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Nonlinear optical effects of opening a gap in graphene

David N. Carvalho* and Fabio Biancalana
School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh, United Kingdom

Andrea Marini
ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

(Received 6 October 2017; revised manuscript received 26 February 2018; published 14 May 2018)

Graphene possesses remarkable electronic, optical, and mechanical properties that have taken the research
of two-dimensional relativistic condensed matter systems to prolific levels. However, the understanding of
how its nonlinear optical properties are affected by relativisticlike effects has been broadly uncharted. It has
been recently shown that highly nontrivial currents can be generated in free-standing samples, notably leading
to the generation of even harmonics. Since graphene monolayers are centrosymmetric media, for which such
harmonic generation at normal incidence is deemed inaccessible, this light-driven phenomenon is both startling
and promising. More realistically, graphene samples are often deposited on a dielectric substrate, leading to
additional intricate interactions. Here, we present a treatment to study this instance by gapping the spectrum and
we show this leads to the appearance of a Berry phase in the carrier dynamics. We analyze the role of such a phase
in the generated nonlinear current and conclude that it suppresses odd-harmonic generation. The pump energy
can be tuned to the energy gap to yield interference among odd harmonics mediated by interband transitions,
allowing even harmonics to be generated. Our results and general methodology pave the way for understanding
the role of gap opening in the nonlinear optics of two-dimensional lattices.
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I. INTRODUCTION

The physics of graphene is unusual in that its electrons can
be adequately modeled as relativistic massless Dirac fermions,
which admit a linear energy dispersion: the famous Dirac
cones. This property itself is known to induce highly nonlinear
dynamics for light [1]. Since this electronic dispersion is
ungapped, with the bands extrema touching at the Dirac
points (termed K and K′), graphene behaves like a zero-gap
semiconductor.

However, this property is only expected for free-standing,
pristine graphene samples. More physically realizable samples
are normally deposited on particular dielectric substrates.
These intrinsic factors are known to modify the electronic and
optical properties of the sample and can be successfully taken
into account by simply opening a gap in the two-band spectrum
[2]. Using various synthesis and preparation techniques, impu-
rities, local lattice defects, and vacancies [3], and strain effects
[4] may be physically realized and have also been shown to
gap the spectrum. More challenging procedures to achieve this
rely on electric biasing of graphene bilayers [5] and monolayer
nanostructuring into nanoribbons [6]. The appearance of a
gap can also be conceptualized with a staggered sublattice
potential, in which each triangular sublattice of the honeycomb
lattice admits opposite nonzero onsite potentials (for instance,
when graphene is deposited on hexagonal boron nitride).

Each process admits a characteristic gap scale. Substrate-
induced effects seem to be the most efficient to open a gap
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which, with the aid of ARPES measurement techniques, has
been estimated to be 0.26 eV for epitaxially grown graphene
on silicon carbide (SiC) [2]. Density functional theory calcula-
tions estimate monolayer graphene can acquire a gap of 0.35 eV
when deposited on a SiO2 substrate [7]. Note that the extent
of such a gap opening is linked to the relative geometrical
configurations of the substrate and the sample alongside the
dominant chemical bonds in their interaction. For instance,
graphene deposited on Si-terminated silica surface with inac-
tive dangling bonds has been proposed as a configuration to
retrieve the linear, gapless dispersion typical of free-stranding
graphene [8]. The transition to a semiconducting regime leads
to substantially different optoelectronic features for which
devices such as graphene-based transistors and photodetectors
rely on [9]. The optical behavior of the plane-confined carriers
is further modified by excitonic effects, in turn caused by
screening mechanisms. These may be appreciated through
theoretical models of the optical conductivity spectra and
phenomenological dependence on disorder and imperfections
in Ref. [10].

Although advancing, the theoretical understanding of these
effects on the ultrafast nonlinear optical properties of graphene
remain broadly uncharted. In this paper, we investigate the role
of the energy gap in the ultrafast generation of high-harmonic
radiation along with related nonlinear processes, within a
semiclassical quasirelativistic formalism, by explicitly solving
the Dirac equation modeling the carrier dynamics.

As a centrosymmetric material, graphene should not allow
the generation of even harmonics for normal incidence. How-
ever, intense and ultrashort pulses provide a regime where odd
harmonics interfere generating even harmonics, once gapped.
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Gapping the spectrum renders the electrons massive and, as
will be demonstrated, induces a momentum-dependent Berry
phase in the carrier dynamics. The appearance of a gap and
gauge-invariant Berry phase leads to interesting qualitatively
different optical behavior which is studied in Sec. V by ex-
tending the Dirac-Bloch equations and their framework, previ-
ously applied to massless Dirac fermions (namely, monolayer
graphene) [11–13], to incorporate a gapped Dirac spectrum.
Finally, the exact role of such a phase on the generation of
harmonics is studied in Sec. V B.

