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Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal
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When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical
point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling
of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid
behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-
superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct
from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows
to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results
indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a
simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus
obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably
nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the
fermion spectral function and specific heat.
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I. INTRODUCTION

Weakly interacting metals are perfectly described by the
Fermi liquid (FL) theory [1–3]. Coulomb interaction plays a
negligible role since it becomes short-ranged due to the static
screening caused by the collective particle-hole excitations.
The static screening factor serves as an infrared cutoff for
the transferred energy/momentum, which suppresses forward
scattering and guarantees the stability of FL state. When
gapless fermions couple to certain gapless bosonic mode,
Landau damping could be strong enough to yield a vanishing
quasiparticle residue Zf , which implies the breakdown of
FL theory. A prominent example is the system of fermions
coupled to a U(1) gauge boson [4–10]. The gauge boson is
strictly gapless, rendered by local gauge invariance, and leads
to non-FL behavior characterized by Zf = 0.

When a metal undergoes a continuous quantum phase
transition, non-FL behavior and other intriguing physical
properties can emerge [11,12]. Near the quantum critical
point (QCP), the quantum fluctuation of order parameter
becomes critical as the correlation length ξ diverges, and
can be described by the dynamics of gapless bosonic mode
[13–15]. The low-energy behavior of the quantum criticality
is determined by the coupling between gapless fermionic and
bosonic degrees of freedom. Such coupling has been studied
extensively in various quantum critical systems, including
ferromagnetic (FM) QCP [16–18], antiferromagnetic (AFM)
QCP [19–21], and Ising-type nematic QCP [22–25]. In these
systems, the fermion-boson coupling can generate a finite
anomalous dimension for fermion field and also leads to strong
Landau damping of fermions. At finite temperature, the QCP
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becomes a finite quantum critical regime, as schematically
shown in Fig. 1(a), which can be called a NFL regime due to the
strong violation of FL description. A popular notion is that the
observed superconducting (SC) dome and NFL normal-state
properties in many cuprate, heavy fermion, and iron-based
superconductors arise from the quantum fluctuation of certain
long-range order.

Nontrivial quantum criticality also occurs in several
semimetal (SM) materials [26–34]. Recently, SC transition
and the associated quantum criticality have attracted particular
research interest. In most SMs, Cooper pairing occurs only
when the net attraction is larger than certain critical values
[35–54]. It is argued that the Yukawa coupling between gapless
Dirac/Weyl fermions and bosonic SC order parameter might
dynamically generate an emergent space-time supersymmetry
[55–61]. These QCPs display a series of unusual quantum
critical behaviors.

In this paper, we study the quantum criticality of SM-SC
transition in a 3D anisotropic Weyl semimetal (AWSM), where
the fermion dispersion is linear in two momentum exponents
and quadratical in the third one [62–64]. Such an AWSM
state emerges naturally as one pair of Weyl points of a
Weyl SM merge into one single band-touching point. In the
parent Weyl SM, the Chern numbers of one pair of Weyl
points are ±1. When two Weyl points with opposite Chern
numbers merge, the resultant band-touching point has zero
Chern number [62–64]. Thus the AWSM state is topologically
trivial. Superconductivity is induced when the strength of
net attraction, denoted by g, is larger than gc. At g = gc,
the quantum fluctuation of SC order parameter is gapless
and couples to gapless Weyl fermions. According to previous
research experience, one would naively expect to observe a
series of unusual quantum critical phenomena at the QCP.
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FIG. 1. (a) Conventional quantum critical systems always have a
large area of NFL region on the phase diagram. Here, r is a tuning
parameter. (b) SM-SC QCP in 3D AWSM is trivial, because the system
exhibits qualitatively the same low-energy behavior in the whole non-
SC phase.

We present a renormalization group (RG) study of the
coupling between the Weyl fermions and the SC quantum
fluctuation. Interestingly, although the SC quantum fluctuation
is critical, the Weyl fermions do not acquire a finite anomalous
dimension in the low-energy regime and the quasiparticle
residue remains finite, namely Zf �= 0. This indicates that the
SC quantum fluctuation does not qualitatively modify the low-
energy properties of the system, and that the fermions behave
in nearly the same way as free fermion gas in the non-SC
phase. A simple mean-field treatment should suffice to describe
the transition. We thus obtain an example of quantum phase
transition that is characterized by trivial critical phenomena.
As illustrated by Fig. 1, a large NFL-like quantum critical
regime exists between the disordered and ordered phases in
many quantum critical systems. In contrast, there is no such
NFL regime in 3D AWSM, which is caused by the special
anisotropy of fermion dispersion.

