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d-wave superconductivity in the presence of nearest-neighbor Coulomb repulsion
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Dynamic cluster quantum Monte Carlo calculations for a doped two-dimensional extended Hubbard model
are used to study the stability and dynamics of d-wave pairing when a nearest-neighbor Coulomb repulsion V

is present in addition to the on-site Coulomb repulsion U . We find that d-wave pairing and the superconducting
transition temperature Tc are only weakly suppressed as long as V does not exceed U/2. This stability is traced to
the strongly retarded nature of pairing that allows the d-wave pairs to minimize the repulsive effect of V . When V

approaches U/2, large momentum charge fluctuations are found to become important and to give rise to a more
rapid suppression of d-wave pairing and Tc than for smaller V .

DOI: 10.1103/PhysRevB.97.184507

I. INTRODUCTION

In conventional superconductors, the retardation of the
electron-phonon pairing interaction is essential to overcome
the Coulomb repulsion between electrons and to give a net at-
tractive interaction [1]. In strongly correlated superconductors,
such as the cuprates, heavy fermion or iron-based materials, in
contrast, it is a sign change in the pair wave function that allows
the Cooper pairs to minimize the repulsive effect of the strong
local Coulomb repulsion [2]. For example, the dx2−y2 -wave
pair state in the cuprates completely avoids the local Coulomb
repulsion because of the sign change under 90◦ rotation and
the related lack of a local amplitude.

However, in realistic systems, the Coulomb repulsion is
hardly screened to a completely local interaction but has a
short-ranged nonlocal contribution. For the cuprates, Sénéchal
et al. [3] and Reymbaut et al. [4] estimated a nearest-neighbor
Coulomb repulsion of ∼400 meV. If the Cooper pairs are
made up of electrons sitting on neighboring sites, such as
in the dx2−y2 -wave state, this nonlocal repulsion is expected
to have detrimental effects on the pairing. This raises the
important question of how much the superconducting tran-
sition temperature Tc will be reduced by a nonlocal Coulomb
repulsion and whether retardation effects, similar to the case of
electron-phonon-mediated pairing, can play a role in stabiliz-
ing superconductivity in the presence of a nonlocal repulsion.

Here we examine these questions in a two-dimensional
extended Hubbard model. Its Hamiltonian,

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓

+V
∑

〈ij〉,σσ ′
niσ njσ ′ (1)
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has the usual nearest-neighbor hopping t , on-site Coulomb
repulsion U , and an additional nearest-neighbor Coulomb
repulsion V . The question of whether the standard Hubbard
model for V = 0 has a superconducting ground state or
not remains open, and various numerical techniques have
been used to address this question. Whereas quantum cluster
approximations [5,6] generally find a superconducting insta-
bility at finite temperatures [5,7–9], other techniques, such as
density-matrix renormalization-group [10] or determinantal
quantum Monte Carlo [11] find inhomogeneous states with
striped charge and/or magnetic order (for recent results see
Refs. [12,13] and references therein).

Nevertheless, various studies have explored the effect of a
finite V interaction on a possible superconducting instability.
Weak-coupling studies [14,15] for U 	 W of the model in
Eq. (1), where W = 8 is the bandwidth, have found that
d-wave pairing and Tc are generally suppressed by V , but
superconductivity survives provided that V is not larger than
∼U 2/W . Variational Monte Carlo calculations with an ad-
ditional nearest-neighbor exchange interaction J have found
[16] that the on-site U effectively enhances the d-wave pairing
interaction J while suppressing the opposing effects of V

so that for U = 10, d-wave pairing is preserved up to V =
4J . Density-matrix renormalization-group studies of a striped
t-J -V model, the strong-coupling U 
 W limit of Eq. (1),
have demonstrated that a nonlocal V can even lead to an
enhancement of superconducting pair-field correlations by
inducing transverse stripe fluctuations [17]. In a recent work
using cellular dynamical mean-field theory (CDMFT) [3],
Sénéchal et al. found that d-wave pairing at zero temperature
is preserved at strong coupling even for V 
 J as long as
V � U/2. An extension of this paper to finite temperatures
[4] found that at weak doping a finite V can even lead to
an increase in Tc, whereas at large doping V reduces Tc.
Based on a detailed analysis of the frequency dependence
of the gap function, the authors argued that V gives rise to
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a low-frequency pairing contribution through an increase in
the effective exchange interaction J = 4t2/(U − V ), whereas
at high frequencies, V suppresses pairing. These studies thus
concluded that retardation plays an important role.

