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Microscopic dynamics of superfluid *He: A comprehensive study by inelastic neutron scattering
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The dynamic structure factor of superfluid “He has been investigated at very low temperatures by inelastic
neutron scattering. The measurements combine different incoming energies resulting in an unprecedentedly large

dynamic range with excellent energy resolution, covering wave vectors Q up to 5 A" and energies w up to
15 meV. A detailed description of the dynamics of superfluid “He is obtained from saturated vapor pressure
up to solidification. The single-excitation spectrum is substantially modified at high pressures, as the maxon
energy exceeds the roton-roton decay threshold. A highly structured multiexcitation spectrum is observed at low
energies, where clear thresholds and branches have been identified. Strong phonon emission branches are observed
when the phonon or roton group velocities exceed the sound velocity. The spectrum is found to display strong
multiexcitations whenever the single excitations face disintegration following Pitaevskii’s type a or b criteria.
At intermediate energies, an interesting pattern in the dynamic structure factor is observed in the vicinity of the
recoil energy. All these features, which evolve significantly with pressure, are in very good agreement with the
dynamic many-body calculations, even at the highest densities, where the correlations are strongest.
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I. INTRODUCTION

Understanding the dynamics of correlated bosons is a
subject of general interest in several fields of physics. Bose-
Einstein condensation and superfluidity [1,2], first found in
“He, are fundamental phenomena that imprint remarkable
signatures on the dynamics of these systems. Experimentally,
superfluid “He is the simplest example of strongly correlated
bosons. The interaction potential is particularly well known,
and substantial effort has been devoted to develop a coher-
ent theoretical framework that can describe and explain the
extraordinary properties of this quantum fluid [1-11]. The
theoretical methods can be generalized to other many-body
problems, including, for instance, up-to-date approaches of the
complex case of correlated fermions [12-16].

The prediction by Landau [3] of the phonon-roton excitation
spectrum of superfluid “He and its direct observation in the
dynamic structure factor S(Q,w) using neutron scattering tech-
niques [4,17] are cornerstones of modern physics, at the origin
of the present microscopic descriptions of matter [5,18,19].
The dynamics of superfluid “He at very low temperatures,
in the vicinity of the ground state, is dominated by the
“phonon-maxon-roton” excitation branch. The corresponding
excitations, extremely sharp, correspond essentially to poles
of the dynamic density-density response function. They are
referred to as “single excitations” in the neutron scattering
literature, and as “quasiparticles” in theoretical works. An
effective description of the dynamics of such systems can
be obtained in terms of these modes, allowing, for instance,
a very accurate statistical evaluation of the low-temperature
thermodynamic properties [4,20].
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Sharp excitations are absent above twice the roton energy
[4,17,21], and the dynamics at intermediate energies is de-
scribed in terms of broad excitations, named “multiexcitations”
for reasons described below. Multiexcitations still have a
significant statistical weight in the dynamic structure factor
[4,17,22-30]. Their spectrum is known to display some struc-
ture since the early measurements of Svensson, Martel, Sears,
and Woods [23]. More recent investigations [24—29] showed
that some features could be ascribed to multiexcitations. These
were related to pairs of high density-of-states roton (R) and
maxon (M) modes (denoted hereafter as 2R, 2M, and M R).
The broad ridges observed in S(Q,w) at saturated vapor
pressure (SVP) (see Fig. 1 of Ref. [24]) and at 20 bars (see
Fig. 1 of Ref. [29]) were consistent with the calculated energies
of the main combinations (2R, 2M, and M R).

A much finer structure in the dynamic response was ob-
served in our recent work at zero pressure [30], including sharp
thresholds, narrow branches, and a new two-phonon decay
process, the “ghost phonon.” Explaining this rich dynamic
response, observed from the continuum limit to subatomic
distances, constitutes a challenge and an opportunity for micro-
scopic theories. Finally, at high energies, the dynamic structure
factor gradually approaches a quasi-free-particle behavior [22]
described by the impulse approximation [4,17,31].

Even though helium is one of the most intensively inves-
tigated physical substances, measurements covering a large
kinetic range are scarce. The canonical results by Cowley and
Woods [22], Dietrich et al. [32], or Svensson et al. [23] have a
low resolution by modern standards, while later measurements
specialize in specific ranges [27-29,33,34]. Our extensive
high-resolution measurements, presented in Fig. 1, provide
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FIG. 1. S(Q,w) of superfluid *He as a function of wave vector and energy transfer, measured at T < 100 mK at (a) saturated vapor pressure
(P =~ 0) and (b) near solidification (P = 24 bars). The plots combine data measured at different incident neutron energies (E; = 3.55, 5.1,
8.00, and 20.45 meV) for an optimum energy resolution; the dashed black lines represent the limits of the corresponding kinetic ranges. The

o . 292 . . .. . _
dotted red line is the free *He atom recoil energy E, = % The color-coded intensity scale is in units of meV .

a detailed and complete map of the dynamics of superfluid
4He. In addition to its aesthetic merits, the picture shows new
features that are the object of this paper.

Helium is highly compressible. Since the atomic correla-
tions depend on the density, it is interesting to investigate
the pressure dependence of the density excitations. Much
of the earlier work has been focused on the effect of pressure
on the single-excitation response, in order to determine, for
example, the Landau parameters characterizing the dispersion
curve. The multiexcitation spectrum has also been found ex-
perimentally [27-29,32-35] and theoretically [4,7,9,36] to be
strongly modified by the pressure. It was therefore desirable to
extend our recent high-sensitivity measurements [30] to finite
pressures, and more particularly near solidification, where
theory [9] predicted radical changes in the dynamics.

In this paper, we present a detailed investigation of the
effect of pressure on the dynamics of superfluid *He. We cover
a large energy and wave-vector range while preserving the
resolution needed to observe the fine structure of the spectra.
High-resolution maps of the dynamic structure factor S(Q,w)
have been obtained at SVP and at P = 24 bars, close to
solidification, as shown in Fig. 1. Additional measurements
have been made in a smaller dynamic range at the intermediate
pressures 5 and 10 bars. We finally compare our data to
microscopic calculations of S(Q,w) within the dynamic many-
body theory [9] performed at the densities corresponding to the
experimental pressure conditions.

