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Topological semimetals are characterized by their intriguing Fermi surfaces (FSs) such as Weyl and Dirac
points, or nodal FS, and their associated surface states. Among them, topological crystalline semimetals, in the
presence of strong spin-orbit coupling, possess a nodal FS protected by nonsymmorphic lattice symmetries. In
particular, it was theoretically proposed that SrIrO3 exhibits a bulk nodal ring due to glide symmetries, as well
as flat two-dimensional surface states related to chiral and mirror symmetries. However, due to the semimetallic
nature of the bulk, direct observation of these surface states is difficult. Here we study the effect of flat-surface
states on phonon modes for SrIrO3 side surfaces. We show that mirror odd optical surface phonon modes are
damped at the zone center, as a result of coupling to the surface states with different mirror parities, while even
modes are unaffected. This observation could be used to infer their existence, and experimental techniques for
such measurements are also discussed.
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I. INTRODUCTION

Topological semimetals (TSMs) are materials with nontriv-
ial crossing of valence and conduction bands at points, lines,
or loops within the Brillouin zone. They are topologically
protected in the sense that the crossing cannot be lifted by
a symmetry-preserving perturbation. The symmetry which
protects these crossings can be global, such as time reversal,
or crystalline, and are classified through a bulk topological
invariant of the Bloch states in a neighborhood of the crossing.
Proposals for TSMs so far include Weyl points [1–7] in
systems with broken inversion or time-reversal symmetry,
Dirac points [8–10], as well as nodal line semimetals [11–13].
In addition, the nontrivial bulk topology in TSMs may manifest
itself through associated surface states, including Fermi arcs
between bulk Weyl or Dirac points.

Among these TSMs, topological crystalline semimetals
(TCSMs) with strong spin-orbit coupling possess a nodal FS
which is protected by nonsymmorphic lattice symmetries.
In particular, it has been proposed theoretically that SrIrO3

exhibits a nodal ring FS [12] protected by two perpendicular
glide symmetries [14,15]. This nodal line FS is interesting,
as it may act as a parent state for other nodal FS structures
when symmetry-breaking perturbations are added. Associated
with the bulk topology, protected by glide symmetries, are
double helicoid surface states [15,16] on the (001) top surface.
Furthermore, on side surfaces perpendicular to (001), flat two-
dimensional surface states associated with mirror and chiral
symmetries are predicted [17,18] to exist.

Apart from difficulty in the synthesis of SrIrO3 [19], these
flat 2D surface states on side surfaces are difficult to observe
directly due to the fact that the bulk is semimetallic. Resistivity
measurements [20] performed on thin films, synthesized using
pulsed laser deposition, as well as ARPES [21] measure-
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FIG. 1. Surface states in AIrO3 for a b̂ crystal termination. The
two branches, shown in green, disperse linearly away from kc = π

but are flat in the ka direction, forming a line of 1D Dirac cones.
Projection of the bulk nodal ring at (kc,ka) = (π,0) is shown as a red
ellipse.

ments, confirm the semimetallic nature and the nodal FS.
However, a clear signature of the flat side surface states
remains elusive.

In this work we propose that phonon modes can be used to
infer the existence of side surface states. Symmetry properties
of the surface state wave function leads to a unique electron-
phonon coupling which will damp only certain optical phonon
modes at the zone center. This paper is organized as follows.
In Sec. II we study the side surface states in detail through an
analytic solution of the wave function (Sec. II A), and direct
numerical diagonalization (Sec. II B). In Sec. III we show
how the symmetry of the electronic wave function constrains
the electron-phonon interaction, and calculate the first-order
phonon self-energy (Sec. III C, Appendix B). Finally, experi-
mental techniques used to measure this effect are discussed in
Sec. IV.
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II. SURFACE STATES IN A TCSM

Through a combination of strong spin-orbit coupling and
crystal field splitting, jeff = 1

2 states provide a good basis for a
low-energy description [12,18] of orthorhombic perovskite iri-
dates AIrO3 (A is an alkaline earth metal, space group Pbnm).
The unit cell of AIrO3 contains four Ir atoms (B,R,Y,G) on
which the jeff states live, and are distinguished by distortion
of the surrounding oxygen octahedra. The full tight-binding
Hamiltonian, derived in Ref. [12], is written in the basis

ψ = (cB↑,cR↑,cY↑,cG↑,cB↓,cR↓,cY↓,cG↓)T , (2.1)

where ↑ , ↓ refer to jz
eff = ± 1

2 . It takes the form

Hk = Re
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where three sets of Pauli matrices correspond to pseudospin
(σ ), layer (ν), and in-plane sublattice (τ ). Tight-binding
parameters and the form of the functions εk are listed in
Appendix A. Next-nearest neighbor hopping (λk) has been left
out for simplicity, but its effect is discussed in Sec. III. This
model exhibits an elliptical one-dimensional (1D) FS called
the nodal ring, consistent with ab initio calculations [12] and
protected by nonsymmorphic symmetries [14,15].

This topological crystalline semimetal also exhibits [17] a
pair of surface zero modes on the mirror-symmetric line kc = π

for all side surfaces except those perpendicular to a weak index
M = â + b̂ ‖ ŷ. These modes are protected by a combination
of mirror symmetry

	m = iσzνx (ka,kb,kc) �→ (ka,kb, − kc), (2.3)

and an emergent chiral symmetry

C = σzνyτz, (2.4)

which anticommutes with the Hamiltonian Eq. (2.2) on the
kc = π plane. Zero modes are indicated in Fig. 1 for a b̂ crystal
termination with a thick line. Away from kc = π the surface
modes disperse linearly, forming a line of 1D Dirac cones
which are flat in the ka direction. Time-reversal symmetry is
of the usual form

T = iσyK, k �→ −k, (2.5)

where K denotes complex conjugation.
While the dispersion of the surface states is well understood,

little is known about their wave functions which must be known
to describe their response to density perturbations. Therefore,
in this section we describe their wave functions through
two complementary approaches. First, we obtain the wave
function analytically at kc = π by solving an open boundary
problem with the bulk Hamiltonian. Second, we extend this
solution away from kc = π by numerically diagonalizing the
Hamiltonian in a slab geometry. Finally, we show how one

FIG. 2. Slab geometry of AIrO3 with a b̂ crystal termination
which is periodic in the â and ĉ directions. Since xb < 0 is the bulk,
the red and green iridiums are closest to the edge at xb = 0.

can form total and “relative” density combinations which will
couple to certain phonon modes discussed in Sec. III.

