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Absence of a charge diffusion pole at finite energies in an exactly solvable interacting
flat-band model in d dimensions
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Motivated by recent bounds for charge diffusion in critical matter, we investigate the following question:
What sets the scale for the velocity for diffusing degrees of freedom in a scale-invariant system? To make our
statements precise, we analyze the diffusion pole in an exactly solvable model for a Mott transition in the presence
of a long-range interaction term. To achieve scale invariance, we limit our discussion to the flat-band regime. We
find in this limit that the diffusion pole, which would normally obtain at finite energy, is pushed to zero energy,
resulting in a vanishing of the diffusion constant. This occurs even in the presence of interactions in certain limits,
indicating the robustness of this result to the inclusion of a scale in the problem. Consequently, scale invariance
precludes any reasonable definition of the diffusion constant. Nonetheless, we do find that a scale can be defined,
albeit irrelevant to diffusion, which is the product of the squared band velocity and the density of states.
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Scale invariance is both a simplifying and problematic
organizing principle for strongly correlated systems. On the
one hand, it dictates that the correlation functions must obey
power-law decay with a universal length scale, but on the
other, it precludes the presence of a natural energy scale
from entering the transport properties. For electronic systems,
this implies that the Fermi energy cannot enter any transport
property if scale invariance is present. This is particularly
problematic in describing the strange metal in the cuprates as
both scale invariance and a breakdown of the particle concept
have been advocated [1–7] to be operative. In fact, the key
characteristic of quantum critical systems, namely, the pres-
ence of a dissipation rate that scales linearly with temperature,
the Planckian limit of dissipation, has been shown [8] to
undergird the experimental observation of Homes’ law [1] in
the cuprates. Since Homes’ law is about the dc conductivity
just above the normal state, some natural scale should govern
charge diffusion in critical matter. While in a Fermi liquid,
the Fermi velocity enters the scattering time to compensate the
quadratic temperature dependence, h̄/τ ∝ (kBT )2/εF , no such
energy scale is permissible if Planckian dissipation of the form
h̄/τ ∝ kBT dominates the transport. Hence the question as to
what should be used for the velocity to describe transport in
quantum critical systems in general emerges. This question has
not been answered definitively for incoherent systems, that is,
systems which lack quasiparticles, since violations [9–14] to
charge diffusion bounds [15,16], based on the Planckian upper
bound coupled with a diffusion constant parametrized by some
phenomenological velocity, abound.

In this paper, we address this question by focusing on an
exactly solvable model for an incoherent metal. To impose
scale invariance, we focus on the flat-band limit. In the flat-
band limit, the energy spacing between energy levels �E

is the smallest scale in the problem, and as a consequence,
the band velocity vanishes. Hence, the resultant diffusion
constant defined by D ∼ v2τ must vanish if τ is finite. The
scattering time in our problem is governed by scalar impurity

interactions and hence is finite. We show explicitly that even for
an interacting system, in certain limits and for certain forms
of the interaction, the diffusion pole which would normally
occur at finite energy is pushed to zero energy and continues
to be dictated by scale invariance. Hence, scale invariance is
robust to interactions in these limits, and strictly speaking, there
is no energy scale that emerges which permits a reasonable
definition of the charge diffusion constant in such a scale-
invariant system. Nonetheless, we do find that a flat-band scale
can be defined, albeit irrelevant to diffusion, if one were to
consider the product of the band velocity square and the density
of states. Since the density of states diverges, the product can
be finite. Thisflat-band constant appears as the residue of a
diffusion pole that has been shifted to zero energy. We analyze
the properties of this constant here and show that it can be
effectively enhanced, suppressed, or unaffected depending on
the nature of the long-range interaction.

The model [17,18] we analyze has long-range nonlocal
interactions with standard tight-binding hoppings,

H = −t
∑

〈j,l〉,σ
(c†jσ clσ + H.c.) − μ

∑
jσ

c
†
jσ cjσ

+ U

N

∑
j1...j4

δj1+j3,j2+j4c
†
j1↑cj2↑c

†
j3↓cj4↓, (1)

where the first and second terms denote the local hopping and
chemical potential and are set by the scale γ . The last term
is the infinite-range Hubbard-like interaction U ; this term is
nonzero for electrons that scatter in such a way that their
position vectors satisfy the constraint of center-of-mass con-
servation given by j1 + j3 = j2 + j4. This model predates the
Sachdev-Ye-Kitaev (SYK) [19,20] model by 2 years, though
it is considerably less studied. Although both models contain
nonlocal interactions, the current model is exactly solvable
as a result of the conservation of the center of mass in the
interaction term. Similar models with long-range correlations
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were studied in Refs. [21–23]. The integrability of this model,
without resorting to a 1/N expansion as in the SYK model
[19,20], is best seen in momentum space,