II. EXPERIMENTAL DETAILS

The measurements were performed on the INS time-of-
flight spectrometer at the high-flux reactor of Institut Laue

Langevin. Our previous work [30] at low temperatures and
saturated vapor pressure used cold neutrons of energy E; =
3.55 meV. In the present work, we combine data taken using
four different incident neutron energies, E; = 3.55,5.11, 8.00,
and 20.45 meV, for which the energy resolution [full width at
half-maximum (FWHM)] at elastic energy transfer was 0.070,
0.12,0.23 and 0.92 meV, respectively. This allowed us to obtain
a complete map of the dynamic structure factor at the most
relevant pressures, i.e., saturated vapor pressure (SVP) and
near solidification (P = 24 bars). We also investigated a few
intermediate pressures using E; = 3.55 meV.

The cylindrical sample cell was made out of aluminum
5083, with 1 mm wall thickness and 15 mm inner diameter
[30]. Cadmium disks of 0.5 mm thickness were placed inside
the cell every centimeter to reduce multiple scattering. The cell
was thermally connected to the mixing chamber of a very-low-
temperature dilution refrigerator using massive OFHC copper
pieces. Heat exchangers made out of sintered silver powder
were used to provide a good thermal contact with the helium
sample. Care was taken to thermally anchor the filling capillary
at several places along the dilution unit in order to reduce heat
leaks to the cell. The measurements were all performed at very
low temperatures, well below 100 mK, i.e., essentially at zero
temperature for the properties under investigation.

High-purity (99.999%) helium gas was condensed in the
cell atlow temperatures, using a gas-handling system including
a “dipstick” cold trap operated in a helium storage dewar. The
dipstick was used to condense the gas and to pressurize the
helium sample. The pressure in the system was measured with a
precision of 6 mbars with a 0—60 bars Digiquartz gauge located
at the top of the cryostat. The corresponding precision for the
pressures inside the cell is 20 mbars after applying helium

184520-2



MICROSCOPIC DYNAMICS OF SUPERFLUID “He: A ...

PHYSICAL REVIEW B 97, 184520 (2018)

0.09

25 r

0.01

Energy w (meV)

1F F 0.005

F E=5.11 meV

ol I I I I I L I 1 1 I I o
0.5 1 1.5 2 2.5 30 0.5 1 1.5 2 25 3

Wave vector Q (A1)

FIG. 2. Monte Carlo calculation of the contribution of double-
scattering within the helium to S(Q,w). Results are shown for two
incident neutron energies, E; = 3.55 and 5.11 meV. The color-coded
intensity scale is in units of meV ",

hydrostatic head corrections. The actual pressures in the cell
for the nominal 0, 5, 10, and 24 bars are essentially O (SVP at
100 mK), 5.01(2), 10.01(2), and 24.08(2) bars.

III. DATA REDUCTION

Standard time-of-flight data reduction [37] was used to
obtain the dynamic structure factor S(Q,®) from the raw data.
The contribution of the cell scattering was subtracted, as well
as that of double-scattering events of the type “inelastic helium
scattering plus elastic scattering from the cell.” This type of
double scattering is essentially independent of wave vector.

The contribution of the multiple scattering within the helium
was corrected using Monte Carlo simulations [38]. Due to the
small diameter of our sample cell and the presence of several
cadmium plates, multiple-scattering corrections are small (the
ratio of double-scattered to single-scattered neutrons is on
the order of 1% [30]), but they may be comparable to the
multiexcitation signal. It is therefore essential to verify that
multiple scattering is not contaminating the spectra in the
energy and wave-vector regions of interest, and to perform
the corrections when necessary, in particular at low Q.

Since multiple scattering depends on the incident neutron
energy, as shown in Fig. 2, while multiexcitations do not,
Monte Carlo calculations can be used to select the most appro-
priate incident neutron energy for the experiments, and also
to experimentally distinguish multiexcitations from multiple
scattering.

The only input needed by the Monte Carlo simulations [38]
in the present case is the initially measured scattering function
S(Q,w) after corrections for multiple-scattering processes
involving the cell, and the coherent scattering cross section
of *He, o, = 1.34 barns. We first calculate the total scattering
cross section [38,39] oy (E;):

No.
oy (Ep) = 2—;/ QdeS(Q,w)dw, (1)

where N is the number of scatterers and k; is the incident
neutron wave vector.

We find o,(E; = 3.55 meV) = 0.64 barns, about one-half
of the coherent scattering cross section o.on. The multiple scat-
tering fraction is 0.8% for E; = 3.55 meV, increasing slightly
with pressure from 0.79% at SVP to 1.06% at 24 bars. This
agrees well with calculations using the semianalytical method
developed by Sears [40], which give values increasing from
0.93% to 1.09% for the same pressures. Multiple scattering
can be seen in the experimental spectra at low wave vectors,
thus providing a way to check the Monte Carlo calculations
used to eliminate this effect. This is a crucial step in the data
analysis, needed to ensure that all the features we report in
S(Q,w) do indeed correspond to multiexcitations.

The calculated contribution due to multiple scattering
within the helium has been subtracted from the spectra
measured using incident neutron energies E; = 3.55 and
5.11 meV. This was found to be unnecessary for E; = 8.00
and 20.45 meV, because multiple scattering processes are
negligible in the corresponding regions of the “combined”
spectra of Fig. 1.

An overall scale factor was applied to S(Q,w) at SVP, so
that the weight of the single excitation Z( Q) agrees with that of

Cowley and Woods [22] near the roton, i.e., Z(Q =2 /oxfl) =
0.93 at SVP. At higher pressures, the same scaling factor was
used, but corrected for the density ratio p(P)/p(P = 0).