II. QUASIRELATIVISTIC DYNAMICS

Graphene is a two-dimensional (2D) crystal composed
of carbon atoms and disposed in a honeycomb lattice. This
arrangement stems from particular orbital hybridization and
strong covalent in-plane bonding. Linearization of the elec-
tronic dispersion computed from tight-binding methods yields
a linear dependence, which vanishes at two nonequivalent
Dirac points in momentum space termed K and K′. Such a
linear dispersion admits a conduction and valence bands which
are symmetric and touch at the Dirac points, rendering the
monolayer a zero-gap system. However, a gap can be opened at
the Dirac points, which are located on the edge of the Brillouin
zone and shown in Fig. 1(a). For low-momentum states around
these points, the dispersion attains its extrema (such regions are
called valleys) and carriers can be endowed with an effective
mass.

Unless an imbalance is physically realized, for instance
through an electric field bias or sample inhomogeneities,
intervalley scattering is highly unlikely [14], as it requires
exceedingly large phonon momenta, roughly of the order of
the separation |K − K′|. It can thus be reasonably assumed that
the dynamics of both valleys is decoupled of each other and the
carriers can be endowed with an additional degree of freedom,
the valley isospin ξ , where ξ = +1 (−1) refers to states in the
K (K′) valley. A further degree of freedom, the pseudospin λ,
with λ = +1 (−1) denoting conduction (valence) band states,
distinguishes between electron and hole states.

In order to understand light-matter interactions in this
gapped structure, we proceed by obtaining the wave function
of an electron of effective mass m ≡ �/(2v2

F) and momentum
p = h̄k in the vicinity of a particular Dirac point in valley ξ ,
which must obey a two-dimensional Dirac equation:

ih̄∂t

∣∣�ξ

k (t)
〉 = H

ξ

k (t)
∣∣�ξ

k (t)
〉
. (1)

� is the energy dispersion gap and vF ≈ c/300 the electronic
Fermi velocity. To obtain the appropriate Hamiltonian for such
interactions, the canonical momentum is introduced through
the minimal substitution p �→ p + (e/c)A(t) ≡ πk(t) in the
field-free Hamiltonian, yielding

H
ξ

k (t) = vF

[
σ (ξ ) ·

(
p + e

c
A(t)

)]
+ �

2
σz, (2)

where σ (ξ ) ≡ (ξσx,σy) is a vector comprised of the 2D Pauli
matrices, e > 0 is the absolute value of the electron charge,
and c is the speed of light in vacuum.

The pulse is further assumed to be normally incident and
linearly polarized along an arbitrary direction, here taken along
x̂. Its electromagnetic vector potential A, which is chosen to
satisfy the Coulomb gauge ∇ · A = 0, can thus be written

FIG. 1. (a) Sketch of the Hamiltonian spectra for both valleys in
the low-momentum regime. Each valley admits two bands, gapped by
�. The relative sign of the field-induced Berry phase is represented
by the silver arrows. (b) Depiction of the time-dependent electronic
dispersion in momentum space, as given in Eq. (4), for a particular
valley. Note that the pulse shifts the dispersion globally by the time-
dependent photon momentum A(t). This field-driven effect is only
appreciable for ultrashort and intense pulses.

as A(t) = (A(t),0,0). Consequently, the canonical momentum
becomes πk(t) = (px + (e/c)A(t),py).

Inconveniently, general analytical solutions of Eq. (1) can-
not be obtained due to the time dependence of the Hamiltonian
through the external parameter A(t). To tackle this, a general
ansatz is constructed through expansion over a basis comprised
of the so-called instantaneous eigenstates: two linearly inde-
pendent spinors which satisfy H

ξ

k (t)|uξ
λk(t)〉 = ε

ξ
λk(t)|uξ

λk(t)〉.
If orthonormalized, i.e., 〈uξ

λk(t)|uξ

λ′ k(t)〉 = δλλ′ , they take the
form

∣∣uξ
λk(t)

〉 = vF|πk|√
εk(λ� + 2εk)

((
λ�+2εk
2ξvF |πk|

)
e−iξθk/2

λeiξθk/2

)
, (3)

where θk(t) = arctan(py/[px + e
c
A(t)]) is the dynamical an-

gle of the canonical momentum vector and εk(t) the positive
branch of their instantaneous energy:

ε
ξ
λk(t) = λ

√(
�

2

)2

+ [vF|πk(t)|]2 ≡ λεk(t). (4)

As seen in Fig. 1(a), the spectra of both valley Hamiltonians
are globally equivalent. These solutions have a straightforward
interpretation: for a particular valley ξ , electron and hole
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states exist, respectively, in the conduction (λ = +1) and
valence (λ = −1) bands, which are gapped by �. The upper
and lower components of the spinor can be construed as
amplitudes in each of the triangular sublattices that decompose
the honeycomb lattice.

