations renders the symmetry matrices in the
new basis with maximum sparseness, just one nonzero matrix element per row. Using methods similar to those
employed in the exact diagonalization technique for Pariser-Parr-Pople (PPP) models, developed in the 1980s,
it is possible to construct orthogonal SDMRG basis states while bypassing the slow step of the Gram-Schmidt
orthonormalization procedure. The method together with the PPP model which incorporates long-range electronic
correlations is employed to study the correlated excited-state spectra of 1,12-benzoperylene and a narrow mixed
graphene nanoribbon with a chrysene molecule as the building unit, comprising both zigzag and cove-edge
structures.
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I. INTRODUCTION

The density matrix renormalization group method
(DMRG), put forward by White [1,2], is a many-body method
of choice for studying low-lying states of one- and quasi-one-
dimensional π -conjugated models [3–23]. Although the single
configuration interaction (SCI) approximation is the conven-
tional approach for deducing an optical gap in quantum chem-
ical calculations, its limitations for many particle-hole states
are well documented [24–34]. Employing time-dependent
density functional theory [35–37] or the GW approxima-
tion accompanied by a Bethe-Salpeter correction [38–40],
optical properties of a number of π -conjugated systems have
been investigated in the past; however, these methods are
equivalent to SCI approximation as only one-electron–one-
hole excitations are considered in these calculations. The
consequences of two-electron–two-hole and higher excita-
tions, which are necessary for the accurate description of the
spectra of strongly correlated systems, are difficult to probe
within these methods. Full configuration interaction studies
are computationally expensive as the Hilbert-space size grows
exponentially with system sizes and are limited to ∼18-orbital
half-filled systems. In the literature, there are reports of some
ab initio quantum chemical methods, such as the complete
active space second-order perturbation theory, the third-order
coupled cluster theory, or the extended algebraic diagrammatic
construction method which can correctly reproduce the energy
spectra of polyenes, yet, they are limited to very small size
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systems [41–45]. The multiple-reference configuration inter-
action approach is suitable to study higher-order configuration
interaction effects accurately, but the Hilbert-space dimensions
for different excited states, for similar accuracy, can be sig-
nificantly different; the calculations are performed iteratively
for updating the many-body basis space until convergence is
reached [32,33,46].

On the contrary, in the DMRG method because of the renor-
malization procedure, the Hilbert-space dimension remains
fixed independent of the system sizes and can be employed
to probe behaviors in the polymer limit. For gapped systems,
the area law of entanglement entropy holds leading to high
accuracy in the DMRG calculations [47,48] with a moderate
cutoff in the number of block states. However, the DMRG
method as introduced by White [1,2] is not a symmetry-based
method. Conventional DMRG algorithms exploit symmetries,
such as conservation of the particle number and the total
Sz value of the superblock Hamiltonian [47]. In conjugated
systems, the states of interest for optical studies are usually
the one-photon and two-photon states. Depending upon the
system size and correlation strength, the number of states that
intrude between the ground state and the desired states are
variable and large. This makes targeting “important” states
almost impossible without invoking the basic symmetries,
namely, the C2 (end-to-end interchange) symmetry and the
electron-hole symmetry, which exist in half-filled bipartite
lattices. Ramasesha and co-workers [49] developed a method
to exploit these symmetries in Hamiltonians with long-range
interactions in quantum-cell models to target one- and two-
photon states. The slow step in the algorithm was the need to
orthonormalize the symmetrized basis vectors and eliminate
the linear dependencies. The step was also computationally
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TABLE I. Ground-state energies [E(1 1A+)], lowest optical gaps [�E(11B−)], and lowest two-photon gaps [�E(2 1A+)] of PPV oligomers
with N monomers, calculated by Bursill and Barford (BB) [18] and by the present symmetrized DMRG algorithm within the noninteracting
model are compared against the exact results. All energies and energy gaps are given in units of eV. The BB results are reproduced from Ref. [18]
which employs only the infinite DMRG method. In our calculations, we have employed the finite DMRG algorithm with two sweeps. Notably,
the differences in energy gaps calculated by the present algorithm from the exact results are quite within the experimental accuracy.

E(1 1A+) �E(1 1B−) �E(2 1A+)

Present Present Present
N BB [18] algorithma Exact BB [18] algorithma Exact BB [18] algorithma Exact

2 − 47.6624938 − 47.6624937 − 47.6624938 2.928370 2.928369 2.928369 4.302947 4.302950 4.302947
3 − 75.0319491 − 75.0319486 − 75.0319491 2.428260 2.428260 2.428259 3.120478 3.120471 3.120467
4 − 102.402074 − 102.402074 − 102.402075 2.213363 2.213378 2.213355 2.671863 2.671874 2.671844
5 − 129.772242 − 129.772242 − 129.772243 2.099678 2.099718 2.099665 2.427314 2.427354 2.427288
6 − 157.142411 − 157.142413 − 157.142414 2.031963 2.032110 2.031921 2.278100 2.278237 2.278027
7 − 184.512579 − 184.512585 − 184.512587 1.988297 1.988481 1.988233 2.180004 2.180146 2.179900
8 − 211.882729 − 211.882756 − 211.882759 1.958526 1.958878 1.958402 2.112045 2.112277 2.111848
9 − 239.252894 − 239.252928 − 239.252938 1.937287 1.937688 1.937126 2.062944 2.063183 2.062696
10 − 266.623033 − 266.623099 − 266.623103 1.921674 1.922290 1.921420 2.026410 2.026738 2.026035
11 − 293.993193 − 293.993271 − 293.993275 1.909792 1.910466 1.909498 1.998400 1.998742 1.997966

aThe superblock Hilbert-space size in the calculations by BB varies between ∼3 × 105 and 3 × 106. In our calculations, the superblock
Hilbert-space dimension varies between ∼5 × 104 and 1 × 105.

