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Enhancement of superconducting Tc due to the spin-orbit interaction
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We calculate the superconducting Tc for a system which experiences Rashba spin-orbit interactions. Contrary
to the usual case where the electron-electron interaction is assumed to be wave vector independent, where
superconductivity is suppressed by the spin-orbit interaction (except for a small region at low electron or hole
densities), we find an enhancement of the superconducting transition temperature when we include a correlated
hopping interaction between electrons. This interaction originates in the expansion of atomic orbitals due to
electron-electron repulsion and gives rise to superconductivity only at high electron (low hole) densities. When
superconductivity results from this interaction it is enhanced by spin-orbit coupling, in spite of a suppression of
the density of states. The degree of electron-hole asymmetry about the Fermi surface is also enhanced.
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I. INTRODUCTION

Spin-orbit coupling is prevalent in condensed matter sys-
tems and can have a profound impact on the properties of
metals and insulators [1,2], not just at surfaces, but in the
bulk. For superconductivity, the spin-orbit interaction was
invoked immediately following BCS [3], mainly to address
discrepancies in the Knight shift measurements [4,5] and the
predictions from BCS theory [6–10].

More recently, as more superconductors with a crystal
structure that lacked a center of inversion symmetry were be-
coming common, this discussion was revived [11,12], utilizing
the Rashba model of spin-orbit coupling [13,14], and once
again focusing attention on the nonzero Knight shift at low
temperature. These papers also explicitly identified the novel
feature in these superconductors: a mixed singlet-triplet state,
which was implicit all along since spin had been identified in
the early work as not a good quantum number. The impact
on thermodynamic properties (including the superconducting
critical temperature, Tc) was not really considered. Indeed, in
Anderson’s initial treatment of this problem [9], he essentially
repeated the arguments made in his more famous “Dirty
Superconductors” paper [15], but now for spin-orbit coupling,
with the implication that for weak spin-orbit coupling Tc would
be unaffected.

A few years later it was pointed out that in principle a large
enhancement in Tc could occur because of an enhancement in
the electronic density of states in the low-density region, due
to an effective “dimensionality reduction” [16]. However, as
we further demonstrate below, this enhancement is confined to
a rather narrow electron density window, and the overall scale
of Tc is low for a weakly coupled system.

An interesting general question remains, which is the impact
of the Rashba spin-orbit interaction on superconducting Tc in
the presence of different types of pairing interactions. Some
calculations have been recently performed in Ref. [17] for the
extended Hubbard model. The generic short-range attractive
interaction (e.g., the attractive Hubbard model) already results
in a mixed singlet-triplet state due to the spin-orbit interaction.

However, as we will show (and also found in Ref. [17]), in that
case the spin-orbit interaction suppresses superconductivity.
In this paper we include a specific off-diagonal term in the
interaction, previously considered by two of us [18], in the
context of cuprate superconductivity. This interaction is note-
worthy in that it has the form of an off-diagonal matrix element
of the Coulomb interaction between electrons in Wannier
orbitals, rather than a diagonal matrix element representing
a density-density repulsion or attraction. As explained at
length previously [19–21], the so-called “correlated hopping”
interaction arises inevitably because the many-body electron
wave functions make significant adjustments to minimize the
energy associated with Coulombic repulsions.

In the following section we will introduce the model and
briefly discuss some important one-electron properties. These
determine the appropriate basis with which we consider the
pairing interaction, the so-called Rashba basis. We follow
the usual BCS description for the pairing state; this leads to
a simple parametrization of the wave-vector dependence of
the order parameter, in the presence of spin-orbit coupling.
We then present results for Tc as a function of the various
interaction strengths and as a function of the electron density.
In general, with the correlated hopping interaction present,
spin-orbit coupling leads to a significant enhancement of
superconducting Tc. We then end with a summary.

II. TIGHT-BINDING HAMILTONIAN, INCLUDING
CORRELATED HOPPING AND SPIN-ORBIT COUPLING

As described in earlier work [18,22], a tight-binding model
that includes both the on-site Hubbard “U” interaction and the
correlated hopping term �t is

HMod = −t
∑
〈ij 〉
σ

(c†iσ cjσ + c
†
jσ ciσ ) + U

∑
i

ni↑ni↓ (1)

+�t
∑
〈ij 〉
σ

(c†iσ cjσ + c
†
jσ ciσ )(ni−σ + nj−σ ). (2)
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Here, c
†
iσ creates an electron on site i with spin σ =↑ , ↓, and

〈ij 〉 means that we only consider hopping between nearest-
neighbor sites i,j . In what follows we will assume a square
lattice. The tight-binding parameters are the hopping integral
t , the on-site repulsion U , and the correlated hopping parameter
�t , described in detail in [18]. Briefly, this term represents the
fact that electrons will hop with an altered hopping parameter
when other electrons are nearby. It was considered by Hubbard
in his original publication on the Hubbard model [23] and then
dropped as he focused on the on-site interaction alone.

