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We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local
description of topological order in the PEPS formalism allows us to set up order parameters which measure
condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply
these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize
topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4

quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits
a variety of different phase transitions of both first and second order which we comprehensively characterize,
including direct transitions between the toric code and the double semion phase.
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I. INTRODUCTION

Topological phases are exotic states of matter with a range
of remarkable properties [1]: They display ordering which
cannot be identified by any kind of local order parameter
and requires global entanglement properties to characterize
it; they exhibit strange excitations with unconventional statis-
tics, termed anyons; and the physics at their edges displays
anomalies which cannot exist in genuinely one-dimensional
systems and thus must be backed up by the nontrivial order in
the bulk. There has been steadily growing interest in the physics
of these systems, both in order to obtain a full understanding
of all possible phases of matter, to use their exotic properties
in the design of novel materials, and to utilize them as
a way to reliably store quantum information and quantum
computations, exploiting the fact that the absence of local order
parameters also makes their ground space insensitive to any
kind of noise.

At the same time, the reasons which makes these systems
suitable for novel applications such as quantum memories
also make them hard to understand, for instance when trying
to classify and identify topological phases and study the
nature of transitions between them. Landau theory, which uses
local order parameters quantifying the breaking of symmetries
to classify phases and describe transitions between them,
cannot be applied here due to the lack of local order param-
eters. Rather, phases are distinguished by the way in which
their entanglement organizes, and by the topological—that
is, nonlocal—nature of their excitations. Formally, one can
understand the relation of certain topological phases through a
formalism called anyon condensation, which provides a way to
derive one topological theory from another one by removing
parts of the anyons by the mechanism of condensation and
confinement [2]. While on a formal level, condensation should
give rise to an order parameter, in analogy to other Bose-
condensed systems such as the BCS state, it is unclear how to
formally define such an order parameter in a way which would

allow us to use it to characterize topological phase transitions
in a way analogous to Landau theory.

Tensor network states, and in particular projected entangled
pair states (PEPS) [3–5], constitute a framework for the local
description of correlated quantum systems based on their
entanglement structure. It is based on a local tensor which
carries both physical and entanglement degrees of freedom,
and encodes the way in which these degrees of freedom are
intertwined. This makes PEPS both a powerful numerical
framework [4,5] and a versatile toolbox for the analytical
study of strongly correlated systems; in particular, they are
capable of exactly describing a wide range of topologically
ordered systems [6–8]. In the last years, it has been successively
understood where this remarkable expressive power of PEPS
originates—that is, how it can be that topological order, a
nontrivial global ordering in the systems’ entanglement, can
be encoded locally in the PEPS description: The global entan-
glement ordering is encoded in local entanglement symmetries
of the PEPS tensor, that is, symmetries imposing a nontrivial
structure on the entanglement degrees of freedom. These
symmetries ultimately build up all the topological information
locally, such as topological sectors, excitations, their fusion,
and statistics [9–12]. Recently, this formalism has been applied
to study the behavior of topological excitations across phase
transitions, and signatures of condensation and confinement
had been identified [13]. Subsequently, this has been used
to show how to construct order parameters for measuring
condensation and deconfinement within PEPS wave functions,
which in turn has allowed us to build a mathematical formalism
for understanding and relating different topological phases
within the PEPS framework through anyon condensation [14].
The core insight has been that the order parameters measuring
the behavior of anyons within any topological phase are
in correspondence to order parameters which classify the
“entanglement phase” of the holographic boundary state which
captures the entanglement properties (and in particular the
entanglement spectrum) of the system.
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In this paper, we apply the framework for anyon conden-
sation within the PEPS formalism to perform an extensive
numerical study of topological phases and phase transitions
within a rich family of tensor network models. The family is
based on PEPS tensors with a Z4 symmetry, with the D(Z4)
quantum double model as the fixed point, and correspondingly
16 types of anyons. Within this framework, we find a rich
phase diagram including two different types of Z2 topological
phases, the toric code (TC) model and the double semion (DS)
model, which are both obtained through anyon condensation
from the D(Z4) model, as well as trivial phases. The phase
diagram we find exhibits transitions between all these phases,
including direct transitions between the TC and DS models
which cannot be described by anyon condensation.

Based on the understanding of anyon condensation within
tensor networks, we introduce order parameters for anyon
condensation and deconfinement, as well as ways of extracting
correlation functions between pairs of anyons, which allows
us to characterize the different topological phases and the
transitions between them in terms of order parameters and
correlation functions, and to study their behavior and criti-
cal scaling in the vicinity of phase transitions. Using these
probes, we comprehensively explore the phase diagram of the
above family of topological models, and find a rich structure
exhibiting both first- and second-order phase transitions, with
transition lying in a number of different universality classes,
including a class of transitions with continuously varying
critical exponents. In particular, we find that the transition
between the double semion and toric code phases can be
both first and second order, and can exhibit different critical
exponents, depending on the interpolating path chosen.

The approach pursued in this paper differs from the con-
ventional approach to studying phase transitions in that we
interpolate between the local tensors which describe the wave
function rather than between Hamiltonians. This is justified
since every tensor network is the ground state of a so-called
parent Hamiltonian [9,15], and moreover, a smooth interpola-
tion of the tensor corresponds to a smooth interpolation of
the parent Hamiltonian [16,17]. In particular, the different
reparametrizations of the tuning parameter depend analytically
on one another and thus yield identical critical exponents.
Clearly, this construction yields the critical exponents along
the specific interpolation chosen, just as when studying any
specific, nongeneric Hamiltonian interpolation. A main differ-
ence, however, lies in the fact that the interpolations studied
in this work have exact tensor network ground states, which
affects the universality classes of the phase transitions found.

A central purpose of this work, beyond studying specific
families of phase transitions, is to establish order parameters
for condensation and deconfinement as a probe for topological
phase transitions within the framework of PEPS. These are
equally applicable to characterize topological behavior in
fully variational PEPS simulations, as long as the topological
symmetries are being kept track of in the optimization of
the tensor network, and can thus serve to probe topological
phase transitions for general interpolations on the level of the
Hamiltonian.

The paper is organized as follows. In Sec. II, we introduce
tensor networks and the concepts relevant to topological order,
anyonic excitations, and anyon order parameters. We then

FIG. 1. (a) Graphical notation of an on-site tensor A. (b) Tensor
network representation of a many-body wave function, where con-
nected legs are being contracted. (c) Tensor network representation
of the wave function norm. (d) The on-site transfer operator E. It is
obtained by contracting the physical indices of A and its conjugate.
(e) The transfer operator T obtained by blocking E tensors in one
direction.

introduce the family of topological models based on Z4-
invariant tensors which we study in this work: We start in
Sec. III by introducing the corresponding fixed point models
and discussing their symmetry patterns, and proceed in Sec. IV
to describe the ways in which we generate a family of models
containing all those fixed points. In Sec. V, we give a detailed
account of the different numerical probes we use for studying
the different phases and their transitions, and discuss how they
can be used to identify the nature of a transition. In Sec. VI,
we then apply these tools to map out the phase diagram of
the families introduced in Sec. IV and comprehensively study
the transitions between them. The results are summarized in
Sec. VII.

II. TENSOR NETWORK FORMALISM AND D(ZN )
QUANTUM DOUBLES

In this section, we introduce PEPS and give an overview
of the relevant concepts and notions which appear in the
description of topological phases with tensor networks, with a
special focus on D(ZN ) quantum doubles and phases obtained
from there by anyon condensation. We will show how these
ideas are connected and later we will use them for our study
of topological phases and phase transitions.

A. Tensor network descriptions

PEPS describe a many-body wave function |ψ〉 in terms of
an on-site tensor Aαβγ δ;i [Fig. 1(a)]. Here, the Roman letter
i denotes the physical degree of freedom at a given site,
while the Greek letters denote the so-called virtual indices
or entanglement degrees of freedom used to build the wave
function. The many-body wave function is then constructed
by arranging the tensors in a 2D grid, as shown in Fig. 1(b),
and contracting the connected virtual indices, i.e., identifying
and summing them. This construction applies both to systems
with periodic boundaries, to infinite planes, and to semi-infinite
cylinders.

Given a description of a many body wave function in terms
of a local tensor [Fig. 1(b)], the computation of the expectation
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value of local observables and the norm of wave functions
can be reduced to a tensor network contraction problem; see
Fig. 1(c). We will now systematically discuss the objects which
appear in the course of this contraction. The contraction of the
physical indices of a single tensor A and its conjugate leads to
the tensor E := ∑

i Aαβγ δ;iA
∗
α′β ′γ ′δ′;i , Fig. 1(d), which we refer

to as the on-site transfer operator. It can be interpreted as a map
between virtual spaces in the ket and bra layer. By contracting
one row or column of E, we arrive at the transfer operator T,
Fig. 1(e). It mediates any kind of order and correlations in the
system, and it will be an object of fundamental importance for
our studies. More details on transfer operators will be discussed
in Sec. II E.

B. Virtual symmetries and D(ZN ) QD

Symmetries of the virtual indices, or briefly virtual sym-
metries, play a crucial role in the characterization of the
topological order carried by a PEPS wave function [9–11].
Virtual symmetries are characterized by the invariance under
an action on the virtual indices of tensor A. More precisely, A

is called G-invariant if one can pull through the action of G on
the virtual legs of A,

= , (1)

where the red squares represent a unitary group action Ug ,
g ∈ G, with Ug a (faithful) representation of G, that is,

∑
α′β ′

(Ug)αα′ (Ug)ββ ′Aα′β ′γ δ;i =
∑
γ ′δ′

(Ug)γ ′γ (Ug)δ′δAαβγ ′δ′;i .

We can alternatively consider A as a map from virtual to the
physical space, in which case (1) states that A is supported
on the G-invariant subspace, i.e., the subspace invariant under
the group action Ug ⊗ Ug ⊗ Ūg ⊗ Ūg . If this map is moreover
injective on the G-invariant subspace, it is called G-injective,
and if it is an isometry, G-isometric.

A specific case of interest is given by ZN -isometric tensors,
since they naturally provide a description of the ground space
of the so-called D(ZN ) quantum double (QD) models of Kitaev
[18]. A ZN -isometric tensor can be constructed by averaging
over the group action of ZN :

AD
(
ZN

) =
N−1∑
g=0

Xg ⊗ Xg ⊗ Xg† ⊗ Xg† (2)

up to normalization (which we typically omit in the following),
where Xg = ∑N−1

i=0 |i + g〉〈i|, with X := ∑N−1
i=0 |i + 1〉〈i| the

generator of the regular representation of ZN .

C. Anyonic excitations of the D(ZN ) QD

The anyonic excitations of the D(ZN ) QD are labeled by
group elements (fluxes) and irreducible representations (irreps)
of ZN [18]. Starting from a tensor network description of the
ground state (anyonic vacuum), such an anyonic excitation
can be constructed by placing a string of Xg’s along the virtual
degrees of freedom of the PEPS, and terminating it with an
end point which transforms like an irrep α = e2πik/N of ZN ,

for instance Zα := ∑N−1
i=0 αi |i〉〈i| or XZα [9] (both of which

we will use later on). A state with one such anyon thus looks
like

= |g, α , (3)

where the red squares on the red string denote the group action
(flux) Xg and the blue square represents the irrep end point
(charge), which in our case will be always chosen as Zα . By
virtue of Eq. (1), the (red) string of Xg can be freely deformed,
and thus, only its end point can be observed and forms an
excitation. Excitations with trivial α = 1 are termed fluxes,
while those without string (g = 0) are termed charges, and
excitations with both nontrivial g and α are called dyons. The
statistics of the excitations is determined by the commutation
relation of fluxes and charges, αg . In a slight abuse of notation,
we will denote both the state with an anyon and the anyon itself
by |g,α〉. Also, we will denote the vacuum state by |0,1〉.

In principle, such excitations need to come in pairs or
tuples with trivial total flux and charge: On a torus, this is
evident since strings cannot just terminate and the overall irrep
must be trivial; with open boundaries, the boundary conditions
must compensate the topological quantum numbers of the
anyons and thus cannot be properly normalized with respect
to the vacuum unless the total flux and charge are trivial.
However, since we can place the anyons very far from each
other, and we assume the system to be gapped (i.e., have
exponentially decaying correlations), there is no interaction
between the anyons, and their behavior (in particular the order
parameters introduced in the next section) factorize. It is most
convenient to construct a state with trivial total flux and charge
by (i) using only anyons of the same type—this way, we can
uniquely assign a value of the order parameter to a single
anyon (in principle, only their product is known)—and (ii)
arranging them along a column at large distance, which allows
us to map the problem to boundary phases, as explained
in Sec. II E. Let us add that since the numerical methods
employed in this work explicitly break any symmetry related
to long-range correlations between pairs of distant anyons, any
such expectation value can be evaluated for a single anyon (cf.
Sec. V A).

D. Condensation and deconfinement fractions

We have seen that anyonic excitations in a ZN -isometric
PEPS can be modeled by strings of group actions with dressed
end points. Remarkably, while describing pairs of physical
anyons, these string operators act solely on the entanglement
degrees of freedom in the tensor network. They continue
to describe anyonic excitations when deforming the tensor
away from the ZN -isometric point by acting with an invert-
ible operation on the physical indices (thus preserving ZN

invariance), without the need to “fatten” the strings as was
the case for the physical string operators which create anyon
pairs. However, if the deformation becomes too large, the
topological order in the model must eventually change, even
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FIG. 2. Graphical representation of wave function overlaps
in the thermodynamic limit. (a) Condensate fraction of |g,α〉.
(b) Deconfinement fraction of |g,α〉.

though the deformation still does not affect the string operators
which describe the anyons of the D(ZN ) QD phase. However,
as different topological phases are characterized by different
anyonic excitations, there must be a change in the way in
which these virtual strings correspond to physical excitations.
The mechanisms underlying these phase transitions is formed
by the closely related phenomena of anyon condensation and
anyon confinement [2]. In the following, we briefly review the
two concepts in the context of tensor networks, with a particular
focus on how to use the tensor network formalism to derive
order parameters for topological phase transitions. A rigorous
and detailed account of these ideas in the context of tensor
networks is given in Ref. [14].