intensive since the matrices representing the symmetry opera-
tors were not sparse. A modification was introduced by Bursill
and co-workers in the algorithm to study relevant low-lying
eigenstates, primarily in trans-polyacetylene [8–10,14,15,19],
polydiacetylene [16,17], poly(para-phenylene) [6,11,13], and
poly(para-phenylene vinylene) [6,7,12,18], which leads to
sparseness in the symmetry operator matrices and generates
one-to-one symmetry correspondence between different direct
product basis states [18,19]. Their method is based on the as-
sumption that all symmetry operators (as defined in Ref. [49])
are their own inverse in every basis space, which, although true
for spin-flip or parity symmetry, is not true for electron-hole
symmetry. They developed the formalism explicitly for a
single symmetry, and they wrongly hypothesized that the same
will apply when more symmetries are present. Within this
formalism, they assumed that the relevant density matrix eigen-
states (block states) are nondegenerate. As a consequence,
each block state is an eigenvector of the block symmetry
operators with eigenvalue ±1. They argued that block states
with degenerate reduced density matrix eigenvalues, although
not exact eigenstates of the block symmetry operator, usually
have low weight in the target eigenstate of the full system.
Hence, an approximation to their block symmetry eigenvalues,
taken as +1 if the expectation value for the corresponding
symmetry operator is positive and −1 if it is negative, is
made [18]. Although, this scheme has been adequate for linear
systems, such as trans-polyacetylene and polydiacetylene,
or simple quasi-one-dimensional systems, such as poly(para-
phenylene) and poly(para-phenylene vinylene), the important
block states become degenerate for complex systems, such
as fused conjugated molecules (nanoribbons and nanoflakes)
and quasi-two-dimensional systems. They also incorrectly
assumed that all symmetry operators in a block commute
with each other. In this paper, we explicitly describe how the
above-mentioned symmetries of a system can be employed
systematically going beyond the approximate treatment of
Bursill and Barford (BB) [18]. This modified symmetrization

scheme has already been successfully employed to probe low-
lying excited states in graphene nanoribbons [34] as well as in
molecular graphene nanoflakes [50]. We have also compared
here our calculations for poly(para-phenylene vinylene) within
a noninteracting model with that reported by BB [18] (Table I).
We have employed the same parameter set as in Ref. [18]
for our calculations. It is indeed difficult to make an accurate
comparison with BB as the method used by them replaces
phenyl groups by a single virtual site, and although they do not
resort to the finite DMRG approach, they do refine the states
of the virtual site. The main advantage of our method over that
of BB is we treat symmetry adaptation of nearly degenerate
block states exactly. This becomes important when the number
of block states retained is large, and in this scenario, near (nu-
merical) degeneracy of the retained block states will become
significant. We have noted that we have comparable accuracy
with that reported in Ref. [18] for a much smaller superblock
Hilbert space; this is because the block states in our calculations
are exact eigenstates of the block symmetry operators.

In another symmetrized DMRG scheme, utilized mostly
in ab initio quantum chemical studies [51–53], irreducible
representation of a direct product state of the superblock is
obtained as a product of the symmetry labels of the respective
block states. This scheme is not applicable when working
in real space with localized site orbitals as in most of the
quantum-cell calculations because the site orbitals do not
transform as any irreducible representation of the point group.

In this paper, we have given an account of a highly
accurate and efficient DMRG algorithm for utilizing end-to-
end interchange symmetry (C2), electron-hole symmetry (J ),
and spin-flip or parity symmetry (P ). The advantage of this
algorithm is that the symmetry operators can be expressed
as highly sparse matrices with only one nonzero element per
row. This allows for representing the symmetry operators by
vectors of the same dimension as the DMRG Hilbert space.
Hence, it is possible to employ very large DMRG cutoffs
in the new symmetry adaptation algorithm. We have utilized
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this new algorithm to calculate the ground state, lowest-lying
two-photon and one-photon states along with a few low-lying
triplet states in the Sz = 1 sector for 1,12-benzoperylene
within the long-ranged PPP model. We have also probed
the low-lying excited states of a mixed graphene nanoribbon
(polychrysene) in the thermodynamic limit within the same
long-range interacting model. Similar to our earlier study [34],
we have carried out highly accurate finite DMRG calculations
on systems of moderate sizes and rely on finite-size scaling
to obtain the physical properties in the thermodynamic limit.
This system is interesting for two reasons. First, it is a mix
of zigzag and cove-edge structures, and to see which edge
character dominates in determining the electronic properties
will be of interest. Second, the monomer chrysene is closely
related to the picene molecule which has reportedly shown
superconductivity in alkali-metal complexes [54,55].

Although Abelian symmetries (continuous or discrete)
have been introduced in DMRG calculations quite early,
characterizing block states with irreducible representations
of non-Abelian total spin symmetry [SU (2) symmetry] is
tricky. McCulloch and Gulacsi showed that the total spin
operator does not commute with the conventional reduced
density matrix operator of the system (environment) block
but with a quasidensity matrix [56,57]. The quasidensity
matrix is obtained from the conventional reduced density
matrix by removing matrix elements which mix block states
of different spins. Since one- and two-electron operators of
the Hamiltonian are generally expressed in the total Sz basis,
computationally intensive Clebsch-Gordan (CG) transforma-
tions of the operator matrices are required. Later, McCulloch
and Gulacsi came up with a modified algorithm [58] where
block states are expressed as “spin eigenstates” or “reduced
basis states,” labeled only by the total spin value (S). This
scheme has been modified further by others [51–53,59], yet,
the basic structure has remained same. The block operators
are expressed as irreducible tensor operators of rank S with
2S + 1 components, and the “reduced matrix elements” of the
operators get transformed into the Sz basis matrix elements
by CG coefficients [60]; a product of two operators from
different blocks can be obtained from individual operator
matrices using Wigner 9j coefficients. However, the overall
algorithm becomes computationally expensive owing to the
calculation of the CG and Wigner 9j coefficients and using
them for the transformation of block states and calculation of
the superblock Hamiltonian matrix. Alternatively, the spin of a
targeted state can be calculated directly from the spin-spin cor-
relation function [61,62]; however, this demands calculation of
the spin-spin correlation function for each pair of sites of the
superblock. In our present paper, we have avoided using the
full spin conservation but have exploited the spin-inversion
symmetry of the Hamiltonian instead. The spin-inversion
symmetry bifurcates the total Hilbert space with S total