We add to this Hamiltonian a Rashba spin-orbit coupling
term [13]. Such a term is generic for systems that either lack
inversion symmetry [24] or experience some Fermi surface
instability [25] while maintaining time-reversal symmetry as
well as a uniaxial symmetry. For a square lattice, the most
generic spin-dependent quadratic hopping term, restricted to
nearest neighbors, is

HSO =
∑
iαβ

(c†iα �a · �σαβci+x̂,β + c
†
iα

�b · �σαβci+ŷ,β + H.c.). (3)

The uniaxial symmetry to be enforced is a rotation by π/2
about the ẑ axis through each site i. Applying such a rotation
to this term using RφcjαR−1

φ = e−iαφcR−1
φ j,α gives

HSO =
∑
iαβ

ei(α−β)π/4(c†i+ŷ,α�a · �σαβci,β + c
†
iα

�b · �σαβci+x̂,β)

+H.c. (4)

Matching this to (3) restricts the values of �a and �b to be

ax = 0 = by, (5)

ay ≡ −iVSO = −bx. (6)

Thus the Rashba hopping term on the direct lattice is

HSO = VSO

∑
iαβ

(
ic

†
iασ αβ

x ci+ŷ,β − ic
†
iασ αβ

y ci+x̂,β

) + H.c.,

(7)

where VSO parameterizes the Rashba spin-orbit coupling.
In general, this parameter depends on the atomic spin-orbit
coupling and on the details of the band structure, and should
be determined from experiment or ab initio studies [1,26]. The
largest values of VSO typically occur at surfaces or interfaces
(e.g., BiTeI has VSO/t ≈ 0.8 [27]). It is important to recognize
that in the tight-binding picture, a Rashba term should be
present whenever there is inversion asymmetry in the site
point group (with some preserved uniaxial symmetry) [28].
This means that even quasi-two-dimensional materials whose
crystal structure is centrosymmetric can have bulk Rashba spin
splitting if there is polarity in any given plane. This is true,
for example, in YBCO, where the yttrium and barium ions
on opposite sides of the copper oxide planes produce a local
electric dipole moment. For the cuprates, the Rashba parameter
has been estimated to be VSO/t ≈ 0.008 [29]. Larger spin
splittings (VSO/t ≈ 0.04) can be found in the LaAlO3/SrTiO3

interface, which supports a superconducting 2D electron gas,
though the magnitude of this splitting is still under debate
[30,31].

In a single-band model where the correlated hopping inter-
action �t arises simply from an off-diagonal matrix element
of the Coulomb interaction between neighboring Wannier
orbitals, as discussed by Hubbard [23] and others [22,32],
the spin-orbit interaction would not be expected to modify
the interaction terms in the Hamiltonian. Instead, within the
“dynamic Hubbard model” [19] the interaction �t arises from
the modification of the on-site electron wave function when
another electron occupies the site, due to Coulomb repulsion.
This effect is modeled by the site Hamiltonian [19],

Hi = ωa
†
i ai + [U + gω(a†

i + ai)]ni↑ni↓, (8)

where the boson creation and annihilation operators a
†
i ,ai

describe the electronic excitations of an electron when a second
electron is added to the orbital. A generalized Lang-Firsov
transformation [19,33]

ciσ = eg(a†
i −ai )ñi,−σ c̃iσ ≡ Xiσ c̃iσ (9)

relates the original fermion operators ciσ to new fermion
quasiparticle operators c̃iσ that both destroy the electron
at the site and change the state of the boson so that the
boson field follows the fermion motion. Since X

†
iσ = X−1

iσ , the
transformation preserves fermion anticommutation relations.
To obtain a low-energy effective Hamiltonian we consider only
ground-state to ground-state transitions of the boson field, and
in this approximation the relation Eq. (19) becomes [19]

c
†
iσ = [1 − (1 − S)ñi,−σ ]c̃†iσ , (10)

where S = e−g2/2. The on-site repulsion U is lowered to
Ueff = U − ωg2, and bilinear terms in fermion operators at
different sites transform as follows:

c
†
iσ cjσ ′ = c̃

†
iσ c̃jσ ′ [1 − (1 − S)(ñi,−σ + ñj,−σ ′ )