Condensation describes the process where an anyonic exci-
tation becomes part of the (new) vacuum; that is, it no longer
describes an excitation in a different topological sector than
the vacuum. More precisely, we say an anyon |g,α〉 has been
condensed to the vacuum |0,1〉 if

〈0,1|g,α〉 �= 0, (4)

with the notation defined in Fig. 2(a) [cf. also Eq. (3)].
The phenomenon dual to condensation is confinement of

anyons; indeed, condensation of an anyon implies confinement
of all anyons which braid nontrivially with it [2,14]. When
separating a pair of confined anyons, their normalization goes
exponentially to zero, and thus, an isolated anyon which is
confined has norm zero. Within PEPS, we thus say that an
anyon is confined if

〈g,α|g,α〉 = 0, (5)

again with the notation of Fig. 2(b).
Condensation and confinement of anyons play a crucial role

in characterizing the relation of different topological phases.
Within a given ZN symmetry, any topological phase can be
understood as being obtained from the D(ZN ) QD through
condensation of specific anyons, and is thus characterized by
its distinct anyon condensation and confinement pattern [2,14].
In order to further study the transition between different topo-
logical phases, we can generalize the above criteria Eqs. (4)
and (5) for condensation and confinement to order parameters,
measuring the

“condensate fraction” 〈0,1|g,α〉, Fig. 2(a),

and the

“deconfinement fraction” 〈g,α|g,α〉, Fig. 2(b),

FIG. 3. (a) Left and right fixed point of the transfer operator (we
assume the largest eigenvalue to be 1); a possible MPS structure,
found, e.g., for fixed point models and used in the numerics, is
indicated by the yellow bonds. (b) Mapping of anyonic wave function
overlaps, Fig. 2(b), to the expectation value of string order parameters.

respectively. These constitute nonlocal order parameters for
topological phases, which can therefore be used as probes to
characterize topological phase transitions and their universal
behavior, in complete analogy to conventional order parame-
ters in Landau theory. The most general quantity of interest
which we will consider, encompassing both condensation and
deconfinement fractions, will thus be the overlaps 〈g′,α′|g,α〉
of wave functions describing two arbitrary anyons, with con-
densate and deconfinement fractions as special cases. Note that
as of the discussion in the preceding section, 〈g′,α′|g,α〉 is only
determined up to a phase, and we will choose it to be positive.

E. Boundary phases and string order parameters

The behavior of condensate and deconfinement fractions is
closely related to the phases encountered at the boundary of
the system, that is, in the fixed point of the transfer operator
T [14]. To understand this relation, consider a left and right
fixed point (l| and |r) of T; see Fig. 3(a). Then, any such order
parameter for the behavior of anyons can be mapped to the
evaluation of the corresponding anyonic string operator—that
is, a string (Xg,Xg′

) ≡ (g,g′) and irreps (Zα,Zα′ ) ≡ (α,α′) in
ket and bra indices—in between (l| and |r); see Fig. 3(b). [If
the fixed point is not unique, (l| and |r) have to match; in
our case, this is easily taken care of since T is Hermitian.]
Since T inherits a G × G symmetry from the tensor, an irrep
(α,α′) serves as an order parameter which detects breaking
of the symmetry. The numerical methods we use will always
choose to break symmetries when possible, which explains
why it is sufficient to consider a single anyon (rather than a
pair of anyonic operators, which would also detect long-range
order without explicit symmetry breaking). Similarly, strings
(g,g′) create domain walls in the case of a broken symmetry,
and thus detect unbroken symmetries. Finally, combinations of
irreps (α,α′) and strings (g,g′) form string order parameters,
which detect nontrivial symmetry protected (SPT) phases of
unbroken symmetries.

We thus see that the behavior of anyonic order parameters
is in direct correspondence to the phase of the fixed points of
the transfer operator under its symmetry G × G—that is, its
symmetry-breaking pattern and possibly SPT order—as long
as these fixed points are described by short-range correlated
states (as is expected in gapped phases). Specifically, in the
case of the fixed point tensors which we discuss in the next
section, the fixed points are themselves matrix product states
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FIG. 4. Patterns of symmetry breaking in the fixed points of
the transfer operator for Z4-invariant tensors, where TC/DS denote
toric code/double semion phases. Arrows indicate phase transitions
breaking a Z2 symmetry.

(MPSs), and we will be able to determine their SPT order and
the behavior of the anyonic order parameters analytically.

III. TOPOLOGICAL PHASES: FIXED POINTS

We now describe the tensor network constructions for the
renormalization group (RG) fixed points of topological phases
which can be realized by Z4-invariant tensors. The form of the
local tensor which we use for describing the RG fixed point
of a topological phase is motivated by the desired symmetry
properties of its transfer operator fixed points, and from the
given tensors, we explicitly derive the fixed points of the
transfer operator. Furthermore, we discuss the condensation
and confinement pattern of anyons in each of these topological
phases.

The different topological phases which can be realized
in the case of ZN -invariant tensors, and the corresponding
symmetry-breaking patterns, have been studied in Ref. [14].
For the case of Z4-invariant tensors, the different phases and
the symmetry of their transfer operator fixed points are given
in Fig. 4, where the notation Zi � Zj

∼= Zi × Zj denotes a
diagonalZi symmetry (that is, acting identically on ket and bra)
and an off-diagonal Zj symmetry (that is, acting on one index
alone). For example, Z4 � Z2 is generated by the diagonal
element (X,X) and the off-diagonal element (1,X2).

A. D(Z4) quantum double

The D(Z4) quantum double (QD) is a topological model
which can be realized by placing 4-level states {0,1,2,3} on
the oriented edges of a square lattice and enforcing Gauss’s
law at each vertex,

, r1 + r2 − r3 − r4 = 0 (mod 4); (6)

the D(Z4) QD is then obtained as the uniform superposition
over all such configurations. A tensor network description of
D(Z4) QD is given by a Z4-isometric tensor as defined in
Eq. (2). We begin by writing down the on-site tensor [Fig. 1(a)]
for the ground state of D(Z4) QD as a matrix product operator

(MPO):

, = δabX
a (7)

and a,b ∈ {0,1,2,3}. Here, the inner indices ri jointly cor-
respond to the physical index of the on-site tensor, and the
outside indices vi to the virtual indices. Empty circles denote
the Hermitian conjugate (with respect to the physical+virtual
indices).

The relation of the construction Eq. (7) with the D(Z4)
double model can be understood by considering X in its
diagonal (irrep) basis. Then, any entry of the on-site tensor
is nonzero precisely if Eq. (6) is satisfied, i.e.,

=
1 v1 + v2 − v3 − v4 = 0 (mod 4), ri = vi

0 otherwise
,

(8)

where ri,vi ∈ {0,1,2,3}, which after contraction yields pre-
cisely the equal weight superposition of all configurations
satisfying the Z4 Gauss law [Eq. (6)], and thus the wave
function of the D(Z4) model.

Now, let us construct the fixed points of the transfer operator.
First, note that with the properly chosen normalization factor,
the MPO in (7), as a map from outside to inside, is a Hermitian
projector. (Here and in what follows, all such statements will
be up to normalization.) Thus, the on-site transfer operator,
Fig. 1(d), is again of the form (7). The fixed points of the
transfer operator and their symmetry properties can be deduced
by using the following property of MPO tensors:

= , (9)

where the object on the right denotes a δ-tensor (i.e., it is 1 if
all indices are equal, and 0 otherwise). Using Eq. (9), we can
write the transfer operator as

= (10)

where the top/bottom indices denote both the ket and bra
indices [that is, the inside and outside indices of Eq. (7)]. The
δ-tensors between adjacent sites force the indices in the loops
to be equal, and thus the transfer operator can be written as a
sum over four product operators,

T =
3∑

g=0

(Xg ⊗ Xg†)⊗Nv . (11)

The fixed points of this transfer operator are then the following
four product states:

(Xg)⊗Nv , where g ∈ {0,1,2,3}, (12)

since tr(XgXh†) = δgh. Each of the fixed points of the transfer
operator in (12) breaks the Z4 � Z4 symmetry of the transfer
operator down to Z4 � Z1, since they are invariant under
the diagonal action (X,X) : Xg �→ XXgX† on the bra and
ket index, but get cyclically permuted by the off-diagonal
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action (X,1) : Xg �→ XXg = Xg+1. It should be noted that this
symmetry-breaking structure directly originates from the block
structure of the on-site transfer operator [which is the same as
Eq. (7)], where each of the ket/bra leg pairs is simultaneously
in the state Xg for g = 0, . . . ,3.

The behavior of operators which act trivially (up to a phase
factor) on the fixed points of the transfer operator can be
understood by their action on the local tensors describing the
fixed point space, which are again of the form δabX

a , as in
Eq. (7). For each symmetry-broken fixed point, the fixed point
MPO [cf. Fig. 3(a)] is thus of the form

, (13)

with a trivial MPO bond dimension (yellow) DMPO = 1, where
φ is an additional phase factor whose exact value depends
on the specific fixed point as well as the charge label α. We
now see that any symmetry action (Xg1 ,Xg2 ) with g1 = g2,
as well as any irrep action (Zα1 ,Zα2 ) with α1 = α2, leaves
the fixed point invariant (up to a phase). On the other hand,
acting with either g1 �= g2 or α1 �= α2 on the fixed point yields
a locally orthogonal tensor, as can be either computed explicitly
from Eq. (12) or inferred from the commutation relations with
Eq. (13). We thus arrive at

〈g′,α′|g,α〉 =
{

1, if g′ = g and α′ = α,

0, otherwise.

That is, no anyon is condensed, and all anyons are deconfined,
and we have a model with the full Z4 anyon content, as
expected.

B. Toric codes

Next, we will discuss how to construct toric codes (TCs),
i.e., D(Z2) double models, starting from the tensor of the
D(Z4) model, while keeping the Z4 symmetry of the tensor.
We will do so by acting with certain projections on the physical
indices, which reduce or enhance theZ4 � Z1 symmetry of the
transfer operator fixed points of the D(Z4) model to Z4 � Z2

and Z2 � Z1, respectively, and which yield two toric codes
which are related by an electric-magnetic duality [19].

1. Z4 � Z2 toric code

Let us first show that by acting with the projector (1 +
X2)⊗4 on the local tensors of the D(Z4) QD, we obtain a tensor
for the RG fixed point of the TC phase where the fixed points
of the transfer operator have a Z4 � Z2 symmetry. The new
tensor is obtained from (7) as

(14)

The action of the projections, denoted by red dots, on the black
ring [i.e., the D(Z4) tensor] gives two independent blocks,
and the resulting tensor can be written as an MPO with bond
dimension two:

(15)

and a,b ∈ {0,1}. The reason why Eq. (15) provides a tensor
network description for the toric code can be understood from
the equivalence

= δab (|+ +| ⊗ σa
x), (16)

where a,b ∈ {0,1} and σx is the generator of Z2. Up to the
|+〉〈+|, it is thus exactly of the same form as (7), but with the
underlying group Z2, and thus describes a D(Z2) model (i.e.,
the toric code). The construction of Eq. (15) can therefore be
viewed as a D(Z2) model, tensored with an ancilla qubit in the
|+〉 state.

The on-site transfer operator of this model again satisfies the
delta relation of Eq. (9) (now with only two possible values),
and each of the two blocks in Eq. (15) can be identified with
a symmetry-broken fixed point of the transfer operator, which
are thus of the form

(1 + X2)⊗Nv , (X + X3)⊗Nv . (17)

Each of the fixed points is invariant under the action of
(X,X) and (1,X2), while (1,X) transforms between them. We
thus find that the toric code model at hand has a Z4 � Z2

symmetry in the fixed point of the transfer operator, and we
thus henceforth call it the Z4 � Z2 toric code.

Graphically, the actions which leave fixed points invariant
can be summarized as follows:

, (18)

where φ is a phase factor with a value which depends on the
fixed point, while all other actions yields locally orthogonal
tensors. We can thus summarize the condensation and confine-
ment pattern of anyons at the RG fixed point of the Z4 � Z2

TC phase as

〈g′,α′|g,α〉 =
{

1, g′ = g (mod 2), α′ = α = ±1,

0, otherwise.

This implies that the anyon |2,1〉 is condensed, while the
anyons with α = ±i have become confined, giving rise to a
TC with anyons |1,1〉, |0,−1〉, and |1,−1〉 (the fermion).

2. Z2 � Z1 toric code

A second construction for a TC phase in the framework of
Z4-invariant tensors is obtained by a dual projection. We will
see that this projection, in contrast to the Z4 � Z2 TC, reduces
the symmetry of fixed points of the transfer operator to Z2 �
Z1, and the fixed point space of the transfer operator is spanned
by eight symmetry-broken fixed points. The projection action
on the physical indices is given by (1 + Z2)⊗4 + (1 − Z2)⊗4,
and, acting on the D(Z4) QD tensor, generates an MPO with
eight blocks,

(19)

a,b ∈ {0,1}, and Z := Z1. Together with the index of the other
ring, Eq. (7), the bond dimension around the circle is 8.
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It can be checked directly that (19) is again a Hermitian
projector, and that the on-site transfer operator satisfies a delta
relation as in Eq. (9). Thus, we find that the fixed points of the
transfer operator are

{Xa[1 + (−1)bZ2]}⊗Nv
, (20)

where a ∈ {0,1,2,3} and b ∈ {0,1}. They are invariant under
(X2,X2), while any other symmetry action results in a permuta-
tion action on the fixed points. We thus find that the symmetry
of the fixed point space is given by Z2 � Z1. The set of all
symmetries of the fixed point tensor is thus given by

, (21)

while all other actions with Xg or Zα give rise to orthogonal
tensors. The overlap of anyonic wave functions is thus

〈g′,α′|g,α〉 =
{

1, g′ = g = 0 or 2, α′ = ±α,

0, otherwise.