H =
∑

�k
H�k =

∑
�k

[ξ (�k)(n̂�k↑ + n̂�k↓) + Un̂�k↑ n̂�k↓], (2)

from which it is clear that the kinetic and potential energy terms
commute. Here, ξ (�k) ≡ ε(�k) − μ and n̂�kσ ≡ c

†
�kσ

c�kσ . We see
that in this model, different momentum states are decoupled,
and the Hamiltonian can be diagonalized by states in the
number representation for each �k. The basis of states which
spans Eq. (2) is given by (|0〉�k,| ↑〉�k,| ↓〉�k,| ↑↓〉�k) with eigen-
values [0,ξ (�k),ξ (�k),2ξ (�k) + U ], for each momentum point �k.
Regardless of the simplicity of this model, a nontrivial Mott
transition exists, as can be seen from the single-particle Green
function,

G0(�k,iωn)U =
(

g(�k,U )

iωn − ξ (�k) + U
2

+ 1 − g(�k,U )

iωn − [
ξ (�k) + U

2

]
)

,

(3)
where the function g(�k,U ) is defined by

g(�k,U ) = 1 + e−βξ (�k)

1 + 2e−βξ (�k) + e−β(2ξ (�k)+U )
, (4)

with β being the inverse temperature, and iωn the fermionic
Matsubara frequency. At half filling, the Green function is
a sum of poles at E±

k = ξ (�k) ± U/2. A gap exists between
the two bands when U > 4td, that is, when U exceeds the
noninteracting bandwidth. The transition to the gapped state
is of the Mott type because Re G(ω,�k) = 0 identically when
ξ�k = 0. That is, in the gapped state, the Fermi surface of the
noninteracting system is converted into a surface of zeros, the
fingerprint [24] of Mottness. This coincidence obtains entirely
because of particle-hole symmetry [24] of the underlying
Hamiltonian. We have as our starting point then an exactly
solvable model which exhibits a Mott transition regardless of
the spatial dimension.

Before we use this model to analyze the existence, or lack
thereof, of a diffusion pole, we review the standard formulation
for a free-electron gas in which scalar impurities act as the
source of momentum relaxation. One natural way to obtain
such a response is to extend the corresponding density response
function of the electron liquid by replacing the infinitesimally
small adiabatic continuation parameter η with the inverse
impurity scattering lifetime 1

τ
, i.e., by making the substitution

χ imp(�q,ω + iη) → χ (�q,ω + i
τ

), where χ (�q,ω) [χ imp(�q,ω)] is
the density response function of the electron liquid without
(with) impurities. However, it was pointed out [25] that such
a naive substitution does not respect the continuity equation.
To remedy this defect, Mermin instead proposed an alternate
approach where, provided one can define a local chemical
potential μ(�q,ω), it is possible to use the continuity equation
to relate the impurity response to the analytically continued
density response function as

χ imp(�q,ω) = χ
(�q,ω + i

τ

)
1 + (1 − iωτ )−1

(
χ(�q,ω+ i

τ )
χ(�q,0) − 1

) . (5)

It can be clearly seen that, in general, χ imp(�q,ω) �=
χ (�q,ω + i

τ
). The two of them become the same only when

the density response without impurities is energy indepen-
dent. That the Mermin formula in Eq. (5) for the impurity
susceptibility leads to dissipative transport can be seen easily
through standard relationships between the density and current
response functions. The longitudinal conductivity is related
to the polarization function through the relation σ‖(�q,ω) =
iω
4π

Vq�(�q,ω), where Vq = 4πe2

q2 . We want to replace the polar-
ization above with the Mermin susceptibility in Eq. (5), and
the density response with the Lindhard function χ0(�q,ω). To
this end, we note that the long-wavelength and static limits
of the Lindhard function are given by lim

q→0
χ0(�q,ω) = nq2

mω2 and

χ (�q,0) = −N (0), respectively, where n is the density, m is the
electron’s mass, and N (0) is the density of states at the Fermi
level. Taking the limit q → 0 on Eq. (5), we therefore find

lim
q→0

χ imp(�q,ω) = ne2

m

1

ω
(
ω + i

τ

) . (6)

Substituting Eq. (6) and Vq into the longitudinal conductivity,
one obtains the Drude formula

σ‖(�q = 0,ω) = ne2

m

1

ω + i
τ

. (7)

Thus we see that τ−1 acquires the meaning of the width of the
Drude peak and hence plays the role of momentum relaxation.
In this context it is important to note that although typical
optical ellipsometry measurements observe the transverse
conductivity, σ‖(�q,ω) reduces to its transverse counterpart for
simple metals in the limit of zero momentum transfer.