II. METHOD

Here we use a similar cluster dynamical mean-field treat-
ment to examine the V dependence of Tc and the dynamics
of the pairing interaction in this model. In contrast to the
previous CDMFT calculations, which were carried out inside
the d-wave superconducting phase of model (1), our paper
directly examines the dynamics of the pairing interaction in the
normal state and thus provides different and complementary
insight. In particular, we use the dynamical cluster approxi-
mation (DCA) [5,18] with a continuous-time auxiliary-field
(CT-AUX) quantum Monte Carlo (QMC) cluster solver [19]
to perform numerical calculations of the model in Eq. (1).

The DCA maps the bulk lattice problem onto a finite-size
cluster of size Nc and uses coarse graining to retain the
remaining degrees of freedom as a mean field that is coupled
to the cluster degrees of freedom [5,18]. The intracluster
contribution of the interaction V is treated exactly with QMC,
whereas the intercluster terms may be treated with an additional
bosonic dynamic mean field [8,20] similar to the extended
dynamical mean-field theory [21]. Here, instead, we use a
Hartree approximation [3], which reduces to a shift in the
chemical potential in the absence of charge order [4]. Due
to the neglect of dynamic intercluster effects of the interaction
V , we do not coarse-grain V despite its nonlocality.

For the small 2 × 2 cluster we use, the sign problem of the
underlying CT-AUX QMC solver [19,22] is manageable up
to V ∼ U/2 down to temperatures T ∼ Tc. This cluster is too
small to allow for the long-range (striped) magnetic and charge
states that have been found in recent numerical calculations of
the V = 0 model [12]. It does, however, allow us to study the
effects of V on superconducting order for a large region in
parameter space. We also note that the pairing dynamics, the
issue of the primary focus of this paper, is expected to be well
described already at the level of the 2 × 2 cluster since temporal
fluctuations are fully retained through the inclusion of the
dynamic mean field. Larger clusters were recently considered
in a DCA study of the half-filled model, which does not have a
sign problem [23]. We use t = 1 as the unit of energy and set
U = 7.

In order to calculate Tc, we solve the Bethe-Salpeter
equation (BSE) in the normal state [24],

− T

Nc

∑
K′,ωn′

�pp(K,ωn,K′,ωn′ )χ̄pp

0 (K′,ωn′ )φα(K′,ωn′ )

= λα(T )φα(K,ωn). (2)

Here �pp(K,ωn,K′,ωn′ ) is the irreducible particle-particle ver-
tex of the effective cluster problem with the cluster momenta
K and Matsubara frequencies ωn = (2n + 1)πT . The coarse-
grained bare particle-particle susceptibility,

χ̄
pp

0 (K,ωn) = Nc

N

∑
k′

G(K + k′,ωn)G(−K − k′,−ωn) (3)

is calculated from the single-particle Green’s function
G(k,ωn) = [iωn + μ − εk − �(K,ωn)]−1 with μ as the chem-
ical potential, εk = −2t(cos kx + cos ky) as the dispersion,
and �(K,ωn) as the cluster self-energy. Information about the
bulk lattice is retained through the k′ sum [25], which runs
over the N/Nc momenta within a square patch with kx/y ∈
[−π/2,π/2[. At T = Tc the leading eigenvalue of Eq. (2)
becomes 1, and the symmetry of the superconducting state
is given by the momentum and frequency dependence of
φ(K,ωn). For all values of V we consider, we find that the
eigenvector corresponding to the leading eigenvalue λd has a
dx2−y2 -wave cos Kx − cos Ky structure.

III. RESULTS

Figure 1(a) shows the temperature dependence of the
leading d-wave eigenvalue λd (T ) of the BSE (2) for different
magnitudes of the nearest-neighbor repulsion V for a filling
of 〈n〉 = 0.9. As expected, the finite V leads to a reduction of
λd (T ) showing that d-wave pairing is weakened in the presence
of a nearest-neighbor repulsion. Panel (b) in Fig. 1 shows that
similar behavior is observed for all the fillings we have studied.
However, one sees that the suppression of λd with V becomes
more rapid as the system is doped away from half-filling.