The rest of the paper is organized as follows. In Sec. II, we
first make a mean-field analysis and determine the SC QCP
by solving the gap equation. In Sec. III, we will go beyond
the mean-field level and study the influence of the quantum
critical fluctuation of SC order parameter by performing a RG
analysis. The low-energy behavior of all the model parameters
is obtained from the solutions of the self-consistent RG
equations. We briefly summarize the results and also discuss

the possible experimental probe of our prediction in Sec. IV.
The details of mean-field calculation and RG calculation are
presented in Appendix A and Appendix B, respectively.

II. SUPERCONDUCTING TRANSITION

The system under consideration is described by the Hamil-
tonian H = H0 + HI , where

H0 =
∑

k

ψ
†
k

(
cf kxσ1 + cf kyσ2 + Ak2

z σ3
)
ψk, (1)

HI = −g
∑
k,q

ψ
†
k(−iσ2)ψ†

−kψq(iσ2)ψ−q, (2)

where the fermion field operator is defined as ψ
†
k = (c†k,↑,c

†
k,↓)

to implement the spinor structure and σ1,2,3 are the standard
Pauli matrices. The fermion dispersion [62–64] has the form

Ef = ±
√
c2
f k2

⊥ + A2k4
z , where k2

⊥ = k2
x + k2

y , and cf and A

are two parameters introduced to characterize the energy
dispersions within x − y plane and along z axis, respectively.
Here, we consider one single specie of anisotropic Weyl
fermions. The short-range pairing interaction is described by
HI , where the coupling constant g > 0.

We first make a mean-field analysis to determine the SC
QCP. The SC order parameter is defined as

�s = g
∑

k

〈ψk(iσ2)ψ−k〉. (3)

At the mean-field level, we have

HI =
∑

k

[−�∗
s ψk(iσ2)ψ−k + �sψ

†
−k(iσ2)ψ†

k] + 1

2g
|�s |2,

where the SC gap is supposed to be s wave. According to the
calculations presented in Appendix A, the zero-temperature
gap equation is

2
∫

dw

2π

∫
d3k

(2π )3

1

ω2 + c2
f k2

⊥ + A2k4
z + |�s |2

= 1

2g
. (4)

It is easy to verify that a nonzero SC gap is opened only when
the coupling g exceeds the critical value

gc = 3(2π )2c2
f

√
A

4E
3/2
D

, (5)

where ED is a cutoff.

III. RENORMALIZATION GROUP STUDY OF QUANTUM
CRITICAL BEHAVIOR

At the SM-SC QCP, the SC order parameter vanishes,
namely 〈ψk(iσ2)ψ−k〉 = 0. But its quantum fluctuation cannot
be simply neglected. We will carry out a RG analysis to
examine whether or not its quantum fluctuation leads to
significant effects on the low-energy behavior of anisotropic
Weyl fermions.

The quantum critical system can be modeled by the follow-
ing effective action:

S = Sψ + Sφ + Sφ4 + Sψφ, (6)
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where the free action for Weyl fermions is given by

Sψ =
∫

dω

2π

d3k
(2π )3

ψ†[−iωσ0 + Hψ (k)]ψ, (7)

where Hψ (k) = cf kxσ1 + cf kyσ2 + Ak2
z σ3; the one for SC

order parameter is

Sφ = 1

2

∫
dω

2π

d3q
(2π )3

φ∗[	2 + E2
φ(q) + r

]
φ, (8)

where Eφ(q) =
√
c2
b⊥(q2

x + q2
y ) + c2

bzq
2
z . Here, cb⊥ is the

boson velocity within the x − y plane and cbz the one along
the z direction. The boson mass r serves as a tuning parameter:
r > 0 corresponds to SM phase (g < gc) and r < 0 to SC
phase (g > gc). In the following, we focus on the SM-SC QCP,
corrsponding to r = 0. The free fermion and boson propagators
are

Gψ (ω,k) = 1

−iωσ0 + cf kxσ1 + cf kyσ2 + Ak2
z σ3

, (9)

Gφ(	,q) = 1

	2 + c2
b⊥q2

x + c2
b⊥q2

y + c2
bzq

2
z

. (10)

The self-coupling of the boson field takes the form

Sφ4 = λ

4

∫ 4∏
i=1

d	i

2π

d3qi

(2π )3
D(	)D(q)|φ|4, (11)

where for simplicity we define

D(	) ≡ δ(	1 + 	3 − 	2 − 	4),

D(q) ≡ δ3(q1 + q3 − q2 − q4). (12)

The Yukawa coupling between the gapless fermions and the
critical boson is described by

Sψφ = h

∫ 2∏
i=1

dωi

2π

d3ki

(2π )3

d	

2π

d3q
(2π )3

δ(ω1 + ω2 − 	)