Electron gas. To lead our discussion toward a flat-band
response, let us quickly recall the linear response behavior of a
d-dimensional electron gas in the presence of scalar impurities.
By substituting the d-dimensional Lindhard function χ0(�q,ω)
in place of the density response into Eq. (5) and making the
replacement χ0(�q,ω + iη) → χ0(�q,ω + i

τ
), we obtain in the

diffusive limit (ωτ 
 1 and qvF τ 
 1, where vF is the Fermi
velocity and q is the magnitude of �q) [26]

χ
imp
0 (�q,ω) � −N0Dq2

−iω + Dq2
. (8)

Here, D is the diffusion constant given by D = v2
F τ

d
, and

N0 is the density of states at the Fermi level. An important
feature of the form of the impurity response appearing in
Eq. (8) is the presence of a diffusion pole at ω = −iDq2. The
diffusion pole results in a strong enhancement of the density
fluctuation spectrum at low energies and, depending on the
spatial dimension, plays a crucial role in drastically modifying
the quasiparticle scattering rates. Importantly, the form of
the diffusion pole appearing in the denominator of Eq. (8)
indicates that the electron density n(�r,t) relaxes according to
the diffusion equation given by

∂n(�r,t)
∂t

= D∇2n(�r,t), (9)

and the average mean-square electron displacement scales as
〈�r2(t)〉 ∼ 2dDt .
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Flat band with no interactions. To begin our analysis for
the impurity diffusion in a free flat band, it is useful to provide
a precise definition of what we mean by a flat band at the
very outset. At an operational level, we define a flat band as a
system satisfying two conditions: (i) The bandwidth/dispersion
is the smallest energy scale in the problem, i.e., if ε(�k) is the
energy dispersion, ε(�k) − ε(�k + �q) ≡ γ 
 ω,τ−1,T , and (ii)
γ → 0 and �d ≡ a−d → ∞ such that the product γ�d goes
to a constant (a is the lattice spacing).

From now on, we will choose γ to be a small constant that
tends to zero. It is even possible, in principle, to supplement
this constant with momentum dependence. Our results will,
however, remain unchanged as long as its width goes to zero
by satisfying the above two conditions. Note that as a conse-
quence of the conditions stated above, the zero-temperature
dependence appearing in the sections below are obtained by

first taking ε(�k)
T

→ 0 and then T
E

→ 0, where E could be any
other remaining energy scale in the problem. Interchanging
this order of limits will, in general, yield results not relevant
to a flat band. With these points in mind and noting that the
system is set at half filling by choosing the chemical potential μ
to be zero, we can write the noninteracting flat-band Lindhard
function as

χ0

(
ω + i

τ

)
FB

= 1

V

∑
�k

[
n�k

ω + ε(�k) − ε(�k + �q) + i
τ

+ n�k
−ω + ε(�k) − ε(�k + �q) − i

τ

]
, (10)

where V is the volume and ε(�k) − ε(�k + �q) � γ according to
our assumptions above. Substituting this, we obtain

χ0

(
ω + i

τ

)
FB

=
(

2γ

γ 2 − (
ω + i

τ

)2

) ∑
�k

n�k
V

. (11)

Setting ε(�k)
T

→ 0, the momentum summation now just counts
the total number of degrees of freedom, and hence goes
as the inverse volume of the unit cell. Thus it is easy to write
the noninteracting flat-band Lindhard function as (in the limit
γ → 0)

χ0

(
ω + i

τ

)
FB

= −R

t2
0

. (12)

Here, we have defined the flat-band constant R = 2γ�dτ 2

which takes a finite nonzero value (only when an infinite
number of electronic degrees of freedom are present) in the
γ → 0 limit and characterizes the flat band, and t0 = t + i

where t ≡ ωτ . It is worth noticing that, unlike the case of
the d-dimensional electron gas, both the flat-band Lindhard
function as well as its resulting impurity response function
(that appears below) is independent of the momentum transfer
�q. This is not unexpected given that, by definition, a flat band
has no spatial dynamics. To obtain the impurity response for
the flat band, we also need the flat-band Lindhard function
at zero frequency. This quantity can be seen to diverge as
χ0(0)FB = R

γ 2 as γ → 0 due to the chemical potential being set

to zero. Substituting for χ0(ω + i
τ

)
FB

and χ0(0)FB into Eq. (5),

we obtain in the diffusion limit (ωτ 
 1)

