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Dissipation in quantum turbulence in superfluid 4He above 1 K
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There are two commonly discussed forms of quantum turbulence in superfluid 4He above 1 K: in one there is
a random tangle of quantized vortex lines, existing in the presence of a nonturbulent normal fluid; in the second
there is a coupled turbulent motion of the two fluids, often exhibiting quasiclassical characteristics on scales
larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex
line density, L, in the former case is often described by the equation dL/dt = −χ2(κ/2π )L2, where κ is the
quantum of circulation and χ2 is a dimensionless parameter of order unity. The decay of total turbulent energy,
E, in the second case is often characterized by an effective kinematic viscosity, ν ′, such that dE/dt = −ν ′κ2L2.
We present values of χ2 derived from numerical simulations and from experiment, which we compare with those
derived from a theory developed by Vinen and Niemela. We summarize what is presently known about the values
of ν ′ from experiment, and we present a brief introductory discussion of the relationship between χ2 and ν ′,
leaving a more detailed discussion to a later paper.
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I. INTRODUCTION

Below about 2.17 K, liquid 4He becomes a superfluid, in
which an inviscid irrotational superfluid component coexists
with a viscous normal-fluid component [1]. Any vorticity in
the superfluid component is confined to quantized vortex lines,
each of which carries a single quantum of circulation κ = h/m,
where h is Planck’s constant and m is the mass of a He atom [2].
Flow in each of the two fluids can be turbulent. Turbulence in
the superfluid component (quantum turbulence) takes the form
of an irregular tangle of vortex lines which interact with each
other and, through a force of “mutual friction,” with the normal
fluid [3]. Turbulence in the normal fluid is similar to that in a
classical fluid, but modified by the mutual friction. Dissipation,
associated with viscosity, plays an important role in classical
turbulence, notably in providing a sink where the energy flux in
a high Reynolds number Richardson cascade can be absorbed
at small length scales. It must play a similarly important role
in quantum turbulence, although, as we shall see, dissipative
mechanisms are then more complex than in the classical case.

Except at temperatures well below 1 K, where the normal
fluid has disappeared, dissipation in the turbulent superfluid
component is due, as we shall see, to mutual friction. If
we ignore a small transverse (nondissipative) component, the
force of mutual friction per unit length of the vortex line can
be expressed in terms of a dimensionless parameter α [3].
Except at temperatures very close to the superfluid transition
temperature, α is significantly less than unity, with the result
that vortex line motion is determined largely by vortex-vortex
interactions, with the mutual friction leading to only a relatively

slow shrinkage in the total length, L, of vortex line per unit
volume. Dissipation in the normal fluid is due to both mutual
friction and viscosity.

It is the aim of this paper to discuss these forms of dissipa-
tion for two commonly studied types of quantum turbulence
(QT), the dissipation being observed in the free decay of the
turbulence. QT can be most easily produced by a heat current,
which is carried in superfluid helium by a counterflow of the
two fluids, and this is the form of QT that was first subject
to detailed experimental study [4–6]. It was thought for many
years that this thermal counterflow turbulence (TCT) involved
only the superfluid component, and it took the form of a
more or less random vortex tangle, for which the turbulent
energy is confined to scales comparable with or less than the
average spacing, � = L−1/2, between the vortex lines. The
corresponding energy spectrum, EQ(k), has the form

EQ(k) = ρsκ
2

4πρ�2k
f

(
k�

2π

)
, (1)

where the function f (x) depends on the precise form of the
“random tangle,” but it tends to unity for large x and tends
rapidly to zero for x < 1 [7]. ρs/ρ is the superfluid fraction. It
was suggested, on dimensional and physical grounds [6], that,
when the heat current is switched off, the line density might
decay as

dL

dt
= −χ2κ

2π
L2, (2)
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where χ2 is a dimensionless parameter of order unity. Noting
that the energy per unit mass associated with a random tangle
of vortex lines is given by

EQ =
∫ ∞

0
EQ(k)dk ≈ ρsκ

2

4πρ
L ln

�

ξ0
, (3)

where ξ0 is the vortex core parameter, we see that the turbulent
energy per unit mass would then decay as

dEr

dt
= −ν ′

vκ
2L2,

ν ′
v

κ
= χ2ρs

8π2ρ
ln

�

ξ0
, (4)

where ν ′
v is an effective kinematic viscosity.

Recent experiments [8,9], based on the use of He∗
2 excimer

molecules as tracers of the normal-fluid flow, have shown
that this form of QT, involving only what we shall call a
random vortex tangle, exists in TCT only at sufficiently small
heat fluxes; at larger heat fluxes, the tangle is accompanied
by turbulence in both fluids on scales up to the size of
the containing channel. We shall write the resulting energy
spectrum as

E(k) = EQ(k) + ECs(k) + ECn(k), (5)

where EQ(k) is still given by Eq. (1), ECs(k) is produced by
partial polarization of the vortex lines, and ECn(k) relates to
the turbulent energy in the normal fluid. In the steady state
this large-scale turbulence in the two fluids is partially coupled
and has an energy spectrum E(k) ∝ k−n on scales significantly
larger than �, where the exponent n varies with the heat flux
but is always larger that the Kolmogorov value [10], 5/3 [8];
the fact that n > 5/3 is a reflection of the fact that coupling
is incomplete, so there is dissipation on all length scales [9].
After the source of heat is turned off, the heat flux in the channel
decays to zero in a time given by a thermal resistor-capacitor
(RC) time constant (typically 10 ms). Then the two fluids
become fully coupled in a similar time, retaining for a time
the k−n energy on large scales. Finally, over a further period of
typically 1–10 s, the energy spectrum on large scales evolves
into the form expected for a classical inertial-range Richardson
cascade; i.e., a Kolmogorov spectrum, E(k) ∝ k−5/3 [10].