IV. EXPERIMENTAL RESULTS
A. Spectra at SVP and P = 24 bars in a large dynamic range

Our comprehensive results on the dynamic structure factor
S(Q,w) at SVP and P = 24 bars are shown in Fig. 1. These
maps were obtained by combining the four different neutron
energies. Higher energies make a larger dynamic range accessi-
ble, but the instrumental energy resolution deteriorates rapidly
(see Sec. II). Since the corresponding dynamic ranges have a
substantial overlap, we can select the most appropriate data set
in terms of resolution, neutron counts, or cleanest background
for each region of the Q-w plane. The S(Q,w) maps are
built in the following way: first, the spectrum measured at
E; = 3.55 meV is represented; outside its useful kinetic range,
the data at E; = 5.11 meV are added, then the data at E; =
8.00 meV, and finally the data at E; = 20.45 meV.

The constant wave-vector scans presented in Fig. 3, ob-
tained as particular “cuts” of Fig. 1, provide a complementary
perspective on the data. The phonon-roton single-excitation
mode is very narrow at the scale of Figs. 1 and 3, and the
observed width is essentially a measure of the experimental
energy resolution (with the remarkable exception of the maxon
at high pressures, which is discussed in the next section).
The influence of a finite energy resolution is clearly seen in
Fig. 1 as a width discontinuity in the Pitaevskii plateau [4,21],
between ranges corresponding to different incident neutron
energies. It is important to note, however, that the experimental
broadening effects are negligible in all the multiexcitation
region investigated in the present work (except at the end of
the Pitaevskii plateau).

Merging data measured with different resolutions has
been successfully achieved, judging from the remarkable
continuity in intensity between the different regions
represented in Fig. 1. This is essentially due to the fact
that the sharpest multiexcitations are found in the low-energy
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FIG. 3. Dynamic structure factor S(Q,w) combining data at four
incident neutron energies: spectra for different wave vectors Q at SVP
(green diamonds) and P = 24 bars (purple squares). The dashed lines
are Gaussian fits of the resolution-limited phonon-roton peaks (off
scale). The black lines represent the helium recoil energy. At Q =
3 A_l , the purple and green lines represent the two-roton energy 2A
at SVP and P = 24 bars, respectively. At Q =1 A_], MR and MM
are the energy positions at SVP of the maxon-roton and maxon-maxon
multiexcitations, respectively.

and low-wave-vector sector, adequately covered by our
high-resolution data at E; = 3.55 and 5.11 meV. Conversely,
the spectra in the quasi-free-particle region, at high energies
and wave vectors, are intrinsically broad and adequately
covered by our data at 8.00 and 20.45 meV, in spite of their
lower resolution. Using optimized incident neutron energies
reveals the complete evolution of the system, characterized
by several multiexcitation branches merging progressively at
high wave vectors to form a broad but rather intense feature.
Intensity in this region was observed in early studies [4,17], but
the data were either strongly truncated [24,25,29] or measured
with low resolution [22]. This feature finally becomes, after
a strong oscillation, a less intense branch progressively
approaching the free-particle parabolic dispersion.

B. High-resolution spectra as a function of pressure

We present in this section the spectra obtained using an
incident neutron energy of E; = 3.55 meV for wave vectors up

toQ =25 10\_1 and energies up to w = 2.22 meV. The results

(a) Experiment (b) Theory i
2 : r
151 B
1 L
0.5+ B
n=0.0215 A-3
0.5
0 SAbAwth L .k A 4 L
0.1
= n=0.0230 A3
1S
5’ P R |
>
=
5]
| =
w
0.05
P= 10 bar n=0.0240 A-3
ols
oL L
1.5 B
e L
0.5+ r
P= 24 bar n=0.0255 A-3 0.01
0 L T SRR AT TR BN R e |

0 05 1 15 2 0 05 1 15 2
Wave vector Q (A1)

FIG. 4. (a) S(Q,w) of superfluid “He measured as a function of
wave vector and energy transfer, at P =0, 5, 10 and 24 bars and
temperature 7 < 100 mK. The incident neutron energy is E; = 3.55
meV. (b) Dynamic many-body theory calculation of S(Q,w) at cor-
responding densities (n = 0.0215, 0.0230, 0.0240, and 0.0255 A_3;
see the text). Note that the main features of the experimental data
are well reproduced. The color-coded intensity scale is in units of
meV~!. The intensity is cut off at 1 meV~! in order to emphasize
the multiexcitations region. The apparent width of the phonon-roton
excitations in the experimental plot is due to an energy resolution of
0.07 meV, while the calculated phonon-roton dispersion curve has
been highlighted by a thick red line.

are shown in Fig. 4(a), where we represent our earlier data [30]
at SVP, the present data at 5 and 10 bars, and the dataat P = 24
bars discussed in the previous section. One can readily note that
both the single-excitation and multiexcitation components of
the dynamic structure factor are modified by the pressure.
Our results for the single-excitation dispersion measured at
several pressures, shown in Fig. 5(a), are in excellent agreement
with previous works [4,17,24,25,28,32,34,41,42]. The roton
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FIG. 5. (a) Dispersion relation €,(Q) of the single excitations
measured at 0, 5, 10, and 24 bars. Note the flattening of the curve
at the maxon at high pressures. (b) The wave-vector dependence of
the measured width (FWHM) of the single-excitation peaks. The
measured width reflects the shape of the experimental resolution
ellipsoid cut by the dispersion relation curve at different angles. At 24
bars, however, a physical broadening of the maxon is clearly observed.

parameters at each pressure have been obtained from fits of the
single-excitation dispersion relation €, (Q) to the expression

2

€p=Ag+ (Q — Q&)

2mpg
+b(Q — Or)’ +¢(Q — Q)" 2)

where Ay is the roton energy gap, O is the wave vector at
the roton minimum, and uy is the roton effective mass; b and
c are additional adjustable parameters. Fits were made over a

total wave-vector range AQ up to 0.47 A_l . Due to the large
number of individual detectors and the high neutron rate of INS5,

TABLE 1. Roton energy gap Apg, wave vector of the roton
minimum Qp, and roton effective mass wg; values in parentheses
are one-standard-deviation errors from least-squares fits described in
the text.