This implies that |0, − 1〉 is condensed, while the anyons with
g = 1 and g = 3 are confined. The anyons of the TC are thus
given by |0,i〉, |2,1〉, and |2,i〉 (the fermion).

C. Z4 � Z2 double semion model

A model closely related to the TC is the double semion
(DS) model. It also corresponds to a Z2 loop model, but is
twisted with a 3-cocycle which assigns an amplitude (−1)


to loop configurations with 
 loops. It has no tensor network
description in terms ofZ2-invariant tensors, and its description
requires eitherZ4 invariance [20] or tensors which are injective
with respect to MPO symmetries [11]. As we will see, the
fixed points of the transfer operator of the DS model also
have a Z4 � Z2 symmetry [14], but they realize a different
phase under that symmetry as compared to the Z4 � Z2 TC,
which is characterized by a nonzero string order parameter (i.e.,
an SPT phase), corresponding to the fact that it is obtained
by condensing a dyon (a composite charge-flux particle) in
the D(Z4) model. The local tensor of the DS model can be
constructed by applying the following MPO projector (green)
on the D(Z4) QD,

, = 2 a
Z2 a+b

, (22)

with a ∈ {0,1}; arrows in the ring point in the direction of index
b. While it can be shown that this PEPS can be transformed to
the QD model by local unitaries [14], we will instead directly
derive the fixed points of the transfer operator and show that
they exhibit the symmetry pattern required for the DS phase.
The composition of the D(Z4) QD (black ring) and DS (green
ring) projector can be simplified to

X2a+cZ2(a+b) with a,b ∈ {0,1}, (23)

where the index c is identical on the top and bottom legs. (Here,
we have used a redundancy in the description which allows us
to restrict c = 0, . . . ,3 to c = 0,1, and removed phases which
cancel out between adjacent tensors.)

As in the previous cases, the tensor (22) is a Hermitian
projector. Connecting two tensors [in the form (23)] as required
for the transfer operator, cf. Eq. (9), yet again gives rise to a
δ-tensor for all three indices a, b, and c. The fixed points are
thus given by MPOs with tensors of the form

= = X2a+cZ2(a+b)
, (24)

where c = 0,1 labels the two fixed points, and the green line
is the MPO index for the fixed point MPO, with a,b = 0,1.

From (24), it can be seen that the symmetry actions which
leave the tensor invariant are

,

(25)

while (X,1) permutes the two fixed points, and (Z1,Zi) maps
it to a locally orthogonal tensor. It follows that the fixed point
has Z4 � Z2 symmetry, which is however not detected by
local order parameters, but requires the use of string order
parameters. The nonvanishing string order parameters can be
read off Eq. (25): On the one hand, this is (Z1,Z−1) with a string
of (1,X2) going downwards, and on the other hand, (XZi,XZi)
with a string of (X,X) going downwards. It is crucial to notice
that here, we have to fix the direction in which the string is
pointing (since the virtual actions of the irreps are asymmetric),
and in the latter case, the end point has to be “dressed” by using
XZi as an irrep. This effectively moves the virtual action σz

to the lower leg; otherwise, the string order parameter would
vanish even though it were allowed for topological reasons,
i.e., from the combination of group action and irrep it carries.

This leads us to adapt the definition of the anyons, cf.
Eq. (3), used in this work by choosing irrep end points XZi

and XZ−i for anyons with a string X or X3, i.e., |1, ± i〉 and
|3, ± i〉, while using Zα as end points for all other anyons.
Importantly, the results on the former phases (and the trivial
phases described later) still hold with these modified anyons.
In fact, the only other phase where these anyons are not
confined—in which case string operators involving them yield
zero for topological reasons, i.e., solely due to the choice of
group element and irrep of the string [14]—is the D(Z4) model,
in which case it can be easily checked that the modified anyons
are still uncondensed and deconfined.

The presence of string order with respect to the order
parameters for the unbroken symmetry implies that the fixed
point states describe a nontrivial SPT phase with symmetry
Z4 � Z2. Using Eq. (25), we find

〈g′,α′|g,α〉 =
⎧⎨
⎩

1, g,g′ even, α′ = ig−g′
α = ±1,

1, g,g′ odd, α′ = ig−g′
α = ±i,

0, otherwise.

This shows that in the DS phase, only the dyon |2, − 1〉 is
condensed. The anyons with g even and α = ±i, as well as
g odd and α = ±1, are condensed. The semions of the model
are |1,i〉 and |1,−i〉, and the boson is |0,−1〉 ≡ |2,1〉.
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D. Topologically trivial phases

Let us finally discuss how to obtain topologically trivial
phases (TPs) from the D(Z4) model. We will find that there are
three different ways of obtaining such models, distinguished
by their condensation/confinement pattern.

1. Z4 � Z4 trivial phase

The first trivial phase is obtained by applying a projector
P ⊗4,

P = (1 + X + X2 + X3), (26)

to the physical indices of the D(Z4) QD, which projects each
of the indices individually on the trivial irrep. Clearly, this
commutes with the symmetry action of the D(Z4) projector,
Eq. (7), and thus, the on-site transfer operator itself is of the
form P ⊗4, which in turn implies that the fixed point of the
transfer operator is unique, and of the form P ⊗Nv as well.
The model thus has Z4 � Z4 symmetry at the boundary. A
manifestation of this symmetry is the condensation of all the
flux anyons, and correspondingly confinement of all charged
particles. The condensation and confinement properties of
anyons in the Z4 � Z4 TP can be summarized as

〈g′,α′|g,α〉 =
{

1, α′ = α = 1,

0, otherwise.

2. Z2 � Z2 trivial phase

The second trivial phase is obtained by applying an MPO
projector (brown) to the D(Z4) projector as follows:

, = δab + X2 + −1)aZ2 , (27)

where a,b =∈ {0,1}. Combining it with the D(Z4) projector
with tensor Xc, we find that c can be restricted to c ∈ {0,1}, and
(27) yields again a Hermitian projector. Contraction of adjacent
on-site transfer operators yields yet again a Kronecker delta on
the two loop variables, leading to four fixed points of the form

{(Xc + Xc+2)[1 + (−1)aZ2]}⊗Nv . (28)

It is immediate to see that these are invariant under (1,X2),
and are permuted by (1,X) and (X,X) (acting on c and
a, respectively). Thus, this phase has symmetry Z2 � Z2.
Overall, this yields

〈g′,α′|g,α〉 =
{

1, g,g′ ∈ {0,2}, α′,α ∈ {1, − 1},
0, otherwise.

Anyons with g = 0,2 and α = ±1 are condensed, while
anyons withg = 1,3 orα = ±i are confined, making the anyon
content trivial.

3. Z1 � Z1 trivial phase

The last trivial phase is obtained by acting on the D(Z4)
with an MPO projector with bond dimension 4,

, = δab

3

j=0

(ia)jZj ∝ δab|3 − a 3 − a| ,

(29)

where a,b ∈ {0,1,2,3}. The effective MPO which is obtained
by composing black and violet rings has bond dimension 16,
with tensor elements |a〉〈c|. It is thus clearly a Hermitian
projector, and has fixed points of the form (|c〉〈c′|)⊗Nv which
clearly break all symmetries, giving rise to a Z1 � Z1 sym-
metry of the fixed point. The phase is trivial with all charges
condensed and thus all anyons with nontrivial flux (including
dyons) confined,

〈g′,α′|g,α〉 =
{

1, g = g′ = 0,

0, otherwise.

IV. TOPOLOGICAL PHASES: INTERPOLATIONS
AND TRANSITIONS

The fixed point tensors discussed in the preceding section
all share the Z4 invariance as a common feature. It is therefore
suggestive to try to build smooth interpolations within these
tensors, e.g., by starting from the Z4-isometric D(Z4) tensor
and deforming it smoothly towards some other fixed point
model. As long as this deformation is reversible (as will
be the case here), it corresponds to a smooth deformation
of the parent Hamiltonian [16], and thus forms a tool to study
the phase diagram of the corresponding model. Since, as we
have discussed in the previous section, the different phases
are characterized by different symmetries at the boundary and
thus different anyon condensation patterns, this will give rise
to topological phase transitions which are (potentially) driven
by anyon condensation.

In the following, we will discuss a number of interpolations
which allow us to study all the phases in Fig. 4. The inter-
polations are obtained using two different recipes: The first
approach aims to interpolate between the on-site tensors of the
respective models in as local a way as possible; we will refer to
this approach as local filtering. The second approach is based
on interpolating between the on-site transfer operators rather
than the tensors, which however can be shown to correspond
to a smooth path of tensors due to some positivity condition;
we will refer to it as direct interpolation of transfer operator.

The interpolations described in the following, and in par-
ticular the nature of the phase transitions, will be studied
numerically in Secs. V and VI.

A. Three-parameter family with all topological phases

We start by describing a three-parameter family which
exhibits all four topological phases in Fig. 4, together with the
Z2 � Z2 trivial phase. To start with, we define the following
three one-parameter interpolations.

First,

, where = exp(θTCX2). (30)

For θTC = 0, this acts trivially, while for θTC = ∞, this yields
the Z4 � Z2 TC, Eq. (14).

Second,

, where = δab exp (−1)aθTC,Z2Z
2

(31)
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and a,b ∈ {0,1}: For θTC,Z2 = 0, this acts trivially, while for
θTC,Z2 = ∞, this yields the Z2 � Z1 TC, Eq. (19).

Third,

, where = X2 a
Z2 a+b

(32)

and = diag(cosh 1
2θDS, sinh 1

2θDS). At θDS = 0,
= |0〉〈0|, and whole ring acts trivially, whereas

for θDS = ∞, ∝ 12, and the green ring acts as the DS
projector, Eq. (22).

It is straightforward to verify that all three deformations
(30)–(32) commute both among each other and with the
D(Z4) projector. We can thus combine them to obtain a
three-parameter tensor

, (33)

which is parametrized by θ := (θTC,θTC,Z2 ,θDS). From the
mutual commutation, it follows that the limits θ = (∞,0,0),
θ = (0,∞,0), and θ = (0,0,∞) still yield the corresponding
fixed point models, and θ = (0,0,0) the D(Z4) model. Finally,
it is straightforward to check that by setting any two of the
θ• = ∞, we obtain the Z2 � Z2 trivial phase.

B. Transitions into trivial phases

The three-parameter family of the previous section did not
include all the trivial phases present in Fig. 4. We now give three
families interpolating from each of the differentZ2 topological
phases to the trivial ones.

1. Z4 � Z2 TC and trivial phases

The Z4 � Z2 TC can be deformed into a Z4 � Z4 or Z2 �
Z2 TP through the two-parameter family

(34)

a,b ∈ {0,1}, and where the black ring represents the local
tensor of the D(Z4) QD. It is built so as to interpolate between
the tensors (14), (26), and (27) of the respective fixed point
models: For (θ1,θ2) = (0,0), it gives the Z4 � Z2 TC, for
(θ1,θ2) = (∞,0) the Z4 � Z4 TP, and for (θ1,θ2) = (0,∞) the
Z2 � Z2 TP.

2. Z2 � Z1 TC and trivial phases

The Z2 � Z1 TC can be connected to the Z2 � Z2 TP and
the Z1 � Z1 TP through the family of deformations

(35)

where a,b ∈ {0,1,2,3}. Again, it interpolates between the three
fixed points (19), (27), and (29), with (θ1,θ2) = (0,0) the
Z2 � Z1 TC, (θ1,θ2) = (∞,0) the Z1 � Z1 trivial phase, and
(θ1,θ2) = (0,∞) the Z2 � Z2 trivial phase.

3. Z4 � Z2 DS and trivial phases

Finally, we describe an interpolation which connects the
Z4 � Z2 DS and the Z2 � Z2 TP and Z4 � Z4 TP:

, where = X2 a
Z2 a+b

exp (θ2X),

(36)

a = 0,1, and where = exp (θ1σz) with σz the Pauli z

matrix. Its extremal points are at (θ1,θ2) = (0,0) the Z4 � Z2

DS model, at (θ1,θ2) = (0,∞) theZ2 � Z2 TP, and at (θ1,θ2) =
(∞,∞) the Z4 � Z4 TP. Moreover, the point (θ1,θ2) = (∞,0)
realizes the D(Z4) model. As we will see in Sec. VI E, there
exists a direct path between Z4 � Z2 DS and Z4 � Z4 TP via
a multicritical point.

C. Direct interpolation of transfer operator

Let us now describe our second approach to constructing
interpolations, the direct interpolation of the transfer operator.
While they in principle form a special case of local filtering
operations, the idea here is to construct an interpolation on the
level of the on-site transfer operators, rather than the tensor. We
have observed that for instance for the interpolation between
the double semion and toric code phases, this method readily
yields a direct phase transition, which could only be obtained
through a fine-tuned quadro-critical point with the filtering
ansatz presented in the preceding subsection.

We start from two on-site tensors A1 and A2 which form
the RG fixed point of two distinct phases. We assume that
A1 and A2 are both G-invariant; i.e., they can be obtained by
applying linear maps P i on the local tensor of the D(Z4) QD,
i.e., Ai = P iAD(Z4), where AD(Z4) denotes the on-site tensor
of the D(Z4) QD.