z = 0 into
a subspace of odd total spin and a subspace of even total spin.
For π -conjugated systems, the ground state usually lies in the
even total spin space, and the lowest-energy state in the odd
total spin space corresponds to the lowest triplet state of the
system. The energy gap between these states constitutes the
spin gap of the system.

The paper is organized as follows. In the next section, we
have given an account of the modified algorithm. In Sec. III,

we have compared our new results with benchmark exact
calculations for 16-site polyene chain and tetracene. In the
following sections, we have discussed our results for 1,12-
benzoperylene and polychrysene. In the last section we have
summarized our study and concluded.

II. MODIFIED ALGORITHM
FOR SYMMETRY ADAPTATION

The DMRG procedure is a truncated Hilbert-space algo-
rithm which adopts an iterative block-building scheme for
calculating low-lying eigenstates of large one- or quasi-one-
dimensional Hamiltonians [1,47]. The system block or left
block (L) along with the environment block, also denoted as
the right block (R), are linearly grown through the addition of
one new site to each block per iteration, and these two together
form the superblock which corresponds to the physical system
to be studied. In the infinite DMRG algorithm, the superblock
of size 2l consists of system and environment blocks of
same size (l). The reduced density matrix of the system
is generated from low-lying eigenstates of the superblock
by tracing over the environment states. Matrix elements of
the reduced density matrix of the system are represented by
ρm,m′ = ∑

n ψm,nψ
∗
m′,n, where m,m′ are system states whereas

n’s are the environment states. To construct the reduced density
matrix of the right block, the system and environment are
interchanged. Reduced density matrices for both the system
and the environment are diagonalized, and M (l) density matrix
eigenstates or block states with highest eigenvalues ({μL} for
the system and {μR} for the environment) are stored as column
vectors of a M (l−1)dσ × M (l) matrix, where M (l−1) is the
number of block states retained at the (l − 1)-th iteration and
dσ is the dimension of the Fock space of the newly added site
in the lth iteration. The Hamiltonian and site operators of the
newly generated blocks are constructed in the basis μ(l−1)σ and
then renormalized using the M (l−1)dσ × M (l) matrix. Further
addition of two new sites gives a system of 2l + 2 sites,
whose basis |μ(l)

L σiσi ′μ
(l)
R 〉 is generated as a direct product

of |μ(l)
L 〉 of the system block, |μ(l)

R 〉 of the environment block
with |σi〉 and |σi ′ 〉 of the newly added sites to the left and
right blocks, respectively. The Hamiltonian for the 2l + 2 sites
system is formed in this direct product space and diagonalized
to get the energy eigenstates, which are utilized for the next
iteration. In the case of systems with finite-size N , the finite
DMRG algorithm enhances the accuracy in the eigenstate
calculation; the infinite algorithm is employed starting from a
small system until the desired superblock size is reached, and
then sweeping over the superblock is applied by changing the
system and environment sizes, by one site at each step, keeping
the superblock size fixed. The basis at a step of the finite DMRG
sweeping can be represented by |μ(l)

L σiσi ′μ
(N−l−2)
R 〉, where l

can vary between 1 and N − 3. Once the size of the system
(environment) block reaches its maximum, the environment
(system) block starts to grow at the expense of the other block.
A complete sweep consists of the expansion of both blocks
to their maximum and returning to the block size of the final
infinite DMRG step.

The symmetry elements considered in our modified algo-
rithm are same as in the work by Ramasesha et al. [49]. The
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C2 symmetry about an axis perpendicular to the plane of the
molecule corresponds to the end-to-end interchange of the
superblock with a phase factor,

Ĉ2

∣∣μ(l)
L σiσi ′μ

(l)
R

〉 = (−1)γ
∣∣μ(l)

R σi ′σiμ
(l)
L

〉
,

or in shorter notation (which will be used from here on),

Ĉ2|μσσ ′μ′〉 = (−1)γ |μ′σ ′σμ〉,
γ = nμ(nσ + nσ ′ + nμ′) + nσ (nσ ′ + nμ′) + nσ ′nμ′ ,

i.e., the system and environment blocks interchange their
corresponding block states while the two newly added sites also
interchange their Fock states. nμ, nμ′ , nσ , and nσ ′ are the oc-
cupancies in the system block, the environment block, and the
two newly added sites. As the interchange should not affect the
superblock Hilbert space, the block state spaces corresponding
to the system and the environment should be identical. In
other words, employing C2 symmetry approximately halves
the effective size of the superblock Hilbert space besides
reducing the computational expense by avoiding environment
block calculations at every infinite DMRG step and at the last
step of the finite DMRG iteration. In this symmetry operation,
each direct product basis state is carried over to only one unique
direct product basis state with a phase of ±1. Thus, the C2

symmetry operation can be stored as a column vector with entry
±jk , state j resulting from the C2 operation on state k, and the
± sign denoting the phase associated with the C2 operation.