The associated wave functions of these four states, solutions
of the Dirac equation, must evolve in time as∣∣ψξ

λ k(t)
〉 = ∣∣uξ

λk(t)
〉
e−iλ�k(t)eiξλγk(t) (5)

and are therefore further phase shifted by the dynamical phase
�k(t) = (1/h̄)

∫ t

−∞ εk(t ′)dt ′ and a geometric phase γk(t) =∫ t

−∞ γ̇k(t ′)dt ′. The derivative of the latter can be obtained
from the instantaneous eigenstates in Eq. (3) by computing
the element

i
〈
u

ξ
λk(t)

∣∣u̇ξ

λk(t)
〉 ≡ γ̇

ξ

λk(t) = ξλ

(
�θ̇k(t)

4εk(t)

)
≡ ξλγ̇k(t). (6)

The geometric phase takes the analytical form γk(t) =
[�k(t) − �k(−∞)]/4, with

�k(t) ≡ arctan

[
4�εk(t) tan θk(t)

�2 − 4ε2
k(t) tan2 θk(t)

]
. (7)

The Berry phase is now introduced as the time-independent
quantity γ 0

k ≡ �k(−∞) = �k(+∞). Finally, the ansatz
|�ξ

k (t)〉 of Eq. (1) is taken through expansion over the band
wave functions at that valley, i.e.,∣∣�ξ

k (t)
〉 = c

ξ
+1(t)

∣∣ψξ

+1,k(t)
〉 + c

ξ
−1(t)

∣∣ψξ

−1,k(t)
〉
. (8)

It is not surprising that the origins of the geometric phase
lie deep in the geometry of the configuration space of the
system. For the Hamiltonian of Eq. (2), it is natural to
associate the canonical momentum πk(t) to the basis of
such a space. Consequently, a geometric phase γ

ξ

λk(t) can
be assigned to a trajectory C, parametrized by t . This phase
was believed to be physically irrelevant [15] given that one
can gauge transform the instantaneous eigenstates in Eq. (3)
as |ũξ

λk(t)〉 ≡ eiγ
ξ

λk(t)|uξ

λk(t)〉, leading to a vanishing element
i〈ũξ

λk(t)| ˙̃uξ

λk(t)〉 = 0. However, this reasoning fails when the
system evolves cyclically, where this phase becomes gauge
invariant. In this instance, the phase is termed Berry phase
and it becomes measurable and physical. Indeed, for a pulse
for which A(−∞) = A(+∞) = 0, the canonical momentum
satisfies cyclicity since πk(−∞) = πk(+∞) = k. We refer
the reader to Chap. 2 of Ref. [16] for further explanation.

Note that, in the gapless limit, the Berry phase can be
seen to converge as γ 0

k = π for all states since the numerator
vanishes while the denominator is strictly negative, except at
the Dirac point, found at |k| = 0, where a divergence arises.
This result has been extensively reported both theoretically
[17] and experimentally [18]. The divergent behavior at the
Dirac points can also be made clear by constructing the
so-called Berry connection, a gauge-variant quantity defined
as Aμ ≡ i〈uξ

λk|∂μu
ξ

λk〉 satisfying γ 0
k = ∮

C A(πk)dπk. Using
the canonical momentum polars, only its angular component
is nonzero, with Aθk = ξλ�/(4εk). This field is strongly
localized around the |k| = 0 point and smooth for nonzero
gaps. However, in the gapless limit, it diverges exactly at this
point, vanishing everywhere else.

Furthermore, a word of caution is in order: although the
gapped field-free Hamiltonian of Eq. (2) [i.e., with A(t) = 0]
arises from the breaking of the sublattice inversion symmetry,
such Hamiltonian is only a first-order k · p approximation of
the full tight-binding Hamiltonian and accounts only for its
centrosymmetric part. Several works, e.g., in Refs. [19,20],
use our Hamiltonian to model transition-metal dichalcogenide
(TMD) monolayers, promising two-dimensional relativisti-
clike semiconductors lacking an inversion center and hence
noncentrosymmetric. Such an approximation for TMDs is
adequate only to describe the linear optical properties of such
media that are accounted by low-momentum states, where this
approximation is accurate. It is nonetheless clearly insuffi-
cient to accurately capture nonlinear light-matter phenomena
of noncentrosymmetric two-dimensional media, for which
higher-order terms in the k · p expansion explicitly break
the centrosymmetry k ↔ −k [rendering the conduction and
valence bands of Fig. 1(a) asymmetric].