A. Open boundary wave function at kc = π

For definiteness, we focus on the open boundary problem
for a b̂ surface in the half-spacexb < 0, withxb > 0 the vacuum
as shown in Fig. 2. Periodic boundary conditions are imposed
in the â,ĉ directions, and with this crystal termination the
red and green iridiums lie on the surface. Starting with the
Hamiltonian Eq. (2.2), we fix kc = π so that both mirror and
chiral symmetries are present. On this mirror-symmetric plane,
the mirror operator Eq. (2.3) simplifies to

M = σzνx, (2.6)

where the factor of i has been dropped. To proceed, we
introduce the following unitary rotation to simultaneously
diagonalize the chiral and mirror operators:

U (kc) = exp

(
+i

kc

4
νz

)
exp

(
+i

π

4
τz

)
. (2.7)

After rotating the basis with U , the chiral operator be-
comes C = σzνxτz = Mτz, and the rotated Hamiltonian on the
kc = π plane is

H(ka,kb,π ) = Re
(
ε

p

k

)
τy − Im

(
ε

p

k

)
σzτx

− [
Re

(
ε

po

k

)
σy + Im

(
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]
νzτx

− [
Re

(
εdo

k

)
σy + Im

(
εdo

k

)
σx

]
νyτx. (2.8)

For simplicity we have neglected εd
k , but it will be included in

the final result.
Translational symmetry is broken in the b̂ direction so kb

is no longer a good quantum number. In the spirit of Jackiw
and Rebbi [22] we expand the above Hamiltonian around kb =
π (U-R-S-X plane containing the nodal ring) by introducing
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pb = kb − π which we substitute as a real space derivative
operator −i∂b. Performing this expansion to linear order in pb

we obtain

H(ka,pb) = [ − 2tp cos
(

1
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)
τy − t ′p cos
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1
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)
σzτx

+ 1
2

(
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p
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(
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2ka

)
(σy − σx)νyτx

]
. (2.9)

Next, we block diagonalize in mirror even and odd sub-
spaces to reduce the above 8 × 8 model into 4 × 4 blocks. This
is done by introducing bonding and antibonding combinations
which are eigenstates of νx ,

|b〉 = 1√
2

(|B〉 + |T 〉), |a〉 = 1√
2

(|B〉 − |T 〉), (2.10)

where |B〉 is localized to the bottom layer (composed of B,R

iridiums) and |T 〉 to the top layer (composed of Y,G iridiums).
It is then clear that {|b ↑〉 , |a ↓〉} and {|a ↑〉 , |b ↓〉} form bases
for the four-dimensionalM = ±1 subspaces, respectively, and
the chiral operator reduces to C = τz. We introduce a new set of
Pauli matrices η which act on the appropriate mirror subspace
through

M = + : |b ↑〉 ηx←→ |a ↓〉 ,

M = − : |a ↑〉 ηx←→ |b ↓〉 . (2.11)

Within M = ± the Hamiltonian becomes

H±(ka,pb) = [−2t1(ka)1τy − t2(ka)ηzτx

+ t3±(ka)(ηy − ηx)τx]pb

− t4±(ka)(ηy + ηx)τx, (2.12)

where

t1(ka) = tp cos
(

1
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)
, t2(ka) = t ′p cos

(
1
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)
,
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2

(
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,
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1
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) ± tod cos
(

1
2ka

)
. (2.13)

We then solve the Schrödinger equation to obtain the wave
function for the zero modes in each mirror subspace

H±(ka,pb �→ −i∂b)�±(ka,xb) = 0 · �±(ka,xb), (2.14)

with the wave function ansatz

�±(ka,xb) ∝ eλ±xb (ηx + ηy)τxχ±, (2.15)

where the factor (ηx + ηy)τx is chosen to simplify the following
equations. The eigenequation for the four-component vector
χ± is

{[2t1(ηx + ηy)τz + t2(ηx − ηy) − 2t3±ηz]λ
± − 2t4±}χ± = 0.

(2.16)

Since we have a chiral symmetry C = τz at kc = π , this can be
further reduced into a 2 × 2 problem by block diagonalizing
in the appropriate chiral subspace. The outermost iridiums on
this surface are R,G, so we diagonalize in τz = −1. If we

had instead considered the half-space xb > 0, the outermost
iridiums would be B,Y and we would diagonalize in τz = +1.
As the wave function ansatz contains τx , which flips the
eigenvalue of τz, we instead set τz = +1 which yields

{[(2t1+t2)ηx +(2t1 − t2)ηy − 2t3±ηz]λ
± − 2t4±1}χBY

± = 0.