P (bars) Ag (meV) 0r A7) i

0 0.7416(10) 1.9260(2) 0.1240(4)
5.01(2) 0.7143(10) 1.9655(2) 0.1096(4)
10.01(2) 0.6885(10) 1.9963(2) 0.1000(4)
24.08(2) 0.6254(10) 2.0579(2) 0.0879(4)

the statistical uncertainty of the fits is very good (see Table I).
The roton mass determined in our work is lower than the one
obtained by Andersen et al. [24,25] using a parabolic fit of the
roton minimum, but it agrees well with earlier measurements
[41] where the parabolic fit was limited to a very narrow wave-
vector range.

A similar analysis can be performed in the maxon region.
The corresponding maxon parameters A s, O, and .y (d and
e are additional adjustable parameters) have been calculated by
fits of €¢ in the maxon region, over a wave-vector range AQ

on the order of 0.8 Ail, to the formula

2
€0 = Au =5, —(0 On)’
+d(Q — Qu)® +e(Q — Ou). 3)

The results are given in Table II.

As expected for a system approaching localization [43],
the phonon and the maxon energies increase steadily with
pressure, while the energy of the roton minimum decreases.
The single-excitation data of Fig. 5(a) clearly show in addition
a substantial flattening at the level of the maxon in the
dispersion curve corresponding to a pressure of 24 bars. Earlier
results at this pressure did not detect this effect [32,34], while
more recent systematic results by Gibbs et al. [28] were limited
to pressures below 20 bars. The data at 24 bars are qualitatively
different from those at low pressures because the maxon energy
exceeds twice the roton energy. At high pressures, the maxon
excitation can therefore decay by phonon emission, exactly as
in the case of higher wave vectors, at Pitaevskii’s plateau [21].

We also observe the corresponding broadening of the maxon
single excitation [Fig. 5(b)]: the measured maxon total width
of 0.012 meV, obtained after subtraction of the instrumental
resolution, is substantial compared to typical phonon and roton

TABLE II. Maxon energy A, wave vector Oy, and effective
mass [y ; values in parentheses are one-standard-deviation errors
from least-squares fits described in the text. The last column gives
twice the energy of the roton gap 2A g, for comparison with the value
of A M-

P(bars) Ay (meV) Qy(AT) ny 2Ax

0 1.1966(10) 1.1073(2) 0.492(1) 1.4832(20)
5.01(2) 1.2422(10)  1.1089(3)  0.541(1)  1.4286(20)
10.01(2) 1.2668(10) 1.1150(3) 0.614(2) 1.3777(20)
24.08(2) 1.2662(10) 1.1336(4) 0.915(3) 1.2508(20)
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widths (see Ref. [42] and references therein). The excitations
in the maxon region broaden until they become unobservable
in confined helium [17,44,45], where very high pressures can
be reached before solidification.

We now concentrate on the multiexcitation region, shown
in Fig. 4(a), which displays highly structured spectra for
all pressures. The data for the pressures 5 and 10 bars are
qualitatively similar to our previous results at saturated vapor
pressure [30]. The high-resolution spectra display very clearly
a threshold in energy at about 1.5 meV. This feature, which
corresponds to the decay of an excitation into a pair of
rotons, depends on pressure, since the roton energy depends
on pressure. In addition, we observe several well-defined mul-
tiexcitation branches displaying substantial dispersion. Their
gradual evolution reflects, as will be shown in Sec. VI, the
change with pressure of the single-excitation dispersion.

We also observe important qualitative changes at high
pressures. We examine first the multiexcitation region of
the “ghost phonon.” This multiphonon excitation, observed
in our previous work, appears as a linear extension of the
phonon branch [30]. We observe in the present work that the
ghost-phonon intensity strongly decreases with pressure until
it disappears at some pressure below 24 bars.

We also see very clearly in Fig. 1(a) a multiphonon region
just above the roton branch for wave vectors of the order of

22-24 /Qk_l. The high-resolution spectra at E; = 3.55 meV
only show part of this multiexcitation region, but the results
have been completed by spectra taken at E; = 5.11 meV at
SVP and 24 bars, shown in Fig. 1. The intensity of these
multiexcitations, described in detail in Sec. VIC, decreases
strongly with pressure, behaving similarly to the ghost phonon.

The multiexcitation spectra are strongly modified at high
pressures, as the maxon enters the multiexcitations continuum.
Figure 4 shows that substantial intensity develops at this
pressure for energies just above the maxon. Similar effects
were also observed by Graf et al. [33], Talbot et al. [46], and
Gibbs et al. [27-29] at a lower pressure (20 bars). The present
data benefit from a sharper resolution, as can be seen by directly

. o —1
comparing spectraat Q &~ 1 A around the maxon peak. All
these effects will be discussed in detail in Sec. VI in the context
of a comparison with theoretical calculations.

V. CALCULATIONS WITH THE DYNAMIC
MANY-BODY THEORY

We present in this section our calculations of the dynamic
structure factor of superfluid “He at zero temperature obtained
within the dynamic many-body theory [6,9].

A. State of the art of theory

Theoretical studies of the dynamic structure function in *He
began with the work of Feynman [47] and Feynman and Cohen
[48]. The Feynman theory of elementary excitations was devel-
oped in a systematic Brillouin-Wigner perturbation theory by
Jackson and Feenberg [49-51]. An important contribution was
the identification of classes of theories for the dynamic struc-
ture function [52] that satisfy the »” and @' sum rules exactly.

The most complete evaluation of the phonon-roton disper-
sion relation in terms of Brillouin-Wigner perturbation theory

was carried out by Lee and Lee [53], who obtained an impres-
sive agreement with the experimental phonon-roton spectrum

up the wave vector of 2.5 10%_1. The major drawback with these
early calculations was that the required input, namely pair and
three-body distribution functions, were poorly known.

Manousakis and Pandharipande [36,54] used input states of
the Brillouin-Wigner perturbation theory including “backflow”
correlations in the spirit of Feynman and Cohen. Through the
gradient operator acting on the wave function, specific dynamic
correlations are introduced to all orders. The “backflow func-
tion” is, however, chosen per physical intuition rather than by
fundamental principles, and the evaluation of the perturbative
series becomes very complicated. Topologically, diagrams
similar to those of Lee and Lee [53] were included. While
the accuracy of the theoretical roton energy is comparable to
that of Lee and Lee, one can clearly see an inconsistency since
the energy of the Pitaevskii plateau [21] lies below twice the
energy of the roton gap.