The Hamiltonian of a half-filled bipartite system conserves
electron-hole symmetry (J ) where interchanging the creation
and annihilation operators at each lattice site with an associated
phase factor keeps the Hamiltonian invariant. On application
of this symmetry element, Fock states of a single site transform
in the following way:

Ĵi |0〉 = |↑↓〉, Ĵi |↑〉 = (−1)ηi |↑〉,
Ĵi |↑↓〉 = −|0〉, Ĵi |↓〉 = (−1)ηi |↓〉,

where ηi is 1 if i belongs to the A sublattice and 0 if it belongs
to the B sublattice.

The result of parity or spin-flip symmetry (P ) which flips
the spin at each site is given by the following:

P̂i |0〉 = |0〉, P̂i |↑〉 = |↓〉,
P̂i |↑↓〉 = −|↑↓〉, P̂i |↓〉 = |↑〉.

Nonrelativistic Hamiltonians remain invariant under parity
symmetry. This symmetry can only be employed in Sz = 0
space as the application of this symmetry for nonzero Sz maps
Sz space to −Sz space.

Both Ji and Pi operators are site operators, and hence, the
operators for the full system can be defined as

Ĵ =
∏

i

Ĵi , P̂ =
∏

i

P̂i .

The matrix element of these two symmetry operators for a
superblock of size 2l + 2 can be represented by

〈μ′σ ′σμ|R̂2l+2|νττ ′ν ′〉
= 〈μ|R̂l|ν〉〈σ |R̂i |τ 〉〈σ ′|R̂i ′ |τ ′〉〈μ′|R̂l|ν ′〉, (1)

i.e., it is direct product of matrix elements of corresponding
symmetry operators in the block state space of the system
block, the block state space of the environment block, and
the Fock spaces of the two newly added sites.

The symmetry operators of the superblock follow the
relations:

(Ĉ2)2 = 1, Ĵ 2 = (−1)Ns+Ne , P̂ 2 = 1, (2)

where Ns and Ne are the number of sites and the number of
electrons in a basis state on which the symmetry operations
are applied. In the case of the half-filled fermionic system
Ns = Ne; subsequently, each of the operators becomes its
own inverse, and the symmetry operators commute among
themselves and form an Abelian group. However, the sym-
metry operators do not commute generally in individual block
spaces and in Fock spaces of newly added sites. This is the
fundamental difference of the current algorithm from the one
developed by Bursill and co-workers [18,19] since they have
incorrectly assumed the involutory nature of the symmetry
operators in the block state space resulting in the commutative
nature of the block symmetry operators.

As mentioned earlier, the C2 symmetry operator maps one
direct product state exclusively to another one. However, J and
P operators do not produce a single state due to the absence of
one-to-one symmetry correspondence between different block
states of a particular block, although the mapping of the Fock
states of a single site is exclusive. This absence of one-to-one
mapping of the block states in system and environment blocks
and hence the lack of one-to-one mapping of the direct product
states of the superblock leads to some serious problems in
symmetry adaptation. First, the matrix representation of the
operators in the block state basis is not very sparse. Second, it
is difficult to keep track of and thereby include all the symmetry
partners of the J and P symmetries while introducing the
DMRG cutoff. Third, weeding out linearly dependent states
after symmetry adaptation is a slow step as it involves Gram-
Schmidt orthonormalization of the symmetrized superblock
states. Thus, a successful symmetry adaptation scheme must
have a unique one-to-one correspondence between states in the
block state space.

We invoke the one-to-one correspondence among different
block states which results in only one nonzero element in each
row of the matrices of the symmetry operators. This is achieved
by considering block states restricted to a specific region of the
Hilbert space as by symmetry we can obtain the block states
in the complementary spaces. For example, block states with
the total number of electrons ne < ns , the number of sites in
the system block, are related to block states with ne > ns by

ĴLμi(ne < ns) = μj (ne > ns), (3)

and similarly the block states with Sz > 0 are related to block
states with Sz < 0 by

P̂Lμi(Sz < 0) = μj (Sz > 0). (4)

Thus, while imposing the truncation procedure of the block
state space, we only consider the subspace of block states with
ne � ns and Sz � 0. Since the block states, resulting from
operating on these states by Ĵ ,P̂ and P̂ Ĵ will also have the
same density matrix eigenvalues, it is ensured that all block
states above a cutoff in the density matrix eigenvalue are
included.

We now describe our symmetry adaptation procedure that
leads to symmetry matrices of the superblock with just one
nonzero element in each row (or column) (schematically shown
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FIG. 1. Schematic flow chart of the modified symmetrized DMRG algorithm. iI –iIV are the numbers of block states with {ne < ns,Sz < 0}
(list I), {ne < ns,Sz = 0} (list II), {ne = ns,Sz < 0} (list III), and {ne = ns,Sz = 0} (list IV), respectively. μi’s are arranged in decreasing order
of their eigenvalues. M is the dimension of the truncated block state space which satisfies the condition ne � ns, Sz � 0. The DMRG cutoff is
imposed in this subspace.

in Figs. 1 and 2). We first show how the symmetry operators
in a given block can be obtained as sparse matrices with only
one nonzero element per each row (or column) in the basis of
the block states. There are four distinct cases corresponding to
different conditions on ne and Sz, and we will deal with each
of them separately.

(i) {μi(ne < ns,Sz < 0)}: Application of JL,PL and their
product on these block states gives the corresponding symme-
try counterparts. As JL and PL do not commute in general,
we only considered the product PLJL; the order of operations
of the two operators will become irrelevant for the superblock
which is a half-filled system, where J and P commute

ĴLμi(ne < ns,Sz < 0) = μiJ (ne > ns,Sz < 0),

P̂Lμi(ne < ns,Sz < 0) = μiP (ne < ns,Sz > 0), (5)

P̂LĴLμi(ne < ns,Sz < 0) = μiPJ
(ne > ns,Sz > 0).

The matrix elements of the symmetry operators in the {μi}
basis are given by

(ĴL)i,j = (−1)ηi δj,iJ , (P̂L)i,j = (−1)ξi δj,iP ,

(P̂LĴL)i,j = (−1)ζi δj,iPJ
, (6)

where η, ξ , and ζ are the appropriate phase factors for J, P ,
and PJ symmetries.