(2.17)

This describes a two-component vector χBY
± which must be an

eigenstate of

h± = d± · η, d± = (2t1 + t2,2t1 − t2, − 2t3±), (2.18)

with eigenvalue (−1)j‖d±‖, where j = 0,1. The eigenstates
of h± can be parametrized with the angles defined through

d±
‖d±‖ = (sin θ± cos ϕ±, sin θ± sin ϕ±, cos θ±). (2.19)

Solutions χBY
±,j corresponding to eigenvalue (−1)j‖d±‖ in the

mirror even subspace are

χBY
+,0 = cos

(
1
2θ+

) |b ↑〉 + eiϕ+ sin
(

1
2θ+

) |a ↓〉 ,

χBY
+,1 = sin

(
1
2θ+

) |b ↑〉 − eiϕ+ cos
(

1
2θ+

) |a ↓〉 , (2.20)

while those in the mirror odd subspace are

χBY
−,0 = cos

(
1
2θ−

) |a ↑〉 + eiϕ− sin
(

1
2θ−

) |b ↓〉 ,

χBY
−,1 = sin

(
1
2θ−

) |a ↑〉 − eiϕ− cos
(

1
2θ−

) |b ↓〉 . (2.21)

Substituting these solutions into the eigenequation (2.17)
we find the exponential decay parameter λ±

j ,

λ±
j (ka) = 2(−1)j t4±(ka)

‖d±(ka)‖ . (2.22)

For each ka the physically relevant solution will be χBY
±,j

with λ±
j > 0 because the wave function should decay into

the bulk as xb → −∞. The value of j is determined by the
sign of t4± which is plotted in Fig. 3(a). For ka < 0, t4± > 0
and the solutions are χBY

±,0, while for ka > 0, t4± < 0 so the
solutions are χBY

±,1. The exponential decay parameters λ±
1 (+ka)

are equal to λ∓
0 (−ka), so we will simply write λ±

j = λ±. The
decay parameter sets the penetration depth �± = 1/λ± of the
wave functions into the bulk, which is plotted in Fig. 3(b).
To obtain the final form of the wave function we must per-
form the rotation (ηx + ηy)τx appearing in the wave function
ansatz Eq. (2.15). The first τx operation simply changes the
composition from sublattice B,Y to R,G. For ka < 0, χRG

+,0 is
rotated to

∼(1 − i) sin
(

1
2θ+

) |b ↑〉 + (1 + i)e−iϕ+ cos
(

1
2θ+

) |a ↓〉
∼ sin

(
1
2θ+

) |b ↑〉 + e
+i(

π
2 −ϕ+) cos

(
1
2θ+

) |a ↓〉 , (2.23)

with a similar result for χRG
−,0 . For ka > 0, χRG

+,1 is rotated to

∼(1 − i) cos
(

1
2θ+

) |b ↑〉 − (1 + i)e−iϕ+ sin
(

1
2θ+

) |a ↓〉
∼ cos

(
1
2θ+

) |b ↑〉 + e
−i(

π
2 +ϕ+) sin

(
1
2θ+

) |a ↓〉 , (2.24)

with a similar result for χRG
−,1 .
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FIG. 3. Thick vertical lines indicate the position of the nodal ring,
and the shaded area corresponds to the ka for which our model remains
valid. (a) Value of t4± as a function of ka whose sign determines the
solution. (b) Penetration depth �± in units of the b̂ lattice spacing
for the physically relevant solution in each region outside the nodal
ring. (c) sin( 1

2 θ±) and (d) ϕ± parameters. The number of digits quoted
reflects the agreement with angles averaged over kc obtained from the
wave functions calculated in a finite slab geometry. All quantities
are calculated with the tight-binding parameters for SrIrO3 given in
Table II.

Close to ka = 0, t4± changes sign when

|k∗
a | ≈ 2 tan

(
1

2
|k∗

a |
)

= 2tod∣∣to1p − to2p

∣∣ , (2.25)

which corresponds to the semimajor axis of the bulk nodal
ring ellipse [23]. Across the nodal ring one of λ± vanishes,
signaling a sharp change in the wave function due to closing
of the bulk gap. A similar sharp change must happen across
the zone boundary ka = π which separates ka > 0 and ka < 0
solutions. We therefore focus on ka outside the nodal ring and
away from the zone boundary; the shaded region in Fig. 3.

Therefore, for ka < 0 the wave functions describing the zero
modes are

�+ = eλ+xb
[

cos
(

1
2θ+

) |b ↑〉 + e
−i(

π
2 +ϕ+) sin

(
1
2θ+

) |a ↓〉 ]
,

�− = eλ−xb
[

cos
(

1
2θ−

) |a ↑〉 + e
−i(

π
2 +ϕ−) sin

(
1
2θ−

) |b ↓〉 ]
,

(2.26)

where λ±, θ±, and ϕ± are all functions of ka and plotted
in Figs. 3(b)–3(d). Solutions for ka < 0 are related to those
above by time-reversal symmetry, for �±(ka < 0) is the time-
reversal partner of �∓(ka > 0). The states |B〉 , |T 〉 appearing
in |b〉 , |a〉 [Eq. (2.10)] are understood to be iridium R,G states,
respectively. In the region of interest away from the nodal ring
and zone boundary, to good approximation the angles θ±,ϕ±
can be taken as constants θ,ϕ with values given in Figs. 3(c) and
3(d). This is because away from ka = π , the relevant functions
in Eq. (2.13) are all dominated by cos ( 1

2ka). Owing to the
small size of t0

d ,t ′d due to slight rotation and tilting of oxygen
octahedra, the cosine varies slowly to yield nearly constant
angles defined through Eq. (2.19). We find that θ±(ka),ϕ±(ka)

remain within 10% of their value at ka = 0 up to |ka| ≈ 0.88π

and |ka| ≈ 0.93π , respectively.
This result also holds for an â termination in the half-space

xa > 0 if we simply switch the labels a ↔ b. The solution
for xb > 0 (xa < 0) will involve diagonalization in the τz =
+1 subspace, since the outermost iridiums are B,Y , and the
solutions for ka < 0 and ka > 0 will be switched with |B〉 , |T 〉
as B,Y iridium states.

As a final note, the small εd
k term we have ignored con-

tributes

Im
(
εd

k

)
νxτx = −t ′d sin

(
1
2ka

)
pbνxτx, (2.27)

which becomes

∓t ′d sin
(

1
2ka

)
pbηzτx (2.28)

in the mirror even and odd subspaces. This serves to modify
the function t2,

t2(ka) �→ t2±(ka) = t ′p cos
(

1
2ka

) ± t ′d sin
(

1
2ka

)
, (2.29)

which slightly changes the wave function parameters
λ±,θ±,ϕ±, but cannot change the form of the solutions.