The first theoretical descriptions of the multiexcitations
[36,54,55] were qualitatively in agreement with the early multi-
excitations data [22,32,33]. The simplest version of correlated
basis functions theory produces phonon, maxon, and roton
modes, as well as multiphonons. In this approximation, the
calculated multiexcitations decay into Feynman modes instead
of the correct single excitations; large gaps are found in the
spectrum, and many predicted features are not seen in the
experiments. Other features calculated in the multiexcitation
region do indeed survive in recent theories, such as the presence
of intensity above the phonon branch and that of a well-defined
two-roton threshold (these effects are described below). These
calculations, as well as many others addressing specific aspects
of the multiexcitation dynamics, could not be quantitatively
compared to the experimental results, but they motivated
further investigations on multiparticle dynamics. Reviews can
be found in Refs. [4,5].

More recent calculations [9] used a hybrid approach of
Brillouin-Wigner perturbation theory and equations of motion
for time-dependent multiparticle correlation functions to de-
rive a self-consistent theory of the dynamic density-density
response of “He. The self-consistency of this semianalytic
method allows the identification of mode-mode coupling pro-
cesses that lead to observable features in the dynamic structure
function. The underlying physical mechanisms, their relation-
ship to the ground-state structure, and the consequences on the
analytic properties of the dynamic structure function emerge
directly from the theory.

A very different approach involves novel numerical meth-
ods [7,8,10,15,56] that give access to dynamic properties of
quantum fluids. These important algorithmic developments
will reproduce, extend, and complete the experimental data
with the future development of computing power; their present
accuracy and consistency, however, are still limited in the
multiexcitations region investigated here.

B. Dynamic many-body theory calculation

To calculate quantitatively both the single-excitation and
the multiexcitation response, our calculations include up to
three-body dynamic fluctuations in the correlation functions
of the equations of motion [9]. We derive the self-consistent
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density-density response of *He x (Q,w), expressed as
S(Q) S(Q)
o—32(0,0) —-0-3(Q,—-w)

where S(Q) is the static structure factor, and the self-energy
Y(Q,w) is determined by the integral equation

x(Q,0) = “

| [ Bpdk - . -

B0 =@+ [ 555805k
y VA (Q; p k)2

o — Z(p,w — k) — Z(k,w — y(p))

In this expression, €y(Q) is the Feynman dispersion relation
and V@ is the three-body coupling matrix element. The
simplest approximation for V®, the so-called convolution
approximation [51], including static ground-state triplet cor-
relations [57], improves the density dependence of the roton
minimum visibly. The most advanced calculation [6], which is
taken here and in Ref. [9], sums an infinite series of diagrams,
the so-called “fan diagrams,” which is the minimum set of
diagrams that must be included to reproduce exact features of
V@ for both long wavelength and short distances.

Linear-response theory [4,9] provides the relation between
the experimental dynamic structure factor and the dynamic
susceptibility calculated by the theory described above: the dy-
namic structure factor S(Q,w) is proportional to the imaginary
part of the dynamic susceptibility x (Q,w), the linear response
of the system to a density fluctuation.

Full maps of S(Q,w) have been calculated for different
atomic densities; see Fig. 10 in Ref. [9]. The data shown in
Figs. 1 and 4 correspond to n = 0.0215, 0.0230, 0.0240, and

0.0255 Aﬂ, values that provide the best overall agreement
with the experiment. They turn out to be very close to the
experimental results for P =0, 5, 10, and 24 bars, nep =

0.0218, 0.0230, 0.0239, and 0.0258 A_S. The small shift in
density is within the expected accuracy of the theoretical
calculations.

The calculations presented here have been performed using
only the most relevant diagrams [9]. This approximation is
sufficient to provide an excellent description of the dynamics,
but minor discrepancies can still be seen. The most salient
effect is that the roton energy is overestimated; at zero pressure,
for instance, the calculated value is 0.83 meV while the
measured value is 0.7416(10) meV. This discrepancy could
be resolved by including additional diagrams, but it does not
seem necessary to perform such a tedious calculation given the
quality of the agreement already achieved at this stage.

The calculation provides absolute values for the structure
factor. In our previous work [30], the calculated values were
multiplied by an overall normalization factor of 1.28 in order
to have Z(Q =2 A_l) = 0.93 near the roton. Here, this
normalization has not been applied. Given the finite number of
diagrams involved in the calculations, a factor of this order is
within their estimated absolute accuracy.

&)

C. Mode-mode coupling

Multiexcitations arise from the enhanced response of the
system at particular energies and wave vectors corresponding

to two or more single excitations into which they can decay. The
theory considers [see Eq. (5)] the most relevant processes in
which a density fluctuation (Q,w) of wave vector Q and energy
@ decays into a pair of single excitations with corresponding
values ( ﬁ,wp) and (k,wy). The calculations have been shown
to be in excellent agreement with experiment at saturated
vapor pressure [30]. Here we investigate the general pressure
dependence of the dynamics, and several particularly intense
mode-mode couplings. The latter were examined theoretically
in Ref. [9], and additional calculations specialized to the
main mode-mode couplings (phonon-phonon, phonon-roton,
roton-roton, maxon-roton) can be found in Ref. [58]. The next
section provides a detailed comparison between the theory and
the experimental data.

VI. IDENTIFICATION OF THE MULTIEXCITATIONS

Above the sharp and intense phonon-maxon-roton disper-
sion curve, we observe a highly structured multiexcitation
region. Multiexcitations are relatively strong if they can decay
into a pair of high-intensity single-excitation modes. The
energy and momentum of these pair combinations is directly
related, by the conservation of energy and momentum, to
those of the underlying elementary excitations. It is possible to
determine the position of the main multiexcitation resonances
in the dynamic structure factor map (2-phonons, 2-rotons,
2-maxons, and maxon-roton) from pure kinematic considera-
tions, i.e., energy and momentum conservation. The challenge
for microscopic theories is to predict the intensity of the
multiexcitation spectrum, if possible in a large dynamic range.
Obtaining the fine structure we observe requires a quantitative
calculation of mode couplings.