(ii) {μi(ne < ns,Sz = 0)}: Application of the JL symmetry
operator on these block states generates block states with

particle number 2ns − ne; yet, PL symmetry should map the
block state space to itself. Therefore, to begin with, this group
of block states is further subdivided into smaller subgroups
{μi(n′

e,Sz = 0)}, where n′
e assumes all values of <ns . For each

value of n′
e, we set up the matrix of P̂ in block states of this

subspace. This is diagonalized to obtain the eigenvectors of
P̂ so that each of the new block states map into itself with a
phase factor of ±1. These transformed μ̃i(n′

e,Sz = 0)’s provide
a one-to-one mapping under the symmetry operations Ĵ , P̂ ,
and P̂ Ĵ .

(iii) {μi(ne = ns,Sz < 0)}: This set of block states is similar
to the one discussed above, differing only in the fact that JL will
map the space to itself instead of PL. The space is subdivided
into smaller blocks on the basis of different negative Sz values,
and the matrices of the operator Ĵ are set up for each Sz value in
the block state space. The eigenstates of this operator serve as
the new block states for obtaining one-to-one correspondence
of the block states under the symmetry operations.

(iv) {μi(ne = ns,Sz = 0)}: This particular set of block states
spans a vector space which on application by both JL and PL

should map into itself. Hence, linear combinations which are
eigenvectors of JL with eigenvalues (−1)ζJ , ζJ = 0, or 1 are
first obtained. Using the eigenvectors of JL with a particular
eigenvalue (−1)ζJ , another set of linear combinations is formed
which are eigenvectors of PL with eigenvalues (−1)ζP , ζP =
0, or 1. This is accomplished by first constructing the matrix
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representation of Ĵ in the basis of block states with ne = ns and
Sz = 0. We diagonalize the matrix to obtain the eigenvectors
of Ĵ . We then use the eigenvectors of Ĵ as the basis in which
the matrix of P̂ is set up. The resulting eigenvectors of P̂

replace the block states in this space, and they are employed
in symmetry adaptation.

Usually the number of block states we need to retain in the
sector, ne � ns and Sz � 0, is about 0.4M (l), where M (l) is the
desired truncation in the block states without any restriction.
Since we have a one-to-one correspondence of the block states
within a block for the operations Ĵ , P̂ , and P̂ Ĵ , it is a simple
matter to extend the one-to-one correspondence to the direct
product basis states formed by the block states of the left and
right blocks and the Fock space states of the newly added sites.

Symmetry adapted direct product bases in an irreducible
representation � can be generated by employing the projection
operator,

P̂(�) = 1

h

∑

i

χ (�,Ri)R̂i , (7)

where χ (�,Ri) is the character of the symmetry operator R̂i

in the irreducible representation � and h being the order of
the group. Operation by P̂(�) on each of the basis states in
the direct product space produces the symmetry adapted linear
combinations. However, if P̂(�) acts on each of the states in the
direct product space, we will end up with a linearly dependent
symmetry adapted basis. In the earlier symmetry adaptation
procedure [49], weeding out linear dependence by the Gram-
Schmidt orthonormalization technique was an extremely ex-
pensive step computationally. With the present technique
where we have a one-to-one correspondence between symme-
try related states, this turns out to be extremely simple and com-
putationally very efficient. First we note that one-to-one corre-
spondence between the DMRG basis states under the symme-
try operations implies that a given basis state can appear only
once (or not at all) in a given symmetry space. Therefore, in the
symmetry adaptation step, we sequentially go through the list
of basis states, apply the projection operator, construct the sym-
metrized combination, and eliminate its partners from the list
of unsymmetrized basis states. This ensures that a basis state
occurs at most once in the symmetrized states. Taken together
with the orthonormality of the unsymmetrized basis states, this
also ensures orthogonality of the basis states generated by the
projection operator. Using these symmetry combinations, we
can generate the transformation matrix S� , which is a D × D�

matrix where D is the dimensionality of the unsymmetrized
space and D� is the dimensionality of the symmetrized space.

Whereas the symmetrized Hamiltonian in the � represen-
tation of the augmented system can be constructed by

H̃2l+2 = S
†
�H2l+2S�, (8)

this operation requires more memory as well as CPU time than
the procedure, if we bypass this step, and directly operate with
the Hamiltonian on the symmetrized basis states and collate
the resulting states into different basis vectors of the symmetry
space and collect the matrix elements of the symmetrized
Hamiltonian matrix,

H |i�〉2l+2 =
∑

k

hi,k|k�〉2l+2. (9)

The Hamiltonian is then diagonalized to get lowest-lying
eigenvectors in different irreducible representations labeled as
eA+, eB+, eA−, eB−, oA+, oB+, oA−, and oB− where the left
superscript represents the character under P symmetry, the
right superscript is the character under J symmetry, and the
letters A/B denote the character under C2 symmetry in the
irreducible representation �. The singlet lies in the e space
whereas the triplet lies in the o space. The space + refers
to “covalent” space, whereas − refers to the “ionic” space.
A(B) represents the space even (odd) under C2 symmetry.
The ground state usually remains in eA+ whereas the optically
connected space is eB−. The lowest triplet lies in the oB+ space.

III. COMPARISON WITH EXACT CALCULATION

A. Model Hamiltonian

The model Hamiltonian employed for the current paper
is the well-known PPP Hamiltonian [63,64], which consid-
ers σ -π separability and incorporates long-range Coulombic
interactions along with on-site Hubbard interaction. Numer-
ous studies have revealed that the ground- and excited-state
properties in carbon-based π -conjugated systems can be well
reproduced within this model Hamiltonian [25,46,65–69].