× δ3(k1 + k2 − q)(φ∗ψT iσ2ψ + H.c.), (13)

where h is the coupling constant.
The whole action contains six model parameters, namely

cf , A, cb⊥, cbz, λ, and h. These parameters all receive quantum
corrections from the Yukawa coupling, and then become scale
dependent. The low-energy critical behavior of the SC QCP
can be analyzed based on the scale dependence of all these
parameters. After carrying out lengthy calculations, with full
details presented in Appendixes B and C, we derive the
following coupled RG equations:

dcf

d�
= (−C1 + C2)cf , (14)

dA

d�
= (−C1 + C3)A, (15)

dcb⊥
d�

= 1

2
(−C4 + C5)cb⊥, (16)

dcbz

d�
= 1

2
(1 − C4 + C6)cbz, (17)

dλ

d�
=

(
1

2
− 2C4 + C7 + C8

)
λ, (18)

dh

d�
=

(
1

4
− C1 − C4

2

)
h. (19)

Here, � is a freely varying scale and the lowest energy limit
corresponds to � → ∞. The analytical expressions of Ci , with
i = 1,2, . . . ,8, are given in Appendix B. The � dependence
of Ci can be obtained by numerically solving these equations.
The solutions are shown in Fig. 2.

To examine the impact of interactions, it is convenient to
define two new parameters:

λ′ = λ/c3
f , h′ = h/c

3/2
f . (20)

Now we can rewrite the equations for λ′ and h′ as

dλ′

d�
=

(
1

2
+ 3C1 − 3C2 − 2C4 + C7 + C8

)
λ′, (21)

dh′

d�
=

(
1

4
+ 1

2
C1 − 3

2
C2 − C4

2

)
h′. (22)

The dependence of cf and A on the running energy scale
� is shown in Fig. 3. We can find that cf and A are only
quantitatively modified and approach new constant values. The
indication is that the observable quantities, such as fermion
DOS and specific heat, exhibit nearly the same behavior as the
free fermion system.

As can be seen from Fig. 4(a), the parameter cb⊥ flows to a
different constant value in the lowest energy limit. According
to Eq. (17), cbz flows to infinity even when one-loop corrections
are not included. This results from the property that the
momentum component along z direction scales differently
from the components within x − y plane. After including
one-loop corrections, cbz still flows to infinity, but at a lower
speed, as shown in Fig. 4(b).

We present the � dependence of coupling constants λ′ and
h′ in Fig. 5. Both λ′ and h′ flow to certain finite constants in
the lowest energy limit, namely λ′ → λ′∗ and h′ → h′∗. Thus
λ′ and h′ are both marginal. The values of λ′∗ and h′∗ depend
on the bare values of λ′ and h′. The flowing behavior of Ci

with i = 1,2, . . . ,8 in Figs. 2(a)–2(h), respectively. According
to Figs. 2(a), 2(b) and 2(c), we observe that C1, C2, and C3

flow to zero very quickly. As a result, the parameters cf and
A do not receive singular renormalization, but flow to finite
constants. The anomalous dimension of fermion field is given
by ηf = C1. Since C1 vanishes rapidly at low energies, we
infer that the fermion field does not acquire any anomalous
dimension. The flow equation of quasiparticles residue Zf is

dZf

d�
= −C1Zf . (23)

As shown in Fig. 6, Zf always flows to a finite constant in the
lowest energy limit. These results indicate that the anisotropic
Weyl fermions are well-defined quasiparticles and have a long
lifetime at the SM-SC QCP.

We now analyze the impact of Yukawa coupling on the
bosonic mode. Figures 2(d)–2(f) show that

C4 → 0.5, C5 → 0.5, C6 → 0 (24)
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(a) (b)

(c) (d)

(e)

(f)

(g) (h)

FIG. 2. Scale dependence of constants Ci (i = 1,2, . . . ,8) at different initial values of h′
0. Here, we suppose that λ′

0 = 0.5, ς0 = 0.2, ηA0 = 1,
and ηB0 = 1, which will be used in all the following calculations.

in the lowest energy limit. The RG equation for parameter cbz

becomes
dcbz

d�
= 1

2
(1 − C4 + C6)cbz ≈ 0.25cbz. (25)

The one-loop order correction does not lead to qualitative
change of the flow of cb⊥. Therefore, the bosonic SC fluctuation
is anisotropically screened. Since C4 flows to a finite value at

low energies, the boson field φ acquires a finite anomalous
dimension. Now the renormalized boson propagator becomes

Gφ(	,q) ∼ 1(
	2 + c2

b⊥q2
⊥
)3/4 + c2

bzq
2
z

, (26)

where q2
⊥ = q2

x + q2
y .
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FIG. 3. Scale dependence of v and A at different initial values
of h′

0.

According to Figs. 2(g) and 2(h), we see that C7 → 0 and
C8 → 0.5 in the lowest energy limit. Combining Eq. (21),
Eq. (22), and the low-energy behavior of C1, C4, C7, and C8,
we conclude that the beta functions of λ′ and h′ vanish, which
explains why both λ′ and h′ approach finite constants.