We first present in this section a brief description of the
kinematic constraints for different pair excitations, setting
the framework for their identification. The following two
subsections concentrate on new features observed in the
multiexcitation spectrum, which we named “ghost phonon”
and “ghost roton.” We then describe a different type of
multiexcitations, associated with roton-roton coupling, which
we observed in particular “above the maxon” and “beyond
the roton.” We conclude this section with a discussion on
higher-order multiexcitations, and the progressive evolution
to the high-energy regime.

A. Kinematic constraints for pair excitations

The kinematic constraints calculated for the main low-
energy multiexcitations are shown in Fig. 6. We use below
the notation R~ and R™ to distinguish rotons on each side of
the roton minimum.

The allowed regions are necessarily located above the
single-excitation dispersion curve. The P-P region is found
at low wave vectors. Beyond the maxon, P-R™ excitations are
allowed in a large region delimited by the dispersion curve
and two lines starting at the maxon maximum and at the roton
minimum, with slopes equal to —c and +c, respectively, where
c is the speed of sound. P-R™ excitations occupy a region
delimited by the dispersion curve and a line starting from the
roton minimum with slope —c. There is a large overlap with
the P-R™ region.
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FIG. 6. Kinematically allowed regions for different multiphonon
processes: P-P (including P-M~), P-R~, and P-R™*. See the text
for details.

The case of 2R, not shown, is particularly simple, with
a threshold at twice the roton energy, 2Ag. The situation
for 2M processes is similar, with an upper limit equal to
2A . M-R combinations of excitations may lead to branches
with substantial dispersion. The kinematic constraints are
sufficient to determine unambiguously which are the dominant
processes in some multiexcitations regions, in particular at low
Q above the phonon dispersion, and inside the roton parabolic
dispersion curve.

The evolution of the observed multiexcitations in a large
energy range, for different pressures, is illustrated in Figs. 1
and 4. We can distinguish different types of multiexcitations.

Energy ® (meV)
7 s(Qe) (mev?)

=
o

0.01

0.0 _]5“..’. BondonmiZy wih e Van il Jon' b4 11
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5
Wave vector Q (A?)

FIG. 7. Map of S(Q,w) at SVP identifying remarkable mode-
mode coupling regions: phonon-phonon (2P, with an ellipse
around the “ghost-phonon”), phonon-roton (P + R, a region marked
by a triangle, which includes an ellipse indicating more specifically
a high-intensity “ghost-roton” region), roton-roton (2R, marked by a
rectangle around 1.5 meV), and at higher energies the roton-maxon
(R 4+ M) and maxon-maxon (2M) regions. The description of the
different lines is given in Fig. 1.

(b) Theory

n=0.0230 A-3

= 0.01

Energy w (meV)

0.005

0.003

n=0.0255 A-3

" 1
1.0 04 0.6 0.8 1.0

04 06 08
Wave vector Q (A1)

FIG. 8. Left: measured dynamic structure factor S(Q,w) in the
ghost-phononregion at P = 0, 5, 10, and 24 bars. The dashed straight
lines correspond to the sound dispersion curve at each pressure, taken
from direct measurements of the sound velocity [61]. Right: calculated
dynamic structure factor at corresponding densities, n = 0.0215,
0.0230, 0.0240, and 0.0255 ;\73, respectively (see text). The dashed
straight lines correspond to the calculated sound velocities. The
color-coded intensity scale is in units of meV~'.

Several narrow branches are easily identified, as indicated in
Fig. 7, as corresponding to 2P, 2R, 2M, and M-R processes.
The 2R feature is observed in Fig. 4 as a clear threshold, both
in the theoretical and experimental data.

B. Phonon-phonon coupling: The ghost-phonon

The ghost phonon [9,30] (see Sec. IVB and Fig. 7) cor-
responds to a process in which a high-energy multiexcitation
decays into a pair of phonons of lower energy. In the case
of phonon single excitations, anomalous dispersion opens
the phase space needed for such processes. The anomalous
character of the phonon dispersion strongly decreases with
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FIG. 9. Dynamic structure factor S(Q,w) in the ghost-phonon
region: spectra for different wave vectors Q at (a) P =0 bar,
(b) P =5 bars, and (c) P = 10 bars. Filled circles: experimental
S(Q,w). Theoretical dynamic structure factor spectra shown as solid
lines at densities n = 0.0215, 0.0230, and 0.0240 A_3. Dashed lines:
intensity of the phonon-roton mode (cutoff) calculated directly from
the self-energy [9] and convolved with the instrumental resolution
of 0.07 meV. The blue lines represent the linear phonon dispersion
€o(P)/hQ = Cy(P), where Co(P) is the sound velocity at a given
pressure [61].

increasing pressure, and normal dispersion is recovered at high
pressures [4,17,59,60]. The ghost-phonon intensity follows
this trend: the pressure dependence is strong, and the ghost
phonon is clearly suppressed at P = 24 bars, as shown in the
experimental and theoretical results in Fig. 4, and in more detail
in Fig. 8.

Cuts of S(Q,w) at several wave vectors at the ghost-phonon
level are presented for P =0, 5 and 10 bars in Fig. 9. The
ghost-phonon peaks for the different wave vectors are clearly
located on the extension of the linear part of the phonon branch.
According to the calculations (see Eq. (6.4) of Ref. [9]), the
ghost phonon remains visible until twice the wave vector up
to which the dispersion relation is to a good approximation
linear. Indeed, Fig. 9 shows that the energy, strength, and shape
of the calculated ghost phonon are in excellent quantitative
agreement with the experiment at all pressures.