We emphasize three points relating to the fully coupled
turbulence: (i) as long as full coupling is maintained, there
is no dissipation due to mutual friction; (ii) the large-scale
nondissipative motion in the superfluid component is generated
by a partial polarization of the vortex lines; and (iii) large-scale
motion in the normal component is nondissipative because the
viscosity of the normal fluid is sufficiently small. As we shall
see more clearly later, dissipation can occur in both fluids on
scales comparable with or less than �, which in the superfluid
component is due to mutual friction (partial decoupling having
occurred), and in the normal component is due a combination
of viscosity and mutual friction. Because dissipation on scales
of order � is now much more complicated than it is if the
turbulence is confined to the superfluid component and to
scales of order �, Eq. (4) need no longer apply.

The decay of line density associated with large-scale cou-
pled turbulence was first studied by Stalp et al. [11], the coupled
turbulence having been generated in the wake of a moving grid.
These authors showed that their experimental results could be
explained in purely classical terms if it was assumed that there

was at all times a Richardson-Kolmogorov cascade [E(k) ∝
k−5/3], terminated at small scales by dissipation described by
the equation

dEC

dt
= −ε = −ν ′κ2L2, (6)

where ν ′ is another effective kinematic viscosity; EC is the
total quasiclassical turbulent energy, given by integrating
ECs(k) + ECn(k) over k [the contribution of EQ(k) to the total
energy is small and can be neglected]. Stalp et al. argued that
Eq. (6) is the analog of the expression ν〈ω2〉 for dissipation in
classical homogeneous turbulence, where 〈ω2〉 is the mean-
square classical vorticity. We emphasize that, although the
expressions (4) and (6) for the rate of decay of turbulent energy
are similar in form, they relate to different physical situations,
and in neither case has there been any truly rigorous discussion
of their validity. Furthermore, as we shall discuss later, the two
effective kinematic viscosities ν ′

v and ν ′ need not have the same
value. In future we shall refer to large-scale coupled turbulence
of the type produced by flow through the grid, or in the decay of
strongly excited TCT at large times, as quasiclassical quantum
turbulence.

We remark here that a Kolmogorov energy spectrum can,
strictly speaking, apply only to a steady state in which energy
is fed in continuously at some large scale D at a rate ε; there
is then a constant energy flux, equal to ε, down an inertial
subrange, 2π/D 	 k 	 2π/�, within which the energy spec-
trum has the full Kolmogorov form E(k) ∼ ε2/3k−5/3 (we are
ignoring the effects of intermittency). In decaying turbulence,
the energy flux, ε, cannot be strictly independent of either time
or wave number, so that the Kolmogorov dependence on wave
number, k−5/3, cannot be strictly correct. In practice, however,
most of the energy is often concentrated in the largest eddies
(wave numbers close to 2π/D), so that ε is independent of k,
for k > 2π/D, to a reasonable approximation, and the decay
is sufficiently slow that the Kolmogorov spectrum holds with
a slowly decreasing value of ε.

Except perhaps for a simple theoretical calculation of χ2, re-
viewed later in Sec. III, there has so far been hardly any serious
theoretical justification for the two forms of dissipation, and
for many years even experimental justification was inadequate.
Similarly, it has proved difficult to derive reliable values of the
two effective kinematic viscosities from experiment. In the
case of ν ′

v (or equivalently χ2), there had been no careful study
of the decay of TCT at heat currents sufficiently small that
there was no large-scale turbulence. In the other case, values
of ν ′ were obtained from observations of the decay of vortex
line density combined with questionable assumptions about
the form of the large-scale energy spectrum as it relates to
turbulence in a channel of a finite cross section. Only very
recently has ν ′ been determined in a more satisfactory way for
the case of decaying TCT [12], although the results have yet
to be compared carefully with those obtained solely from the
decay of vortex line density. The general aims of this paper
are, as far as possible, to remedy these various shortcomings.

The results of our experiments on the decay of a random
vortex tangle and our measurements of χ2 are described in
Sec. II. In Sec. III we summarize an existing theory of χ2,
assess its likely validity, and compare its predictions with
experiment. In Sec. IV we describe the numerical simulations
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FIG. 1. Observed decays of vortex line density in decaying TCT
(1.65 K).

relating to a random vortex tangle, and we compare the results
with the experiment and with the theory of Sec. III. In Sec. V
we present a critical summary of our present knowledge of the
experimental values of the effective kinematic viscosity ν ′, and
in Sec. VI we present a brief introductory theoretical discussion
of the relationship between χ2 (or ν ′

v) and ν ′, leaving a more
serious discussion of what is actually a difficult problem to
a later paper. We present an overall summary of our work in
Sec. VII.