III. MASSIVE DIRAC-BLOCH EQUATIONS

The electron dynamics can be more easily understood
by obtaining the time derivatives of c

ξ
λ in and introduc-

ing new dynamical variables: the “population inversion”
w

ξ

k ≡ |cξ
+|2 − |cξ

−|2 and the “microscopic polarization” q
ξ

k ≡
c
ξ
+(cξ

−)∗e−i(2�k−ω0t). The full Dirac equation (1) can be recast in
a more transparent set of equations, akin to the Bloch equations
of a two-level system, the Dirac-Bloch equations (DBEs),
which are derived and shown for the case of massless Dirac
fermions in Ref. [13]. When generalized to the massive case,
they take the form

ẇ
ξ

k + γ1
(
w

ξ

k − wk0

) −
(

vF|πk|
εk

)

× (
2ξ θ̇kIm

(
q

ξ

kei(2ξγk−ω0t)
)

+ 4 cot θkγ̇kRe
(
q

ξ

kei(2ξγk−ω0t)
)) = 0, (9)

q̇
ξ

k + i(2�̇k − ω0 − iγ2)qξ

k

+
(

vF|πk|
εk

)(
cot θkγ̇k + iξ θ̇k

2

)
e−i(2ξγk−ω0t)w

ξ

k = 0.

(10)

Here, �̇k(t) = εk(t)/h̄ and θ̇k(t) ≡ epyE(t)/|πk(t)|2. The
constants γ1(2) ≡ 1/T1(2) are phenomenological decay rates of
the population inversion (microscopic polarization) whereas
wk0 is the equilibrium value of inversion; if the system is
undoped, i.e., μ = 0, and at temperature T = 0, it has wk0 =
−1, implying that all carriers are initially found in the valence
band, regardless of their momentum.

Otherwise, for arbitrary doping and temperature, it
becomes wk0 = − sinh(y)/[cosh(x) + cosh(y)], with y =
εk/(kBT ) and x = −μ/(kBT ). These two newly defined fields
modeled by Eqs. (9) and (10) depend on a particular valley but
are nonetheless connected by precise relations. The real-valued
inversions are equal, i.e., w

ξ

k = w
−ξ

k , while the complex-
valued microscopic polarizations are statically shifted by the
momentum-dependent phase γ 0

k , i.e., q
ξ

k = eiξγ 0
k q

−ξ

k . In the
limiting case of a vanishing gap, they satisfy q

ξ

k = −q
−ξ

k .
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The massive DBEs [Eqs. (9) and (10)] contain terms not
present in their massless counterparts as derived and shown in
Ref. [13]. In Eq. (6), by noticing that γ̇k depends on θ̇k, which
in turn depends on E(t), it can be seen that the driving term in
Eq. (10) (the one containing w

ξ

k), can be written in the form
(μk · E)wk. In analogy to the Bloch equations of a two-level
system, μk may be identified as a valley- and time-dependent
complex-valued electric dipole moment:

μ
ξ

k(t) = evF

(
ξ sin θk(t)

2εk(t)
− i

� cos θk(t)

4ε2
k(t)

)
. (11)

We remark that the singularity found in the DBEs when θk(t) =
0 is not problematic since both equations can be identically
reexpressed so that no real singularities are present.

Finally, we emphasize that the Coulomb interactions
amongst the carriers are not included in the massive DBEs.
These are known to lead to Fermi velocity and energy band
renormalization [21]. Such effects can in principle be included
by coupling the dynamics of two-level systems of all momenta
and have been previously implemented for graphene (see for
instance Ref. [22]).

IV. CURRENT ANALYTICS

Signatures of nonlinear light-matter interactions can be
found and analyzed through the electric current generated
by the interaction between the monolayer and the pulse.
Such a current admits, in general, two components: J(t) =
(Jx(t),Jy(t))T. We investigate the role of the gap (and con-
sequently the Berry phase) in the valley-dependent current
contributions. To attain this, we proceed by first determining
the μ component (μ = x,y) of the current contribution of a
particular momentum state p in a valley ξ in time domain,
here termed a microscopic current j ξ

μ,k, by applying the current

density operator ĵ
ξ

μ,k to the ansatz |�ξ

k〉 of Eq. (8):

j
ξ

μ,k = 〈
�

ξ

k

∣∣ĵ ξ

μ,k

∣∣�ξ

k

〉 − 〈
ψ

ξ

−1,k

∣∣ĵμ,k
∣∣ψξ

−1,k

〉
. (12)

Since the system admits time reversibility, energy bands
obtained with tight-binding methods must satisfy a sum rule
that prevents dissipative currents in the valence bands to be
produced [23]. However, since the dispersion of Eq. (4) and
spinors of Eq. (3) are only applicable over a particular, low-
momentum range where these are relativistic, the first current
term in Eq. (12) is insufficient to describe the actual current
generated, as it contains unphysical divergences. The current
can nonetheless be regularized through the introduction of the
second term, which acts as an ad hoc subtraction of valence
band generated current.