+(1 − S)2ñi,−σ ñj,−σ ′ ]. (11)

We will be interested in the regime where the band is close
to full. The coefficient in the parenthesis of Eq. (21) when the
occupations are such that ñi,−σ + ñj,−σ ′ = 1 is S, and when
ñi,−σ + ñj,−σ ′ = 2 is S2. Their difference is

S − S2 = S(1 − S) ≡ �t

t
, (12)

which defines the correlated hopping �t in this model. The
term involving�t in Eq. (2) then results from replacing the bare
operators ciσ by the quasiparticle operators c̃iσ in the hopping
term (and renaming the quasiparticle operators c̃iσ → ciσ ), and
discarding terms involving six fermion operators that will be
unimportant for low hole concentrations [20]. Similarly, the
spin-orbit interaction term (7) is modified to

HSO = iVSO

∑
i,αβ

(
c
†
i,ασ αβ

x ci+ŷ,β

[
1 − �t

t
(ni,β + ni+ŷ,α)

]

− c
†
i,ασ αβ

y ci+x̂,β

[
1 − �t

t
(ni,β + ni+x̂,α)

])
+ H.c.,

(13)

so that the full Hamiltonian of our model is HMod + HSO −
μ

∑
i,σ niσ , where μ is the chemical potential.

184513-2



ENHANCEMENT OF SUPERCONDUCTING Tc DUE TO … PHYSICAL REVIEW B 97, 184513 (2018)

−4

−2

2

4

FIG. 1. Free particle Rashba spectrum on a square lattice with
VSO = 0.4t . The blue and orange bands represent the s = −1 and
s = +1 helicity bands, respectively. The dashed lines in the bottom
figure show the locations of Van Hove singularities.

In the usual BCS fashion, we Fourier transform this Hamil-
tonian and eliminate interactions between pairs with finite
momentum to obtain a reduced Hamiltonian

H =
∑
k,σ

(εk − μ)c†kσ ckσ − 2VSO

∑
k

(sin ky(c†k↑ck↓ + c
†
k↓ck↑)

+i sin kx(c†k↑ck↓ − c
†
k↓ck↑))

+ 1

N

∑
k

V 0(k,k′)c†k↑c
†
−k↓c−k′↓ck′↑

+ 1

N

∑
kk′

∑
αβ

(
V R

αβ(k′)c†kαc
†
−kβck′αc−k′α

+V R
αβ(k)c†kβc

†
−kβck′βc−k′α

)
, (14)

where εk ≡ −2t(cos kx + cos ky) and V 0(k,k′) ≡
U − 2 �t

t
(εk + εk′) are the dispersion and interaction

in the absence of spin-orbit coupling. The correlated
hopping and Rashba terms are coupled via the interaction
V R

αβ (k) ≡ 2VSO
�t
t

(sin kxσ
y

αβ + sin kyσ
x
αβ). Throughout this

paper, we work in units where the lattice parameter is unity.

−4 −2 2 4
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FIG. 2. Noninteracting single-particle Rashba density of states
on a square lattice for the lower helicity band (orange), upper helicity
band (blue), and the two combined (green). Here we have set VSO =
0.4t .

The first two lines above constitute the noninteracting
Hamiltonian, which is diagonalized in the Rashba basis to
produce a spectrum

εks = εk − 2sVSO

√
sin2 kx + sin2 ky, (15)

where s = ±1 represents two helicity branches, with corre-
sponding eigenvectors

c
†
ks = 1√

2
(c†k↑ + seiθ(k)c

†
k↓). (16)

Here we have defined the phase factor

eiθ(k) ≡ sin ky − i sin kx√
sin2 kx + sin2 ky

, (17)

which governs the mixing of spin-up and spin-down com-
ponents for eigenstates of the noninteracting Hamiltonian.
This mixing ensures that pairs are always formed in a mixed
singlet-triplet state. An example of the noninteracting spectrum
as well as the density of states is shown in Figs. 1 and 2,
respectively. The density of states is determined by numerically
integrating

g(E) = 4
∑

s

∫ π

0

dkx

2π

∫ π

0

dky

2π
δ(E − εks)

= lim
σ→0

1

π3/2σ t

∑
s

∫ π

0
dkx

∫ π

0
dkye

−(E/t−εks /t)2/σ 2
.