B. Extending solution with slab calculations

To extend the analytic solution for �± away from kc = π ,
we numerically diagonalize the tight-binding Hamiltonian
Eq. (2.2) in a b̂ slab geometry to obtain the wave functions
localized to the appropriate edge. At kc = π we find 〈τz〉 = −1
at the edge with outer R,G iridiums, which is the appropriate
chiral subspace for that surface. For kc �= π the Hamiltonian
no longer has a chiral symmetry, and we find 〈τz〉 �= −1 due
to mixing with the other chiral subspace τz = +1. However,
this deviation does not affect the main conclusion as discussed
below.

We find that the expectation of the mirror operator 〈M〉 =
〈σzνx〉 in the two branches remains ±1 away from kc = π .
For ka < 0 the left-moving branch has 〈M〉 = −1 and the
right 〈M〉 = +1, with the opposite holding for ka > 0 as
shown in Fig. 4 for ka = 0.5π . Examining the wave function
components, they are found to be the appropriate combination
of bonding and antibonding states. Finally, the weights of |bσ 〉
and |aσ 〉 for kc �= π are found to be in excellent agreement with
the analytic expressions Eq. (2.26) at kc = π , which are plotted
in Fig. 3. In particular, for |kc − π | � 0.3π the angles θ±,ϕ±
were found to remain within 5%, 15% of their value at kc = π ,
respectively, in the ka region of validity discussed below.

Therefore, our numerical results imply that the wave func-
tions in Eq. (2.26) describe mirror even and odd branches
away from kc = π . The dispersion of the branches with mirror
eigenvalue m = ± are

εkm = mvF sgn(−ka)(kc − π ), (2.30)

where vF is the velocity of the surface states. From the slab
calculation we estimate this velocity to be vF ≈ (c/Å)(2.0 ×
104 m/s), where c is the ĉ lattice spacing. For SrIrO3 grown on
a SrTiO3 substrate, c ≈ 7.97Å [18] which yields vF ≈ 1.6 ×
105 m/s.

To determine the values of momentum for which we have
localized surface states, one must consider the proximity
of bulk states. The exponential decay parameter given by
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FIG. 4. Dispersion of surface zero modes away from kc = π at
ka = 0.5π , obtained from exact diagonalization of the tight-binding
model in a b̂ slab geometry with N = 250 layers. Blue and red colors
represent mirror eigenvalues M = ±1, respectively.

Eq. (2.22) determines the penetration depth �± = 1/λ± of
the wave function into the bulk, which should be compared
to the thickness L of the finite slab. In our numerical study
we consider L = 250 in units of the b̂ lattice spacing, which
satisfies L � �±(ka) for ka away from the nodal ring. As |ka|
approaches |k∗

a |, the penetration depth becomes large due to
mixing with extended bulk states. For each ka the minimum of
the bulk bands determines the high-energy (and momentum)
cutoff �(ka) below which the low energy theory is valid.
The cutoff vanishes at the nodal ring |k∗

a | and becomes small
near the zone boundary |ka| = π . In order to have a constant
cutoff �0, the ka region is defined to be those for which the
cutoff is at least �0: {ka | �(ka) � �0}. This constrains kc

to be in [−�0/vF , + �0/vF ], which determines the range of
momentum used in the electron-phonon interaction, shown as
the x axis in Figs. 7(a) and 7(b). With tight-binding parameters
for SrIrO3, and �0 ≈ 100 meV close to its maximum value,
the |ka| region is approximately [0.4π,0.75π ]. However, in
the real material this region is expected to be larger due to the
small size of the nodal ring. Note that the main conclusion, i.e.,
qualitative difference in the damping of mirror odd and even
phonon modes, is independent of this cutoff.

C. Total and relative density

The wave functions obtained for ka > 0 and ka < 0 in each
mirror subspace [Eqs. (2.20) and (2.21)] are linearly indepen-
dent solutions of the same 2 × 2 Hamiltonian Eq. (2.18). This
means the wave function expressions in Eq. (2.26) can be
inverted to write bonding and antibonding states in terms of
the surface wave functions. It is easily shown that

b
†
↑b↑ + a

†
↓a↓ = e−2λ+xb�

†
+(+ka)�+(+ka) + (−ka),

a
†
↑a↑ + b

†
↓b↓ = e−2λ−xb�

†
−(+ka)�−(+ka) + (−ka), (2.31)

where bσ ,aσ are electron operators for the states |bσ 〉 , |aσ 〉,
and �± for the surface states. In the above ka is assumed to be
positive, and (−ka) represents the contribution from the −ka

region. Therefore the total density

ρ+ =
∑

σ

(b†σ bσ + a†
σ aσ ) (2.32)

can be written in terms of �
†
±�± connecting states with the

same mirror eigenvalue. This can be simplified close to kc = π ,

ρ+ =
∑

σ

(c†Rσ cRσ + c
†
Gσ cGσ ),

where the wave function is dominantly supported on R,G

iridiums, and 〈τz〉 ≈ −1. Clearly the total density is even under
mirror reflection. Similarly, with

b
†
↑a↑ + a

†
↓b↓ = e−(λ++λ−)xb�

†
+(+ka)�−(+ka) + (−ka),

a
†
↑b↑ + b

†
↓a↓ = e−(λ++λ−)xb�

†
−(+ka)�+(+ka) + (−ka),

(2.33)

the relative density between different layers

ρ− =
∑

σ

(b†σ aσ + a†
σ bσ ) (2.34)

can be written in terms of �
†
±�∓ connecting states with

different mirror eigenvalues, and is therefore odd under mirror
reflection. It can also be simplified as

ρ− =
∑

σ

(c†Rσ cRσ − c
†
Gσ cGσ ),

close to kc = π . The momenta k′,k appearing in �†(k′)�(k)
need not be the same because the angles θ,ϕ in the wave
function are approximately constant. So long as k′,k lie in the
same ka region with small difference in kc, the above relations
hold. As shown in the next section, mirror even phonons can
only couple to the total density while mirror odd phonons can
only couple to the relative density.