II. DISSIPATION IN A RANDOM VORTEX TANGLE:
THE EXPERIMENTAL MEASUREMENT OF χ2

Our experiments on the decay of vortex line density asso-
ciated with TCT have been based on the observed attenuation
of second sound, using what is now a standard technique, as
described in, for example, Refs. [5,13]. The actual apparatus
is identical with that described in Ref. [8].

As we have explained, the form of decay of the vortex line
density given by Eq. (2) can be expected to be observed in the
decay of TCT only if the steady heat flux is small enough to
ensure that there is no large-scale turbulence. It is evident in
the decay shown by the lowest line in Fig. 1 that this is indeed
the case.

In Fig. 2, we show data for a decay from a small heat flux
plotted in a form, (1/L) versus t , that serves to demonstrate
more clearly that Eq. (2) is indeed obeyed.

Values of χ2 deduced from decays of this type are shown
as a function of temperature in Fig. 3.

III. DISSIPATION IN A RANDOM VORTEX
TANGLE: A THEORY OF χ2

In this section, we shall summarize a theory of χ2 that was
proposed by Vinen and Niemela [3], and we shall compare the
results with experiment. We assume that the force of mutual
friction per unit length of the vortex line is given by

f = −ρsκακ̂ × [κ̂ × (vn − vL)], (7)

where κ̂ is a unit vector along the length of the vortex and vL

is the velocity with which the vortex moves perpendicular to
its length. We have neglected any transverse component of the
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 ( 
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FIG. 2. Observed decay in line density from a small heat flux.

mutual friction. We shall further assume that during the decay
described by Eq. (2), the normal fluid is at rest, apart from
the local dragging by a moving vortex that is incorporated
into the definition of the mutual friction parameter α [14].
Dissipation is then due entirely to mutual friction. Finally, we
shall assume that the magnitude of vL is given to a good enough
approximation by the local induction approximation

vL = κ

4πR
ln

(
R

ξ0

)
, (8)

where R is the local radius of curvature of the vortex, and ξ0 is
the vortex core parameter. In other words, we have neglected
the effect of both long-range interactions and the force of
mutual friction itself on the motion of a vortex. It follows that
the rate of dissipation of energy per unit mass of helium is
given by

dEr

dt
= −ρs

ρ
καL

〈
v2

L

〉 = −α

(
ρsκ

3

16π2ρ

)〈[
1

R2

(
ln

R

ξ0

)2]〉
L,

(9)

where 〈· · · 〉 denotes an average over the vortex tangle. We
neglect the slow variation of the logarithmic term with L,
setting R = R0 ≈ � in that term, and we follow Schwarz [15]

T (K)

2χ

FIG. 3. Observed (open circles) and theoretical (filled circles)
values of χ2, the theoretical values being derived from Eq. (12).
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by assuming that
〈[

1

R2

]〉
= c2

2L, (10)

where c2 depends only on temperature. It follows that

ν ′
v

κ
= αc2

2ρs

16π2ρ

[
ln

�

ξ0

]2

, (11)

and therefore

χ2 = αc2
2

2
ln

�

ξ0
. (12)

This derivation is based on three assumptions: (i) that, as
we have mentioned, there is no motion of the normal fluid; (ii)
that the vortex lines form a random tangle; and (iii) that use of
the local induction approximation is justified. We shall present
an argument in favor of the first assumption in Sec. VI. The
other assumptions seem reasonable.

Values of χ2 derived from Eq. (12) are included in Fig. 3.
The required values of c2 are taken from the simulations of the
steady state described in Sec. IV, and values of α are taken from
Ref. [16]. We see that within the error bars, there is agreement
with experiment.

IV. DISSIPATION IN A RANDOM VORTEX TANGLE:
SIMULATIONS RELATING TO χ2

A brief report of simulations leading to a verification of
the form of the decay of line density and to values of χ2 at a
temperature of 1.9 K has already been published [17]. Here we
present the results of more detailed studies, covering a range
of temperatures, first for the case of spatially uniform flows,
and then for flows between solid boundaries.

A. The steady state for spatially uniform flows

For a given temperature, we must first simulate the steady-
state counterflow for two reasons. It is from these states that
the decays must start, and we can determine whether values of
the parameter c2, obtained for the steady state, lead via Eq. (12)
to agreement with experimentally observed values of χ2.

Our numerical simulation is based on the vortex filament
model with the full Biot-Savart integral. We carry out simula-
tions for spatially uniform flows in a cubical box, side 1 mm,
with periodic boundary conditions in all directions. We replace
the vortex lines by a discrete set of points with minimum
spatial resolution �ξ = 8.0 × 10−4 cm. We integrate in time
with a fourth-order Runge-Kutta scheme with time resolution
�t = 1.0 × 10−4 s. The initial state is a set of randomly
oriented vortex loops of radius 0.23 mm. The spatially uniform
applied velocities satisfy the condition of no net mass flow
ρnvn + ρsvs,a = 0. We have checked that any contribution to
the net superflow from the evolving vortex tangle is negligible
in comparison withvs,a . The parameters used in the simulations
are shown in Table I.