To understand the peculiarity of our result, we now compare
it to previous studies of various quantum critical systems.
Superconductivity was proposed to occur in several SM
materials, including 2D Dirac SM [55–59], Luttinger SM [50],
and 3D Weyl SM [60]. In 2D Dirac SM and Luttinger SM,
the system flows to a stable infrared fixed point at the SC
QCP. At such a fixed point, the fermion field acquires a finite
anomalous dimension, which leads to power-law correction
to the fermion DOS. Moreover, the fermion damping rate
behaves as �(ω) ∝ |ω|1−ηf at low energies, and the residue
Zf ∼ |ω|ηf → 0 in the limit ω → 0. In the case of 3D Weyl
SM, the anomalous dimension of fermion field approaches
to zero very slowly at the SC QCP [60]. Then, the fermion
DOS receives logarithmiclike correction. Accordingly, the
residue Zf also flows to zero very slowly, and the fermion
damping rate exhibits marginal Fermi liquid behavior. We
thus see that FL theory breaks down at the SM-SC QCP
in all these systems. The singular fermion DOS revealed
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FIG. 4. Scale dependence of cb⊥ and cbz at different initial values
of h′

0.

in previous theoretical works can be verified by scanning
tunneling microscope (STM) measurements. In addition, angle
resolved photoemission spectroscopy (ARPES) experiments
[65] may be applied to probe the strong NFL behavior.

Similar NFL-like quantum critical phenomena also emerge
in metals that are tuned to the vicinity of a continuous quantum
phase transition. It is well established that NFL behavior is
realized near the FM, AFM, and nematic QCPs. For instance,
the zero-T Landau damping rate is �(ω) ∝ |ω|1/2 at an AFM
QCP [19,20] and �(ω) ∝ |ω|2/3 at an FM or Ising-type nematic
QCPs [16,22]. The corresponding residue Zf = 0 at all of
these QCPs.

Different from the above quantum critical systems, the
fermion anomalous dimension flows to zero very quickly and
the residue Zf �= 0 at the SC QCP in 3D AWSM. It thus
turns out that such QCP exhibits a trivial quantum criticality.
Nevertheless, it is the triviality that makes this system dis-
tinctive. As shown in Fig. 1(a), a finite NFL regime exists on
the phase diagram of conventional quantum critical systems.
There is no such NFL regime in the system considered in this
work. We observe from Fig. 1(b) that, although there is a clear
QCP between the gapless SM phase and gapped SC phase, the
anisotropic Weyl fermions do not display NFL behavior around
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FIG. 5. Flows of λ′ and h′ at different initial values of h′
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this QCP. The vanishing of fermion anomalous dimension is
closely related to the unusual anisotropic screening of the SC
quantum fluctuation, which in turn is induced by the special
dispersion of anisotropic Weyl fermions. Therefore, it is the
strong anisotropy of fermion dispersion that distinguishes
the 3D AWSM from all the other quantum critical systems.
Indeed, if the fermion dispersion took a different form, the SC
quantum fluctuation might lead to NFL-like quantum critical
phenomena.

The trivial quantum criticality can be probed by measuring
some observable quantities. In the noninteracting limit, the
fermion DOS depends on energy as

ρ(ω) ∝ |ω|3/2

c2
f

√
A

(27)

and the specific heat depends on T as

CV (T ) ∝ T 5/2

c2
f

√
A

. (28)

Since cf and A are not singularly renormalized, both ρ(ω)
and CV (T ) exhibit qualitatively the same behavior as the free
fermion gas at the SM-SC QCP. Additionally, because the
residue Zf always takes a finite value, the fermion spectral
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FIG. 6. Quasiparticle residue Zf flows to a constant at large �,
independent of the value of h′

0.

function should have a sharp peak. This feature can be readily
detected by ARPES experiments [65].

IV. SUMMARY AND DISCUSSION

In summary, we have studied the influence of quantum
critical fluctuation of SC order parameter on the low-energy
behavior of fermions in 3D AWSM. Different from other quan-
tum critical systems, the anomalous dimension of anisotropic
Weyl fermions flows to zero quickly at low energies at
the SM-SC QCP. As a consequence, the fermion residue is
always finite, indicating the validity of FL description and the
irrelevance of SC order parameter fluctuation. It turns out that
the crucial physics of the SM-SC quantum phase transition can
be captured by the simple mean-field analysis.

In a recent work, Yang et al. [63] demonstrated that the
long-range Coulomb interaction is an irrelevant perturbation
in 3D AWSM. Combining their results with ours, we conclude
that 3D AWSM is an unusual system in which the fermions are
extremely robust against repulsive long-range interactions. The
stability of the system is guaranteed by the special dispersion
of anisotropic Weyl fermions.