III. ELECTRON-PHONON COUPLING
AND DENSITY RESPONSE

In this section we focus on optical phonons in Pbnm-AIrO3

with momentum q close to the zone center. Before considering
the effect of terminating the crystal, we review the symmetry
of bulk optical phonons. The zone center phonons of the
isostructural Pbnm-SrHfO3 have been classified according to
irreducible representations of the point group D2h [24–26],

�O : 7Ag⊕5B1g⊕7B2g⊕5B3g⊕8Au⊕9B1u⊕7B2u⊕9B3u,

�A : B1u⊕B2u⊕B3u, (3.1)

where �O,�A refer to optical and acoustic modes, respectively.
Of the optical modes, 25 are infrared (IR) active (B1u,B2u,B3u)
and 24 are Raman active (Ag,B1g,B2g,B3g). The IR active
modes B1u,B3u,B2u are polarized along the â,b̂,ĉ directions,
respectively.

For a crystal terminated in the b̂ direction with N layers,
we perform a straightforward classification of the zone center
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TABLE I. Character table for the point group C1h (m) [27].

C1h (m) E σc

a,b A′ 1 +1
c A′′ 1 −1

phonons. For simplicity we focus on modes involving dis-
placements between iridium and oxygen atoms. In this slab
configuration only the mirror symmetry remains, which leads
to the point group C1h (m) with character table shown in Table I.
Following the notation of Dresselhaus et al. [27], the vector
representation is given by

�vec = 2A′ ⊕ A′′. (3.2)

Under mirror reflection all the iridiums are switched (B ↔
Y , R ↔ G), so the character of the mirror operation in the
equivalence representation is zero. The character of the identity
operation is simply 4N , so the equivalence representation can
be easily decomposed as

�equiv = 2NA′ ⊕ 2NA′′. (3.3)

Therefore, at the zone center the representation of these phonon
modes is

�phon = �vec ⊗ �equiv = 6NA′ ⊕ 6NA′′. (3.4)

Each mode has a simple interpretation because χA′(σc) = +1
and χA′′(σc) = −1; they have definite parity under mirror
reflection. This analysis holds for finite qa as the mirror
symmetry is preserved. In terms of atomic displacements, the
meaning of mirror even and odd phonon modes is that the
displacement ξα of ion α is mapped to ±ξα′

of ion α′ under

FIG. 5. Schematic long-wavelength mirror (a) even and (b) odd
optical phonon modes on a b̂ surface. Arrows represent the relative
displacement between iridium and oxygen atoms.

reflection. This is illustrated in Fig. 5 for modes involving
relative Ir and O displacements.

Restricting ourselves to optical phonons of definite mirror
symmetry, we will broadly label the modes by λ = ± with
field operator Aqλ = aqλ + a

†
−qλ, displacements ξα

qλ, and un-
perturbed Matsubara Green’s function [28]

D0
λ(q,iqn) = 2ω0

qλ

(iqn)2 − (
ω0

qλ

)2 , qn = 2πn

β
, (3.5)

where ω0
qλ is the dispersion, and qn the Matsubara frequency.

The aim of this section is to show how certain optical
phonons with q along qa close to the zone center are damped
through their interaction with electronic surface states. First,
we examine how mirror even and odd modes couple to the
surface electrons through microscopic and symmetry consid-
erations. We then discuss a certain type of surface localized
phonon, and how it couples differently to electrons than bulk
phonons. Finally, we calculate the imaginary part of the first-
order phonon self-energy 	0

λ.

A. Symmetry-allowed electron-phonon vertices

For electrons tightly bound to Ir sites, their interaction
with bulk phonon modes involving Ir displacements takes the
general form [28]

Hep =
∑
qλα

(
−i

√
h̄

2Mαω0
qλ

(
ξ̂

α

qλ · q
)
Vα(q)

)
︸ ︷︷ ︸

gqλα

Aqλρqα, (3.6)

where α ∈ {B,R,Y,G}, Vα is the atomic potential, and ρα is the
density of electrons on Ir site α. Longitudinal optical phonons
have displacements proportional to q̂ and nearly flat dispersion
near the zone center, so the electron-phonon coupling gqλα

scales like

gqλα ∝ (q̂ · q)
1

q2
= 1

q
, (3.7)

which is the well-known Fröhlich [29] polar coupling in d = 3
dimensions with long-range Coulomb potential Vα(q) ∝ q−2.

As shown in Sec. II, the wave function describing surface
electrons is dominantly supported on the R,G iridiums near
kc = π , so for simplicity we neglect B,Y sites. Along qa near
the zone center, the phonons have definite mirror symmetry,
and the displacements of the iridiums satisfy ξR

± = ±ξG
±. This

means the coupling constants satisfy g±R = ±g±G. Taking
their common value g±, the surface electron-phonon interac-
tion takes the form

Hep =
∑
λ=±

gλAλ

∑
σ

(c†Rσ cRσ + λc
†
Gσ cGσ )

=
∑
λ=±

gλAλρλ, (3.8)

in which the total and relative densities of Sec. II C appear
naturally. In a b̂ slab geometry, the electron-phonon coupling
Eq. (3.6) must be modified as qb is no longer a good quantum
number. However, properties of the displacements ξα under
mirror reflection lead to the same qualitative result. A modified
electron-phonon coupling is discussed in the next section.
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(a)
D+(q)

=
D0

+(q)
+

D0
+(q)

k + q, m

k,m

D+(q)
Π0

+(q)

(b)
D−(q)

=
D0

−(q)
+

D0
−(q)

k + q,−m

k,m

D−(q)
Π0

−(q)

FIG. 6. Dyson equation for (a) even and (b) odd phonon propa-
gators D±(q) through their interaction with surface states for small
qa . The vertex � represents even modes coupling through the total
density, while � represents coupling of odd modes through the
relative density. As the irreducible self-energy we take the first-order
particle-hole bubble 	0

±(q) in which we sum over m, indexing the
mirror branch of the electrons.