We run the simulations for 20 s. The vortex line density, L,
is found to reach a steady average value, L0, with fluctuations,
in about 5 s. The parameter c2, calculated from Eq. (10) and

TABLE I. Parameters used in numerical simulations.

T (K) α α′ vn (mm s−1)

1.4 0.052 0.017 9.0
1.5 0.073 0.018 7.0
1.6 0.098 0.016 6.0
1.7 0.127 0.012 5.0

the equation 〈
1

R2

〉
= 1


L

∫
dξ

R2
, (13)

where 
 is the volume of the numerical box, together with the
values of χ2 derived from Eq. (12), are shown as a function
of time for a temperature of 1.4 K in Fig. 4. As we see, they
too reach steady states after a few seconds, but with significant
fluctuations. We have performed similar simulations for several
temperatures, the results of which are summarized in terms
of time averages in Table II. The computed values of χ2 in
Fig. 3 were taken from Table II. The significant fluctuations
to which we have referred have their origin, at least in part, in
the relatively small computational box, compared with vortex
line spacings; this is confirmed by the observed increase in
the percentage fluctuation in χ2 as the vortex line density is
decreased, which is evident for the temperature of 1.4 K in
Table II. We also emphasize that the theoretical/computational
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FIG. 4. Value of c2 derived from simulations of the approach
of counterflow to a steady state, and the corresponding value of χ2

derived from Eq. (12).
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TABLE II. Statistically steady values of the vortex line density,
L0, the parameter c2, the mean radius of curvature, R0, and the
corresponding values of χ2 derived from Eq. (12).

T vn L0 R0

(K) (cm/s) (103 cm−2) c2 (10−3 cm) χ2

1.4 0.9 6.54 ± 0.30 2.47 ± 0.12 5.03 ± 0.25 2.04 ± 0.19
1.5 0.7 5.80 ± 0.24 2.31 ± 0.13 5.71 ± 0.32 2.54 ± 0.29
1.6 0.6 6.14 ± 0.25 2.16 ± 0.12 5.93 ± 0.31 2.99 ± 0.31
1.7 0.5 6.34 ± 0.30 2.06 ± 0.11 6.12 ± 0.33 3.53 ± 0.37
1.4 0.7 3.59 ± 0.29 2.47 ± 0.21 6.82 ± 0.59 2.10 ± 0.34
1.4 1.1 10.0 ± 0.27 2.44 ± 0.08 4.10 ± 0.13 1.97 ± 0.13

values of χ2 plotted in Fig. 3 were derived from Table II;
the agreement with experiment was therefore evidence that
Eq. (12) is at least approximately valid if the values of c2 are
taken from numerical simulations of the steady state. We must
now turn to numerical simulations of the decaying turbulence
to check whether the simulated decays obey Eq. (2) with values
of χ2 that agree with those in Table II.

B. Decays from spatially uniform flows

In these simulations the applied velocities, vn and vs,a , are
turned off at time t = 0, and the way in which the line density
decays with t is determined. Data are averaged over 30 decays
at each temperature.

Figure 5 shows the way in which the simulated line density
decays with time at 1.4 K, in the form of a plot of 1/L against
time.

We see that, in contrast to the corresponding experimental
decay (Fig. 2), Eq. (2) is apparently not obeyed; the slope of
the plotted line, which ought to be proportional to the constant
χ2, increases markedly with time (the values of χ2 are also too
large). The increase of at times greater than about 1 s may be
due in part to the vortex line density becoming too small (the
ratio of the line spacing to the spatial period has become greater
than about 0.3), and in part to the effect of the logarithmic
factor in Eq. (12). A possible explanation of the discrepancy
at smaller times is that the parameter c2 in Eq. (12) changes
during the simulated decay. Figure 6(a) shows that c2 does
indeed change during the simulated decay. Furthermore, as we

 0
    

t (s)

1/
L 

(m
m

  )2

0.15

0.10
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0 0.5 1.0 1.5 2.0 2.5 3.0
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FIG. 5. (1/L) plotted against time from simulations at T = 1.4 K
and vn = 9 mm s−1.

2

 2.5

3

 3.5

0  0.5 1  1.5 2  2.5 3

c 2

t (s)

(a)

2

 2.5

3

 3.5

0  0.5 1  1.5 2  2.5 3

χ 2

t (s)

(a)

(b)

FIG. 6. (a) The variation of the parameter c2 with time from
simulations of the decaying line density at T = 1.4 K and vn =
9 mm s−1. (b) The variation of χ2 with time, obtained by substituting
c2 from Fig. 6(a) into Eq. (12).

see from Fig. 6(b), this changing c2 leads via Eq. (12) to a
changing value of χ2 that would lead, at least qualitatively, to
a decay curve with the shape shown in Fig. 5. Similar results
emerge from simulations at other temperatures.