χ
imp
0 (ω)FB � R

−it
= R′

−iω
, (13)

where R′ ≡ R/τ . The real part of χ
imp
0 (ω)FB (of order R) has

not been included in Eq. (13) as it is of order ωτ smaller than
the imaginary part. Through a comparison of the structure
of the poles in Eqs. (13) and (8), one can conclude that the
corresponding electron density n(�r,t) does not relax according
to the diffusion equation (9), entirely due to the lack of
spatial dynamics. Therefore, in the strictest sense, there is no
electron diffusion in a flat band. However, Eq. (13) is still a
meaningful quantity as the weight factor R′ (or R) plays the
analogous role of the diffusion constant D times the density
of states at the Fermi level, and can therefore be extracted
experimentally. R′ also plays a central role in defining the
characteristics of the electron gas and its properties in the
presence of long-range interactions will be further explored in
the next section. A significant feature of the flat-band impurity
response [in Eq. (13)] is that the “diffusion” pole shifts to
zero energy as opposed to a nonzero momentum-dependent
value in a d-dimensional electron gas. This shift to zero energy
is expected to result in a serious toll on the quasiparticle
lifetime near the Fermi surface, which is already shortened
considerably in a d-dimensional electron gas in the presence
of impurities. A more quantitative analysis of the quasiparticle
lifetime in a dirty flat band is beyond the scope of this paper
and will be the focus of future work.

The susceptibility bubble for a flat band in the presence of
long-range interactions is given by (FBLR denotes flat band,
long range)

χ0(�q,iqn)FBLR = 1

βV

∑
ikn

�kσ

G0(�k,ikn)UG0(�k + �q,ikn + iqn)U .

(14)

This expression can be evaluated in the flat-band limit and
found to be momentum independent (just as in the case of the
free flat band) and will be denoted as χ0(ω)FBLR after analytic
continuation. The expression for χ0(ω)FBLR can be substituted
into Eq. (5) to yield an impurity response (see Appendix A) of
the form

χ
imp
0 (ω)FBLR � −Rt0

t

[
κ0(g)

t2
0

+ κ+(g)

t2+
+ κ−(g)

t2−

]
. (15)

Here, we have defined the dimensionless variables t± ≡ t ±
u + i, where u ≡ Uτ and κ0,κ± are functions of g ≡ g(U ) =

2
3+e−βU , and t and R have been previously defined. The
functions κ0,κ± are given by

κ0(g) =
(

g2 + 2(1 − g)2

eβU + 1

)
, (16)

κ+(g) = 2g(1 − g)

eβU + 1
, (17)

κ−(g) = g(1 − g). (18)

We can now make a comparison of our result for the interacting
case [χ imp

0 (ω)FBLR] with the noninteracting case [χ imp
0 (ω)FB],

and study various limits of the expression to extract quantitative
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effects of interactions. First, the general form of Eq. (15) bears
some similarities to Eq. (13). While the first term is just the free
flat-band result times a g- (and hence temperature-) dependent
“weight” factor κ0(g), the rest of the two terms are modified
by the presence of a nonzero interaction strength U . These two
terms also appear with their own weight factors κ±(g). Thus,
the impurity response of a flat-band system, in the presence of
constant long-range interactions, is distributed between pure
flat-band and interaction-modified flat-band terms with their
respective weights. For U = 0 we have κ0 = 1

2 and κ± = 1
4

and, as must be expected, χ
imp
0 (ω)FBLR reduces to χ

imp
0 (ω)FB.

Second, it is useful to study the expression for χ
imp
0 (ω)FBLR in

different limits. For a repulsive, finite long-range interaction
(U > 0) and T → 0, we have κ0 → 4

9 , κ+ → 0, and κ− → 2
9 .

Thus, the maximum fraction of the response comes from the
free flat band while there is no contribution from the κ+ term.
If we extend the repulsive interaction to U → ∞, then the
contribution from the κ− term is negligible, and we are left
with χ

imp
0 (ω)FBLR � 4

9χ
imp
0 (ω)FB < χ

imp
0 (ω)FB. Thus, one can

define an effective flat-band constant R̃ which is reduced by
a factor of 4

9 compared to the free flat-band value. Similarly
when T → 0 for a repulsive interaction with U 
 ω, we have
χ

imp
0 (ω)FBLR � 2

3χ
imp
0 (ω)FB < χ

imp
0 (ω)FB. It is also possible to

obtain an enhanced effective flat-band constant by choosing an
attractive interaction U . For example, in the limit when U <0
and T → 0, we have κ0 → 2 and κ± → 0. This results in
χ

imp
0 (ω)FBLR � 2χ

imp
0 (ω)FB > χ

imp
0 (ω)FB, where the effective

flat-band constant is twice the free flat-band value. This state

of affairs obtains because choosing U < 0 amounts to each �k
point being pairwise occupied and hence doubling the effective
flat-band constant and the impurity response. In contrast, when
U > 0 and a large, single occupancy of each momentum point
is energetically more favorable, hence the response is lower
than the free flat-band value.