C. Phonon-roton coupling and the emergence of the ghost roton

One notes in Fig. 4, for all pressures, the presence of
substantial intensity in the region within the roton parabola.
Near the roton minimum, where P-R processes are expected
to dominate, we observe that the intensity is not symmetric with
respect to the roton minimum wave vector Qg: a faint branch,
clearly related to the kinematic limitation for P-R™ processes
(see Fig. 6), is seen for Q < Qp, while a strong branch is
formed just above the dispersion curve for Q > Qg. These

n=0.0215 A3 1
0.5
3 01
= 2
= E
) —_~
5 0.05 3
i o
[0p]
18 20 22 24 286 0.01
Wave vector Q (A™")
Experiment P=0 1
0.5
o 01 =
= 2
= £
S =
5 005 3
i o
(9]
0.6 : : ; .
2.0 22 24 0.01

1.8 26

Wave vector Q (A1)

FIG. 10. Theoretical and experimental results for S(Q,w) at satu-
rated vapor pressure displaying enhanced multiexcitations (*“ghost ro-
tons”) above the R* roton branch, in the supersonic rotons region. The
dashed lines represent the limits of different neutron kinetic ranges;
see Fig. 1. The small oscillations observed along some contours should
be disregarded; they result from numerical discretization.

new features, and in particular the one for Q > Qg, provide
a significant contribution to the multiexcitations weight at low
pressures (Fig. 10). They appear as an extension of the roton
parabolic dispersion toward higher energies, and by analogy
with the ghost phonon, we call these multiexcitations “ghost
rotons.”

It is remarkable that the intensity in this region of the P-R
multiexcitations, as was the case for the ghost phonon, is high
at P = 0, but is suppressed in the 24 bars data, as shown in
Figs. 10, 11, and 12. The origin of these effects is discussed
below.

Spectra for several wave vectors in the region of the ghost
roton are shown in Fig. 12 at P = 0 and 24 bars (experiment),
and in Fig. 13 for the corresponding densities n = 0.0215 and

0.0255 10\_3 (theory). We observe a good agreement between
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FIG. 11. Theoretical and experimental results for S(Q,w) at P =
24 bars. A comparison with Fig. 10 shows that at high pressures, ghost-
roton multiexcitations are strongly suppressed. They are masked by
the finite-energy resolution in the experimental graph, but are still
visible in the calculation.

theory and experiment, even at the highest densities, near
solidification. Studies of mode-mode couplings [58,62] can
therefore be most conveniently performed in the ghost phonon
and the ghost-roton regions, rather than looking for a very small
broadening of single excitations.

Pitaevskii [21] described the decay of single excitations
when their group velocity reaches the velocity of sound. He
named this mechanism of single-excitation broadening “type
a.” The process considered here, however, is the emission of
phonons by multiexcitations in the vicinity of nearly super-
sonic single excitations. The generation of multiexcitations by
neutron scattering in the R rotons region by this mechanism
was qualitatively predicted by Burkova [63]. Here we show
that the ghost roton corresponds to this effect, that the ghost
phonon is a similar effect, involving supersonic phonons, and
that both are correctly predicted by the dynamic many-body
theory [9].
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FIG. 12. S(Q,w) measured in the region of the ghost roton at
P =0 (upper graph). At P = 24 bars (lower graph), one observes
the suppression of the ghost roton. Dashed lines are Gaussian fits
of the single-excitation peaks. A comparison with Figs. 10 and 11
clarifies the origin of the observed roton-peak asymmetry for some
wave vectors.

It has been observed by Dietrich et al. [32] and confirmed
by several groups (see [42] and references therein) that the
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FIG. 13. S(Q,w) calculated for wave vectors in the region of the

ghost roton, at densities n = 0.0215 and 0.0255 A_3, associated with
P = 0 and 24 bars, respectively.

R™ roton group velocity reaches the sound velocity for Q ~

2.2 A_l at low pressures, but it remains below the speed of
sound near the melting pressure. We show in Figs. 14 and 15
our measured and calculated curves for the group velocity of
the single excitations for different pressures. Two regions of
interest are clearly seen: the first one, at low wave vectors,
corresponds to the anomalous dispersion region and gives rise
to the ghost phonon, while the second occurs for wave vectors
somewhat above that of the roton minimum (and slightly
below the roton minimum, but with a much smaller intensity),
producing the ghost roton.

According to the analytic calculations by Burkova [63],
the neutron-scattering spectrum, which corresponds to the
production of one roton, should have a linear wing on the
high-energy side, with a slope that depends on the wave vector.
This is not really observed, either in the experimental data or in
the dynamic many-body calculation: the linear part, if any, is
probably not visible at the scale of the graphs (see Figs. 10, 11,
12, and 13), or is buried inside a broadened single-excitations
branch.

Several effects are thus observed when the roton single
excitations approach the speed of sound: a broadening of the
roton branch, a downward bending of the dispersion curve, and
the appearance of a multiphonon region just above the distorted
dispersion curve. These effects are large at low pressures; the
rapid increase of the sound velocity with pressure is responsible

1.5

W' (Q)/c

0.0 0.5 1.0 15 2.0 25
QR

FIG. 14. The experimentally determined group velocity of single
excitations normalized by the sound velocity [61], as a function of
wave vector for several pressures.

for the suppression of the ghost-roton multiexcitations at 24
bars.

D. Roton-roton coupling

We discuss now a different type of multiexcitations, related
to Pitaevskii’s “type b” single-excitations decay processes in
which the disintegration of a single excitation occurs as its
energy exceeds twice the roton gap [21,63].

Athigh pressures, the maxon energy exceeds twice the roton
gap, and a maxon can decay into two rotons. We described
in Sec. IVB the broadening of the maxon as it enters the

15
1.0
o 05}
&
€ 00} n=0021A3_ >
n=0.022 A~
n=0023 A3
05 n=0.024A3
n=0.025 A-3
-1.0 s s - -
0.0 0.5 1.0 15 20 25

QA

FIG. 15. The theoretically calculated group velocity of single
excitations normalized by the calculated sound velocity, as a function
of the wave vector, for several densities. The experimental values of
the densities for P = 0, 5, 10, and 24 bars are n.,, = 0.0218, 0.0230,

0.0239, and 0.0258 A",
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FIG. 16. S(Q,w) in the region of the maxon at P = 24 bars
(experiment) and at the corresponding density of 0.0255 A (theory).

continuum. At 24 bars, the maxon is in the continuum of
the multiexcitations for wave vectors between Q = 0.8 and

1.5 A_l. Under these conditions, a strong multiexcitation
intensity is observed above the maxon (Figs. 16 and 17). The
very characteristic “rainbowlike” measured spectrum is in very
good agreement with the theoretical calculation, showing in
particular that the weight of the maxon is transferred to the
two-roton excitations.