Now consider a direct interpolation of the on-site transfer
operators Em = A

†
mAm,

E(θ ) = θE1 + (1 − θ )E2, (37)

θ ∈ [0; 1]. Since Em � 0, it follows that also E(θ ) � 0, and
thus E(θ ) = A(θ )†A(θ ) for some A(θ ) = P(θ )AD(Z4); more-
over, A(θ ) can be chosen continuous inE(θ ). In the case where
the P i are commuting Hermitian projectors, a continuous A(θ )
can be constructed through

A(θ ) = [P12 +
√

θ (P1 − P12)

+√
1 − θ(P2 − P12)]AD(Z4), (38)

where P12 := P1 P2.
We will use this construction in three cases: (i) In Sec. V, we

will use it to interpolate between theZ4 � Z2 DS andZ4 � Z2

TC models; i.e., P1 and P2 are the DS and TC projectors
of Eqs. (22) and (15). (ii) Also in Sec. V, we will use it
to interpolate between the D(Z4) QD and the Z4 � Z2 TC.
Here, P1 is trivial, and P2 the same as before. (iii) Finally, in
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Sec. VI C 2, we will use it to interpolate between the Z4 � Z2

DS and theZ2 � Z1 TC models, with P1 and P2 from Eqs. (22)
and (19). In all these cases, P1 and P2 commute, as we have
seen in Sec. IV A.

D. Hamiltonians

Let us now briefly discuss the relation of the interpolations
on the level of tensors introduced above with interpolations on
the level of Hamiltonians, as done in the conventional study
of phase transitions. Every PEPS is the ground state of a local
parent Hamiltonian, which can be constructed systematically
from the tensor [15]; if certain conditions are obeyed, the
ground space of such a Hamiltonian will be well behaved [9].
Moreover, for smooth interpolations A(θ ) of the tensor, such
as the ones considered here, the parent Hamiltonians can be
constructed so as to form a smooth path as well [16,17].

More concretely, consider an 
 × 
 patch of tensors A(θ ),
and denote the space spanned by those tensors on the physical
spins, given arbitrary boundary conditions, with S(θ ). If 
 is
chosen sufficiently large (here, 
 = 2 suffices), then S(θ )⊥
[the orthocomplement of S(θ )] will be nontrivial, and we
can define a Hamiltonian h(θ ) = �S(θ)⊥ [the projector onto
S(θ )⊥]. By construction, h(θ ) � 0 and it annihilates the PEPS
and thus, H (θ ) = ∑

h(θ ) � 0 annihilates the PEPS as well
[here, the sum runs over all positions of h(θ )]: The parent
HamiltonianH (θ ) thus has the PEPS as its exact ground state;
furthermore, if suitable conditions are observed, the ground
space of the Hamiltonian on the torus will have a degeneracy
corresponding to the topological sectors of the system [9–11].

The constructed Hamiltonian is as smooth as A(θ ) itself,
as long as A(θ ′) = X(θ ′,θ )A(θ ) for some invertible X(θ ′,θ ),
which is the case for all of our interpolations except for some
limiting cases of θ : Specifically, the map from the boundary
to the physical spins on the considered patch is an algebraic
function of A(θ ), and so is its image S(θ ), as long as its
dimension is fixed which is ensured by invertibility of X(θ ′,θ ).
The Hamiltonian h(θ ) is thus a nonsingular algebraic function
ofA(θ ), and thus analytic ifA(θ ) is analytic, as in our examples.
In particular, any change of variables when reparametrizing
the interpolation in terms of parameters in the Hamiltonian is
analytic as well, and thus, the critical exponents stay the same.
The only cases requiring special attention are thus the limiting
cases (θ → ∞ for the filtering interpolations, and θ = 0,1 for
the direct interpolations). In all of these limits, the ground
state is in the corresponding limiting phase and shows no sign
of a phase transition; moreover, for any one-parameter limit,
a continuous Hamiltonian can be constructed as limθ h(θ ),
since eigenspace projectors of analytic Hermitian operators
are analytic [21].

V. NUMERICS: METHODS

We will now give an overview over the numerical tools and
methods which we will use to probe the phase diagram and in
particular the phase transitions between different topological
phases. Most importantly, these are order parameters for
condensation and deconfinement, as well as different corre-
lation lengths (including those corresponding to anyon-anyon
correlation functions involving string operators). We will also

discuss a few additional probes suitable to characterize phase
transitions. We will both describe the corresponding probes
and give a detailed account of how to compute them.

In order to better illustrate how these probes can be used to
characterize phase transitions, and to show how to use them
to distinguish first-order from second-order phase transitions,
we will study two specific interpolations, namely Z4 � Z2 DS
↔ Z4 � Z2 TC and D(Z4) QD ↔ Z4 � Z2 TC. Both of these
interpolations are constructed by linear interpolation of the
on-site transfer operators as explained in Sec. IV C.

A. Order parameters

Order parameters play a fundamental role in characteriz-
ing the nature of phase transitions, and are at the heart of
Landau’s theory of second-order phase transitions. Their be-
havior allows us to identify different phases through their
symmetry-breaking pattern, to distinguish first- from second-
order phase transitions, and to further characterize second-
order transitions through their critical exponents. While topo-
logical phases do not exhibit local order parameters, we have
seen in Secs. II D and II E how to define order parameters
for anyon condensation and deconfinement through operators
defined on the virtual, i.e., entanglement degrees of freedom.
In the following, we discuss how these order parameters can be
measured, and how they can be used to characterize the nature
of topological phase transitions.

1. Computation

As explained in Sec. II D, any possible such order parameter
is given by an anyonic wave function overlap 〈g,α|g′,α′〉
(normalized by 〈0,1|0,1〉), shown in Fig. 5(a). Here, the strings

FIG. 5. Computation of anyonic order parameter 〈g,α|g′,α′〉.
The computation of the 2D order parameter (a) is carried out by
dimensional reductions to string order parameters in the 1D iMPS
boundaries (b), which are then evaluated by using the fixed points of
the channel operators defined in (f). In order to fix normalization, the
problem can be related (d), (e) to the vacuum expectation value by
using the local representation of the symmetry string in the boundary
iMPS (g). See text for further details.
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(red) and their end points (blue) correspond to group actions
g, g′ and irrep actions α and α′, respectively. To compute
this quantity, we proceed in two steps: In a first step, we
approximate the left and right fixed points of the transfer
operator by matrix product operators. This reduces the (2D)
computation of 〈g,α|g′,α′〉 to evaluating a (1D) string-order
parameter in the left and right fixed points, Fig. 5(b), which is
then carried out in a second step (cf. also Sec. II E).

The computation of the left and right fixed points (l| and
|r) of the transfer operator in the thermodynamic limit is
carried out using a standard infinite matrix product state (iMPS)
algorithm. The basic idea is to use an infinite translational
invariant MPS ansatz with some bond dimension χ to ap-
proximate the fixed point. This ansatz can, e.g., be optimized
by a fixed point method, that is, by repeatedly applying the
transfer operator to it (this increases the bond dimension which
is truncated to χ in every step by keeping the terms with
the highest Schmidt coefficients, and is the method used in
this paper), or in the case of a Hermitian transfer operator by
variationally optimizing the iMPS tensor, e.g., by linearizing
the problem, until convergence is reached. A detailed overview
over different methods for finding fixed points of transfer
operators can be found in Ref. [22]. In all cases, truncating
the bond dimension to a finite value χ induces some error, and
therefore, an extrapolation in χ is required. An important point
about all these methods is that they will favor symmetry-broken
fixed points; that is, whenever the fixed point is degenerate, the
method will pick a symmetry-broken fixed point rather than a
catlike state with long-range order, as the former has fewer
correlations. As already discussed earlier, this is the reason
why we can evaluate anyonic order parameters by considering
just a single anyon (which requires symmetry breaking to be
nonzero) rather than a distant pair of anyons (which would also
detect long-range order in catlike fixed points).

We have now rephrased the computation of 〈g,α|g′,α′〉 in
terms of a string order parameter evaluated in (l| and |r), as
shown in Fig. 5(b); this has to be normalized by evaluating the
same object without the string order parameter, i.e., (l|r). In
both cases, we have to evaluate an object of the form Fig. 5(b).
This can be carried out by considering the transfer operators
from top and bottom in Fig. 5(b), which we will term channel
operators, shown in Fig. 5(f): F is obtained by contracting
the “physical” indices of the local MPO tensors of (l| and |r),
Fg,g′ carries additional group actions g and g′ indicated by the
red squares, and Fα,α′ carries the irrep actions (blue) which
correspond to the desired anyon. First, we must compare the
modulus of the leading eigenvalue of Fg,g′ with the leading
eigenvalue of F: If the former is strictly smaller, 〈g,α|g′,α〉
will be exponentially suppressed in the length of the string, and
thus be zero. This is the case exactly if the symmetry (g,g′) is
broken, since the normalized leading eigenvalue determines
the overlap of the original and the symmetry-transformed
fixed point per unit cell. In the case in which the symmetry
(g,g′) is unbroken, we compute the largest eigenvector σb

g,g′ of
Fg,g′ from the bottom and the largest eigenvector σ t := σ t

0,0
of F := F0,0 from the top by exact diagonalization. [Note
that the eigenvectors are unique, since the fixed point iMPS
will break symmetries, and (g,g′) are unbroken symmetries;
a degenerate eigenvector would indicate long-range order.]
Finally, the expectation value is computed by acting on Fα,α′

with σ t and σb
g,g′ from the top and bottom, respectively, as

shown in Fig. 5(c).
However, there is an important issue: We still have to fix

normalization, as the eigenvectors σ •
• have no well-defined

normalization. To this end, we note that since we only consider
unbroken symmetries (g,g′), the symmetry is locally repre-
sented in the fixed point iMPS |r) through some action Vg,g′

and V −1
g,g′ , as shown in Fig. 5 g [23]. By suitable rescaling

Vg,g′ , we can always choose Vg,g′ to be a representation, and
it will be crucial that we do so. We now substitute Fig. 5(g)
everywhere in Fig. 5(b) and obtain the expression Fig. 5(d)
for the fraction 〈g,α|g′,α′〉, which simplifies to the expression
Fig. 5(e) with the same σ t and σb as in the normalization
(which has g = g′ = 0 and α = α′ = 1.) In order to fix the
normalization we can thus either extract the symmetry action
Vg,g′ from the iMPS fixed point |r) through σb

g,g′ ∝ Vg,g′σb and
evaluate Fig. 5(e), or we can choose a canonical gauge for the
iMPS of |r) such that the symmetry action Vg,g′ is unitary [24],
and normalize σb and σb

g,g′ with a unitarily invariant norm, e.g.,
tr (σb)2 = tr (σb

g,g′ )2 = 1.
It is important to note that this choice of normalization—

which hinges upon the choice of Vg,g′—is not arbitrary. First,
the result is invariant under changing the gauge of the iMPS
for |r) and |l). Second, normalizing Vg,g′ so as to form a
representation is necessary to obtain the same value for each
anyon when aligning several identical anyons along a column
(with their strings in parallel): Otherwise, the contribution
of some of the anyons will be given Fig. 5(e) with Vg,g′ as
the green dot, while for others it will be V −1

g−1,g′−1 , which is
only guaranteed to give the same result if the Vg,g′ form a
representation.

2. Analysis

Let us now analyze the behavior of anyonic order pa-
rameters in the case of the two interpolations Z4 � Z2 DS
↔ Z4 � Z2 TC and D(Z4) QD ↔ Z4 � Z2 TC, shown in
Figs. 6(a) and 6(b), respectively. Since there are 16 anyons (g
and α can each take four possible values), there are in total 136
different overlaps. However, it turns out that many of these
overlaps are either zero, in which case we omit them from
the figure, or equal to each other (this can be both observed
numerically and explained from the symmetry structure of the
state). The main plots in Figs. 6(a) and 6(b) show the remaining
different nonzero order parameters. The color coding in any
such plot is explained in the table in the lower left corner:
The boxes in the table correspond to different anyons (rows
label g, columns label α). The colors of the dots and lines in
the table correspond to the different nonzero order parameters:
Solid dots represents the norm 〈g,α|g,α〉, and lines between
two entries represent overlaps 〈g,α|g′,α′〉, where g �= g′ and
α �= α′. The absence of a dot or an edge indicates quantities
which remain zero along the whole interpolation; that is, each
such plot carries the full information on all |〈g,α|g′,α′〉|.