The PPP Hamiltonian can be written as

H =
∑

〈i,j〉,σ
t0(ĉ†i,σ ĉj,σ + H.c.) +

∑

i

U

2
n̂i(n̂i − 1)

+
∑

i>j

Vij (n̂i − zi)(n̂j − zj ). (10)

t0 is the nearest-neighbor hopping integral between bonded
sites i and j whereas U is the on-site Coulomb repulsion
term. The intersite interaction energies Vij are interpolated
by the Ohno scheme [70,71] assuming a C-C bond length of
1.4 Å. ĉ

†
i,σ and ĉi,σ are the creation and annihilation operators

of an electron with spin σ in the pz orbital at site i, and n̂i =∑
σ ĉ

†
i,σ ĉi,σ is the corresponding number operator. For aromatic

rings, the nearest-neighbor transfer integral is t0 = −2.40 eV.
The HubbardU for carbon 2p orbitals inπ conjugation is 11.26
eV which is the sum of the ionization energy and the electron
affinity of carbon [72]. zi is the local chemical potential and
corresponds to the number of electrons at site i which leaves
the site neutral; for carbon atoms in a π -conjugated system,
zi = 1.

B. Results and discussion

The accuracy of our modified algorithm is established
by comparing the results obtained for small systems with
exact PPP results, such as for a 16-site polyene chain and
tetracene molecule which has 18 sites. In Fig. 3, the difference
between the ground-state energies of the 16-site polyene chain
as obtained by the exact diagonalization technique and by
employing the symmetrized DMRG technique are plotted for
four different values of the “number of retained block states”
in the sector {μL

i (ne � ns,Sz � 0)}(m(l)). The dimension of
the full block space, derived from these m(l) block states
employing J and P symmetries is not the same from iteration
to iteration; m(l) = 225 for polyene chains corresponds to the
dimension of the block space in the vicinity of 550 whereas
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FIG. 3. Deviation of the ground-state energy of a 16-site polyene
chain calculated by the symmetrized DMRG technique from the exact
energy value for different cutoff m(l)’s of the block state space. The
number of finite DMRG sweeps (2) is fixed in all the cases. The inset:
Truncation error (1.0 − ∑

i ρ
(l)
i ) for different cutoff m(l)’s within the

symmetrized DMRG calculation for a 16-site polyene chain. The solid
lines are given only as a guide to the eye.

m(l) = 425 for polyacene molecules results in the block space
dimension of ∼1000. From Fig. 3, we note that the energy
values calculated employing the current SDMRG technique
agree within numerical accuracy when compared with exact
diagonalization results. We have also plotted the truncation
error (1.0 − ∑

i ρ
(l)
i ) corresponding to the final step of the

finite DMRG calculation as a function of m(l) (Fig. 3). It can
be noted that the truncation error is on the order of 10−10 for
m(l) = 375. In Table II, we have given the difference between
the DMRG energy and the exact energy with the number of
finite DMRG sweeps for m(l) = 225. After the first iteration
only, the ground-state energy is accurate to about 10−7 eV;
therefore two to three sweeps in the finite DMRG calculation
will suffice for the desired accuracy.

We have also established the efficiency of the modified
algorithm by plotting the computational time required for the
generation of the symmetrized DMRG basis states for different
m(l)’s (Fig. 4). It can be seen that the computational time
decreases sublinearly with the increasing cutoff in block states
compared with the earlier algorithm.

TABLE II. Fluctuations in the DMRG ground-state energy of a
16-site polyene chain with respect to exact energy with an increasing
number of finite DMRG sweeps. The number of block states retained
m(l) is 225.

Steps �Esweep

Infinite DMRG 3.62 × 10−5

Number of sweeps = 1 3.14 × 10−7

Number of sweeps = 2 3.09 × 10−7

Number of sweeps = 3 3.13 × 10−7

Number of sweeps = 4 3.09 × 10−7

150 225 300
1

1.5

2

2.5

3

3.5

4

m(l)

lo
g 10

X

FIG. 4. Variation of computational time required for the genera-
tion of the symmetrized DMRG basis states for a 16-site polyene chain
within the modified algorithm for different cutoff m(l)’s of the block
state space. X is the ratio between the computational time required
while the Gram-Schmidt orthogonalization is carried out (as in the old
algorithm) and while employing the modified algorithm. The solid
line is given only as a guide to the eye.

In Table III, PPP energies of the ground-state (1 1A+), the
lowest two-photon state (2 1A+), the lowest one-photon state
(1 1B−), and of the lowest triplet state (1 3B+) of both the
16-site polyene chain and the tetracene molecule are presented.
Full CI calculations, employing the diagrammatic valence-
bond method [73], show excellent agreement with the results
obtained and the upper bound of error in energies of different
states are on the order of 10−4 eV which is negligible compared
to experimental accuracies.

IV. APPLICATION TO 1,12-BENZOPERYLENE

We have studied a few low-lying states of 1,12-
benzoperylene (Fig. 5) in different symmetry spaces with
m(l) = 400 which corresponds to the block space of the di-
mension of ∼1000. The model employed is the PPP model, and
energy gaps are tabulated in Table IV. We have employed the

TABLE III. Comparison of the energies of the ground state, the
lowest two-photon state, the lowest optical state, and the lowest triplet
state of the 16-site polyene chain and tetracene, obtained by the
modified symmetrized DMRG algorithm and exact calculation. The
exact calculations are carried out using the diagrammatic valence-
bond method.

System State Exact calculation DMRG calculation

Polyene of 1 1A+ −33.55575 −33.55575
16 sites 2 1A+ −32.03385 −32.03385

1 1B− −30.43291 −30.43291
1 3B+ −32.87993 −32.87993

Tetracene 1 1A+ −43.69083 −43.69076
molecule 2 1A+ −40.55749 −40.55725

1 1B− −40.51439 −40.51419
1 3B+ −42.47046 −42.47038
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Y

(X)C2

FIG. 5. Schematic of 1,12-benzoperylene. The C2 axis is taken as
the molecular X axis.