The form of the coupling Eq. (3.8) can also be understood
through symmetry considerations. Under mirror reflection the
phonon operators transform as MA±M† = ±A±, and the
densities as Mρ±M† = ±ρ±. Therefore, the only mirror-
invariant electron-phonon vertices we can write are

Hep ∝ g+A+ρ+ + g−A−ρ−. (3.9)

Figure 6 shows Dyson’s equation for the phonon propagators,
where these vertices appear in the first-order self-energy. As
shown in Sec. II C, the even modes A+ coupling to the total
density ρ+ can only excite electron-hole pairs lying in the same
mirror branch, while odd modes A− coupling to the relative
density ρ− can excite pairs lying in different mirror branches.
The form of this interaction is based on mirror symmetry alone,
and is independent of the sublattice composition 〈τz〉.

Note that form factor is independent of momentum, unlike
carbon nanotubes [30] where the low-energy Dirac physics
leads to a spinor that varies dramatically with momentum. This
is because the parameters θ±,ϕ± describing the surface state
wave functions remain nearly constant with momentum due to
small rotation and tilting of oxygen octahedra. Consequently,
the form factors remain nearly constant, with modulus close to
unity.

B. Fuchs-Kliewer modes

When the crystal is terminated, generally there will be
a large number of vibrational modes with frequencies lying
between the bulk values with quantized wavelengths in the
normal direction. Fuchs and Kliewer [31–33] studied long
wavelength modes in a polar material, and found that optical
modes localized to the surface can exist in addition to extended
bulklike modes. Out of phase motion between oppositely
charged ions sets up a macroscopic polarization field, with
associated electric and electric displacement fields, which are
described by Maxwell’s equations. By imposing boundary
conditions for the field inside and outside the material, an
exponentially localized electric field exists provided that

1

ε(ω)

(
q2 − ε(ω)

ω2

c2

)1/2

= −
(

q2 − ω2

c2

)1/2

, (3.10)

where q is the wave vector of the field parallel to the surface, ω
is the frequency of the field, and ε(ω) is the dielectric function
of the material. A surface optical (SO) mode exists when
ε(ω) < 0. Using a simple independent oscillator model of the
dielectric function

ε(ω) = ε∞ + ε0 − ε∞
1 − (ω/ωTO)2

, (3.11)

whereωTO is the transverse optical (TO) phonon frequency, and
ε0 and ε∞ are the low- and high-frequency dielectric constants,
an SO mode exists when [32,34,35]

ωTO < ω < ωLO and q > ωTO/c. (3.12)

Therefore, in a polar crystal with LO-TO splitting we expect
an SO mode to exist between the IR active TO and LO mode
frequencies at long wavelengths.

As with the bulk modes, the macroscopic polarization
produced by the SO mode couples to the electric field of the
electron through

Hep =
∫∫

d rd R �†(r)
e(r − R) · P(R)

‖r − R‖3
�(r), (3.13)

where �(r) is the electron field operator, and P(R) is the
polarization field. Due to the exponential attenuation of the
mode amplitudes into the bulk, SO modes will couple differ-
ently to electrons than their bulk LO counterparts. Choosing
the electron field to be the TCSM surface states from Sec. II,
we can expand

�(r) = 1√
A

∑
k

eik·rs eλkxb�k, (3.14)

where rs = (xa,xc) is the position on the surface of the crystal,
k = (ka,kc) is a 2D wave vector, λk describes attenuation
into the bulk, and �k is an electron field operator. Using the
polarization field of the SO mode, it has been shown [34,36,37]
that the electron-phonon interaction for q � ωTO/c takes the
form

Hep ∝
∑
k,q

1√
q

(∫ 0

−∞
dxb eqxbe(λk+q+λk)xb

)
Aq�

†
k+q�k.

(3.15)

So in contrast with the Fröhlich [29] Hamiltonian, where the
electron-bulk LO phonon vertex scales like 1/q, the electron-
SO phonon vertex scales like 1/

√
q. The coupling of electrons

to extended bulklike LO phonons in a slab geometry was found
[36] to scale like the bulk Fröhlich coupling.

C. Density response and phonon damping

With the preceding form of the electron-phonon interaction
Eq. (3.9), we calculate the imaginary part of the first-order
polarization bubble 	0

± in the Matsubara formalism for qc =
0 at zero temperature. The self-energy serves to modify the
phonon propagator from Eq. (3.5) to

Dλ(q,ω) = 2ω0
qλ

ω2 − (
ω0

qλ

)2 − 2ω0
qλ|gqλ|2	0

λ(q,ω)
, (3.16)
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−Λ/vF 0 +Λ/vF

pc

−Λ

0

μ

+Λ

E

(a) Even Modes

−Λ/vF 0 +Λ/vF

pc

−Λ

0

μ

+Λ

E

(b) Odd Modes

0 2μ

ω

0

C
2(2π)2vF

−
1 π
Im

Π
0 ±(

q a
,q

c
=

0,
ω
)

odd

even

(c) Mode Broadening

FIG. 7. Particle-hole excitations contributing to the (a) even mode
self-energy for small qa with pc = kc − π , and (b) the same for odd
modes as shown for ka > 0. (c) Imaginary part of phonon self-energy
as a function of ω, with qc = 0 and small qa , for even and odd modes.

and in particular, the imaginary part of 	0
λ broadens the phonon

mode lifetime. An explicit calculation (see Appendix B) yields

− 1

π
Im	0

+(qa,qc = 0,ω) = 0 (3.17)

for the even modes, and

− 1

π
Im	0

−(qa,qc = 0,ω) ∝ 1

vF

[�(2μ + ω) − �(2μ − ω)]