In the low-momentum k · p approximation that resulted
in the Hamiltonian of Eq. (2), the local form of the current
density operator becomes valley dependent and, for a Cartesian
coordinate μ = x,y, is given by ĵ

ξ

μ,k = −(e/h̄)(∂H
ξ

k /∂kμ),

resulting in ĵ
ξ

x,k = −(ξevF/h̄)σx and ĵ
ξ

y,k = −(evF/h̄)σy . With
these, the contribution of both components to the 2D micro-
scopic current jξk(t) ≡ (j ξ

x,k(t),j ξ

y,k(t))T as shown in Eq. (12) is

computed exactly as

jξk(t) = −evF

(
cos θk sin θk
sin θk − cos θk

)

×
(

vF|πk|
εk

(
w

ξ

k + 1
) − �

εk
Re

(
q

ξ

kei(2ξγk−ω0t)
)

−2ξ Im
(
q

ξ

kei(2ξγk−ω0t)
)

)
.

(13)

The physical current is finally obtained by appropriately taking
all momentum contributions of both valleys into account. In
the continuum limit, it is

J(t) = gs

d(2π )2

∑
ξ

∫
jξk(t)dk, (14)

where d is the thickness of the monolayer and gs = 2 is a
spin degeneracy factor, dk = k dk dφ is the two-dimensional
differential in momentum space, and the sum is performed over
both valleys.

The analytical expression in Eq. (13) encapsulates the exact
light-matter interactions predicted by the Dirac equation (as
no approximations were applied) and displays remarkable
physics richness. In particular, this treatment is nonperturbative
in nature since the full field is accounted for (as opposed
to the usual field expansion and order truncation methods),
as well as the pulse properties (as opposed to slowly vary-
ing envelope/rotating-wave approximation conditions). This
method thus allows an analysis of the system response to be
obtained when probed in extreme nonlinear optical conditions.
Two current contributions are present, depending on whether
the current is originated from electronic transitions within the
same band (intraband), or across different bands (interband).
These can be identified in Eq. (13): intraband contributions
are proportional to (wξ

k + 1), whereas interband contributions
depend on the microscopic polarization q

ξ

k , leading to two dis-
tinct terms. The one proportional to (�/εk) is a mass-induced
contribution and naturally vanishes for ungapped dispersions.
It can be seen that, when taking � = 0, both valleys contribute
exactly the same to the current, i.e., jξk(t) = j−ξ

k (t), leading to
a valley degeneracy factor gv = 2 in the current of Eq. (14) as
previously reported in Refs. [11,13].

V. SIMULATIONS

The massive Dirac-Bloch equations encapsulate a breadth
of optical phenomena which become highly nontrivial in the
nonlinear optical regime, once the electrons are coupled to
ultrashort and intense light fields. To probe such behavior,
the graphene monolayer is pumped with a normally incident
pulse of duration t0 = 31.9 fs, central wavelength λ0 = 4 μm,
and frequency ω0 = 4.71 × 1014 s−1, photon energy h̄ω0 =
0.31 eV, intensity I = 0.45 GW/cm2, and at temperature T =
0 ◦K. Additionally, realistic localized zero-averaged fields are
assumed: A(t) = A0sech(t/t0) sin (ω0t) and E(t) = −∂tA/c.
We remark that, in order not to introduce unphysical static
fields, these fields satisfy

∫ ∞
−∞ A(t)dt = ∫ ∞

−∞ E(t)dt = 0.
For an ultrashort intense pulse, the dephasing mechanisms

that account for decay of the populations and polarizations (and
phenomenologically accounted for by the decay rates γ1 and
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FIG. 2. The full photogenerated current and its separate contributions in time domain, rescaled in units of J0 = −eω2
0/(4dvF). (a) The

total current, composed of both intraband and interband contributions. Its overall dependence on the mass stems primarily from the interband
contribution. (b) The intraband current, generated from electronic transitions within the same band. Its amplitude is monotonically decreasing
as the gap increases and maximal when the dispersion is ungapped. (c) The interband contribution, generated from electronic transitions across
the bands. It is comprised of two terms, one being exclusively present only for gapped dispersions. The interband current amplitude is maximal
when the photon energy is resonant with the gap, rapidly decreasing for larger gaps.