C2 symmetry of the molecule besides electron-hole symmetry
and spin-inversion symmetry in the Sz = 0 sector. Being
treated as a planar molecule, the reflection on the molecular
plane is the identity operator and does not correspond to any
nontrivial symmetry. We have obtained a few low-lying states
in the eA+, eB−, oB+, and oA− spaces corresponding to the
ground-state subspace, the subspace optically connected to the
ground state and the odd parity space which includes the triplet
subspace. For computing transition dipole moments, average
density matrices obtained from the eigenstates of different
symmetry subspaces are employed.

The lowest two-photon state is at an energy of 2.99 eV,
significantly lower in energy, compared to the lowest optical
state. This is in good agreement with experimentally derived
values of 2.87–3.10 eV. This state has not been realized by two-
photon spectroscopy but has been observed in fluorescence
[74,75] and absorption spectroscopy [76,77] as a very weak
band. We can attribute this state to the lowest two-photon state

TABLE IV. Low-energy excited states in 1,12-benzoperylene
with the energy gaps from the singlet ground state in units of eV.
The transition dipole moments from the ground state to the excited
states (in debyes) are given in parentheses. For triplets, the transition
dipole moments of optical excitations from the lowest triplet state are
also given. The transition dipoles in all cases are y polarized.

Nature of the state State level Energy gap

Two photon 2 1A+
1 2.99

3 1A+
1 4.26

4 1A+
1 4.58

Optical 1 1B−
1 3.72a (3.17)

2 1B−
1 4.71b (3.83)

3 1B−
1 4.83b (5.20)

Triplet 1 3B+
1 2.84

2 3B+
1 3.65

3 3B+
1 4.26

Triplet optical 1 3A−
1 3.98 (0.46)

2 3A−
1 5.36 (4.96)

3 3A−
1 5.61 (1.15)

aExperimental energy gaps are 3.41 eV [74], 3.22–3.40 eV [75], and
3.35–3.86 eV [76,78,79].
bExperimental energy gaps are 4.13–4.29 eV [74,75,78,79] and 4.28–
4.44 eV [76].

FIG. 6. Schematic of polychrysene. The repeated unit is shown
in the parentheses.

because, in real molecules, we do not have strict electron-hole
symmetry and the otherwise-forbidden two-photon state
acquires some intensity due to symmetry breaking. The
three lowest two-photon states have energies of 2.99, 4.26,
and 4.58 eV in the covalent space, and none of these states
energetically correspond to two triplet states (see Table IV).

The lowest optical gap for vertical transition is 3.72 eV
with a transition dipole moment of 3.17 D. There are two other
excited states at energies of 4.71 and 4.83 eV, the transition
dipole moment to the later being the highest among all three
optical states (5.20 D). The total intensity for the transition
to states at 4.71 and 4.83 eV is about four times than that
for the 3.72-eV state. It is likely that the experimentally
observed energy levels in the range of 4.13–4.45 eV (depending
upon the solvent) (Refs. [74–76,78,79]) actually correspond to
this pair of states. Experimentally, another weak absorption
band is also observed between 3.22 and 3.69 eV, which we
believe, corresponds to the lowest optically excited state. Our
calculated energies correspond to vertical transitions in the gas
phase, and the redshift of the peak positions in solvents could
be about 0.5 eV resulting in the observed values in solution.

The lowest triplet state energy can be calculated in two
ways while employing both C2 and J symmetries – either by
calculating the lowest-energy state in the Sz = 1 sector or by

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1/N

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

ΔΕ

2.68

3.54

2.25

FIG. 7. Lowest one-photon (optical) (�), lowest two-photon (•),
and lowest spin gaps (�) in polychrysene (in units of eV) are plotted
as a function of the inverse of the number of chrysene units (N ). The
extrapolated values of the energy gaps are also shown in the figure.
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FIG. 8. Site spin densities in the interior part of polychrysene in the lowest triplet state. The spin densities are also color coded—high (red),
moderate (dark green), and low (blue).

calculating the lowest-energy state in the Sz = 0 space with
χP = −1 under the spin-inversion symmetry. However, it is
numerically more accurate to obtain the triplet state as the
lowest Sz = 1 state as the effective dimension of the triplet
space with Sz = 0 and χP = −1 is almost half the dimension
of the Sz = 0 space. Thus, the effective dimension of the
triplet space in the Sz = 1 subspace is larger than the effective
dimension of the triplet space in Sz = 0 for χP = −1. Since
DMRG is a variational technique, the accuracy is higher when
the dimension of the space is larger.

The calculated lowest triplet gap in 1,12-benzoperylene is
2.84 eV whereas the experimentally reported lowest triplet gap
lies within 2.01–2.02 eV. However, in experiment the triplet
energy gaps are deduced via phosphorescence spectroscopy
where the system relaxes to the lowest vibrational state of
the corresponding triplet surface before radiatively decaying
to the ground state. The bond-order calculations (provided
in the Supplemental Material [80]) illustrate the considerable
structural difference between the ground state and the lowest
triplet state. As our calculation considers a rigid molecular
structure, we attribute the calculated lowest triplet gap as the
vertical gap which could be larger than the measured gap in
the phosphorescence study. Based on the relative positions
of the lowest optical two-photon and triplet states on the
energy scale, we can conclude that 1,12-benzoperylene is a
poor candidate for exhibiting singlet fission.

The three lowest triplet states in the ionic subspace are at
3.98, 5.36, and 5.61 eV. The triplet-triplet absorption spectra
corresponding to these levels are at 1.14, 2.52, and 2.77 eV
whereas the calculated transition matrix elements for these
T -T absorptions are 0.46, 4.96, and 1.15 D. Hence, we should
observe a strong T -T absorption band around 2.5 eV.