(18)

Potentially important details concerning van Hove singulari-
ties, etc., are carefully derived in Refs. [34] and [35]. In par-
ticular, while a one-dimensional-like square-root singularity
arises at the bottom of the band for parabolic dispersion [16],
in a tight-binding model the density of states is a constant at
the bottom of the band and has a singularity very close to the
bottom of the band where there is a saddle point. Reference [34]
makes it clear that for weak values of VSO the saddle-point
energy, Esad = −2t[1 +

√
1 + (VSO/t)2], is very close to the
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minimum energy, Emin = −4t[1 +
√
V 2

SO/(2t2)]. Hence, this
small separation is not even visible in Fig. 2.

In the conventional BCS program, the next step would be
to restrict the Hamiltonian (14) to interactions between singlet
pairs. In view of the Rashba spin-mixing, however, it is clear
that this would not capture the right pairing physics and that
it is natural to consider pairs within the same helicity band
at zero total momentum. Allowing for interband pairing in
the absence of a magnetic field would be akin to considering
FFLO states where pairs have finite total momentum. At zero
field, the pairing is expected to be intraband [36,37]. Indeed,
if one follows the prescription of time-reversed pairing due
to Anderson [9], then cks should be matched with its time-
reversed partner −seiθ(k)c−ks . Upon transforming (14) to the
helicity basis and retaining only interaction terms involving
intraband pairs, we are left with the effective Hamiltonian

H =
∑

ks

(εks − μ)c†kscks

+ 1

4N

∑
kk′

∑
ss ′

Vss ′ (k,k′)c†ksc
†
−ksc−k′s ′ck′s ′ , (19)

where

Vss ′ (k,k′) = s ′eiθ(k′)se−iθ(k)

(
U + 8�t(sk + sk′)

+4VSO
�t

t

[
s ′

√
sin2 k′

x + sin2 k′
y

+s

√
sin2 kx + sin2 ky

])
. (20)

Here we have defined sk ≡ 1
2 (cos kx + cos ky).

III. MEAN-FIELD THEORY

We now study the effective Hamiltonian within mean-field
theory. We choose a pairing mean field of time-reversed
electron pairs. As discussed above, this is represented in
the helicity basis as bks ≡ seiθ(k)〈c−kscks〉. Writing c−kscks =
se−iθ(k)bks + δcks and neglecting terms of order (δcks)2, we
get the mean-field Hamiltonian

HMF =
∑
ks

(εks − μ)c†kscks − 1

2

∑
ks

�∗
ksc−kscks

−1

2

∑
ks

�ksc
†
ksc

†
−ks + 1

2

∑
ks

�ksse
iθ(k)b∗

ks ,

(21)

where we have defined the gap parameter as

�ks ≡ − 1

2N

∑
k′s ′

Vss ′ (k,k′)s ′e−iθ(k′)bk′s ′ . (22)

Note that this gap function may be written as �ks = se−iθk �̄ks ,
where �̄ks transforms under an irreducible representation of
the lattice point group (in this model the trivial representation
of the dihedral group D8). The unusual phase factor se−iθk that
is local in k space is a feature of spin-orbit coupling and is
discussed in Ref. [38].

The mean-field Hamiltonian may be diagonalized by means
of the Bogoliubov transformation

cks = u∗
ks α̂ks − se−iθ(k)vks α̂

†
−ks , (23)

where the coefficients uks , vks are chosen to satisfy uks = u−ks ,
vks = v−ks , and |uks |2 + |vks |2 = 1. It is readily found that the
values of these parameters that diagonalize the Hamiltonian
are given by the equations

|vks |2 = 1
2 [1 − (εks − μ)/Eks], (24)

|uks |2 = 1
2 [1 + (εks − μ)/Eks], (25)

uksv
∗
ks = − �̄∗

ks

2Eks

, (26)

where Eks ≡
√

(εks − μ)2 + |�ks |2. The final mean-field
Hamiltonian then reads

HMF =
∑

ks

Eks α̂
†
ks α̂ks + Eg, (27)

where the ground-state energy is given by

Eg = 1

2

∑
ks

[(εks − μ) − Eks + �̄ksb
∗
ks]. (28)

In terms of the new fermionic quasiparticle operators, we
have

bks = u∗
ksvks(2〈α̂†

ks α̂ks〉 − 1), (29)

which means the gap function must satisfy the finite-
temperature self-consistency condition

�ks = − 1

2N

∑
k′s ′

Vss ′ (k,k′)
�k′s ′

2Ek′s ′
[1 − 2f (Ek′s ′ )], (30)

where f (E) is the Fermi function.