From the data in Fig. 1(a) and λd (Tc) = 1, one can extract
the V dependence of Tc shown in Fig. 1(c) for a filling of
〈n〉 = 0.9. For V = 3, where the QMC sign problem inhibits
calculations down to Tc, we use a polynomial fit of λd (T )
to extract Tc from extrapolating to λd (Tc) = 1. As one sees
from Fig. 1(c), the d-wave Tc is almost unchanged for V = 1
and only slightly reduced by about 15% for V = 2. The
reduction becomes stronger for V = 3 when V approaches
U/2. This robustness of the d-wave pairing against a finite
nearest-neighbor repulsion is consistent with previous studies
[3,4,14].

In order to understand this resilience of d-wave pairing with
respect to the nearest-neighbor Coulomb repulsion, we exam-
ine the dynamics of the pairing interaction �pp(K,ωn,K′,ωn′ )
and the leading d-wave eigenvector φd (K,ωn). Figure 2 shows
a plot of the frequency dependence of the d-wave-projected
pairing interaction,

�d (ωm = ωn − ωn′)

=
∑

K,K′ gd (K)�pp(K,ωn,K′,ωn′ )gd (K′)∑
K g2

d (K)
(4)

for 〈n〉 = 0.9. Here gd (K) = cos Kx − cos Ky , and we have
set ωn′ = πT and T = 0.1. For V = 0, �d (ωm) is negative
(attractive) for all frequencies and falls to zero at large ωm. For
finite V, �d (ωm) remains attractive at low frequencies but then
turns positive (repulsive) at higher frequencies. This reflects the
fact that at high frequencies �pp(K,ωn,K′,ωn′ ) ∼ V (K − K′),
where V (Q) is the Fourier transform of the nearest-neighbor
interaction V . For the 2 × 2 cluster we have used here,
one obtains

∑
K,K′ gd (K)V (K − K′)gd (K′)/

∑
K g2

d (K) = 4V

consistent with the results in Fig. 2. The dynamics of �d (ωm)
is reminiscent of the dynamics of the conventional electron-
phonon pairing interaction [26], which is attractive at low
frequencies due to the effective electron-phonon attraction, and
repulsive at high frequencies due to the Coulomb repulsion.
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FIG. 1. (a) Temperature dependence of the leading (dx2−y2 -wave)
eigenvalue λd (T ) of the Bethe-Salpeter equation in the particle-
particle channel, Eq. (2) for the extended Hubbard model in Eq. (1)
with U = 7 and 〈n〉 = 0.9 for different magnitudes of the nearest-
neighbor Coulomb repulsion V . (b) d-wave eigenvalue λd at a fixed
temperature of T = 0.1 as a function of V for different fillings
〈n〉. (c) d-wave superconducting transition temperature Tc extracted
from λd (Tc) = 1 as a function of V. d-wave pairing is only weakly
suppressed by the interaction V as long as V � U/2.

One also sees that �d (ωm) becomes less attractive at low
frequencies with increasing V . This reduction even exceeds the
frequency-independent 4V repulsive contribution, indicating
that there is another repulsive and dynamic contribution that
further weakens the d-wave pairing interaction. We come back

FIG. 2. The d-wave-projected irreducible particle-particle vertex
�d (ωm) for different values of V for 〈n〉 = 0.9. For finite V, �d

is attractive at low frequencies but then turns repulsive at higher
frequencies where it approaches 4V .

to this point later when we examine the spin and charge
susceptibilities.

The dynamics of the pairing interaction is reflected in the
frequency dependence of the d-wave eigenvector φd (K,ωn).
This quantity is plotted in Fig. 3 for K = (π,0) and T = 0.1 for
different values of V and 〈n〉 = 0.9. For V = 0, φd [(π,0),ωn]
falls to zero on a characteristic frequency scale. As previously
found in Refs. [24,27], this scale is determined by the spin
S = 1 particle-hole continuum, which for large U is several
times J = 4t2/U . For finite V , the eigenvector changes sign
and becomes negative at higher frequencies. This sign change
mirrors the sign change in �d (ωn). Just as φd (K,ωn) changes
sign in K space reflecting the repulsive nature of the pairing
interaction at large momentum transfer [2,24], φd (K,ωn) also
changes sign in frequency to adapt to the repulsive tail of the
pairing interaction due to the Coulomb V at high frequencies.
Thus, just as in the electron-phonon case, retardation is

FIG. 3. The frequency dependence of the leading d-wave eigen-
vector φd (K,ωn) of the Bethe-Salpeter Eq. (2) for K = (π,0) and
T/t = 0.1 for different values of V and 〈n〉 = 0.9. The sign change
in φd (K,ωn) as a function of frequency for finite V minimizes the
repulsive effect of V .
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important in preserving the attractive nature of the pairing
interaction in the presence of V .