The 3D AWSM state could be realized either at the QCP
between band insulator and ordinary 3D WSM, or at the QCP
between band insulator and 3D topological insulator in some
noncentrosymmetric systems [64]. For instance, it is predicted
that the 3D AWSM state may be achieved by applying pressure
to the compound BiTeI, in which the inversion symmetry is
broken [62,66]. Experiments performed in pressured BiTeI by
means of x-ray powder diffraction and infrared spectroscopy
are consistent with these theoretical predictions [67]. Recent
Shubnikov–de Haas quantum oscillation experiments have
revealed evidence of a pressure-induced topological quantum
phase transition in BiTeI [68]. Once superconductivity is
induced by certain mechanism in the mother 3D AWSM state,
it should be possible to measure some observable quantities,
such as the fermion spectral function and specific heat, to verify
whether the anisotropic Weyl fermions behave as free fermion
gas at the SM-SC QCP and also in the SM phase.
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APPENDIX A: SUPERCONDUCTING QUANTUM
PHASE TRANSITION

The system considered here is described by the partition
function

Z =
∫

D[ψ†,ψ] exp

(
−

∫ β

0
dτ

∫
d3xL[ψ†,ψ]

)
, (A1)

where β = 1/kBT and the Lagrangian is given by

L =
∫

d3k
(2π )3

ψ
†
k∂τψk + H, (A2)

where the sum over momentum is replaced by an integral.

We now define a four-component Nambu spinor � =
(ψk,ψ

†
−k)T . The Fourier transformation in the imaginary-time

space is

ψ(τ ) = 1√
β

∑
ωn

ψ(ωn)e−iωnτ . (A3)

Using the SC order parameter �s = g
∑

k〈ψk(iσ2)ψ−k〉, we
rewrite the partition function in the form

Z =
∫

D[�†,�,�∗,�]

× exp

(
−

∫ β

0
dτ

∫
d3xL[�†,�,�∗,�]

)
, (A4)

where

L = 1

β

∑
ωn

∫
d3k

(2π )3
ψ

†
ωn,kGωn,kψωn,k + |�s |2

2g
. (A5)

In the above expression, we have defined

Gωn,k =

⎛
⎜⎜⎝

−iωn + Ak2
z vk+ 0 �s

vk− −iωn − Ak2
z −�s 0

0 −�∗
s −iωn + Ak2

z vk−
�∗

s 0 vk+ −iωn − Ak2
z

⎞
⎟⎟⎠, (A6)

where k+ = kx + iky and k− = kx − iky . To make a mean-
field analysis, we integrate out the fermionic degree of freedom
and then get an effective Lagrangian that contains only the
order parameter:

L = −T
∑
ωn

∫
d3k

(2π )3
ln detGωn,k + |�s |2

2g

= −T
∑
ωn

∫
d3k

(2π )3
ln

[
ω2

n + E2
f (k) + |�s |2

]2 + |�s |2
2g

.

(A7)

Varying the action with respect to |�s | yields the gap equation
represented by Eq. (3).

APPENDIX B: RENORMALIZATION
GROUP CALCULATIONS

The mean-field calculation reveals a critical attraction
strength g = gc. At this QCP, the gapless fermions and the
gapless quantum fluctuation of SC order parameter couple to
each other. To examine whether or not such an interaction have
significant impact on the quantum critical behavior, we now
perform a detailed RG analysis.

At the SM-SC QCP, the partition function is

Z =
∫

DφDφ∗DψDψ†e−S, (B1)

where the action S is given in the main text. Separating all the
field operators into slow and fast modes yields

Z =
∫

Dφ<Dφ∗
<Dψ<Dψ†

<e−S<
0

×
∫

Dφ>Dφ∗
>Dψ>Dψ†

>e−S>
0 e−Sφ4 −Sφψ

= Z>
0

∫
Dφ<Dφ∗

<Dψ<Dψ†
<e−S<

0 〈e−Sφ4 −Sφψ 〉>, (B2)

where φ< and ψ< are both slow modes and φ> and ψ> are
both fast modes. For simplicity, we have used the following
notations:

Z>
0 =

∫
Dφ>Dφ∗

>Dψ>Dψ†
>e−S>

0 , (B3)

〈e−SI 〉> = 1

Z>
0

∫
Dφ>Dφ∗

>Dψ>Dψ†
>e−S>

0 e−SI . (B4)

Here, SI = Sφ4 + Sφψ . One can compute 〈e−SI 〉> by means
of the cumulant expansion method [3]. Up to the order of
O(h4,λ2), we find that

〈e−SI 〉> = e−[〈SI 〉>− 1
2 〈S2

I 〉>+ 1
6 〈S3

I 〉>− 1
24 〈S4

I 〉>]. (B5)
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1. Fermion self-energy corrections

We will first consider the fermion self-energy corrections. For this purpose, we compute �Sψ = − 1
2 〈S2