IV. GAP EQUATIONS

The self-consistency condition determines the ansatz for
�̄ks :

�̄ks = �0 + �ssk + �x−ys

√
sin2 kx + sin2 ky. (31)

Note that while the gap parameter definitively has the (ex-
tended) s-wave symmetry of the lattice, it will always be
mixed singlet-triplet, unlike in conventional BCS theory. With
this ansatz, the self-consistency condition yields three coupled
equations:

�0 = − 1

2N

∑
k′s ′

(
U + 8�tsk′

+4
�t

t
VSOs ′

√
sin2 k′

x + sin2 k′
y

)
g(Ek′s ′ )�̄k′s ′ , (32)

�s = − 1

2N

∑
k′s ′

8�tg(Ek′s ′ )�̄k′s ′ , (33)

�x−y = − 1

2N

∑
k′s ′

4
�t

t
VSOg(Ek′s ′ )�̄k′s ′ , (34)
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FIG. 3. Low-temperature gap dependence on kinetic energy for
various values of U . Here we have set �t = 4.5t , n = 1.875, kBT =
0.01t . The solid lines correspond to VSO = 0.5. The dashed lines show
the result for VSO = 0. A slightly larger value for the absolute value
of the slope indicates that VSO increases the asymmetry around the
Fermi level.

where we have defined g(E) ≡ 1
2E

[1 − 2f (E)]. Equa-
tions (33) and (34) reveal that there are in fact only two
independent parameters, since

�x−y = VSO

2t
�s. (35)

This also means that the gap function is a linear function of the
kinetic energy, since

�̄ks = �0 + �s

(
sk + sVSO

2t

√
sin2 kx + sin2 ky

)
(36)

= �0 − �sεks/(4t). (37)

This energy dependence is in stark contrast with that of the
constant gap used in conventional BCS theory. In the context
of electron tunneling, it will cause an energy dependence in the
conductance, independent of the density of states. This is seen
as an asymmetry in the tunneling current for bias voltages of
different sign [18,39]. This asymmetry is slightly enhanced by
spin-orbit coupling, though the enhancement diminishes with
increasing U , as seen in Fig. 3.

The linearized version of the self-consistency equations
is a 3 × 3 determinant equation that determines the critical
temperature. Note that in the limit of no spin-orbit coupling,
�x−y vanishes, and this reduces to two coupled equations
which have been solved in Ref. [18]. Due to the presence
of the chemical potential in the Fermi function we must
simultaneously solve the number equation

n = 1 − 1

2N

∑
k′s ′

(εk′s ′ − μ)

Ek′s ′
tanh(βEk′s ′/2). (38)

The determinant and number equations are solved together
iteratively. That is, we iterate over temperatures until the
determinant equation is satisfied, and for each temperature,
the chemical potential is found from the number equation. The
same strategy is used to solve for the gap function below Tc.
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0.3
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FIG. 4. Critical temperature as a function of electron density for
various values of the spin-orbit coupling with �t = 0: U = −t (top
left), U = −2t (top right), U = −3t (bottom left), and U = −4t

(bottom right). By particle-hole symmetry, the plot above half filling
is a reflection of this plot, i.e., Tc(2 − n) = Tc(n) for 0 < n < 1.

V. RESULTS

Figure 4 shows the critical temperature Tc as a function
of electron density for the attractive Hubbard model with
correlated hopping turned off (U < 0, �t = 0). We see that
except at very low (n → 0) and high (n → 2) densities,
increasing the spin-orbit coupling has the effect of decreasing
the critical temperature. This is understood by noting that the
available phase space for intraband pairs is reduced by the
presence of spin-orbit coupling, except at the bottom and top
of the band where all states are of the same helicity and the
density of states becomes singular. Recall that the density of
states is lower for the s = + (s = −) band in the electron
(hole) doped part of the band. Indeed, half-filling, which would
have the highest Tc in the absence of spin-orbit coupling,
shows a dip due to the minimum (see Fig. 2) in the density of
states.