The fact that the variation with time of the slope of the
line in Fig. 5 is indeed due to the variation with time of the
parameter c2 is shown more strikingly in Fig. 7, where we
compare on the same graph the time dependence of the value
χ2 derived both by differentiating 1/L in Fig. 5 with respect
to time and by substituting the value of c2 from Fig. 6(a) into
Eq. (12). Even the random fluctuations of c2 are reflected to
a significant degree in fluctuations in χ2 derived from Fig. 5.
The situation at other temperatures is similar. We conclude
then that the theory underlying Eq. (12) is in reasonably good
agreement with the results of the simulations, but not, to a
significant extent, with experiment. This suggests strongly

2
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4

0  0.5 1  1.5 2  2.5 3

χ 2
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(2 π/κ) (dL-1/dt)
Vinen-Niemela Eq.

FIG. 7. Plots of χ2 against time derived as explained in the text.
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TABLE III. Parameters analogous to those in Table II for flow
between parallel plates.

T vn L0 R0

(K) (cm s−1) (103 cm−2) c2 (10−3 cm) χ2

1.4 1.1 5.94 ± 0.64 2.17 ± 0.14 6.03 ± 0.37 1.60 ± 0.20
1.5 0.9 5.67 ± 0.43 2.02 ± 0.14 6.61 ± 0.41 1.97 ± 0.26
1.6 0.8 6.58 ± 0.70 1.84 ± 0.12 6.76 ± 0.39 2.19 ± 0.28
1.7 0.7 6.74 ± 0.67 1.79 ± 0.11 6.86 ± 0.41 2.68 ± 0.33

that some factor relevant to the experiments is missing from
both the theory and the simulations. A possible candidate for
this factor is the fact that, in contrast to the theory and the
simulations, the experiments relate to flow in a channel of a
finite cross section. We investigate this possibility in the next
subsection.

C. Decays from flows in channels of a finite cross section

Simulations relating to decaying counterflow in two types
of channel have been carried out: one is formed between two
parallel solid boundaries, separated by 1 mm; the other is a
channel with a square (1 mm × 1 mm) cross section, again
with solid boundaries. The conditions at the solid boundaries
are that the normal fluid velocity vanishes, and that the normal
component of the superfluid velocity vanishes. Otherwise,
periodic boundary conditions are applied. In the steady state, a
parabolic velocity profile in the normal fluid is prescribed. Here
we shall present only the results for two parallel boundaries; the
results for the channel with a square cross section are broadly
similar, but are less clear-cut because of large fluctuations in
the line density in the steady state. Data relating to the steady
states in the case of the parallel plates are displayed in Table III.

Before we proceed further, we recall that the presence of
solid boundaries in the steady state is known from simulations
to lead to severe spatial inhomogeneity in the vortex line
density [18–21]; the vortex line density is greatly enhanced
near the boundary (values of L0, and other parameters, in
Table III are spatial averages). We must therefore enquire
whether there is also inhomogeneity in the value of c2. That
there is indeed such inhomogeneity is shown in Figs. 8 and
9, derived from the simulations. We see that the parameter c2

is strongly reduced in regions where the vortex line density

 1.6
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 2.4

 2.6

-0.5 0  0.5

c 2
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Parallel plates
Spatially uniform flow

FIG. 8. Plots showing how c2, averaged over time in the steady
state, varies with position across the channel. Blue line: flow between
parallel plates; red line: spatially uniform flow. Temperature = 1.4 K.
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FIG. 9. Diagram showing how c2 varies with position across the
channel and with time during a decay. Temperature = 1.4 K.

is increased, and that this reduction persists in time during a
decay.

The experimental observations of χ2, reported in Sec. II,
relate to the decay of spatially averaged vortex line densities.
Our simulations of the decays between parallel plates lead to
the corresponding values of χ2 that are displayed in Fig. 10,
where they are compared with the predictions of Eq. (12),
in which we have substituted spatially averaged values of
the parameter c2 taken from our simulations. We see that
the agreement between the simulations and the predictions of
Eq. (12) is still good and provides further confirmation that the
theory of Sec. III is valid. Furthermore, for times less than
1 s, the variation with time of χ2 has largely disappeared,
and the actual values of χ2 are in better agreement with
experiment. This improved agreement with experiment is
comforting and suggests that boundary effects are important
in determining values of c2 and therefore the precise form of
the decays. However, reservations must be emphasized. It is
now clear that values of c2 are quite sensitive to the precise
form of the flows, and our simulations still relate to flows
that are not exactly the same as those in our experiments. The
experiments [8] use wider channels; in practice, the velocity
profile of the normal fluid differs generally from the Poiseuille
form [8], and the vortex lines in the superfluid component
are likely to suffer drag or pinning at the solid boundaries.
Simulations that take these differences into account are starting
to be practicable [22], and they could eventually allow more
satisfactory comparison with experiment.

It should be emphasized that, although there can be no net
mass flow in thermal counterflow, the velocity profiles of the
two fluids in a channel of finite cross section can be such that
there is a finite mass flow locally. When the heat flux is turned
off, this local mass flow may persist and may give rise to large-
scale circulations. We see no evidence that such circulations
have any significant effect on the form of the decay, although
they may be affecting the value of c2 during the decay.