Specifically, in Fig. 6(a), the blue curve describes both
the condensate fraction of (g = 2,α = −1) and the decon-
finement fraction of the anyon with (g = 1,α = i), while the
red curve describes the condensate fraction of (g = 2,α = 1)
and deconfinement fraction of (g = 1,α = 1); this relates to
the fact that at the DS-TC transition, particles have to both

195124-11



IQBAL, DUIVENVOORDEN, AND SCHUCH PHYSICAL REVIEW B 97, 195124 (2018)

θ
0 0.2 0.4 0.6 0.8 1

g
,α

|g,
α

0

0.2

0.4

0.6

0.8

1

θ
0.58 0.59 0.6

0,
i|0

,i

0.4

0.6

0.8

χ = 4
χ = 6
χ = 8

1/χ
1/36 1/16 1/8

0,
i|0

,i

0

0.5

θ ≤ 0.59758
θ ≥ 0.59765

ln |θc − θ|
-8 -6 -4 -2

ln
0,

i|0
,i

-0.5

0

χ = 8
χ = 16
χ = 24

θ
0 0.2 0.4 0.6

g
,α

|g,
α

0

0.2

0.4

0.6

0.8

1

θ
0.288 0.289

0,
1|2

,−
1

0.6

0.8
χ = 28
χ = 32
χ = 36
χ = 40

1/χ
0.05 0.1

0,
1|2

,1

0

0.5

1

θ ≈> θT

θ ≈< θT

θ θT

θ θT

β = 0.12(1)

DS TC

First-orde Sr econd-order

(i)

(ii)

(i)

(ii)

(iii)

D (Z4) QD TC

(a () b)

FIG. 6. Analysis of phase transitions between (a) Z4 � Z2 DS and Z4 � Z2 TC, and (b) D(Z4) QD and Z4 � Z2 TC. The tables on the
bottom left describe the color coding: Rows/columns label flux g/charge α of anyons, and colored dots/lines denote the color used for plotting
the order parameters |〈g,α|g,α〉| and |〈g,α|g′,α′〉|, respectively. The insets (i) and (ii) show the behavior of the order parameter indicated on
the y axis in the vicinity of the phase transition, either (i) as a function of θ for different MPO bond dimensions χ , or (ii) as a function of χ for
different θ . The sharp transition in (a) indicates a first-order transition, the smooth change in (b) a second-order transition. In the latter case, a
critical exponent β can be extracted from the data; cf. inset (iii).

condense/confine and uncondense/deconfine. In Fig. 6(b), the
blue curve gives the condensate fraction of (g = 2,α = 1) and
the red one the deconfinement fraction of (g = 0,α = i): At
the phase transition into the TC phase, the former condenses
and the latter becomes confined.

The order parameters in Figs. 6(a) and 6(b) show a different
behavior around the phase transition: In Fig. 6(a), they abruptly
drop to zero, indicative of a first-order phase transition, while
in Fig. 6(b), they vanish continuously, corresponding to a
second-order transition. This is confirmed by a careful analysis
of the data around the phase transition: The insets (i) in the two
panels show a magnified view of one of the order parameters
(cf. label) in the vicinity of the phase transition for different
values of χ : Clearly, both curves are well converged in χ ,
but show a fundamentally different behavior: discontinuous
vs continuous. This is also confirmed by plotting the order
parameter vs 1/χ for different values of the interpolation
parameter θ around the critical point, shown in the insets
(ii): While for the first-order transition, there is an abrupt
change with a clear gap in the value of the order parameter
at the phase transition, for the second-order transition its value
changes smoothly, subject to a stronger χ dependence around
the transition. For the value of the phase transition, we find
θT = 0.2896(5) for the DS-TC interpolation, Fig. 6(a), and
θc = 0.5976(2) for the D(Z4) QD-TC interpolation, Fig. 6(b).

In the case of a second-order phase transition, we can
additionally compute critical exponents β, |〈g,α|g′,α′〉| ∝
|θ − θc|β , for the various order parameters on both sides of the
phase transition. For the D(Z4) QD-TC interpolation under
consideration, we find β = 0.12(1) for all nontrivial order
parameters, consistent with a 2D Ising universality class; see
inset (iii) in Fig. 6(b).

B. Correlation length

The other relevant quantity which can be used to char-
acterize the behavior at the phase transition is the scaling

of correlation functions. In the case of topologically ordered
systems, this can encompass both correlation functions of
local observables as well as anyon-anyon correlation functions,
which are described by string-order type correlators.

1. Computation

Within the framework of PEPS, there are several different
ways to extract correlation lengths. We will now outline three
different methods which we will make use of.

The first two are based on the fact that all correlations
within PEPS are mediated by the transfer operator [Fig. 1(e)].
Specifically, both the decay of arbitrary two-point correlations
and of anyon-anyon correlation functions are determined by
the leading eigenvalues of the transfer operator. In order to
obtain the spectrum of the transfer operator, we can follow two
routes: (1) We can use exact diagonalization of the transfer
operator on an infinitely long cylinder with finite perimeter
Nv to obtain the correlation length and then extrapolate in Nv

(using a fit a exp[−bNv] + ξ∞) to get a reliable estimate of
ξ in the thermodynamic limit. In order to get access to both
local and anyon-anyon correlations, the exact diagonalization
has to be performed on all sectors of the transfer matrix,
i.e., including the possibility of inserting a flux g (g′) in the
ket (bra) layer when closing the boundary, and labeling the
eigenvectors by their topological charge (i.e., irrep label) α

and α′; the sector of the corresponding correlation function
is then given by the difference of ket and bra flux and charge
[25]. The overall correlation length ξ can be computed from the
gap in the spectrum of the transfer operator below the largest
ground space sector—in the case of Z4-invariant tensors with
42 = 16 ground states, ξ = −1/ ln |λ16/λ0|. (2) Alternatively,
we can compute the gap of the transfer operator by determining
its fixed point in the thermodynamic limit using an iMPS
ansatz, and then using an iMPS excitation ansatz as proposed in
[26–28] to model the excitations. In particular, the excitation
ansatz allows us to also explicitly construct topologically
nontrivial excitations by attaching a flux string (=symmetry
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FIG. 7. Comparison of data on correlation lengths for the D(Z4)
QD to TC transition; cf. Fig. 5(b). (a) Comparison of correlation
length different methods for obtaining correlation lengths; see (b) for
the color coding. (b) Correlation length for anyon-anyon correlations
with flux (green) and without flux (black); the latter includes trivial
two-point correlations. The data shows that in the D(Z4) QD phase,
the transition is dominated by flux condensation. (c), (d) Extraction
of the critical exponent from (c) the iMPS ansatz for the boundary
state, and (d) from extrapolation of finite cylinders.

action) to the excitation and giving it a nontrivial charge (=irrep
label), and thus allows us to access the different topological
sectors [13].

Finally, a third method to extract a correlation length is to
use the channel operator F corresponding to the fixed point
of the transfer operator [Fig. 5(f)], whose spectrum can be
computed efficiently as it is system size independent. The
correlation length can again be extracted from the subleading
eigenvalues of the channel operator, as well as the leading
eigenvalues of the dressed channel operator Fg,g′ , and addi-
tionally using irrep labels of the eigenvectors to fully address
anyonic correlations. Note, however, that this approach in
principle only gives access to correlations along a specific axis.

2. Analysis

Let us now analyze the information obtained from the
different methods. We start by a comparison of the methods for
the second-order D(Z4) QD to TC transition in Fig. 7. Panel
(a) compares the results obtained from the different methods,
which are in very good agreement. (Data from finite cylinders
are only shown in the regime where the extrapolation to Nv →
∞ works reliably.) Figure 7(b) shows the correlation length
extracted from the channel operator of the iMPS fixed point,
labeled by its flux. We see that on the left of the phase transition,
the dominating correlations are those between fluxful anyons,
which indicates that the transition from the D(Z4) QD phase is
driven by condensation of fluxes (or dyons), in accordance with
what is observed in Fig. 6(b) where the fluxes are condensed in
the TC phase. Figures 7(c) and 7(d) finally show the extraction
of the critical exponent ν from iMPS data, extrapolated in χ
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FIG. 8. Comparison of correlations for first-order (left column)
vs second-order (right column) transition. (a), (b) Data obtained
with iMPS, extrapolated in χ , showing convergence to constant ξ

(first order) vs divergent (second order) behavior. (c), (d) Scaling
of ξ in the vicinity of the phase transition obtained with iMPS,
showing convergence vs critical scaling with ν = 1 as the transition
point is approached. (e), (f) Inverse correlation lengths obtained by
diagonalizing the transfer operator using an excitation ansatz.

[panel (c)], and finite cylinder data, extrapolated in Nv [panel
(d)], which are in very good agreement.

Figure 8 compares the results for the first-order transition
from DS to TC (left column) with the second-order transition
from D(Z4) QD to TC (right column). We find that in the
first-order case, the correlation length obtained from iMPS con-
verges linearly in 1/χ to a constant ξ ≈ 25 [Fig. 8(a)], while in
the second-order case, it diverges approximately linearly in ξ

[Fig. 8(b)]; also note that in this case the correlation is already
ξ ∼ 800 for a bond dimension χ = 36. Figures 8(c) and 8(d)
show the scaling of ξ in the vicinity of the phase transition as
it is approached from the left. While in the first-order case, the
curve leaves the initial |θT − θ |1/2 scaling as the transition θT

is approaching, and this behavior does not depend on χ , the
scaling in the case of the second-order transitions approaches
the |θc − θ | scaling closer and closer to θc as χ is increased.
Finally, Figs. 8(e) and 8(f) show the inverse correlation length
1/ξ = − ln(λ1) as extracted from the diagonalization of the
transfer operator using an excitation ansatz: We find that the
eigenvalue gap in the first-order case, while small, remains
open, while it closes in the second-order case.

C. Further probes

Our main tools to analyze phase transitions will be correla-
tion length and order parameters. However, there are a number
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FIG. 9. Fidelity susceptibility, Eq. (39), for (a) first- and (b)
second-order phase transition computed using iMPS with χ = 32
for different step sizes δ (cf. Appendix A). In the first-order case (a),
χF approaches a delta function, while in the second-order case, it
diverges as log |θ − θc|. The insets show the scaling of χF with the
step size δ, which also exhibits distinct behaviors.

of other probes which allow us to look more closely at phase
transitions, and which we describe in the following.

1. Fidelity susceptibility

The overlap between ground state wave functions, known
as fidelity, has been pointed out as a probe in order to study
quantum phase transitions [29]. More specifically, the fidelity
susceptibility

χF := lim
δ→0

2[1 − f (θ,θ + δ)]

δ2
, (39)

where f (θ,θ + δ) = 〈ψ(θ )|ψ(θ + δ)〉/(NhNv) is the fidelity
per site as a parameter changes from θ to θ + δ, exhibits
universal features which can be used to characterize phase
transitions [30]. An account on the behavior of fidelity per
site and its computation using the iMPS algorithm is given in
Appendix A.

In the following, we discuss the distinct features of χF for
the two above-mentioned phase transitions, showing clearly
distinct signatures for first- and second-order transitions. The
data are shown in Fig. 9 for different values of the step size
δ → 0. In both cases, χF diverges at the phase transition.
However, the divergence is very distinct: In the case of
the first-order transition between Z4 � Z2 DS and Z4 � Z2

TC, χF (θ ) converges to a delta function as δ → 0, as can
be seen from the rescaled plot in Fig. 9(a), which shows
that χF (θ − θT ) → δ−1�((θ − θT )/δ) for a universal triangle-
shaped function �. This is in accordance with the expected
abrupt change of the ground state wave function (even per
unit cell) at a first-order phase transition. For the second-order
transition between D(Z4) QD and Z4 � Z2 TC, on the other
hand, χF ∼ log |θ − θc| as δ → 0. (Since we expect χF to
scale like the structure factor for an observable relating to the
derivative of the local PEPS tensor A(θ ) [17,30], which scales
like the corresponding correlation length ξA squared, we expect
ξA to only diverge logarithmically with |θ − θc|, in agreement
the fact that we are considering a topological phase transition.)

2. Susceptibility

Order parameters measure the amount of spontaneous sym-
metry breaking in the system. Further universal information
about order parameters can be extracted by computing their

susceptibility, that is, the scaling of their response to an
infinitesimal field which explicitly breaks the symmetry in the
vicinity of the phase transition,

χm(θ ) := ∂O

∂h

∣∣∣∣
h=0

. (40)

The resulting critical exponent χm(θ ) ∝ |θ − θc|γ allows us to
further characterize the phase transition.

In the case of topological phase transitions, O =
|〈g,α|g′,α′〉| will be an order parameter for condensation or
deconfinement. The external field h corresponds to adding an
infinitesimal term to the PEPS tensor which explicitly breaks
the symmetry of the transfer operator in favor of one fixed
point. An example, including more details on the computation
of the susceptibility as well as numerical results, is given in
Sec. VI B 1 in the discussion of the D(Z4) QD to Z4 � Z2 TC
transition.

3. Dispersion relations

Above, we have described how to use an excitation ansatz to
extract the correlation length of a PEPS wave function directly
in the thermodynamic limit. Using the same method, we can
also obtain k-dependent correlation functions, which give us
further information about features of the dispersion relation of
the system [31], and in particular about the mechanism driving
the topological phase transition [13]. We present dispersion
data for the DS to Z2 � Z1 TC transition in Appendix B.

VI. NUMERICS: RESULTS

In the previous section, we have discussed various numeri-
cal probes for the study of topological phase diagrams. In the
following, we will apply these techniques to systematically ex-
plore the whole phase diagram of Z4-invariant tensor network
states.

The main focus of this section will be the three-parameter
family introduced in Sec. IV A which includes D(Z4) QD, TC,
DS, and trivial phases. We start in Sec. VI A with summarizing
the phase diagram of the model, and discuss the different
transitions of the model in Sec. VI B [transitions from the
D(Z4) QD phase], Sec. VI C (transitions between TC and DS),
and Sec. VI D (a phase transition with continuously varying
exponents between DS and trivial phase). Finally, in Sec. VI E
we discuss the families interpolating between TC/DS and
trivial phases introduced in Sec. IV B.

A. Phase diagram of Z4-invariant tensor network states

Our main object of interest will be the family of states
defined in Sec. IV A, and in particular Eq. (33), which by
deforming a Z4-invariant tensor allowed us to interpolate
between the D(Z4) QD, toric code, double semion, and trivial
phases.

The family in Eq. (33) is parametrized by three parameters
θ = (θTC,θTC,Z2 ,θDS). Figure 10 shows a section through the
phase diagram along the three hyperplanes on which any
one of the three θ• = 0. The family includes the D(Z4)
phase (green), two toric code phases [a Z4 � Z2 TC (black)
and a Z2 � Z1 TC (blue) phase], a DS model with Z4 �
Z2 symmetry (yellow), and a Z2 � Z2 trivial phase (red).
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FIG. 10. (a) Phase diagram of the three-parameter family of
topological models with Z4 symmetry introduced in Sec. IV A which
exhibits all topological phases, shown along three hyperplanes. The
color coding uses RGB values given by the anyon wave function
norms/overlaps shown in (b); cf. Appendix C. χ = 16 has been used
for the approximation of fixed points in the iMPS calculations.