Figures 5 and 6 show a very different effect. Here correlated
hopping has been turned on (U > 0, �t 
= 0). This breaks
particle-hole symmetry, and we see that the Rashba spin-orbit

1.2 1.4 1.6 1.8 2.0

0.1
0.2
0.3
0.4
0.5
0.6

1.2 1.4 1.6 1.8 2.0

0.05
0.10
0.15
0.20
0.25
0.30

FIG. 5. Critical temperature as a function of electron density for
various values of the spin-orbit coupling with �t = 4.5t : U = 90t

(left), U = 115t (right).
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FIG. 6. Critical temperature as a function of electron density for
various values of the spin-orbit coupling with U = 75t : �t = 3.5t

(left), �t = 4t (right).

coupling and correlated hopping cooperate to enhance the
critical temperature in the high electron (low hole) density
regime. This, too, follows from the single-particle density of
states. The spin-orbit coupling and correlated hopping couple
to produce an effective interaction whose sign matches the
sign of the helicity band [see the last two lines of Eq. (20)].
At high electron densities, the s = + density of states is
suppressed, and the s = − density of states increases towards
the singularity at the top of the band. Thus, the pair interaction
becomes dominantly attractive and its magnitude increases
with VSO and �t . In fact, the maximum value of the critical
temperature shows a quadratic dependence on the spin-orbit
coupling, as seen in Fig. 7.

The gap and number equations are solved at finite tempera-
ture as well. We can check the gap ratio as well, but due to the
energy dependence of the gap, it is more appropriate to use the
minimum value of the excitation energy. This occurs when

εks = μ + �0 �s

4t

1 + ( �s

4t
)2

, (39)

at which point the excitation energy is

Emin =
∣∣�0 − μ�s

4t

∣∣√
1 + (

�s

4t

)2
. (40)
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FIG. 7. Maximum critical temperature as a function of spin-orbit
coupling with U = 90t , �t = 4.5t .
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FIG. 8. Critical temperature Emin and the corresponding gap ratio
at low temperature as a function of spin-orbit coupling. Here we have
set U = 90t , �t = 4.5t , n = 1.875, kBT = 0.01t . The dashed line
shows the conventional BCS value.

This value is plotted in Fig. 8 along with the gap ratio. We
see that for these parameter values the spin-orbit coupling
introduces very little deviation from the BCS value.

VI. CONCLUSION

We have shown that within a 2D tight-binding model on
a square lattice, correlated hopping and Rashba spin-orbit
coupling work together to enhance the critical temperature
of superconductivity, even with significant repulsive on-site
interactions. This is in contrast to the Rashba model with
attractive on-site interactions and no correlated hopping, where
the spin-orbit coupling inhibits superconductivity. The analysis
was done within a mean-field treatment of the model assuming
Cooper pairs to form within the same helicity band of the
noninteracting Rashba spectrum.

The enhancement is strongest in the high-electron-density
regime. This is relevant for the cuprates at low hole doping,
where the oxygen p band is nearly full. Rashba spin-splitting is
expected to be present in many cuprates, though its magnitude
is likely much smaller than the values considered in this paper.

The superconducting gap for this model is thermodynam-
ically similar to the gap in conventional BCS theory in many
regards, except that the broken particle-hole symmetry of
our model will produce a tunneling asymmetry in a metal-
superconductor junction [18,39].

It is interesting to look at the symmetry of the gap function as
well. The gap in this model has an extended s-wave symmetry,
but we should note that if nearest-neighbor repulsion were
added to our model, the gap symmetries will be enriched by the
presence of two additional d-wave phases. It should be noted
that these are not the symmetries of the full gap function but
rather the part that transforms under irreducible representations
of the lattice point group. In particular, the gap carries an
additional complex phase due to the spin-orbit coupling. It
would be interesting to see if this phase is observable.

Note added in proof.
Recently, we became aware of several relevant references:

(1) Ref. [17] by Ptok, Rodriguez, and Kapcia, referred to in
the introduction.

(2) Ref. [40] by Rout, Maniv, and Dagan “Link between
the Superconducting Dome and Spin-Orbit Interaction in the
(111) LaAlO3/SrTiO3 Interface,” reporting that the strength of
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the spin-orbit interaction in that system tracks the magnitude
of Tc across the superconducting dome.

(3) Ref. [41] by Stornaiuolo et al. on the same system as
Ref. [40] also suggests such a link.

We point out that our work provides a possible explanation
for the observations in Refs. [40,41], hence suggests that
correlated hopping plays an important role in that system.
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