(3.18)

for the odd modes, where ω ∈ [−2�, + 2�] and qa is small.
The chemical potential μ > 0 of the surface states is measured
from the nodal point shown in Fig. 7. The imaginary part
is easily understood by considering particle-hole excitations
which provide decay channels for the phonons. Even modes
excite pairs within the same mirror branch, leading to a linear
Im	0

+(q,ω) as depicted in Fig. 7(a), which vanishes at qc = 0.
Odd modes excite pairs in different mirror branches, so even
at qc = 0 pairs can be excited with energy ω ranging from 2μ

to 2� as depicted in Fig. 7(b).
These results hold for small qa , so long as particle-hole pairs

with different ka lie in the same region along the line of 1D
Dirac cones. In real materials the chiral symmetry is slightly
broken due to next-nearest neighbor in-layer hopping, which
adds a small ka dispersion. Despite this, particle-hole pairs may
still be excited at small qa with the window [2μ,2�] being
slightly reduced. We therefore predict damping of mirror odd
bulk LO or SO phonons near the zone center due to the presence
of surface states, while mirror even phonons are unaffected.

IV. DISCUSSION

Landau damping due to particle-hole excitations of a typical
bulk FS, including a nodal ring FS [38], vanishes as q → 0 at
finite frequency. However, significant damping of particular

phonon modes in the same limit occurs in a TCSM, when the
TCSM exhibits a set of flat 1D Dirac surface states as shown
in Fig. 1. Nearly flat bands in one direction is responsible for
this effect.

This unique feature of the surface electron-phonon inter-
action in a TCSM, distinguished from bulk electronic contri-
butions, is associated with the symmetry properties of surface
states. With q along qa , phonons have definite parity under
mirror reflection. Even modes can excite electron-hole pairs
within the same mirror branch, while odd modes can excite
between different branches. As a result, only the odd optical
phonons will be damped at the zone center.

Signatures of this effect may be accessible through a com-
bination of optical and scattering experiments. For SrHfO3,
isostructural to SrIrO3, optical mode frequencies have been
calculated [26] using density functional perturbation theory
(DFPT), which are comparable with experimental Raman
[25,39], and IR reflectivity [39] studies. In the case of SrIrO3,
high pressures are necessary to achieve the orthorhombic
perovskite structure [19], and as a consequence there are only
a small number of bulk experiments available [20,21,40–42].
Despite this, linewidths in bulk Raman spectroscopy, or the
imaginary part of the dielectric function from IR reflectivity,
should reflect electronic damping. Since SrHfO3 is electroni-
cally insulating it may serve as a reference material for intrinsic
linewidths.

Moreover, Fuchs-Kliewer SO modes have been observed
[43] in the cubic SrTiO3 through high-resolution, low-energy
electron diffraction (LEED). Based on the general theory of
these modes, we also expect them to exist near the zone center
in SrIrO3 between bulk LO and TO frequencies, provided
that the dielectric function is negative. Bulk IR reflectivity
data would serve to determine ε(ω) as well as the LO and
TO frequencies. Even without a microscopic basis for the SO
modes (which may be provided by DFPT, or a semiempirical
approach such as the embedded atom method [44–47] or the
multipole expansion [48,49]), a general symmetry analysis
tells us that SO modes along qa will have definite parity
under mirror reflection. The existence of these modes could
be confirmed with LEED or inelastic helium atom scattering
(HAS) [50,51]. In SrIrO3 HAS would be more appropriate
to avoid electronic contributions to scattering. Comparing
linewidths in time-of-flight HAS measurements of SrIrO3

along the â direction (for a b̂ crystal termination) with the
reference material SrHfO3 would provide information about
how the SO modes are damped. Quantitative analysis of SO
modes in SrIrO3 is beyond the scope of the current work, and
may be an interesting subject for future study.

In summary, we have investigated the nature of the wave
function describing surface states in a TCSM, and found unique
properties under mirror symmetry. This restricts the form of
the electron-phonon interaction for phonons of definite mirror
symmetry when q is along qa . The surface states couple to
bulk LO, or SO modes with different scaling of the vertex. We
computed the first-order self-energy of mirror even and odd
phonons, and found that damping near the zone center at finite
frequency is zero for mirror even modes but finite for mirror
odd modes. Damping from surface electrons is distinct from
typical Landau damping due to bulk electrons, and we propose
a combination of optical and HAS experiments to observe this.
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TABLE II. Tight-binding parameters for SrIrO3 in eV [12,17].

txy tp t ′
p tz td t ′

d to
1p to

2p to
z to

d t1
d

−0.3 −0.6 −0.15 −0.6 −0.3 0.03 0.1 0.3 0.13 0.06 0.03

Such an experiment would provide the first evidence of surface
states in a topological crystalline semimetal.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN OF SrIrO3

The jeff = 1
2 tight-binding model Eq. (2.2) of SrIrO3 is

defined in terms of the following k dependent functions:

λk = 1
2 txy[cos(ka) + cos(kb)],

ε
p

k = 2(2tp − it ′p) cos
(

1
2ka

)
cos

(
1
2kb

)
,

εz
k = 2tz cos

(
1
2kc

)
,

εd
k = 2td cos

(
1
2ka

)
cos

(
1
2kb

)
cos

(
1
2kc

)
+ 2it ′d sin

(
1
2ka

)
cos

(
1
2kb

)
sin

(
1
2kc

)
,

ε
po

k = (1 − i)
(
to1p + to2p

)
cos

(
1
2ka

)
cos

(
1
2kb

)
+ (1 + i)

(
to1p − to2p

)
sin

(
1
2ka

)
sin

(
1
2kb

)
,

εzo
k = toz (1 − i) cos

(
1
2kc

)
,

εdo
k = (1 + i)tod sin

(
1
2ka

)
cos

(
1
2kb

)
sin

(
1
2kc

)
+ (1 − i)tod cos

(
1
2ka

)
sin

(
1
2kb

)
sin

(
1
2kc

)
,

εd1
k = (1 + i)t1

d cos
(

1
2ka

)
cos

(
1
2kb

)
cos

(
1
2kc

)
− (1 − i)t1

d sin
(

1
2ka

)
sin

(
1
2kb

)
cos

(
1
2kc

)
, (A1)

where k is written in the orthorhombic basis (ka,kb,kc), and
{txy,tp,t ′p,tz,td ,t