γ2) are much longer than the pulse input time t0 and can thus
be safely neglected. Time- and angle-resolved photoemission
spectroscopy (ARPES) techniques estimate these relaxation
times as T1 ≈ 150 fs and T2 ≈ 0.8 ps. These figures are heavily
affected by a combination of initial temperature, doping, pump
fluence, excitation energy, and substrate type and we refer
the reader to Ref. [24] for further information on the prepa-
ration and underlying physics of the dephasing mechanisms.
Therefore, γ1 = γ2 = 0 are set throughout all simulations. In
this coherent regime, the two-level systems in either valley
are conservative, leading to a probability conservation law,
namely, ∂t (4|qξ

k |2 + |wξ

k|2) = 0, which was used to obtain
numerical outputs within a strict tolerance threshold of 10−9.

A. Currents and respective spectra

In order to simulate the microscopic current predicted in
Eq. (13), the massive DBEs [Eqs. (9) and (10)] were solved nu-
merically with an explicit, adaptive, parallelized fourth-order
Runge-Kutta algorithm. The physical generated current is
obtained once the microscopic contributions are appropriately
integrated in momentum space which, when parametrized in
its radial and angular components, is respectively composed
of a mesh of 1000 × 500 states. Since this model assumes
infinitely extending bands, a radial cutoff was imposed such
that all relevant microscopic contributions were accounted for.

The role of energy gap in the generated current is now stud-
ied with the aid of a dimensionless parameter �̃ ≡ �/(h̄ω0),
conveniently rescaled such that a gap satisfying �̃ = 1 is
exactly resonant with the pump photons. As previously men-

tioned, massless Dirac electrons in either valley contribute
equally to the generation of current. The linearly polarized
pulse, along the x̂ direction, does not create Jy currents which
must therefore vanish identically, once their corresponding
microscopic currents are integrated over all momenta and
valley contributions; this is indeed observed in our simulations,
and is a crucial indicator of the validity of our numerics [13]. In
the massive regime, both components are addressed differently
by the valleys, even in this simple polarization configuration.
Both valleys contribute equally to the Jx component of the
current. As for the Jy component, both valleys create nonzero
currents fully out of phase which, upon summation, cancel
each other out identically.

The effect of the mass and Berry phase on the current may
be seen in Fig. 2(a), where the full current in time domain
Jx(t) is shown. Its amplitude increases as the energy gap is
increased, until a maximum is reached when the photon is
resonant with the energy gap, i.e., when �̃ = 1. Subsequently,
the current amplitude vanishes for increasingly larger gaps.
This behavior is best understood if the intraband and interband
currents are plotted separately. Figure 2(b) shows the intraband
current contribution, where it can be seen that its amplitude
is maximal when �̃ = 0 and monotonically decreasing with
increasing energy gap. Figure 2(c) shows the interband current,
itself composed of the two polarization-dependent terms in
Eq. (13), once integrated over momentum and valley isospin.
The full current dependence on the mass stems primarily from
the interband contributions, as Fig. 2(c) follows the pattern
just described. We remark that both interband current terms
are in phase. Figures 2(b) and 2(c) further reveal that the

195123-5



CARVALHO, BIANCALANA, AND MARINI PHYSICAL REVIEW B 97, 195123 (2018)

ω/ω0

0 2 4 6 8

lo
g 1

0
|ω

J
in

tr
a(

ω
)|2

[d
B

]

-50

0

50

100 Graphene SHG

(b) Intraband Current Spectrum

ω/ω0

2 4 6 8 10
lo

g 1
0
|ω

J
in

te
r(

ω
)|2

[d
B

]
-50

0

50

100 THG in disguise of HHG

(c) Interband Current Spectrum
ω/ω0

2 4 6 8 10
lo

g 1
0
|ω

J
(ω

)|2
[d

B
]

-50

0

50

100

(a) Full Current Spectrum

Δ̃ = 0
Δ̃ = 2
Δ̃ = 4

FIG. 3. Current spectra. (a) The total spectrum shows stronger odd-harmonic generation than even-harmonic generation. For gapped systems,
even-harmonic peaks, which are plotted in (c), are generated through third-harmonic generation (THG) in disguise of higher-harmonic generation
(HHG). Such peaks are shown with the second-harmonic (SHG) and fourth-harmonic enhancements, respectively, for gaps satisfying �̃ = 2,4.
For vanishing gaps, even-harmonic generation originates from the centrosymmetry-breaking mechanism, which breaks the static centrosymmetry
of the lattice and is seen in the intraband spectrum of (b). Generally, the intraband harmonic peaks decrease monotonically as the gap is increased.

full current emerges from a very complex interplay of the
competing, out-of-phase contributions of intraband and inter-
band currents.