Momentum-dependent interaction U (�k). In the previous
section, we assumed the interaction U to be a constant.
It would be more meaningful to explore the effect of a
momentum-dependent interaction as in the case of a Coulomb
interaction. To this end, we modify our interaction to be of
the more generalized Yukawa form U (�k) = U + α

λ2+k2 (this
amounts to a Coulomb interaction when U = λ = 0), so that
we recover Eq. (15) for χ

imp
0 (ω)FBLR when α = 0. Formally,

such a generalization from a constant U to U (�k) is fairly
straightforward—the variable U appearing in the momentum
space representation of the Hamiltonian in Eq. (2) and the
Green function in Eq. (3) has to be replaced by U (�k). However,
the ensuing momentum integrals are fairly convoluted and can
only be solved in certain limits and simplifying assumptions.
Once we understand how the integrals behave in these limits,
we can gain insight into what they look like for other parallel
cases. For analytical tractability, we will assume that U is
repulsive so that U (�k) is always positive. In this limit, the
momentum integrals can be solved exactly as T → 0 in all
three dimensions (see Appendix B) and the response [which we
denote as χ0(ω)FBY, where FBY stands for flat-band Yukawa]
in the presence of the interaction U (�k) becomes

χ0(ω)FBY �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ0(ω)FBLR + limγ→0

[
πα
z′2

√
λ2 + α

z′ − πα
z2

√
λ2 − α

z

]
+ O

(
1
�

)
, d = 3,

χ0(ω)FBLR + limγ→0
[
α log (�)

[
1
z2 − 1

z′2
]] + O

(
1
�

)
, d = 2,

χ0(ω)FBLR + limγ→0

[
πα

z2
√

λ2− α
z

− πα

z′2√λ2+ α

z′

]
+ O

(
1
�

)
, d = 1,

which is identical in form to the weak-localization corrections
to the diffusion constant [27]. Here, we have defined z =
−ω − i

τ
+ γ + U , z′ = ω + i

τ
+ γ − U , and � is the large

momentum cutoff. To derive the above expressions, we have
only kept leading order contributions in �. For each dimension
d except d = 2, the largest contributing terms are of O(�d )
and the next highest order is O(1). In the case of d = 2, the next
highest order is of O[log(�)]. However, in each dimension,
the O(�d ) terms recombine to give χ0(ω)FBLR, which is O(1)
because we have assumed that �dγ is a constant of order
unity. We must therefore keep the next highest order terms
in each case. However, in the limit γ → 0, we have z′ = −z,
and according to our definition of a flat band, all the terms
proportional to α vanish [see the formula for χ0(ω)FBY above].
Thus we can conclude that a momentum-dependent interaction
of the form α

λ2+k2 has no effect on the impurity response in the
flat-band limit. Although our conclusion is derived for the case
when U is repulsive and T → 0, it is easy to see why it holds
for other cases as well. The key reason why an interaction of the
Yukawa or Coulomb form does not affect the flat-band response
function (with or without impurities) is that only electrons near
the Brillouin zone edges contribute to the response. This can be

seen from from our assumption that �dγ is a constant; hence,
electrons not at the boundary do not contribute because γ goes
to zero faster than the enclosed zone volume at finite �k. Thus,
given that only the edge electrons contribute in a flat band, in
the limit that �d → ∞, α

λ2+k2 has no effect as it goes to zero
at the Brillouin zone edges. Therefore, a potential of the form
of α

λ2+k2 does not change a flat-band response with or without
impurities for either attractive or repulsive interactions, even
at nonzero temperatures. However, when U (�k) is a constant
(as in the previous section), the potential has a finite value
even at the zone edges and, as a consequence, has a nontrivial
effect on the response properties. The irrelevance of a Yukawa
or Coulomb-like term is exclusively a property of the flat band
and does not hold in the case of a dispersive band due to the
fact that the O(1) α term contributions are, in general, finite
and nonzero.

Temperature dependence. For d-dimensional electrons, in
the absence of any interactions, the bandwidth sets the only
energy scale in the problem. It is with respect to this scale that
electrons can be thermally excited into higher-energy states
away from the Fermi level, leading to temperature-dependent
response functions. However, in the case of a flat band, where
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FIG. 1. Plot of χ
imp
0 (ω)FBLR normalized with the free flat-band

impurity response (and hence independent of ω) as a function of the
dimensionless parameter r = βU . Positive (negative) r corresponds
to repulsive (attractive) long-range interaction.