ψφ〉>, and find that

�Sψ = −h2

2

∫ b�

d4k d4q

∫ �

b�

d4k′d4q ′〈(φ∗ψT iσ2ψ + H.c.)(φ′∗ψ ′T iσ2ψ
′ + H.c.)〉>

= 4h2
∫ b� dω

2π

d3k
(2π )3

ψ†ψ

∫ �

b�

dω′

2π

d3k′

(2π )3
[Gφ(ω + ω′,k + k′)σ2G

T
ψ (ω,k)σ2], (B6)

where for simplicity, we have defined
∫ b�

d4k d4q =
∫ b� 2∏

i=1

dωi

2π

d3ki

(2π )3

d	

2π

d3q
(2π )3

δ(ω1 + ω2 − 	)δ3(k1 + k2 − q),

∫ �

b�

d4k′d4q ′ =
∫ �

b�

2∏
i=1

dω′
i

2π

d3ki
′

(2π )3

d	′

2π

d3q′

(2π )3
δ(ω′

1 + ω′
2 − 	′)δ3(k1

′ + k2
′ − q′). (B7)

Here � is the upper cutoff and b = e−�.
We expand �Sψ in powers of small external energy and momentum, and then integrate over energy, which leads to �Sψ =

�S1
ψ + �S2

ψ + �S3
ψ , where

�S1
ψ =

∫ b� dω

2π

d3k
(2π )3

(−iωσ0)ψ†ψ

∫ �

b�

dk′
⊥d|k′

z|k′
⊥

2h2F1

(2π )2
,

�S2
ψ =

∫ b� dω

2π

d3k
(2π )3

cf σ1kxψ
†ψ

∫ �

b�

dk′
⊥d|k′

z|
h2F2

(2π )2
+

∫ b� dω

2π

d3k
(2π )3

cf σ2kyψ
†ψ

∫ �

b�

dk′
⊥d|k′

z|
h2F2

(2π )2
,

�S3
ψ =

∫ b� dω

2π

d3k
(2π )3

(
Ak2

z σ3
)
ψ†ψ

∫ �

b�

dk′
⊥d|k′

z|
h2F3

(2π )2
−

∫ b� dω

2π

d3k
(2π )3

(
Ak2

z σ3
)
ψ†ψ

∫ �

b�

dk′
⊥d|k′

z|
h2F4

(2π )2
.

Here, the four functions F1,2,3,4 are given by

F1 = 1

Eb(k′)[Eb(k′) + Ef (k′)]2
, (B8)

F2 = c2
⊥k′3

⊥[Ef (k′) + 2Eb(k′)]
Ef (k′)E3

b(k′)[Ef (k′) + Eb(k′)]2
, (B9)

F3 = c2
bzk

′2
z k′

⊥[Ef (k′) + 2Eb(k′)]
Ef (k′)E3

b(k′)[Eb(k′) + Ef (k′)]2
, (B10)

F4 = c4
bzk

′4
z k′

⊥
[
3E2

f (k′) + 9Ef (k′)Eb(k′) + 8E2
f (k′)

]
Ef (k′)E5

b(k′)[Ef (k′) + Eb(k′)]3
, (B11)

where

Ef (k′) =
√

c2
f k′2

⊥ + A2k′4
z , (B12)

Eb(k′) =
√

c2
b⊥k′2

⊥ + c2
bzk

′2
z . (B13)

A constant term that is independent of external energy and momenta has been dropped during the calculation. To proceed, we
find it convenient to employ the following transformations:

E =
√

c2
f k′2

⊥ + A2k′4
z , δ = cf k′

⊥
Ak′2

z

, (B14)

which are equivalent to

k′
⊥ = Eδ

cf

√
1 + δ2

, |k′
z| =

√
E√

A(1 + δ2)1/4
. (B15)

The integral measure satisfies the relation

dk′
⊥d|k′

z| =
√

E

2cf

√
A(1 + δ2)

3
4

dE dδ. (B16)
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After accomplishing the above transformations, the next step is to integrate out all the fast modes, which gives rise to

�Sψ =
∫ b� dω

2π

d3k
(2π )3

ψ†ψ(−iωσ0)C1� +
∫ b� dω

2π

d3k
(2π )3

ψ†ψcf σ1kxC2�

+
∫ b� dω

2π

d3k
(2π )3

ψ†ψcf σ2kyC2� +
∫ b� dω

2π

d3k
(2π )3

ψ†ψ(Ak′2
z σ3)C3�. (B17)

The three constants C1,2,3 are given by

C1 = h′2

(2π )2

∫ +∞

0

η−1
A (1 + δ2)1/4δ dδ√

F1F
2
2

, (B18)

C2 = h′2

(2π )2

∫ +∞

0
dδ

ςη−1
A η2

Bδ3(1 + δ2)1/4

2F
3/2
1 F 2

2

+ h′2

(2π )2

∫ +∞

0
dδ

η2
Bδ3√ς

(1 + δ2)1/4F1F
2
2

, (B19)