The color is based on RGB values given by the order pa-
rameters 〈2,1|0, − 1〉 (red), 〈1,i|1,i〉 (green), and 〈0,i|0, −
i〉 (blue), which allow to distinguish all those phases; cf.
Appendix C.

Before we discuss the individual phase transitions in detail,
let us give an overview of our findings:

The majority of the transitions in the phase diagram are
governed by the breaking of a single Z2 symmetry in the
transfer operator, corresponding to the arrows in Fig. 4. More-
over, except for the DS model the fixed points on both sides of
the transition do not exhibit nontrivial SPT order. Specifically,
this encompasses the D(Z4) QD (with symmetry Z4 � Z1) to
TC transition (for both Z4 � Z2 and Z2 � Z1 TC), as well as
the transitions from both TC models to the trivial phases. For
all of these transitions, we find that they fall in the 2D Ising
universality class, in accordance with the fact that they are
described by a one-dimensional transfer operator undergoing
a Z2 symmetry breaking transition. This includes in particular
the transitions marked (I), (II), and (V) in Fig. 10. This
behavior is robust also when considering direct interpolations
of the transfer operator, rather than the interpolation shown in
Fig. 10.

The transitions involving the DS model, on the other side,
are more rich. On the one hand, there are transitions which
are again described by the breaking of a single Z2 symmetry,
namely the D(Z4) QD (Z4 � Z1) to DS (Z4 � Z2) transition,
as well as the DS to trivial transition. Differently from the
previous case, however, the fixed point at the DS side of the
phase transition exhibits nontrivial SPT order. This is reflected
in the universality class of the transitions: While the D(Z4) QD
to DS transition along line (III) is still Ising type, the transition
from the DS (Z4 � Z2) to the Z4 � Z4 trivial phase (not part
of Fig. 10) seems to belong to the 4-state Potts universality
class. Finally, the DS to Z2 � Z2 trivial phase transition in
Fig. 10 exhibits continuously varying critical exponents when
moving between the lines (V) and (VI) along the θDS = 1 plane,
whose behavior does not seem to match known universality
classes.

Finally, there are transitions between the DS model and TC
models. There are two different types: First, the Z4 � Z2 DS

to Z2 � Z1 TC transition, which corresponds to the breaking
of two Z2 symmetries. While Fig. 10 does not exhibit such a
transition, it is possible to obtain it by linear interpolation of
the transfer operator. The transition is second order and lies in
the universality class of the 4-state Potts model, in accordance
with the breaking of a Z2 × Z2 symmetry. On the other hand,
there is the transition between the Z4 � Z2 DS and the Z4 �
Z2 TC, which does not involve any symmetry breaking, but
rather a reordering of the fixed point from a trivial to an SPT
phase. As we have seen, this transition, when realized by direct
interpolation, is first order; however, one can also realize a
fine-tuned second-order transition through the quadro-critical
point in the bottom plane of Fig. 10, line (IV), in which case a
2D Ising transition is observed.

Let us now discuss the findings for the individual transitions
in detail.

B. Transitions between D(Z4) QD and Z2 topological phases

1. Transition between D(Z4) QD and Z4 � Z2 TC

A transition between D(Z4) QD and Z4 � Z2 TC can be
obtained either by local filtering or by direct interpolation of
the transfer operator, as described in Eq. (30) and Eq. (38),
respectively. We have already considered the transition ob-
tained by direct interpolation when introducing our methods
in Sec. V, where we found a second-order transition in the 2D
Ising universality class, Fig. 6(b). In the following, we discuss
the phase transition obtained by local filtering along the path
labeled by (I) in Fig. 10(a).

An important feature of this interpolation is that we can
devise a microscopic mapping to the 2D Ising model, including
an explicit mapping of condensate and deconfinement fractions
to order parameters and twisted boundary conditions in the
Ising model (see Appendix D); this thus allows us to benchmark
our numerical methods with respect to the analytical results.

Figure 11 gives the condensate fractions as indicated in the
legend on the top right, identical to those in Fig. 6(b), as a
function of the interpolation variable θTC. At the phase transi-
tion, the anyons | ∗ , ± i〉 become confined (red), while |2,1〉
condenses (blue). The behavior of the order parameters clearly
indicates a second-order phase transition. The numerical data
(dots) and analytical data (lines) show excellent agreement,
and the critical point is in agreement with the analytical value
θc = 1

2 ln (1 + √
2).

From the order parameters, we can extract the critical
exponent β = 0.12(1), consistent with the analytical value
1/8, Fig. 11(i). A further critical exponent can be obtained by
studying the susceptibility of the order parameter to an external
“field” (cf. Sec. V C 2): Here, the order parameter measures
the spontaneous breaking of the (1,X2) symmetry. It can be
explicitly broken by modifying the filtering tensor (30) as

, (41)

where := diag(1 + h,1 − h,1 − h,1 + h). The suscepti-
bility is then defined as

χm(θ ) := ∂〈0,i|0,i〉
∂h

∣∣∣∣
h=0

, (42)
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FIG. 11. Condensate and deconfinement fractions for the phase
transition between D(Z4) QD and Z4 � Z2 TC constructed by local
filtering [line (I) in Fig. 10], computed with χ = 24. The color coding
is given by the table in the top right corner as explained in Fig. 6.
(i) Scaling of the deconfinement fraction 〈0,i|〈0,i〉 in the vicinity
of the transition; we find a critical exponent β = 0.12(1). (ii) Critical
exponent γ = 0.178(6) obtained from the scaling of the susceptibility
of the deconfinement, where δ denotes the step sizes used for
approximating the derivative. (iii) Correlation length ξ determined
from finite cylinders, yielding a critical exponent ν = 1.06(9). See
text and Fig. 6 for further discussion of methods.

where |0,i〉 is a function of θ and h. We have examined the
behavior of χm by using finite differences for the derivative
for different step sizes δ. The scaling of χm with respect to θ

close to the critical point, Fig. 11(ii), gives a critical exponent
γ = 1.78(6), consistent with the analytical value 7/4. Finally,
we have also determined the correlation length on an infinite
cylinder, yielding a critical exponent ν = 1.06(9), Fig. 11(iii),
in agreement with the analytical value ν = 1.

2. Transition between D(Z4) QD and Z2 � Z1 TC

Let us now consider the phase transition between D(Z4) QD
and Z2 � Z1 TC labeled (II) in Fig. 10(a); the Z2 � Z1 TC is
obtained from D(Z4) QD by condensing the |0, − 1〉 charge
rather than the |2,1〉 flux as for the Z4 � Z2 TC, leading to the
confinement of the fluxes {|1,∗〉,|3,∗〉}.

Figure 12(a) summarizes the numerical results on the
interpolation. The main panel shows the condensation and
deconfinement fractions, as indicated in the bottom left. The
data are consistent with a second-order phase transition at
θc = 0.4483(5). The scaling of the order parameters |〈1,i|1,i〉|
yields a critical exponent β = 0.11(2) [inset (i)], and for
the correlation length, we find ν = 1.04(6) [inset (ii), from
cylinders], both consistent with the 2D Ising universality class.
Inset (iii) shows the inverse correlation length as extracted
from the transfer operator using an excitation ansatz. Here,
green dots correspond to topological excitations with a flux
string attached (i.e., domain wall excitations of the broken
symmetry Z4 � Z1 → Z2 � Z1), and black dots to zero-flux
excitations (both with and without charge); we thus find that
the dominating length scale after the transition indeed arises
from the confinement length of a flux (or dyon).

Let us add that we found that the phase transition between
D(Z4) QD and Z2 � Z1 TC constructed through direct inter-
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FIG. 12. Order parameters for the phase transitions between (a)
D(Z4) QD and Z2 � Z1 TC and (b) D(Z4) QD and Z4 � Z2 DS. The
colors are defined through the anyon tables in the lower left corners; cf.
Fig. 6. Insets (i) and (ii) in (a) and (b) give the extraction of the critical
exponents β and ν of an order parameter and correlation length,
respectively. Inset (iii) in (a) and (b) shows the inverse correlation
length extracted from the transfer operator using an iMPS excitation
ansatz. Here, black (green) lines correspond to correlations of anyons
with trivial (nontrivial) flux. See text for a discussion.

polation of the transfer operator lies in the Ising universality
class as well.

3. Transition between D(Z4) QD and Z4 � Z2 DS

As a last transition out of the D(Z4) QD phase, we consider
the transition to the Z4 � Z2 DS model via the path (III) in
Fig. 10(a), Eq. (32). This transition can yet again be mapped to
the 2D Ising model; cf. Appendix D. The results are shown
in Fig. 12(b), were in the main panel dots (lines) give the
numerical (analytical) result: Numerical and analytical order
parameters show excellent agreement, and we find a second-
order phase transition whose critical exponents match those of
the 2D Ising model, with the transition at θc = 1

2 ln (1 + √
2).

In particular, inset (iii) shows again the subleading eigenvalue
of the transfer operator, where green dots label sectors with
a nontrivial flux string; the dominant length scale before the
transition thus arises from the mass gap of the |2,−1〉 dyon
which is condensed in the DS phase.

C. Phase transitions between toric codes and double
semion model

Let us now turn towards phase transitions between the
toric code and the double semion phase. This transition is of
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FIG. 13. Order parameters for the phase transition between DS
and Z4 � Z2 TC along the line (IV) in Fig. 10(a), computed with
χ = 24. The colors are defined through the table on the right; cf. Fig. 6.
(i) Scaling of the correlation length ξ of the boundary phase, indicative
of a second-order transition. (ii) Correlation length determined from
the transfer operator using an iMPS excitation ansatz. (iii) Order
parameter for SPT order in the fixed point of the transfer operator,
Eq. (43), in the vicinity of the phase transition. It exhibits a sharp
jump which allows us to accurately determine the transition point.

particular interest, as it is not described by anyon condensation,
and it has been conjectured that it should thus be first order,
which is supported by exact diagonalization calculations [32].

1. Transition between Z4 � Z2 TC and Z4 � Z2 DS

Unlike for phase transitions which are described by conden-
sation of anyons, obtaining an interpolation which achieves
a direct transition between the TC and the DS phase is
nontrivial and requires fine-tuning; for a generic interpolation,
one would expect to go through an intermediate phase which
has condensation-driven transitions to either TC or DS, i.e.,
either a trivial or a D(Z4) phase.

We have already studied one direct transition between
Z4 � Z2 DS and Z4 � Z2 TC in Sec. V, constructed by direct
interpolation of the transfer operator, where we found that the
transition was first order, cf. Fig. 6(a) and Figs. 8(a), 8(c) and
8(e).

Another possibility of obtaining a direct transition is to
consider the horizontal plane (θTC,Z2 = 0) in the phase diagram
Fig. 10, which exhibits a quadro-critical point in which TC,
DS, trivial, and D(Z4) phases meet. As mentioned earlier,
the whole plane can be mapped to the 2D Ising model, and
so can a diagonal path θ (θ ) = (θ,0,1 − (1 − θc)θ/θc) [with
θc = 1

2 ln(1 + √
2)], labeled (IV) in Fig. 10(a), which passes

through the critical point at θ (θc) = (θc,0,θc). The numerical
findings along this interpolation are shown in Fig. 13(a) and are
consistent with a phase transition in the 2D Ising universality
class.

While the boundary states |
), |r) of the TC and DS model
both have Z4 � Z2 symmetry, they differ in the projective
action Vg , Vh of the generators g = (X,X) and h = (1,X2)
on the virtual indices of boundary MPSs; cf. Eqs. (18) and

(25): While in the case of the TC phase, the symmetry actions
commute, in the DS phase they form a nontrivial projective
representation equivalent to the Pauli matrices. This is in close
analogy to the trivial vs Haldane phase in the case of Z2 ×
Z2 ⊂ SO(3) symmetry for 1D spin chains. These two phases
can be distinguished by an order parameter tr[VgVhV

†
g V

†
h ] =

±1 which measures the commutator of the virtual symmetry
actions. It can be computed from the iMPS description of |
)
by considering the normalized fixed points σg,g′ of its dressed
channel operators Fg,g′ [see Fig. 5(b)] as

Q = Tr
(
σ1,1σ0,2σ

−1
1,1 σ−1

0,2

)
, (43)

given that the iMPS is in canonical form with σ0,0 ∝ 1 (then,
σg,g′ ∝ Vg,g′ with Vg,g′ unitary; cf. the discussion in Sec. V A).
Here, a value of Q = +1 (Q = −1) indicates that the system
is in the TC (DS) phase [33,34]. Figure 13(a)(iii) shows Q in
the vicinity of the phase transition: It exhibits a sharp jump,
which allows us to accurately determine the value of the critical
point.

2. Transition between Z2 � Z1 TC and Z4 � Z2 DS

In contrast to the previous case, there does not exist
a direct path between Z2 � Z1 TC and Z4 � Z2 DS in
Fig. 10(a) on the θTC = 0 hyperplane. We can however obtain
a direct phase transition between the two phases by linear
interpolation of the on-site transfer operators; cf. Eq. (38).
The results are shown in Fig. 14: We find clear signs of
a second-order phase transition from DS to TC driven by
simultaneous condensation of the |0, − 1〉 anyon and decon-
densation of the |2, − 1〉 anyon, which is witnessed by a
diverging correlation length and continuously vanishing order
parameters.