all the states have an equal probability of occupation, there is
no notion of ordering of states energetically. Hence, the free
flat-band response with or without impurities is independent of
temperature, as reflected in Eqs. (12) and (13). An equivalent
statement is that in the extremely high-temperature limit
(T much larger than the bandwidth), the temperature is already
large enough so that all momentum states are energetically
accessible and, therefore, any smaller changes in temperatures
will not have any effect on occupation number-dependent ob-
servable properties. In the presence of long-range interactions
of the type appearing in Eq. (2), however, U sets the only scale
in the problem. It is, therefore, reasonable to expect that ob-
servable quantities depend on temperature through the dimen-
sionless parameter βU ≡ r; Eq. (15) reflects this expectation.
A plot of the χ

imp
0 (ω)FBLR (normalized with the free flat-band

impurity response, and hence independent of ω) as a function
of r , for U much smaller than ω, appears in Fig. 1. There is a
significant temperature dependence of χ

imp
0 (ω)FBLR (∝ β) only

for small r and is featureless asymptotically. This behavior can
be understood from the form of the function g(U ) which deter-
mines the fraction of the response that is split between the free
flat band and the part dominated by long-range interactions.

Conclusions. To conclude, we studied the impurity response
of a flat band in the diffusion limit with and without long-range
interactions of the type proposed in Ref. [17]. Starting from
the noninteracting case, we argued that the system does not
“diffuse” in the traditional sense of a d-dimensional electron
gas, but found it useful to define the notion of a flat-band
constant that takes a nonzero value in spite of the fact that
the Fermi velocity of a dispersionless band is zero. This
constant appears as the residue of an impurity pole that has

been shifted to zero energy due to the lack of spatial dynamics
and momentum independence of the impurity response. In the
presence of long-range interactions, we saw that the flat-band
constant could be effectively enhanced, suppressed, or unaf-
fected, depending on whether the interaction is a constant and
attractive, a constant and repulsive, or momentum dependent
of the Yukawa/Coulomb form, respectively. The impurity pole
at zero energy is unaffected for a constant attractive interaction
at zero temperature, for an infinite repulsive interaction, or for
an interaction of the Yukawa/Coulomb form. This shows that
scale invariance is robust to interactions of these types and there
is no energy scale which develops that permits a reasonable
definition of a charge diffusion constant. Finally, we argued
the temperature independence of the impurity response for the
case of the dirty noninteracting flat band. In the interacting
case, the calculated response is ∝ β for small βU and saturates
to a constant for larger values. Looking ahead, it would be of
interest to further explore the effect of the shift of the diffusion
pole to zero energy in the exact scaling form of the quasiparticle
life time in dirty flat-band systems.
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APPENDIX A

The form of the Green function for the model proposed in
Ref. [17] has been derived in Ref. [18] which we simply restate
here for completeness. Given a quasiparticle dispersion ξ (�k),
the Green function is given as

G0(�k,iωn)U =
(

g(�k,U )

iωn − ξ (�k)
+ 1 − g(�k,U )

iωn − [ξ (�k) + U ]

)
, (A1)

where the function g(�k,U ) is defined by

g(�k,U ) = 1 + e−βξ (�k)

1 + 2e−βξ (�k) + e−β(2ξ (�k)+U )
, (A2)

with β being the inverse temperature, iωn is the fermionic
Matsubara frequency, and U is the constant long-range interac-
tion. The density-density correlation function for such a Green
function is given (see, for example Ref. [28]) by the generalized
pair susceptibility bubble

χ0(�q,iqn) = 1

βV

∑
ikn

∑
�kσ

G0(�k,iωn)UG0(�k + �q,iωn + iqn)U (A3)

= 1

βV

∑
ikn

∑
�kσ

[
g(�k,U )g(�k + �q,U )

[ikn − ξ (�k)][ikn + iqn − ξ (�k + �q)]
+ [1 − g(�k,U )][1 − g(�k + �q,U )]

[ikn − ξ (�k) − U ][ikn + iqn − ξ (�k + �q) − U ]

+ g(�k,U )[1 − g(�k + �q,U )]

[ikn − ξ (�k)][ikn + iqn − ξ (�k + �q) − U ]
+ [1 − g(�k,U )]g(�k + �q,U )

[ikn − ξ (�k) − U ][ikn + iqn − ξ (�k + �q)]

]
. (A4)

Performing the Matsubara sums and shifting the momentum from �k → −�k − �q in the second of each resulting Fermi distribution,
we obtain
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χ0

(
�q,ω + i

τ

)
= 1

V

∑
�kσ

[
g(�k,U )g(�k + �q,U )

(
n�k

ω + i
τ

+ ξ (�k) − ξ (�k + �q)
+ n�k

−ω − i
τ

+ ξ (�k) − ξ (�k + �q)

)

+ [1 − g(�k,U )][1 − g(�k + �q,U )]