More optically pertinent information can be obtained by
analyzing the full current spectrum S(ω) = |ωJ(ω)|2, in dB
units, versus the harmonics order ω/ω0, a dimensionless
parameter so that the pump pulse is centered spectrally at
ω/ω0 = 1, which is displayed in Fig. 3(a). The spectra show
strong odd harmonics being generated, commonly expected
of a χ (3) material. The exceedingly small peaks found for
ω/ω0 = 2,4, . . . on this logarithmic scale can be seen as
numerical artifacts and suggest that even-harmonic generation
is generally absent. However, particular gap values can be seen
to yield rather enhanced even-harmonic peaks.

In order to understand the origin of this behavior, both
the intraband and interband current spectra are respectively
shown in Figs. 3(b) and 3(c). For both contributions, odd-order
harmonic peaks are predominant over even-order harmonic
peaks. As for the interband current, clear nth-order harmonic
peaks appear when the gap is tuned so that �̃ = n, for a
positive integer n � 2. We remark that such peaks are always
generated for any gap value but will not contribute to particular
harmonic orders unless this tunability condition is met, i.e., for
integer �̃. In particular, when tuned to even integers, peaks at
even-harmonic orders are generated in the emission spectrum,
as shown in Fig. 3. Physically, the observed even-harmonic
peaks do not arise from χ (2)-like processes (occurring only in
noncentrosymmetric media) but are rather understood through
the coherent interference among odd harmonics, a well-

established strong-field effect termed “THG in disguise of
SHG” occurring exclusively at the femtosecond scale. In the
ultrashort (few-cycle) and intense optical regime, the electro-
magnetic field is able to excite abruptly a tremendous amount
of carriers which would otherwise remain in the valence band
due to their off-resonant condition. The signature of such
transitions can be inferred from the inversion wk. For instance,
very few transitions to the conduction band are attained in
the linear optical regime, leading to the condition wk ≈ −1
for all momenta, as can be seen from the definition given in
Sec. III. In contrast, high-field intensities allow Rabi flopping
of a coherent two-level system, thus rendering such assumption
unrealistic, and may consequently generate highly nontrivial
inversion behavior on which the generated current depends on.
Most notably, ungapped graphene admits instantaneous band
transitions, leading to a steplike behavior of wk around the
Dirac points (as can be seen in Fig. 3 of Ref. [11]).

Figure 3.6 of Ref. [25] is illustrative of the emergence of
the mechanism of “THG in disguise of SHG”: if one fixes
the transition frequency ωT ≡ (εξ

+1,k − ε
ξ

−1,k)/h̄ = 2εk/h̄, the
generated spectrum can be obtained for a fixed field excitation
parameter, here taken as the Rabi frequency peak ωR =
max(μkE/h̄). For instance, if one fixes ωT = 2ω0 and consid-
ers quasiresonant states (for which εk ≈ �/2), it can be seen
that this condition is approximate to �T /ω0 = 2εk/(h̄ω0) ≈
�/(h̄ω0). Now, if ωR is progressively increased, it seems clear
that a THG peak appears. However, and most interestingly,
when it hits the critical value �R = 2ω0, the THG peak is
heavily suppressed and interferes with the fundamental mode
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vanishes. A juxtaposition of the electric field envelope reveals that such phase oscillations are highly asymmetrical.

to create a visible spike at ω/ω0 = 2. This phenomenon is
also predicted to be only present for few-cycle pulses, where
a suppression of this peak at ω/ω0 = 2 is observed when
increasing the pulse duration (Fig. 3.7 of Ref. [25]). Our
simulations were performed with a 15-cycle pulse and these
peaks are also observed in them [Fig. 5(a)], even if a slightly
different formalism is employed. We must emphasize that, as
given by Eq. (14), the spectrum of Fig. 3 is comprised of
a sum of two-level systems, each one with a different ωT .
However, the condition �/(h̄ω0) = 2 is sufficient to capture
the collective contributions of these quasiresonant states on the
SHG peak. We refer the reader to pages 38–40 and 157–158
of Ref. [25], as well as Ref. [26] for more information on the
physics underlying this process.

We would like to emphasize that the observation of SHG
in graphene samples is well established in the literature and
proposed through a myriad of techniques, for instance by
shining light obliquely at the surface [27], electric field in-
plane biasing [28], and quadrupole interactions [29]. The
novelty of these results relies on the existence of a theoretical
mechanism supported by the Dirac-Bloch formalism which,
in the extreme nonlinear optical regime, predicts previously
forbidden even harmonics to be generated at normal incidence
in centrosymmetric relativisticlike media. The versatility of the
present treatment allows the role of few-cycle intense pulses
in the medium polarization to be accessed.

B. Effect of the Berry phase

The Berry phase in Eq. (7) induces nontrivial contributions
to the current spectra just discussed. Before engaging in deter-
mining its role in harmonic generation, the temporal dynamics
of the geometric phase for various momentum states is shown
in Fig. 4, by splitting the radial and angular components of
their momentum vector k, respectively, as k as φk, as well
as rescaling k to a dimensionless magnitude k̃ ≡ (2vF/ω0)k.