The critical point is found at θc = 0.5, which we can trace
back to a self-duality of the model. Specifically, there exists
a matrix product unitary (MPU) U which interchanges the
on-site transfer operator of the DS and the TC fixed point when
commuted with it; this implies that for the transfer operator
T(θ ) of a column, UT(θ )U † = T(1 − θ ). The explicit con-
struction and analysis of the MPU U is given in Appendix E.
In fact, U also interchanges the order parameters for the two
phases, and thus, the order parameters in Fig. 14 are fully
symmetric.

From the scaling of the correlation length at the critical point
we extract a critical exponent ν ≈ 0.66. The order parameters
exhibit two different critical exponents, which we determine
as β1 = 0.069(6) (for the deconfinement fraction 〈0,i|0,i〉)
and β2 = 0.081(5) (for the condensate fraction 〈0, − 1|0,1〉),
respectively. Our findings for ν and β2 are in accordance
with the universality class of the Ashkin-Teller model at
the 4-state Potts point (with ν = 2/3 and β = 1/12), which
is in agreement with the simultaneous breaking of two Z2

symmetries at the transition.

D. Phase transition with continuously varying critical exponents

An interesting feature of the phase diagram of Fig. 10 is
the transition between the DS and the trivial phase in the
θDS = 1 hyperplane spanned by the lines (V) and (VI) in
Fig. 10. A cut through this hyperplane is shown in Fig. 15(a).
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FIG. 14. (a) Order parameters along the phase transition between
Z4 � Z2 DS and Z2 � Z1 TC; cf. Fig. 6 for the legend. The model
has an exact self-duality θ ↔ 1 − θ ; see text. (i) Correlation length
(from iMPS) vs χ around the transition, indicative of a second-
order transition. (ii) Extraction of critical exponent ν from finite
cylinders, yielding ν = 0.65(6). (iii) Extraction of critical exponents
β, yielding two exponents β1 = 0.069(6) and β2 = 0.081(5). The
observed exponents are compatible with a 4-state Potts transition.
(b) Inverse correlation length extracted from the transfer matrix
using an iMPS excitation ansatz. Black (green) denotes again anyon
correlations with (without) flux, showing that the self-duality map
exchanges flux and charge. (c) Correlation length computed using
iMPS, yielding ν = 0.66(2).

When moving along the plane, as parametrized by the angle
φ, (θTC,θTC,Z2 ) = t(cos φ, sin φ), we find that the transition
is second order with critical exponent ν = 1, but the critical
exponents β± for the order parameters on the two sides of the
transition change continuously. This is shown in Figs. 15(b)
and 15(c). Here, β+ is the critical exponent of the order
parameter 〈0,1|2, − 1〉 in the DS phase, and β− is the critical
exponent of the order parameter 〈0,i|0,i〉 in the trivial phase.
At φ = 0, the transition is in the Ising universality class
with β+(φ = 0) = β−(φ = 0) = 1/8. As we change φ, β+
grows until the final value β+(φ = π/2) = 0.23(1), while β−
decreases until β−(φ) = 0.04(1). Let us add that the critical
behavior is independent of the direction along which one
crosses the phase transition, as to be expected.

Given the symmetries of the model, it is plausible to
conjecture that this transition maps to the self-dual line of the
Ashkin-Teller (AT) model which exhibits continuously varying
critical exponents as well, including two different “electric”
and “magnetic” exponents βe and βm [35]. However, there are
several discrepancies, such as the constant ν = 1 as opposed
to a continuously varying ν in the AT model, and the fact that
in the AT model, βe and βm both change in the same direction,
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FIG. 15. (a) θDS = 1 hyperplane of the three-parameter family
constructed in Sec. IV A, Fig. 10, exhibiting a DS and a Z2 � Z2

trivial phase. See Fig. 10 for the color coding. Transitions are scanned
along lines with different angles φ. (b) Scaling of 〈0,i|0,i〉 and
〈0,1|2, −1〉 in the vicinity of the transition, as a function of φ.
(c) Critical exponents β± for their scaling as a function of φ; we
find a continuously varying transition with ν ≈ 1 constant.

whereas β+ and β− change in opposite directions, leaving the
identification of the exact nature of this transition an open
question.

E. Phase diagrams of toric codes and double semion model

After having studied the phase diagram of the three-
parameter family in detail, we will now proceed to examine
the behavior of phase transitions which have been constructed
in Sec. IV B by further deforming the toric codes and double
semion model down to trivial phases.

1. Z4 � Z2 toric code

In the case of the Z4 � Z2 toric code, the two-parameter
deformation Eq. (34) can induce phase transition to either the
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FIG. 16. Phase diagrams of models which are obtained by de-
forming (a) Z4 � Z2 TC, (b) Z2 � Z1 TC, and (c) Z4 � Z2 DS
towards trivial phases, as discussed in Sec. IV B. The corresponding
anyon tables below each phase diagram explain the color coding,
where the RGB values of each point are given by the corresponding
anyon wave function overlaps/norms. All data have been obtained
with χ = 16.
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FIG. 17. Order parameters along the interpolation DS to Z4 � Z4

trivial phase (cf. table on bottom left). The left inset shows a zoom
of the condensate fraction 〈0,1|2,1〉 in the vicinity of the transition,
and the right inset the scaling of the correlation length with the iMPS
bond dimension χ (with a quadratic fit), both of which show clear
signs of a first-order transition.

Z4 � Z4 TP or Z2 � Z2 TP. The phase diagram of the model
is shown in Fig. 16(a). Away from the tricritical regime (where
convergence becomes slow), we find that the phase transition
between the Z4 � Z2 TC and either of the trivial phases lies in
the Ising universality class.

2. Z2 � Z1 toric code

The two-parameter family of Eq. (35) can drive the Z2 �
Z1 TC into the two trivial phases with Z1 � Z1 and Z2 �
Z2 symmetry, respectively. The phase diagram is shown in
Fig. 16(b). At θ1 = 0, the phase transition between Z2 � Z1

TC and Z2 � Z2 TP can be mapped to the 2D Ising model.
Furthermore, away from the tricritical regime, the transitions
between Z2 � Z1 TC and the two trivial phases are found to
lie in the Ising universality class.

3. Z4 � Z2 double semion model

Let us now turn to the two-parameter family of Eq. (36). It
exhibits a Z4 � Z2 DS phase, two trivial phases (Z4 � Z4 and
Z2 � Z2), as well as the D(Z4) QD phase. Figure 16(c) shows
the phase diagram. While the transitions between Z4 � Z2

DS and D(Z4) QD across the horizontal axis and between
Z4 � Z2 DS and Z2 � Z2 TP across the vertical axis lie in the
Ising universality class, the transition from Z4 � Z2 DS to the
Z4 � Z4 trivial phase is different: One the one hand, it requires
fine-tuning to achieve a direct transition, which we obtain
along the black line in Fig. 16(c) given by θ2 = θ1 − (θT

1 − θT
2 )

through the transition point (θT
1 ,θT

2 ) = (0.5830,0.3313), and
on the other hand, it exhibits clear signs of a first-order
transition, as shown in Fig. 17.

VII. CONCLUSIONS

In this paper, we have used the framework of PEPS to
study topological phase transitions. Using the formalism of
G-injective PEPS, we have to set up families of models which
interpolate between different topological phases, and have

utilized the description of topological excitations in PEPS
through string operators on the entanglement degrees of free-
dom to set up order parameters characterizing condensation
and deconfinement of anyons, which allowed us to study the
topological phases of these models and the transitions between
them.

Starting from a model with Z4 symmetry, we have obtained
a family of states encompassing the D(Z4) quantum double,
toric code, double semion, and trivial phases, and set up
interpolations between them. Using order parameters for con-
densation and deconfinement, anyonic correlation functions,
and some further probes, we have characterized the phase
diagram of the model. We found a rich structure where all
possible phases and the transitions between them are realized.
Analyzing the phase transitions revealed a range of different
types of transitions, both first and second order. We found
a number of transitions in the 2D Ising universality class,
compatible with the understanding that these transition break a
singleZ2 symmetry, but also transitions in the 4-state Potts uni-
versality class, as well as transitions with continuously varying
exponents whose universal behavior is not yet identified. We
also found that the transition between double semion and toric
code could be both first and second order, and exhibit different
critical exponents.

It would be interesting to further investigate the nature of
a generic interpolation between the toric code and the double
semion model. If one found that an interpolation between these
phases (or any other two phases) is generically first order,
this would also have implications on the results obtained with
fully variational PEPS calculations, where the tensor could
change abruptly at the phase transition: Having generically a
first-order transition implies that there is a range of values of
the order parameters which cannot be reached by any choice
of parameters, suggesting that the first-order transition will
persist even if considering a fully variational simulation.

The order parameters employed in this work for the analysis
of topological phase transitions are not restricted to explicitly
designed families of tensors: They can also be applied to
scenarios where the tensors are obtained variationally by
minimizing the energy of a given Hamiltonian, as long as
the numerical method keeps track of the different topological
symmetry sectors in the tensor. Note that this does not rule
out explicit breaking of the symmetry which is important to
obtain the best variational wave functions, as long as the sector
label of the symmetry-broken tensor is being kept track of as
well. It would thus be interesting to use these order parameters
for condensation and confinement to analyze the behavior of
further topological phase transitions through variational PEPS
calculations.
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APPENDIX A: PHASE TRANSITIONS AND FIDELITY
PER SITE

The notion of fidelity per site has been studied in the
context of tensor network states in [36]. It gives a measure
of distinguishably between quantum states and it is defined as
the normalized overlap of two wave functions per site,

f (θ1,θ2) =
∣∣∣∣ 〈θ2|θ1〉√〈θ1|θ1〉〈θ2|θ2〉

∣∣∣∣
1/N

, (A1)

and N → ∞ in the thermodynamic limit. Let

(A2)

where

(A3)

is the on-site transfer operator and the top and bottom tensors in
Eq. (A2) are the local tensors for the left and right fixed point
of the transfer operator T(θ1,θ2) computed using the iMPS
algorithm. Let λ0 be the largest eigenvalue of H; then

f (θ1,θ2) = λ0(θ1,θ2)√
λ0(θ1,θ1)λ0(θ2,θ2)

, as N → ∞. (A4)

Fidelity per site can used to characterize the behavior of
phase transitions. Figure 18 shows a comparison of fidelity
per site for (a) second- and (b) first-order phase transitions.
Figures 18(c) and 18(d) shows the behavior of fidelity per site
across different slices marked in the surface plot Figs. 18(a) and
18(b). Although, f (θ1,θ2) changes smoothly in the first-order
case we observe a cusplike behavior in the transition regime
which is qualitatively different in comparison to the second-
order phase transition between the D(Z4) QD and Z4 � Z2

TC.
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FIG. 19. Dispersion relation of the transfer operator at the data
points in the vicinity of phase transition between Z4 � Z2 DS and
Z2 � Z1 TC phase (see Sec. VI C 2). The computations have been
performed for the bond dimension χ = 24.

APPENDIX B: EXCITATION SPECTRUM
OF THE TRANSFER OPERATOR

We analyze the dispersion relation of the transfer operator.
The computation of the low-lying excited states of the transfer
operator has been achieved by using the excitation ansatz [28].
We present our findings for the phase transition between the
Z4 � Z2 DS and Z1 � Z1 TC phases, where the fixed points
of the transfer operator spontaneously break the Z4 � Z2

symmetry to Z2 � Z1.
Since the transfer operator is Z4 � Z4-invariant, we can

label each excitation of the transfer operator for the given k as
λ

g′,α′
g,α , where (g,g′) is a label for the conjugacy class and (α,α′)

is a label for an irrep ofZ4 � Z4. It is important to note that the
different species of anyonic particles in the TC and DS phases
can be labeled by (g,α).

As the system is tuned from the DS phase towards the critical
point, bosonic excitations get condensed to the vacuum, and
this property is crucial in determining the behavior of the sys-
tem. Remarkably as first suggested in [13], that condensation
of bosonic anyons is manifested in the excitation spectrum of
the transfer operator. The low-lying excitations labeled as λb

I

in Fig. 19(a) are identified with the condensation of bosons.
Furthermore, the excitations labeled as λ

0,i
0,i and λ

2,i
2,i represent

the deconfinement of e and em anyons, respectively.
Similarly, on the other side of the critical point in the

Z2 � Z1 TC phase, the behavior of the system is characterized
by the condensation of magnetic anyons [labeled as λm

I in
Fig. 19(b)]. Excitations labeled as λ

1,i
1,i and λ

1,−i
1,−i manifest the

deconfinement of semions and their conjugates.

APPENDIX C: RGB CODING OF THE PHASE DIAGRAM

The phases in Fig. 10 are encoded using an RGB scheme,
where the values for red, green, and blue are determined by
the three fractions C = {〈2,1|0, − 1〉, 〈1,i|1,i〉,〈0,i|0, − i〉},
whose values are sufficient to visualize every phase which can
be realized by deformation. In the following, we will explain
the appearance of different phases in Fig. 10.

(1) In the D(Z4) QD, none of the possible anyons are
condensed or confined, which means that the only fraction
from C with a nonzero value is 〈1,i|1,i〉. So the green region
in the phase diagram is identified with the D(Z4) QD.
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(2) In the case of the Z4 � Z2 TC, all the anyons of form
| ∗ , ± i〉 are confined, which implies that the overlaps 〈1,i|1,i〉
and 〈0,i|0, − i〉 are equal to zero. Furthermore, the anyon |2,1〉
is condensed to the vacuum but it can be distinguished from
the anyon |0, − 1〉. Since every fraction in C is zero for the
Z4 � Z2 TC phase, every point in the black region corresponds
to Z4 � Z2 TC.