C3 = h′2

(2π )2

∫ +∞

0
dδ

η−1
A δ(1 + δ2)1/4

2F
3/2
1 F 2

2

+ h′2

(2π )2

∫ +∞

0
dδ

δ

(1 + δ2)1/4√ςF1F
2
2

− h′2

(2π )2

∫ +∞

0
dδ

3η−1
A δ(1 + δ2)7/4

2F
5/2
1 F 3

2

− h′2

(2π )2

∫ +∞

0
dδ

9ς−1/2δ(1 + δ2)5/4

2F 2
1 F 3

2

− h′2

(2π )2

∫ +∞

0
dδ

4ηAς−1δ

(1 + δ2)3/4F
3/2
1 F 3

2

, (B20)

where

F1 =
√

1 + δ2 + ςη2
Bδ2, (B21)

F2 =
√

1 + δ2 + ηA√
ς

√√
1 + δ2 + ςη2

Bδ2. (B22)

In the above calculation, we have defined three new parameters:

ς = A�

c2
f

, ηA = cbz

cf

, ηB = cb⊥
cbz

. (B23)

2. Boson self-energy corrections

We then consider the corrections to the action of boson field. In particular, we need to compute �Sφ = − 1
2 〈S2

ψφ〉>. It is
straightforward to get

�Sφ = −h2

2

∫ b�

d4k d4q

∫ �

b�

d4k′d4q ′〈(φ∗ψT iσ2ψ + H.c.)(φ′∗ψ ′T iσ2ψ
′ + H.c.)〉>

= 2h2
∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s

∫ �

b�

dω′

2π

d3k′

(2π )3
Tr

[
σ2G

T
ψ (ω′,k′)σ2Gψ (	 + ω′,q + k′)

]
. (B24)

Similarly, we obtain �Sφ = �S1
φ + �S2

φ + �S3
φ , where

�S1
φ = h2

(2π )2

∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s 	

2
∫ �

b�

dk′
⊥d|k′

z|k′
⊥

1

2E3
f (k′)

, (B25)

�S2
φ = h2

(2π )2

∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s c

2
b⊥q2

⊥

∫ �

b�

dk′
⊥d|k′

z|k′
⊥

c2
f

c2
b⊥E3

f (k′)

− h2

(2π )2

∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s c

2
b⊥q2

⊥

∫ �

b�

dk′
⊥d|k′

z|k′
⊥

3c4
f k′2

⊥
4c2

b⊥E5
f (k′)

, (B26)

�S3
φ = h2

(2π )2

∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s c

2
bzq

2
z

∫ �

b�

dk′
⊥d|k′

z|k′
⊥

5A2k′2
z

c2
bzE

3
f (k′)

− h2

(2π )2

∫ b� d	

2π

d3q
(2π )3

φsφ
∗
s c

2
bzq

2
z

∫ �

b�

dk′
⊥d|k′

z|k′
⊥

6A4k′6
z

c2
bzE

5
f (k′)

. (B27)

Similarly, we now make the transformations given by Eqs. (B14)–(B16), and then integrate over E in the range of b� < E < �

and integrate over δ in the range of 0 < δ < ∞. After performing such calculations, we obtain

�Sφ =
∫ b� d	

2π

d3q

(2π )3
φsφ

∗
s 	

2C4� +
∫ b� d	

2π

d3q

(2π )3
φsφ

∗
s c

2
b⊥q2

⊥C5� +
∫ b� d	

2π

d3q

(2π )3
φsφ

∗
s c

2
bzq

2
z C6�. (B28)
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In this expression, we have defined three constants:

C4 = h′2

(2π )2√ς
, (B29)

C5 = 4h′2

5(2π )2η2
B

√
ς

, (B30)

C6 = 34
√

ςh′2

21(2π )2η2
A

. (B31)

3. Renormalization of λ at O(λ2)

At the order of O(λ2), �S1
φ4 = − 1

2 〈S2
φ〉> is given by

�S1
φ4 = −5

2
λ2

∫ b� 4∏
i=1

d	i

2π

d3qi

(2π )3
�(	)�(q)|φs |4

×
∫ �

b�

d	′

2π

d3q′

(2π )3
Gφ(	′,q′)Gφ(	′,q′). (B32)

Integrating over 	′, we find that

�S1
φ4 = − 5λ2

8(2π )2

∫ b� 4∏
i=1

d	i

2π

d3qi

(2π )3
�(	)�(q)|φs |4

×
∫ �

b�

q ′
⊥dq ′

⊥dq ′
z

1

Eb(q′)3
. (B33)

Using the following transformations:

E =
√

c2
b⊥q ′2

⊥ + c2
bzq

′2
z , δ = cb⊥q ′

⊥
cbz|q ′

z|
, (B34)

where δ ∈ (0, + ∞), it is easy to get

q ′
⊥ = Eδ

cb⊥
√

1 + δ2
, (B35)

|q ′
z| = E

cbz

√
1 + δ2

, (B36)

dq ′d|q ′
z| = E

cb⊥cbz(1 + δ2)
dE dδ. (B37)