The multiexcitations discussed above, observed above the
maxon at high pressure, are a special case of roton-roton
decay. In fact, a sharp roton-roton threshold is observed at all
wave vectors (Figs. 1, 4, and 17), in regions located far from
single excitations. The roton-roton threshold is, in particular,
observed at low Q in the present work. It is also clear, in
fact, that the intensity of the RR threshold is enhanced in the
vicinity of single excitations, as was the case above the maxon
at 24 bars, but also in the region above the Pitaevskii plateau.
Theory and experiment display a similar shape of the spectra
and intensity pattern around the roton-roton threshold, at all
pressures (see Figs. 1 and 4).
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FIG. 17. Dynamic structure factor S(Q,w): spectra for different
wave vectors Q in the maxonregion, at P = 24 bars. Filled circles: ex-
perimental S(Q,w). Solid lines: theory at the density n = 0.0255 AiS.
Dashed lines: intensity of the phonon-roton mode (cutoff) calculated
directly from the self energy [9] and convolved with the instrumental
resolution of 0.07 meV. Blue line: energy of the roton-roton threshold.
PR indicates phonon-roton multiexcitations.

E. Higher-order multiexcitations

The sharp “branches” described above correspond to decay
mechanisms into two excitations. Phase-space arguments show
that the signal of higher-order processes will be distributed
in a rather featureless way in the energy—wave-vector space,
due to the vector addition of momenta. However, the data of
Fig. 1 show that the multiexcitations region at wave vectors

o —1 . .

on the order of 1.5 A extends to rather high energies, on the
order of 4 meV. This last value constitutes a clear experimental
demonstration that multiexcitations of higher order, related to
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three and four single excitations (the energy of rotons and
maxons is on the order of 1 meV), play a significant role in
the dynamics of superfluid “He.

One can also examine the corresponding effect on the wave-
vector axis, beyond the end point of the Pitaevskii plateau. The
plateau could be expected to end at 2 Q g, for a multiexcitation
of energy 2A g decaying into two rotons of collinear wave
vectors. Previous measurements [35,64,65] have found that the

o —1
plateau intensity vanishesat 0 = 3.6 A, considerably below

20r =3.84 Ail. This is also observed in the present work, as
seenin Figs. 1 and 3. This effect has been attributed to the decay
into two rotons with an attractive R-R interaction [66], but
other possible interpretations of the data are presently debated.
We also note that the intensity does not extend to higher Q
values at higher energies as expected for decays into three-
and four-excitation processes, an effect that is probably related
to the small phase-space available for collinear combinations
of wave vectors. As discussed above, the energy, a scalar, is a
better probe for detecting high-order multiexcitation processes.
The data at 24 bars display similar effects with a simple shift
toward higher wave vectors, due to the larger value of Qg =

o —1 .
2.06 A at this pressure.

We now concentrate on the multiexcitation region lo-
cated slightly below the free-particle dispersion curve, around

2.5 10%71 (see Fig. 1). Earlier studies [22,35,67] observed a
rather intense broad feature extending to higher energies. We
find here a much finer structure than previously believed,
and also that it depends rather strongly on the pressure.
Multiexcitations in this region can only decay into three or
more single excitations, which is therefore of interest for
mode-mode coupling theories. The fact that we observe a
high-intensity peak is probably related, at these relatively high
energies, to an enhanced system response in the vicinity of
the free-particle dispersion curve, which is the asymptotic
behavior at higher energies. The peak at 24 bars is less
intense than the corresponding one at SVP, suggesting that
the maxon, strongly reduced at this pressure, is involved in the
corresponding decay processes.

Finally, at the highest energies explored here, S(Q,®) pro-
gressively converges toward the free-particle parabola, remain-
ing below it (see Fig. 1). The so-called “glory” oscillations seen
as a function of Q, both in the peak position and the width, are
well documented in the literature [68]. Directly related to the
corresponding oscillations in the static structure factor S(Q),
they result from the hard-core part of the “He-*He interaction
potential and from quantum coherence effects. Earlier works

could not fit the spectra of the first oscillation with a single
peak. The highly structured multiexcitations seen in the present
work show that this peak of unusual shape results in fact
from the superposition of a few multiexcitation “branches”
corresponding to decays into a few single excitations. Again,
the dynamic structure factor in this region depends on pressure,

and the spectra for Q ~ 3.5 AT are strongly affected by the
collapse of the maxon.

VII. CONCLUSION

A comprehensive understanding of the dynamics of inter-
acting Bose systems, going from the Landau quasiparticles
and multiexcitation regimes up to the high-energy limit where
the independent-particle dynamics is recovered, emerges from
our combined experimental and theoretical work. The as yet
largely unexplored multiexcitation regime has been system-
atically investigated. Ghost-phonon and ghost-roton regimes
have been observed, associated with phonon emission in the
region of nearly supersonic multiexcitations, by a Cherenkov-
like process qualitatively predicted by Burkova’s extension
of Pitaevskii’s theory. Several other multiexcitation branches
or thresholds have been observed and identified in the low-
energy sector, where excellent quantitative agreement is found
with the predictions of the dynamic many-body theory. This
agreement extends even to high pressures, near solidification,
as shown, for example, for the remarkable case of the maxon
disintegration into two rotons. The calculations, including
specific multiparticle fluctuations to all orders [9], provide
a good description of the dynamics for energies as high as
2 meV. Above this value, higher-order processes dominate the
dynamics. Our high-energy/wave-vector data call for further
theoretical developments in order to describe quantitatively
the behavior observed at higher energies, above the simple
multiexcitations region but still substantially below the quasi-
free-particle (impulse-approximation) sector.
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