(
n�kU

ω + i
τ

+ ξ (�k)U − ξ (�k + �q)U
+ n�kU

−ω − i
τ

+ ξ (�k)U − ξ (�k + �q)U

)

+ g(�k,U )[1 − g(�k + �q,U )]

(
n�k

ω + i
τ

+ ξ (�k) − ξ (�k + �q)U

)

+ g(�k + �q,U )[1 − g(�k,U )]

(
n�kU

−ω − i
τ

+ ξ (�k) − ξ (�k + �q)U

)
(A5)

+ g(�k + �q,U )[1 − g(�k,U )]

(
n�kU

ω + i
τ

+ ξ (�k)U − ξ (�k + �q)

)

+ g(�k,U )[1 − g(�k + �q,U )]

(
n�k

−ω − i
τ

+ ξ (�k)U − ξ (�k + �q)

)]
, (A6)

where we have defined n�k ≡ nF [ξ (�k)], n�kU = nF (ξ�k + U ), ξ (�k)U = ξ (�k) + U , and nF (x) is the Fermi function. Substituting for
ξ (�k) − ξ (�k + �q) = γ , using the definition of the flat band, and with the help of Eq. (5) appearing in the main text, we obtain the
flat-band response in the presence of impurities and in the absence of interactions as

χ
imp
0 (ω)FBLR � −Rt0

t

[
κ0(g)

t2
0

+ κ+(g)

t2+
+ κ−(g)

t2−

]
. (A7)

Here, we have defined the dimensionless variables t0 = t + i, t± ≡ t ± u + i, where t ≡ ωτ , u ≡ Uτ , and κ0,κ± are functions
of g ≡ g(U ) = 2

3+e−βU . The flat-band constant R ≡ 2γ�dτ 2. In deriving the above expression for χ
imp
0 (ω)FBLR, we have used the

fact that ξ (�k) is equal to zero in the Fermi function (n�k) and hence every �k point has a probability of being occupied as 1
2 . Thus the

occupied density of electrons translates to a momentum space volume �d . Similarly, it is easily seen that 1
V

∑
�kσ n�kU = 2�d

eβU +1 .

APPENDIX B

As briefly mentioned in the main text, for analytical tractability, we will assume repulsive interactions and work in the limit of
zero temperature. In this limit, we can ignore the terms proportional to n�kU to the lowest order as they are exponentially smaller
than the terms proportional to n�k; additionally, the function g(�k,U ) goes to a constant equal to 2

3 ≡ g. With these assumptions,
we can write the response function as

χ0

(
�q,ω + i

τ

)
= 1

V

∑
�k

[
g2

(
1

ω + i
τ

+ γ
+ 1

−ω − i
τ

+ γ

)
+ g(1 − g)

(
1

ω + i
τ

+ γ − U (�k + �q)
+ 1

−ω − i
τ

+ γ + U (�k)

)]
,

(B1)

where U (�k) = U + α
λ2+k2 . The first term proportional to g2 is independent of �k and the momentum sum simply gives the

noninteracting flat-band response modified by a factor of g2 = 4
9 . The effect of the interactions appears in the second term

proportional to g(1 − g) and has a momentum dependence due to U (�k). Hence the resulting momentum integrals need to be
performed in all three dimensions.

d = 3 case. Consider the integral

I1(3D) = g(1 − g)

(2π )3

∫ �

0

∫
�d=3

⎡
⎣ dkk2d�d=3

ω + i
τ

+ γ −
(
U + α

(�k+�q)2+λ2

)
⎤
⎦. (B2)

Defining z ≡ (ω + i
τ

+ γ − U ), performing the azimuthal φ integral, and changing variables t = cos θ , we obtain

I1(3D) = g(1 − g)

4π2

∫ �

0

∫ 1

−1

dkk2dt(X + Y t)

z(X + Y t) − α
, (B3)
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where we have defined X ≡ k2 + q2 + λ2, Y = 2kq. The t integral can be easily performed to give

I1(3D) = g(1 − g)

4π2

∫ �

0
k2dk

[
2

z
+ α

2kqz2
log

(
z(k + q)2 + λ2z − α

z(k − q)2 + λ2z − α

)]
. (B4)

The radial momentum integral of the first term is simply 2�3

3z
. The radial momentum integrals of the second term are given as

∫ �

0
kdk log(μk2 ± νk + δ) = [I+(k) − I−(k)]�0 , (B5)

where

I±(k) = 1

4μ2

[
2kμ(−kμ ± ν) ∓ 2ν

√
4δμ − ν2 arctan

(
2kμ ± ν√
4δμ − ν2

)
+ [2μ(δ + k2μ) − ν2] log(δ + k2μ ± kν)