V. DISSIPATION IN QUASICLASSICAL QUANTUM
TURBULENCE: EXPERIMENTAL VALUES OF ν′

We turn now to the decay of large-scale coupled turbulence,
as observed in the wake of flow through a grid and in the decay
of TCT when the steady heat flux is large. We shall not be
concerned with the early stages in these decays. In the case of
grid turbulence, it has been supposed [11] that a Kolmogorov
spectrum is established quickly, with energy-containing eddies
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FIG. 10. Plots of χ2 against time for flow between parallel plates.

having a size significantly smaller than the channel width;
then the energy-containing eddies grow in size, essentially
by a classical process (see Ref. [23], p. 347), until their size
saturates at a value comparable with the width of the channel.
Recent experiments have cast doubt on the supposed details
of this evolution of the energy-containing eddies, but, as we
shall see, there seems now to be little doubt that eventually
the turbulence settles down to a quasisteady state in which
the energy-containing eddies have a fixed size, determined by
the channel width, and in which there is an inertial subrange
characterized by a Kolmogorov energy spectrum, terminated
by dissipation described by Eq. (6). In the case of the decay
of TCT when the steady heat flux is large, the initial stages
are complicated, as we outlined in our Introduction, but again
there is little doubt that eventually the turbulence settles down
to a state similar to that seen in the decay of grid turbulence.

As was shown first by Stalp et al. [11], the decay of vortex
line density in the state to which the turbulence settles down is

T (K)

100

10-1

Based on both turbulent energy 
and vortex density decays

Based on vortex density
decay only

FIG. 11. Values of ν ′ for decaying TCT derived from measure-
ments of both the decaying turbulent energy and the decaying vortex
line density. Values of ν ′ derived from the decay of line density alone,
based on Eq. (14), are included for comparison.

given by

L(t) = (3C)3/2D

2πκν ′1/2
(t − t0)−3/2, (14)

where C is the Kolmogorov constant, D is the (time-
independent) linear size of the energy-containing eddies, and
t0 is a constant. Equation (14) is based on an assumed
energy spectrum that has the Kolmogorov form with a simple
cutoff for wave numbers less than 2π/D. Until recently, all
measurements of the effective kinematic viscosity, ν ′, have
been based on observations of L(t) and the assumption that
D is exactly equal to the width of the channel in which the
flow is taking place. The questionable assumptions underlying
this work meant that the values of ν ′ were, at best, uncertain
to within a factor of perhaps 2 or 3. Furthermore, since the
effective size of the energy-containing eddies could depend on
the precise way in which the turbulence was generated, values
of ν ′ from different experiments might not agree.

This uncertainty can be circumvented if a measurement of
L(t) is combined with a measurement of the way the total
turbulent energy decays, since this decay of total energy yields
the value of the energy flux, ε, in Eq. (6). The time dependence
of the total energy can be deduced from the recently developed
visualization technique based on the use of He∗

2 excimer
molecules as tracers, provided that it is assumed that the
turbulence is isotropic. The first such study, on the decay of
TCT, was reported recently [12], and the resulting values of ν ′
are displayed in Fig. 11, along with values of ν ′ derived from
the same measurements of the decay of line density, but using
Eq. (14) [all these measurements relate to a channel with a
square cross section, 9.5 mm × 9.5 mm, and D in Eq. (14)
was taken to be 9.5 mm]. We see that the measurements based
on our technique are systematically slightly larger than those
based on Eq. (14), but only by a factor that is barely outside
the experimental error.

In Fig. 12 we collect together the results of measurements of
ν ′ for various types of decaying coupled quantum turbulence,
as described in the caption to the figure. Most of these data
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FIG. 12. Values of ν ′ for various types of decaying coupled
turbulence. , Ref. [12]; ◦, Ref [11]; , Ref. [13] decay of superflow
in channel D7; , Ref. [13] decay of superflow in channel D10; ,
Ref. [13] decay of counterflow in channel D10; , Ref. [24] with no
grid; , Ref. [24] with grid.

were derived from measurements on line density only, and for
this reason they are subject to some uncertainty. There is a hint
that the value of ν ′ may depend a little on the type of flow, but
the relatively large experimental errors make it hard to be sure.
All we can say is that ν ′/κ lies in the range 0.1–1, its value
increasing as the temperature increases from 1.3 to 2.1 K.

These measurements of ν ′ have all been based on the decay
of the quantum turbulence. Some information about ν ′ has also
been obtained from observations of vortex line density in the
steady flow of superfluid 4He through a channel or through
a grid [24]. In essence, it was tentatively assumed that the
steady flow led to the generation of large eddies, size D and
characteristic velocity U . The velocity U is assumed to be
proportional to the average steady flow velocity U0 (U = ζU0,
where the constant ζ is a little less than unity), andD is assumed
to be independent of U0. The large eddies are assumed to decay
through a cascade at a rate determined by the turnover time
D/U , the energy being ultimately dissipated at a rate given by
Eq. (6). These assumptions lead then to a steady vortex line
density given by

L = ζ 3/2 1

(ν ′κD)1/2
U

3/2
0 . (15)

It is confirmed by experiment that L is proportional to U
3/2
0 .