′
d ,t

o
1p,to2p,toz ,tod ,t1

d } are tight-binding parame-
ters with values listed in Table II. Three sets of Pauli matrices
σ ,ν,τ are used to define the Hamiltonian, and have the
following effect on the pseudospins ↑ , ↓ and the iridium sites
B,R,Y,G,

↑ σx←→ ↓ B
νx←→ Y R

νx←→ G

B
τx←→ R Y

τx←→ G.
(A2)

APPENDIX B: CALCULATION OF − 1
π

Im�0
±(�q,ω)

In this Appendix we calculate the imaginary part of the first-
order polarization bubbles 	0

±(q,ω) using the Matsubara for-
malism, shown diagrammatically in Fig. 6 with q = (q,iqm).
The form of the bubbles are [28]

	0
±(q) = 1

βA
∑
k,ikn

Tr[G0(k)�±G0(k + q)�±], (B1)

where the trace is taken over branches of the surface states,
and �± enforces total and relative density respectively (1, and
γx in the basis of the surface states). The electron Matsubara
Green’s function is

G0 =
(
G0

+
G0

−

)
, G0

m(k,ikn) = 1

ikn − ξkm

, (B2)

where ξkm = εkm − μ, and μ is the chemical potential mea-
sured from the nodal point. As the dispersion we take Eq. (2.30)

εkm = mvF sgn(−ka)(kc − π ), |kc − π | � �/vF ,

for some high-energy cutoff �.
Starting with 	0

+, after the Matsubara sum, performing the
analytic continuation, and passing to the continuum limit, at
T = 0 we obtain

	0
+(q,ω) =

∑
m

∫
dk

(2π )2

�(−ξkm) − �(−ξk+qm)

ω + ξkm − ξk+qm + iη

=
∑
m

∫
dk

(2π )2

�(−ξkm) − �(−ξk+qm)

ω + mvF sgn(ka)qc + iη
, (B3)

assuming qa is sufficiently small such that particle-hole pairs
remain within one ka region. As a consequence of qa being
small the slight ka dispersion introduced by breaking of the
chiral symmetry will have little effect on our results. We set
qc = 0 so that the phonon mode does not break the mirror
symmetry, which causes the Fermi factors to cancel as the
dispersion is flat in the ka direction. Therefore, the imaginary
part of 	0

+ vanishes

− 1

π
Im	0

+(qa,qc = 0,ω) = 0, (B4)

for small qa .
Next, we focus on 	0

− which contributes

	0
−(q,ω) =

∑
m

∫
dk

(2π )2

�(−ξkm) − �(−ξk+qm)

ω + ξkm − ξk+qm + iη

= C

(2π )2

∑
m

∫ +�/vF

−�/vF

dpc

�(−ξkm) − �(−ξk+qm)

ω − 2mvF pc + iη
,

(B5)

where we have again assumed small qa , focused on ka >

0 (ka < 0 contributes identically), set qc = 0, and shifted
the kc integration to pc = kc − π . The ka integral has been
performed which contributes an overall constant C, which is
approximately the width of the ka region of validity set by the
cutoff �. With the estimated region from Sec. II B, C ≈ 0.7π .
Taking the imaginary part of this quantity, the delta function
fixes

2mvF pc = ω, (B6)

and constrains ω to lie in the range [−2�, + 2�]. The Fermi
factors are

�(2μ + ω) − �(2μ − ω). (B7)

For each m, the above factors combine to form

C

2vF (2π )2
sgn(ω)

{
1, 2μ � |ω| � 2�,

0, else. (B8)
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Combining these contributions, we find

− 1

π
Im	0

−(qa,ω) = C

vF (2π )2
[�(2μ + ω) − �(2μ − ω)]

= C

vF (2π )2
sgn(ω)

{
1, 2μ � |ω| � 2�,

0, else,

(B9)

for qc = 0 and small qa . A sketch of the relevant particle-hole
excitations contributing to − 1

π
Im	0

± are shown in Fig. 7.
The real part of 	0

− can also be calculated directly
from Eq. (B5). Focusing on ka > 0, the Fermi factors
are �(μ + mvF pc) − �(μ − mvF pc) which simplify to
msgn(pc)�(|pc| − μ/vF ). The terms with m = ± contribute
identically, so we will focus on m = +. For pc > 0 we have
the term

I1 = C

(2π )2
P

∫ �/vF

μ/vF

dpc

ω − 2vF pc

= C

2vF (2π )2
P

∫ μ/vF

�/vF

dpc

pc − ω/2vF

= C

2vF (2π )2
log

∣∣∣∣ ω − 2μ

ω − 2�

∣∣∣∣, (B10)

where P denotes the Cauchy principal value. Similarly, for
pc < 0 we have the term

I2 = C

(2π )2
P

∫ −μ/vF

−�/vF

dpc

2vF pc − ω

= C

2vF (2π )2
P

∫ −μ/vF

−�/vF

dpc

pc − ω/2vF

= C

2vF (2π )2
log

∣∣∣∣ ω + 2μ

ω + 2�

∣∣∣∣. (B11)

Therefore, Re	0
− = 2(I1 + I2) evaluates to

Re	0
−(qa,ω) = C

vF (2π )2
log

∣∣∣∣ (ω − 2μ)(ω + 2μ)

(ω − 2�)(ω + 2�)

∣∣∣∣. (B12)

One can obtain the same result using the Kramers-Kronig
relation [28]

Re	0
−(qa,ω) = P

∫ +∞

−∞

dω′

ω − ω′

[
− 1

π
Im	0

−(qa,ω
′)
]
.
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