We have also calculated the zero-frequency cluster spin (s)
and charge (c) susceptibilities,

χs/c(Q,ωm = 0) = 1

2Nc

∑
ij

eiQ·(Ri−Rj )
∫ β

0
dτ 〈[ni↑(τ )

∓ ni↓(τ )][nj↑(0) ∓ nj↓(0)]〉. (5)

FIG. 4. Frequency dependence of the spin and charge suscepti-
bilities, χs(iωm = 0) in (a) and χc(iωm = 0) in (b), respectively, for
Q = (π,π ) and T = 0.1 as a function of V for different values of
the filling 〈n〉. (c) Local magnetic moment μ = √〈(ni↑ − ni↓)2〉 for
T = 0.1 as a function of V for different 〈n〉’s. With increasing V ,
charge fluctuations become stronger, whereas spin fluctuations are
weakened through a reduction of the local magnetic moment.

The V dependence of χs(Q,0) and χc(Q,0) is shown in
Figs. 4(a) and 4(b), respectively, for Q = (π,π ) and different
〈n〉’s. As V increases, χs(Q,0) decreases, whereas χc(Q,0)
increases. The rise in the charge susceptibility reflects the
increasing tendency of the system to form a (π,π ) charge-
density wave-ordered state [14]. Although this rise is consis-
tently observed for all the fillings we have studied, it does
become more pronounced as the system is doped away from
half-filling.

The V dependence of the spin susceptibility is more difficult
to understand. Based on a strong-coupling picture, Reymbout
et al. [4] have argued that a finite V increases the exchange-
coupling J = 4t2/(U − V ) and thus the magnetic pairing
mechanism. Our results for χs[(π,π ),0], however, are not in
line with this picture since one would expect χs[(π,π ),0] to
increase with J and thus V . Rather, the decrease we observe
can be understood from the increase in the charge fluctuations.
As shown in Fig. 4(c), these give rise to a decrease in the
local magnetic moment μi = √〈(ni↑ − ni↓)2〉, which leads to
a suppression of the spin fluctuations.

The destructive effects of the increasing charge fluctuations
are thus twofold: As shown previously, d-wave pairing in
the Hubbard model is mediated by a repulsive (positive)
pairing interaction in momentum space that increases with
momentum transfer and which reflects the momentum struc-
ture and dynamics of the spin susceptibility [24,27]. Since
charge fluctuations contribute negatively to �pp(K,ωn,K′,ωn′ )
[24], large momentum charge fluctuations weaken the d-wave
pairing interaction. In addition, through their suppression of
the local magnetic moment, they further weaken the large
momentum spin fluctuations as seen in Fig. 4(a). Moreover,
the fact that the charge fluctuations increase in strength with
V more rapidly when the doping increases as seen in Fig. 4(b)
explains that the destructive effect of V on the d-wave pairing
strength becomes more pronounced as the doping increases, as
seen in Fig. 1(b).

IV. SUMMARY

To summarize, we have used dynamic cluster quantum
Monte Carlo calculations of an extended Hubbard model
to study d-wave superconductivity when a nearest-neighbor
Coulomb repulsion V is present in addition to the on-site
Coulomb repulsion U . Consistent with previous studies, we
find that d-wave pairing and Tc are only weakly suppressed
by V and remain stable as long as V does not exceed U/2.
The d-wave pairing interaction is attractive at low frequencies
and repulsive at high frequencies due to the repulsive effect of
V on d-wave pairing. Reflecting this sign change, the d-wave
eigenfunction of the particle-particle Bethe-Salpeter equation
φd (K,ωn) also changes sign as a function of frequency,
similar to the case of electron-phonon-mediated pairing thus
reducing the repulsive effect of the Coulomb interaction V .
This demonstrates that retardation plays an important role in
stabilizing d-wave pairing in the presence of V . A further
analysis of the spin and charge susceptibilities shows that (π,π )
charge fluctuations become strong when V approaches U/2.
This leads to a more rapid suppression of d-wave pairing and
Tc through both a reduction of the (π,π ) spin fluctuations
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and a direct negative contribution to the d-wave pairing
interaction.
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