Equation (15) can then be used to estimate ν ′, subject to
reasonable guesses about the values of ζ and D. The results are
not inconsistent with those described above, demonstrating that
the concept of an effective kinematic viscosity is applicable to
dissipation in both steady and decaying turbulence; however,
reliable absolute values of ν ′ cannot be deduced.

VI. DISSIPATION IN QUASICLASSICAL QUANTUM
TURBULENCE: THE RELATION BETWEEN ν′

v AND ν ′

A. Introduction

We devote this section to an introductory discussion of the
relation between ν ′

v , derived from our values of χ2, and ν ′. We
have already emphasized that these two kinematic viscosities

relate to different physical situations, and that they may not
therefore be equal.

In the case of ν ′
v , we are dealing with a situation in which

turbulent energy in the superfluid component is confined to
scales of order � or less, in the form of a random vortex
tangle, and we assumed in our earlier discussion that there
was no turbulent motion of the normal fluid. As we have seen,
turbulent energy is then being dissipated by mutual friction,
at a rate that is given to a reasonable approximation by the
prediction of Eq. (12). In the case of ν ′, there is again turbulent
energy in the superfluid component on scales of order � or
less, but this is accompanied by turbulent energy in both fluids
at larger scales. On sufficiently large scales, there is strong
coupling between the two fluids, and viscosity in the normal
fluid can be neglected. There is then a Kolmogorov (inertial
range) energy spectrum in this coupled motion, leading to
constant fluxes of energy in k space in both the superfluid
and normal components (εs and εn). We must discuss how this
situation changes as the scale of the turbulence moves toward
the scale �, i.e., how the energy spectra for the two fluids behave
as the wave number approaches 2π/�. In connection with
dissipation, we need ultimately to answer several questions.
How, and at what wave numbers, is turbulent energy in the
normal fluid dissipated, remembering that such dissipation can
be due to both viscosity and mutual friction? Is there significant
dissipation in the superfluid component due to mutual friction
at a wave number smaller than 2π/�? And how is dissipation in
the superfluid component modified, in comparison with that for
a random vortex tangle, for wave numbers of order or greater
than 2π/�, by any motion on those scales of the normal fluid
or by the polarization of the tangle required to generate the
large-scale turbulence.

B. Guidance from the calculations of Boué et al.

These questions can be answered to some degree by appeal-
ing to the work of Boué et al. [25]. These authors used a two-
fluid Sabra shell model, based on modified HVBK equations,
to calculate the energy spectra for both the superfluid and
normal components. The HVBK equations are course-grained
(continuum) equations of motion for the two fluids, and Boué
et al. modify them by the addition of an effective kinematic
viscosity, equal to our ν ′, to the equation for the superfluid
component. Our ν ′ is indeed an effective kinematic viscosity
in the sense that the associated dissipation, equal to ν ′κ2L2,
appears to be analogous to the classical dissipation ν〈ω2〉,
where 〈ω2〉 is the mean-square classical vorticity. However,
this analogy is misleading because our ν ′ is actually due, at
least in part, to mutual friction, so that its effect ought not to be
represented by a term of the form ν ′∇2vs , as assumed by Boué
et al. Leaving aside this questionable aspect of the analysis by
Boué et al., there is still the assumption that course-grained
equations of motion can be used. This assumption is probably
justified in describing turbulence on scales that are large
compared with the vortex line spacing, �, but Boué et al. use
it on scales as small as the vortex line spacing. It must fail on
such small scales, although the precise scale below which it
fails noticeably is not clear. We shall return to this point later.

In spite of these shortcomings, it is interesting to examine
the conclusions to be drawn from the analysis of Boué et al.,
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especially as they relate to the effect of the finite viscosity
of the normal fluid in the range of temperatures in which
we are interested [Fig. 1(b) in Ref. [25]]. We find that, at
temperatures less than about 1.5 K, the normal fluid is brought
to rest by its viscosity on a length scale significantly larger
than �, but that the superfluid is then brought to rest only on
significantly smaller scales, comparable with �. At first glance
this is surprising, because it might be thought that with the
normal fluid at rest the superfluid would also be brought to rest
by mutual friction. There is, however, a simple explanation. On
scales larger than �, there is according to Boué et al. a flow of
energy in the turbulent superfluid to higher wave numbers in a
Richardson cascade. If the normal fluid is at rest, this cascade
has associated with it two characteristic times: the turnover
time for eddies centered on wave number k, which is of order
τt = (ku)−1 (where u is the characteristic velocity in these
eddies), and the time taken for the energy in these eddies to be
dissipated by mutual friction, which is of order τγ = �2/ακ . If
τt 
 τγ , then the mutual friction has little effect. It is easy to
show that this condition is indeed satisfied in the cases we are
considering.

At temperatures above about 1.5 K, Boué et al. show
that energy is lost from both the normal component and the
superfluid component only on length scales comparable with
�. It follows then that at all temperatures relevant to the present
study, turbulent energy is lost from the superfluid component
only on length scales comparable with the vortex line spacing,
�. We emphasize that this conclusion is dependent on the
questionable assumption that turbulence in the superfluid
component is behaving quasiclassically on scales down to a
value close to the vortex line spacing �.