In this fashion, resonance conditions are met when k̃ = 1.
By juxtaposing the envelope of the electric field, it can be
seen that this field-dependent phase evolves rather nontrivially
and oscillates asymmetrically in time. It is instructive to see
how it changes for increasing magnitudes for a fixed angle,
here arbitrarily taken as φk = π/3. Phase oscillations only
attain appreciable amplitudes for quasiresonant, low-energy
states, i.e., when εk ≈ �/2, found in the vicinity of the Dirac
points at k̃ = 0. Consequently, the microscopic polarizations
qk attain the largest amplitudes in this region, leading to the
most extreme case occurring precisely at k̃ = 0. For that state,
the geometric phase undergoes continuous steplike transitions
between 0 and −π/2. Conversely, high-momentum states sat-
isfying k̃ ≥ 1 are extremely detuned from the gap and acquire
a small phase amplitude, which vanishes monotonically very
rapidly, as the magnitude is increased. Note that Fig. 4 shows
the phases acquired by electrons in the conduction band in
the K valley. The relative signs acquired for each band and
valley, as derived in Sec. II, are depicted in Fig. 1(a). For
instance, valence band carriers acquire a relative negative
sign.

The role of the Berry phase on the generation of new
harmonics is now discussed. In order to achieve this, the
Berry phase and its derivative are neglected by setting γk(t) =
γ̇k(t) = 0 in the massive DBEs [Eqs. (9) and (10)] and in the
microscopic current of Eq. (13). This procedure is physically
consistent since Jy(t) still vanishes after such terms are
disregarded. We proceed by comparing the spectra of the full
current and its intraband/interband contributions, obtained by
including or excluding such terms. General features can be
captured and are exemplified for a particular gap with �̃ = 2
(resulting in a realistic energy gap value of � = 0.62 eV),
whose spectra are shown in Fig. 5. One can observe that
the Berry phase acts on the full current, shown in Fig. 5(a),
and considerably suppresses odd harmonics and enhances the
relevant even harmonics. The extent of the odd-harmonics
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FIG. 5. Comparison of current spectra in the presence or absence of the Berry phase for a gap � = 2h̄ω0 = 0.62 eV. The full current
spectrum is shown in (a), displaying a general peak suppression of the dominant, odd harmonics. Rather negligible even-harmonic peaks only
exist once this phase is considered. These features are caused by the dominant, interband current, plotted in (c). The effect of the harmonic
interference on the Berry phase contribution to the interband current for such a gap, here seen through the peak suppression at ω/ω0 = 2. The
intraband spectrum, shown in (b), displays a general suppression of odd harmonics, whose extent increases as the harmonic order increases.

suppression seems to grow for higher harmonics but is much
more prominent in the interband currents, where the peak
differences are biggest.

The full behavior can again be seen to originate from the
dominant, interband contributions, plotted in Fig. 5(c). The
Berry phase can be identified as the agent that mostly drives
odd-harmonics interference (and consequently possible even-
harmonic generation when appropriately tuned) by considering
the substantial peak enhancement at ω/ω0 = 2 when the phase
is switched on, as previously discussed. These results can again
be understood in light of the discussed THG in disguise of
SHG. The intraband current spectrum comparison is shown in
Fig. 5(b), where it can be seen that any possibly small even-
harmonic peak vanishes once the Berry phase is neglected.

VI. CONCLUSIONS

In conclusion, we show that relativistic two-dimensional
massive fermions acquire a momentum-dependent Berry phase
when interacting with normally incident electromagnetic
pulses. The spectrum generated by the electronic nonlinear
current shows prominent odd-harmonic generation, which is
generally suppressed as the energy gap is increased. Although
even harmonics are generally absent for gapped dispersions, we

show that their generation may be attained at the femtosecond
scale through THG in disguise of SHG when the photon energy
is appropriately tuned to the energy gap, generating radiation
with the desired harmonic order. These processes may be
conceptualised as coherent interactions of odd harmonics. Sig-
natures of these interband-driven phenomena can be seen in the
enhancement of harmonic peaks. We also show that the Berry
phase plays a major role in the interband current dynamics
and hence in the generation of even harmonics. We remark
that excitonic effects are absent in the present formalism.
These results and methods help establish new techniques to
understand and predict the nonlinear optical behavior of a range
of two-dimensional hexagonal relativisticlike semiconductors,
and help pave the way to predict quantitatively, in a generalized
fashion, the effect of wide range of intrinsic or deliberate
properties and phenomena, such as monolayer-substrate inter-
actions, sample imperfections, local defects, and strain effects,
expected to be found in more realistic samples.
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