V. APPLICATION TO POLYCHRYSENE

In recent years, graphene nanoribbons have been recognized
as potential candidates for nanoscale devices due to their
tunable electronic properties. The electronic properties in these
systems are primarily determined by their edge structures
and their widths. Zigzag and armchair nanoribbons are the
most commonly probed systems (Ref. [34] and references
therein), whereas in recent years, cove-edge and mixed-edge
graphene nanoribbons have also been synthesized by “bottom-
up” synthetic approaches [81–86]. Spectroscopic studies as
well as theoretical calculations within density functional theory
have predicted a finite band gap (∼2.0 eV) in the cove-edged
graphene nanoribbons [81–83]. Presently, we have studied the
low-lying electronic structure of a mixed graphene nanoribbon
which has both zigzag and cove-edge structures within the
PPP model keeping ∼750 block states. The repeating unit is
comprised of a single chrysene molecule and, consequently,
we have termed this graphene nanoribbon as polychrysene
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FIG. 9. Bond orders in the interior of polychrysene in (a) the ground state. Differences in bond orders (bα
ij − bG

ij ) of state α with respect to
the ground state in (b) the lowest two-photon state, (c) the lowest optical state, and (d) the lowest triplet state are also shown. The changes are
also color coded—positive (blue), zero variation (black), and negative (red).
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(Fig. 6). Experimental studies on various cove-edged graphene
nanoribbons have revealed distorted nonplanar equilibrium
structures [81,82], although in our calculations, we have treated
them as planar.

We have studied nanoribbons of varying sizes (N ), starting
from one to six units, and extrapolated the low-lying excitation
gaps to the thermodynamic limit. The lowest optical state
remains above the lowest two-photon state for all system sizes,
which is a signature of strong effective electronic correlation
similar to that in trans-polyacetylene (Fig. 7). The lowest
optical and two-photon gaps show excellent linear fits with the
system size and extrapolate to 3.54 and 2.68 eV, respectively,
in the thermodynamic limit. The size dependence of the energy
gaps suggests that the optical state has a fairly localized
character whereas the two-photon state is more extended over
the π -conjugation network. The nonvanishing two-photon gap
also signifies that the cove-edge character dominates over
the zigzag-edge character since the vanishing two-photon
gap has been observed in the narrow zigzag nanoribbon in
the thermodynamic limit in an earlier study [34]. We also
note that, unlike in linear polyenes and zigzag nanoribbons,
the two-photon state does not have the character of two
triplets. This is indeed the case in many conjugated systems,
such as polyacenes [4] and fused azulenes [87], wherein the
conjugation topology is nonlinear. Since the energies of both
the one- and the two-photon states are far lower than the energy
of the two coupled triplet excitons, these systems will be poor
candidates for singlet fission. We have also calculated the
transition dipole moment to the lowest optical state for different
oligomers and find the transition to be moderately strong
(∼3.0–4.0 D), suggesting a moderately strong absorption band
for the one-photon state.

The lowest spin gap in these nanoribbons remains almost
invariant with system size and extrapolates to 2.25 eV in the
thermodynamic limit (Fig. 7). The almost constant spin gap
in these nanoribbons gives an impression of highly localized
triplet excitons; however, spin densities at different sites
(expectation value of 〈Ŝz

i 〉 in the lowest triplet state) indicate the
delocalized nature of the exciton, although, the spin densities
decrease significantly at the ends of the ribbons (Fig. 8). The
spin density is highest in the zigzag segment of the nanoribbons
whereas the cove-edge segment has significantly lower spin
density.

We have also plotted the bond orders for the ground state and
the low-lying excited states of the largest system (Fig. 9). The
bond-order patterns are quite similar in all the excited states
studied. The bond orders at the ends of the nanoribbons vary
slightly from that in the interior section; the bond-order pattern
along the zigzag edge corresponds to (= — — =), whereas
the cove-edge regions have lower bond orders suggesting
longer bonds in the cove region. Indeed, this structural feature

has been observed experimentally in cove-edge structured
graphene nanoribbons [81,82]. The bond-order patterns also
indicate a fairly rigid structure of the graphene nanoribbon
and primarily vertical electronic transitions.

VI. CONCLUSION

We have developed a computationally efficient algorithm
for symmetry adaptation within the conventional DMRG
procedure for conjugated organic molecules. The algorithm
introduces a one-to-one symmetry correspondence between
basis states leading to extreme sparseness in the symmetry
matrices and gets rid of the bottleneck of slow Gram-Schmidt
orthonormalization. The efficiency of this algorithm enables
us to retain a large number of block states in the DMRG
calculations.

We have obtained energy gaps for several one-photon,
two-photon, and triplet states in 1,12-benzoperylene within
the PPP model employing this algorithm. The PPP model
predicts the low-lying excitation energies and transition dipoles
quite accurately. The lowest triplet state is nearly degenerate
with the lowest two-photon state, and hence singlet fission
is not probable. The transition dipole moment to the third
one-photon state is the largest among the one-photon states
we have calculated. A large spin gap in comparison with poly-
cyclic aromatic hydrocarbons of similar sizes indicates weaker
correlation due to greater delocalization of the electrons. On the
other hand, the PPP model study of polychrysene exhibits the
signature of strong electron correlation in these systems. The
cove-edge character dominates over the zigzag-edge features
in this mixed graphene nanoribbon whereas the almost system-
size-independent spin gap is a distinctive feature. The relative
ordering of the low-energy states also suggests that similar to
1,12-benzoperylene, polychrysene is also a poor candidate for
singlet fission. It will be interesting to probe the variation in
effective electronic correlation strength and relative ordering
of energy states with size variation in these polycyclic aromatic
hydrocarbons.
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