C. Dissipation in the superfluid component

If we accept this assumption, then we can conclude that,
even in quasiclassical quantum turbulence of the type we are
considering, energy is dissipated in the superfluid component
only on length scales comparable with the vortex line spacing
�, as is the case when we have only a random vortex tangle.
It is therefore tempting to conclude that the dissipation in the
superfluid component is still given by the theory of Sec. III.
However, two questions must still be addressed. The first
relates to the fact that, according to Boué et al., and in contrast
to the assumptions in Sec. III, there is motion of the normal
fluid on scales of order �, at least at the higher temperatures. But
it seems reasonable to assume that on this scale the vortex line
velocity given by the local induction approximation, which
is dominated by quantum effects, is uncorrelated with the
velocity field of the normal fluid, which is essentially classical.
In this case, the theory of Sec. III still holds. The second
relates to the fact that in our quasiclassical quantum turbulence,
the vortex lines must be moving at a velocity that includes
a quasiclassical component, corresponding to a large-scale
quasiclassical velocity field arising from a partial polarization
of the lines. This component is associated with the long-range,
nonlocal, interaction of the vortex lines, and the large-scale
coupling between the two fluids ensures that this component is
not subject to any dissipation by mutual friction. But the fact
that the argument of Sec. III is based on the local induction
approximation ensures that this component is automatically

excluded from any contribution to the dissipation (although
the existence of the large-scale motion may influence the value
of c2).

We conclude then that the dissipation in the superfluid
component in quasiclassical quantum turbulence may still be
given correctly by the theory of Sec. III, subject, of course,
to the assumption implicit in the work of Boué et al. that
turbulence in the superfluid component can be regarded as
quasiclassical on all scales larger than �.

D. The total energy dissipation

To obtain the total energy dissipation, we must add the
energy dissipated in the normal fluid. We note that at small
wave numbers, within the inertial range, where there is
complete coupling between the two fluids, the energy fluxes
in the normal and superfluid components must be given,
respectively, by εn = (ρn/ρ)ε and εs = (ρs/ρ)ε, where ε is
the total energy flux. It follows that the effective kinematic
viscosity ν ′, describing the total dissipation, is given by

ν ′

κ
= αc2

2

16π2

[
ln

�

ξ0

]2

= χ2

8π2
ln

�

ξ0
. (16)

We emphasize that, as is the case with ν ′
v , there is a strong

dependence on the parameter c2, to which we shall return.

E. Comparison with experiment

In principle, Eq. (16) serves to predict both the value of
ν ′ and the relation between ν ′ and χ2 (or ν ′

v). The latest
experimental data displayed in Figs. 3 and 11 are, within large
experimental errors, more or less consistent with the predicted
relation between ν ′ and χ2. However, such agreement has in
practice little real significance, because all three dissipative
coefficients depend on the parameter c2, the precise value of
which depends on the details of the flow concerned. Strictly
speaking, our demonstration that c2 depends on these details
has been established by simulations that relate only to partic-
ular flows in which the normal fluid is not turbulent, and for
which the density of the vortex line is small. These flows rarely
correspond to reality, especially when we are dealing with
flows at high velocities that involve turbulence in both fluids
and high densities of the vortex line. Although the development
of simulations that relate to these more general conditions has
started, we can be fairly certain that full development will
take many years. In the meantime, we must assume that the
dependence of c2 on the details of the flow is quite general.
The consequences are particularly serious for the value of ν ′,
since the flows to which ν ′ is applicable are as yet the least
accessible to realistic simulation.

In comparing experiment and theory relating to quasi-
classical quantum turbulence, we must also recognize, as
we have already emphasized, that the theory is based on
the questionable assumption made by Boué et al. that the
turbulence in the superfluid component behaves classically (in
effect that the discrete vortex structure is unimportant) even
when the length scale is comparably with �. Perhaps fully
classical behavior may not be required, but at least there must
still be something equivalent to a Richardson cascade, with
“eddies” that have lifetimes sufficiently small that they are
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not damped significantly by mutual friction with a stationary
normal fluid. We guess that justification of this assumption can
come only from suitable numerical simulations. It is our plan
to attempt such simulations in the near future.

VII. SUMMARY AND CONCLUSIONS

We have summarized what we know from experiment about
dissipation in quantum turbulence in superfluid 4He above 1 K,
the dissipation being described by either the parameter χ2,
applicable to turbulence existing in the superfluid component
only on scales comparable with the spacing between the quan-
tized vortex lines (“random tangles”), or the effective kinematic
viscosity ν ′, applicable to quasiclassical quantum turbulence,
such as that generated by flow through a grid. Theoretical
predictions for these two parameters are discussed, and it is
argued that both depend on the dissipative effects of mutual
friction, which are in turn dependent on the dimensionless
parameter c2 that relates the mean-square curvature of the
vortices to their mean-square separation. This parameter can
in principle be obtained from simulations, but it is argued

that simulations that are sufficiently realistic are for the most
part not yet practicable. To this extent, our understanding of
dissipation in quantum turbulence in 4He above 1 K remains
incomplete.

We have also drawn attention to the need to investigate
more carefully than hitherto the extent to which turbulence in
the superfluid component can be treated classically on length
scales larger than, but comparable with, the spacing between
the vortex lines.
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