]
(B6)

and μ ≡ z, ν ≡ 2qz, and δ ≡ z(q2 + λ2) − α. Substituting for I±(k) into the integral, taking the limit of � → ∞, and keeping
only the most divergent terms in �, we obtain

I1(3D) � g(1 − g)

4π2

(
2�3

3z
+ 2�α

z2

)
+ O(�0). (B7)

Similarly, the integral

I2(3D) = g(1 − g)

(2π )3

∫ �

0

∫
�d=3

⎡
⎣ dkk2d�d=3

−ω − i
τ

+ γ +
(
U + α

�k2+λ2

)
⎤
⎦ � g(1 − g)

4π2

(
2�3

3z′ − 2�α

z′2

)
+ O(�0), (B8)

where we have defined z′ ≡ −ω − i
τ

+ γ + U . Note that I1(3D) and I2(3D) differ by a sign in the second term proportional to
α and z is replaced with z′. Thus, combining I1(3D) and I2(3D), we see that the terms proportional to � cancel out, whereas
terms proportional to �3 combine with γ to give a constant of O(1). Therefore, we need to include other O(1) contributions

which were left out in I1(3D) and I2(3D). These O(1) contributions can be evaluated to be πα
z′2

√
λ2 + α

z′ − πα
z2

√
λ2 − α

z
, which is

the expression that appears in the main text. Note that there is an additional prefactor of 1
6π2 that appears in these expressions

compared to the free flat-band case. This is only because of the difference in the normalization used while working in spherical
coordinates, and can be trivially absorbed into the definition of the flat-band constant R.

d = 2 case. As the remaining two cases can be derived similar to the d = 3 case, we will only give a sketch of what the
integrals look like. In the d = 2 case we consider the integral

I1(2D) = g(1 − g)

4π2

∫ �

0

∫ 2π

0

kdkdφ

z − α

(�k+�q)2+λ2

= g(1 − g)

4π2

∫ �

0

∫ 2π

0

kdkdφ(X + Y cos φ)

z(X + Y cos φ) − α
, (B9)

where again z ≡ (ω + i
τ

+ γ − U ), and X ≡ k2 + q2 + λ2, Y ≡ 2kq. The azimuthal φ integral can be performed to give

I1(2D) = g(1 − g)

4π2

∫ �

0
kdk

[
2π

z
+ α

z
√

z(k + q)2 + zλ2 − α
√

z(k − q)2 + zλ2 − α

]
. (B10)

In the large � limit, the remaining radial k integral yields

I1(2D) � g(1 − g)

4π2

[
π�2

z
+ α

z2
log(�)

]
, (B11)

where we have collected the two largest contributions in �. Similarly, we have

I2(2D) = g(1 − g)

4π2

∫ �

0

∫ 2π

0

kdkdφ

z′ + α
�k2+λ2

� g(1 − g)

4π2

[
π�2

z′ − α

z′2 log(�)

]
. (B12)

Combining I1(2D) and I2(2D), we see that the terms proportional to � are multiplied by γ and are just of order unity. The
remaining terms proportional to α log(�) just obtain α log(�)[ 1

z2 − 1
z′2 ], which is the expression that appears in the main text.

d = 1 case. The one-dimensional case follows along similar lines. Consider the integral

I1(1D) =
∫ �

2

− �
2

dk

z − α
(k+q)2+λ2

=
∫ �

2

−�
2

dk(k2 + ak + b)

z(k2 + ak + b) − α
, (B13)
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where we have defined a = 2q and b = q2 + λ2. This integral can be performed exactly and is written as

I1(1D) =
⎡
⎣k

z
+

2α arctan
(

(a+2k)
√

z√−a2z+4bz−4α

)
z3/2

√−a2z + 4bz − 4α

⎤
⎦

�
2

− �
2

. (B14)

In the large � limit, the leading terms are given as

I1(1D) �
(

�

z
+ 2πα

z3/2
√−a2z + 4bz − 4α

)
+ O

(
1

�

)
. (B15)

Note that we have also included the O(1) contributions since we learned from the previous two cases that the O(�d ) terms
combine to give O(1) terms. On similar lines we can write

I2(1D) =
∫ �

2

−�
2

dk

z′ + α
k2+λ2

�
(

�

z′ − 2πα

z′3/2
√−a2z′ + 4bz′ + 4α

)
+ O

(
1

�

)
. (B16)

As before, adding the I1(1D) and I2(1D) terms, we see that the terms proportional to � combine with γ gives us a term of O(1).
The remainder of the terms yield 2πα[ 1

z2
√

4λ2− 4α
z

− 1

z′2
√

4λ2+ 4α

z′
], which is the expression appearing in the main text.
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