(3) In the Z2 � Z1 TC phase, anyons of the form |1,∗〉 and
|3,∗〉 are confined. Anyons |2,1〉 and |0, − 1〉 are not confined
but they can be distinguished from each other. The only fraction
inC with a nonzero value is 〈0,i|0, − i〉 which explains the blue
color for the Z2 � Z1 TC.

(4) Anyons |0, ± i〉 are confined in the Z4 � Z2 DS phase
which implies that the overlap 〈0,i|0, − i〉 is zero. On the other
hand, the anyon |1,i〉 is deconfined and the anyons |2,1〉 and
|0, − 1〉 are mutually indistinguishable (i.e., 〈2,1|0, − 1〉 =
1). The fractions in C with nonzero value are 〈0,i|0,i〉 (green)
and 〈2,1|0, − 1〉 (red). The sum of red and green produces
yellow, so the Z4 � Z2 DS phase is identified with yellow
region.

(5) In the case of theZ2 � Z2 TP the only nonzero fraction
from C with a nonzero value is 〈2,1|0, − 1〉 which determines
the color of the Z2 � Z2 TP phase to be red.

APPENDIX D: ISING MODEL AND TOPOLOGICAL
PHASE TRANSITIONS

In this Appendix, we discuss a mapping between the
partition function of the classical Ising model and the norm of
the vacuum state which is parametrized by the tuning variable
θ . We will focus our attention here on the phase transition
between D(Z4) QD and Z4 � Z2 TC, but the description is
generic enough to be applied in other cases.

1. Classical Ising model

We begin by writing down the partition function in terms
of Ising variables si assigned to each vertex [Fig. 20(a)]:

Z =
∑

s

∏
〈i,j〉

eβsi sj . (D1)

For later purposes, it will be convenient to interchangeably
use binary variables bi = {0,1} and si = {−1,1}, where si =
(−1)bi , to express each Ising configuration. We use the follow-
ing graphical notation to represent Boltzmann weights on the
horizontal and vertical edges of square lattice:

or =
eβ if bi = bj

e−β otherwise. (D2)

It is possible to construct a defective edge by inserting a
Pauli x between connecting sites, which modify the Boltzmann
weights as follows:

=
e−β if bi = bj

eβ otherwise. (D3)

We use here a blue line to indicate the presence of a Pauli x

(or X) at an edge in Eq. (D3). Its presence at an edge switches

(a)

(b) (c)

(d)

FIG. 20. (a) Standard Ising model on a square lattice. The string
of defective edges shown by colored edges indicates the presence
of Pauli x in the link. An edge with the diamond denotes an action
corresponding to local order parameter. (b) The norm of the vacuum
|0,1〉 constructed by contracting the bra and ket index. (c) More
descriptive illustration for the tensor network of vacuum with the local
structure of on-site tensors. (d) Ising model which emerged from the
norm of the vacuum.

the interaction from ferromagnetic to antiferromagnetic while
preserving the whole object as a valid partition function. A
Pauli x at an edge also denotes the symmetry action. It is
possible to have a tensor network description of the partition
function where all the local tensors are invariant under the
action of X on all the legs. This also implies that a partition
function with a string of X’s will remain invariant under any
continuous deformation in the string provided that the end
points remain fixed.

At this point, it is instructive to write down an analytic
expression for the expectation value of average magnetization
per two sites:

b

( )
i,j

= 0,1

=
s

(s0 + s1) eβ

i,j
= 0,1

eβsisj

= 1 − sinh−4 (2β)
1/8

(D4)

where the horizontal and vertical links in the product are
expressed by an inclined edge. The cross sign on the edge
indicates local order parameter Z on the vertices labeled 0
and 1. Although the link has negative weights, in analogy to
Eq. (D3), we define it as follows:

. (D5)

2. Anyonic vacuum and excitations

An important object to inspect in order to analyze the norm
of a quantum state is the on-site transfer operator. We start by
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writing it pictorially for the D(Z4) QD with deformation:

=
3

k,l=0

=
3

k=0

, (D6)

where each black circle in the sum with label k denotes Xk

and X is the generator of Z4 with regular representation.
The outline of circles specifies the Hermitian conjugate. Red
bubbles represent deformation exp (θX2). The last equality is
possible since black and red circles commute and the on-site
tensors are isometric. The deformation modeled by red bubbles
drives the system from the D(Z4) QD to Z4 � Z2 TC phase.
Using Eq. (D6) we can write the norm of vacuum as

0, 1|0, 1 =
3

ki,li=0 rings

=
t edges

, (D7)

where the product is over all the rings [Figs. 20(b) and 20(c)]

and by using Eq. (D6) we can shrink each ring to an

edge with the following definition:

= tr Xtie2θX2
Xtj

=
2(eθ + e−θ) if ti − tj = 0 (mod 4)
2(eθ − e−θ) if ti − tj = 2 (mod 4)
0 otherwise

. (D8)

Each edge can be identified as an interaction in the Ising model

on a square lattice. In order to be succinct we will write as

. Since the Boltzmann weights are zero if ti − tj = 1 (mod

2), we can write Eq. (D7) as a sum over two copies of the Ising
model on a square lattice [Fig. 20(b)]:

0, 1|0, 1 =
ti=0,2 i,j

+
ti=1,3 i,j

. (D9)

Terms in Eq. (D1) behave analogously to Eq. (D9). By
identifying different combinations in Eq. (D2) and Eq. (D8)
with each other we can write

eβ = 2(eθ + e−θ ), e−β = 2(eθ − e−θ ),

which implies β = tanh−1 (e−2θ ).
Now, consider the anyon excitation |0,i〉 which gets con-

fined as the system approaches the critical point. More pre-
cisely, the norm of |0,i〉 is zero in the Z4 � Z2 TC phase. The

norm of the excitation, 〈0,i|0,i〉, contains the ring

which shrinks to the edge . We can write the norm
as

0, i|0, i =
t i,j

= 0,1

=
t i,j

= 0,1 . (D10)

The brown diamond indicates a charge which is given by Z :=
Z1 in the ket and bra layer. The trace over each configuration
on the edge is defined as follows:

= tr ZXtieθX2
ZeθX2

Xtj

=
2

√−1
ti if ti − tj = 0 (mod 4)

0 otherwise

. (D11)

We summarize the Boltzmann weight of all the configurations
for two models in Table I.

It is clear from the table that an edge corresponds
to the evaluation of magnetization per site up to a weighting
factor 2(eθ + e−θ ). Using Eq. (D4) for magnetization per site
and dividing by

2(eθ + e−θ ) = 1
2 (tanh1/2 β + tanh−1/2 β)

in order to compensate for the weighing factor we get an
analytic expression for the norm of |0,i〉:

〈0,i|0,i〉 = 2(1 − sinh−4 2β)
1/8

tanh1/2 β + tanh−1/2 β
. (D12)

Excitation |2,0〉 gets condensed to the vacuum in the

Z4 � Z2 TC phase. Rings create a string of defective

edges. In order to be consistent with notation used in Eq. (D3),

we write as . Table I contains the Boltzmann

weights for different configurations of in column 6.
Overlap of excitation |2,1〉 with vacuum |0,1〉 creates a semi-
infinite string of edges [Fig. 20(d)]. In order to get an
analytic expression for condensate fraction 〈0,1|2,1〉, we first
map the model from the 2D classical Ising on a square lattice
to a 1D quantum Ising chain. The Kramers-Wannier duality of
the 2D classical Ising manifests itself as a 1D quantum Ising
duality using disorder operators on a dual lattice:

τ z
i+1/2 =

∏
j�i

σ x
j , τ x

i+1/2 = σ z
i σ z

i+1. (D13)

σx
i (τ x

i+1/2) and σ z
i (τ z

i+1/2) are Pauli matrices on a (dual) square
lattice. Using this transformation, a semi-infinite domain wall
created by a string of X’s (. . . XXX) translates into a point
operator corresponding to magnetization per site on the dual
lattice. The condensate fraction 〈0,1|2,1〉 can be written
analytically as

〈2,1|0,1〉 = (1 − sinh−4 2β∗)
1/8

, (D14)

where β∗ is related to β by sinh 2β sinh 2β∗ = 1.
We have computed analytically two condensate fractions

in Eq. (D12) and Eq. (D14). The rest of the nonzero but not
constant overlaps can be proved equal to either of the two using
the following identities:

= = , (D15)

= . (D16)

The equality holds for every value of θ along the phase transi-
tion. The analytic results conform exactly with the numerical
data in Fig. 11(a).
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TABLE I. Comparison between the Boltzmann weights of standard Ising model (blue) and two decoupled
copies of Ising models (brown) on the square lattice which emerged from the norm of the quantum vacuum.

The norm of the vacuum for the phase transition between the
D(Z4) QD and Z2 � Z1 TC with explicit symmetry breaking
can also be mapped to the classical Ising model where the
Ising variables have different Boltzmann weights. The D(Z4)
QD ↔ Z4 � Z2 DS phase transition also gives rise to an Ising
model but the identification of Ising variables is subtle as the
local tensor network description of the DS model breaks the
rotational symmetry.

3. Simplifications by explicit symmetry breaking

We conclude this appendix with a note on how explicit sym-
metry breaking can prove useful in simplifying the mapping
between certain interpolations and classical models (not neces-
sarily restricted to the Ising model). To this end, let us consider
the interpolations between DS and Z4 � Z2 TC and Z2 � Z1

obtained by direct interpolation of the on-site transfer operators
E. In this case, it is straightforward to check that for all three
on-site transfer operators, it holds that E = EP ⊗4

0 + EP ⊗4
1 ,

where each Pc acts on a ket-bra pair of indices, and Pc projects
onto the 4-dimensional space of ket-bra operators spanned
by X2a+cZ2b. That is, E has a fully local block structure
corresponding to the blocks Pc, c = 0,1, which relates to the
fact that all tensors in the family break the same Z2 symmetry
(namely Z4 � Z4 to Z4 � Z2). By projecting E locally onto,
e.g., P0, we can break this symmetry explicitly, and thereby
replace the corresponding interpolations with interpolations
with a (ket+bra) bond dimension of 4. This, on the one hand,
facilitates possible mappings to classical models (such as a
mapping of the DS to Z4 � Z2 TC interpolation to a loop
model, and of the DS to Z4 � Z2 interpolation to a classical
transfer operator with breaking of a Z2 × Z2 symmetry),
and at the same time, it allows for more efficient numerical
simulations, used, e.g., for the large-χ data in Fig. 8(a).

APPENDIX E: UNITARY EQUIVALENCE BETWEEN
Z4 � Z2 DS AND Z2 � Z1 TC

In this Appendix, we give an MPO construction of a unitary
which transforms the transfer operators of Z4 � Z2 DS and
Z2 � Z1 TC into each other. It is helpful for later purposes to
first write down the local tensors which represent the RG fixed
points of two phases. In the case of the Z4 � Z2 DS model

.

(E1)

The green ring is an MPO projector for Z4 � Z2 DS applied
on D(Z4) QD (black ring). In later usage, we will drop the
subscripts in matrix notation. Similarly, for the Z2 � Z1 TC

. (E2)

Moreover, the on-site transfer operators (termed “double
tensors” in the following) of two models have the same
representation as given in Eq. (E1) and Eq. (E2). The transfer
operator constructed by blocking the double tensors, E(θ ) =
θEDS + (1 − θ )ETC, can be interpreted as a sum of alphabetic
strings where each alphabet is either the DS or TC double
tensor. And the local tensor u of the desired MPO unitary U

is expected to swap the double tensor of the Z4 � Z2 DS with
the double tensor of Z2 � Z1 TC. Local tensor u should act
to substitute the double tensor of DS with the double tensor of
TC and vice versa.

Motivated by the construction of discriminating string order
parameters for topological phases in [37], we start by writing
the local tensor description of MPO U :

(E3)

where the top (bottom) index is identified with the row
(column) index of the matrix and the arrowhead points in the
direction of column index. Now, we show why Eq. (E3) is
the right description of u by showing its action on the on-site
transfer operators. With u defined in Eq. (E3), its action on the
Z4 � Z2 DS tensor is

(E4)

where X± = 1 ± X2. Although, it is not very clear in the
above form, it is more insightful to understand the action
by a unitary transformation. Consider a unitary M with the
following definition,

, (E5)
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where the joint of the top (bottom) indices corresponds to the
row (column) index of the matrix. By applying M to Eq. (E4),
we obtain

, (E6)

where Z± = 1 ± Z2. Matrix entries across the main diagonal
correspond to the four blocks (or fixed points since each block
can be identified with a fixed point) of Z2 � Z1 TC [see
Eq. (20)]. MPO projectors (blue and green rings) in Eq. (E1)
and Eq. (E2) commute with the black MPO of the D(Z4)
QD, so the action of u on the DS tensor can be summarized
as

, (E7)

where

(E8)

Now, we consider the action of u on the local tensor of the
Z2 � Z1 TC:

. (E9)

In order to study the structure of Z4 � Z2 DS blocks, again we
define a unitary

. (E10)

By doing a unitary transformation on Eq. (E9),

. (E11)

The two blocks are completely identical and correspond to one
of the symmetry-broken fixed points of theZ4 � Z2 DS model.
Similarly to Eq. (E7), the action of u on the Z2 � Z1 tensor
with the local tensor of D(Z4) QD produces the local tensor
of the Z4 � Z2 DS model:

. (E12)

Furthermore, from the action of u in Eq. (E7) and Eq. (E12), we
can also verify that the following relation also holds between
u and the on-site transfer operators of the Z4 � Z2 DS and
Z2 � Z1 TC:

(E13)

where

. (E14)

In order to obtain the equation UT(θ )U † = T(1 − θ ) of
Sec. VI C 2, we insert u at one end of the transfer operator
and by using Eq. (E13) and by zipping u to the other end of
the transfer operator we can achieve the global action of U as
required.
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