Finally we obtain

�S1
φ4 =

∫ b� 4∏
i=1

d	i

2π

d3qi

(2π )3
�(	)�(q)

C7

4
λ�|φs |4, (B38)

where

C7 = − 5λ′

2(2π )2ηAη2
C

, (B39)

with

ηC = cb⊥
cf

. (B40)

4. Renormalization of λ at O(h4)

At the order of O(h4), �S2
φ4 = − 1

24 〈S4
φψ 〉> is

�S2
φ4 = 4h4

∫ b�

d4q|φs |4
∫ �

b�

dω′

2π

d3k′

(2π )3

×Tr[(iσ2)GT (ω′,k′)(−iσ2)G(−ω′, − k′)

×iσ2G
T (ω′,k′)(−iσ2)G(−ω′, − k′)], (B41)

where for simplicity we set

∫ b�

d4q =
∫ b� 4∏

i=1

d	i

2π

d3qi

(2π )3
�(	)�(q). (B42)

After carrying out integrations, we have

�S2
φ4 =

∫ b�

d4q|φs |4 C8

4
λ�, (B43)

where

C8 = 8h′4

(2π )2λ′√ς
. (B44)

Thus the total correction to λ is given by

�λ = (C7 + C8)λ�. (B45)

APPENDIX C: DERIVATION OF THE RG EQUATIONS

Adding fermion self-energy to the free action yields

S ′
ψ =

∫
dω

2π

d3k

(2π )3
ψ†ψLψ + �Sψ, (C1)

Lψ = −iωσ0 + cf (kxσ1 + kyσ2) + Ak2
z σ3. (C2)

Using the following scale transformations:

kx = e−�k′
x, (C3)

ky = e−�k′
y, (C4)

kz = e− �
2 k′

z, (C5)

ω = e−�ω′, (C6)

ψ = e( 9
4 − C1

2 )�ψ ′, (C7)

cf = e(C1−C2)�c′
f , (C8)

A = e(C1−C3)�A′, (C9)

we rewrite the action in the form

S ′
ψ ′ =

∫
dω′

2π

d3k′

(2π )3
ψ ′†ψ ′L′

ψ ′ , (C10)

L′
ψ ′ = −iω′σ0 + c′

f (k′
xσ1 + k′

yσ2) + A′k′2
z σ3. (C11)

For the boson field, the renormalized action is given by

S ′
φ = 1

2

∫
d	

2π

d3q
(2π )3

φ∗φLφ + �Sφ, (C12)

Lφ = 	2 + c2
b⊥q2

⊥ + c2
zq

2
z . (C13)

Employing the transformations (C3)–(C6), along with

φ = e( 11
4 − C4

2 )�φ′, (C14)

cb⊥ = e( C4
2 − C5

2 )�c′
b⊥, (C15)

cbz = e( C4
2 − C6

2 − 1
2 )�c′

bz, (C16)
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we can rewrite the above action as

S ′
φ′ = 1

2

∫
d	′

2π

d3q′

(2π )3
φ′∗φ′L′

φ′ , (C17)

L′
φ′ = 	′2 + c′2

b⊥q′2
⊥ + c′2

bzq
′2
z . (C18)

Including one-loop corrections to the action of four-boson
coupling leads to

S ′
φ4 = λ + �λ

4

∫ 4∏
i=1

d	i

2π

d3qi

(2π )3
�(	)�(q)|φ|4

≈ λe(C7+C8)�

4

∫ 4∏
i=1

d	i

2π

d3qi

(2π )3
�(	)�(q)|φ|4. (C19)

We use the transformations Eqs. (C3)–(C6), Eq. (C14), and the
extra transformation

λ = λ′e(2C4− 1
2 −C7−C8)�, (C20)

and then find that

S ′
φ′4 = λ′

4

∫ 4∏
i=1

d	′
i

2π

d3q′
i

(2π )3
�(	′)�(q′)|φ′|4. (C21)

The Yukawa coupling can be treated by employing the same
calculational steps. In particular, we invoke the transformations
Eqs. (C3)–(C7), Eq. (C14), and an additional transformation

h = h′e
(

C4
2 +C1− 1

4

)
�
. (C22)

After straightforward calculations, we finally obtain the fol-
lowing action for the Yukawa-coupling:

Sψ ′φ′ = h′
∫ 2∏

i=1

dω′
i

2π

d3k′
i

(2π )3

d	′

2π

d3q′

(2π )3

× δ(ω′
1 − ω′

2 + 	′)δ3(k′
1 − k′

2 + q′)

× (φ′∗ψ ′T iσ2ψ
′ + H.c.). (C23)

By employing the transformations Eqs. (C8), (C9), (C15),
(C16), (C20), and (C22), we have derived the coupling RG
equations (14)–(19) presented in the main text of the paper.
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