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We present a theoretical analysis of low-energy quantum transport in coupled Majorana box devices. A single
Majorana box represents a Coulomb-blockaded mesoscopic superconductor proximitizing two or more long
topological nanowires. The box thus harbors at least four Majorana zero modes (MZMs). Setups with several
Majorana boxes, where MZMs on different boxes are tunnel coupled via short nanowire segments, are key
ingredients to recent Majorana qubit and code network proposals. We construct and study the low-energy theory
for multiterminal junctions with normal leads connected to the coupled box device by lead-MZM tunnel contacts.
Transport experiments in such setups can test the nonlocality of Majorana-based systems and the integrity of
the underlying Majorana qubits. For a single box, we recover the previously described topological Kondo effect
which can be captured by a purely bosonic theory. For several coupled boxes, however, nonconserved local
fermion parities require the inclusion of additional local sets of Pauli operators. We present a renormalization
group analysis and develop a nonperturbative strong-coupling approach to quantum transport in such systems.
Our findings are illustrated for several examples, including a loop qubit device and different two-box setups.
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I. INTRODUCTION

Topological superconductors harboring spatially localized
Majorana bound states (MBSs) continue to attract a lot of
interest; for reviews, see Refs. [1–5]. When different MBSs are
located sufficiently far away from each other, they represent
fractionalized zero-energy modes: A pair of Majorana zero
modes (MZMs) is equivalent to a single fermionic zero mode.
Apart from the fundamental interest in experimental obser-
vations of such exotic excitations, the potential availability
of systems with robust MZMs holds significant promise for
applications in topological quantum information processing
[6–21]. It is therefore quite exciting that experiments have
already provided evidence for MBSs in hybrid superconductor-
semiconductor nanowire platforms [22–39] as well as in other
material classes [40–44].

A particularly attractive candidate for realizing a MZM-
based qubit results from mesoscopic superconducting islands
containing four (or more) MZMs. For such a floating island,
termed Majorana box (or simply box) in what follows, the
Coulomb charging energy EC plays a dominant role and has
to be carefully taken into account [45–48]. Under Coulomb
valley conditions, the charge on the island is quantized and
the box ground state conserves fermion parity. For a box
with four MZMs, one then encounters a twofold degenerate
ground state which is equivalent to an effective spin-1/2
degree of freedom (qubit) nonlocally built from Majorana
states [18]. By arranging tunnel-coupled Majorana boxes
in extended two-dimensional (2D) network structures, one
obtains topologically ordered phases such as the toric code
[9,13,49–51]. Such phases could be useful for quantum infor-
mation processing applications, e.g., to implement a Majorana
surface code [9,13,14]. We note that recent work has also
discussed a parafermionic generalization of the Majorana
box [52].

On the other hand, for just a single Majorana box, the spin-
1/2 degree of freedom encoded by the MZMs will be subject
to Kondo screening processes if at least three normal leads are
connected to the box by tunnel couplings [53–69]. Recalling
that Majorana states have a well-defined spin polarization
direction [4], for the case of pointlike tunnel contacts, the leads
can be modeled as effectively spinless one-dimensional (1D)
noninteracting electrons [1]. (We note that Coulomb interac-
tions in the leads have been studied in this context [54,55],
but we will not address such effects here.) The exchange
couplings of the standard Kondo problem [70,71] are now
generated from cotunneling processes connecting different
leads through the box, where the lead index takes over the role
of the spin up/down quantum number. At low energy scales,
such screening processes drive the system towards a stable
non-Fermi-liquid fixed point of overscreened multichannel
Kondo character, the topological Kondo point [53]. From
the viewpoint of multiterminal junction theory [72,73], it is
remarkable that this topological Kondo effect (TKE) admits
a purely bosonic description via Abelian bosonization for the
1D leads [54,55]. In fact, the physics is then equivalent to the
quantum Brownian motion of a particle in a periodic 2D lattice
potential which in turn admits an exact solution at very low
energies [74,75].

The main goal of this paper is to explore the intermediate
situation between just a single box connected to leads (i.e.,
the single-impurity TKE) and an extended 2D coupled-box
network. For instance, consider two Majorana boxes connected
by tunnel links, where each box in turn is coupled to at least
three normal leads. Such a setup can be viewed as a topological
Kondo variant of the celebrated two-impurity Kondo problem
[76–78]. In the latter, one encounters a non-Fermi-liquid fixed
point not present in the single-impurity Kondo problem. In
particular, the fractional quasiparticle charge for the single-
impurity topological Kondo problem, which could be probed
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by shot noise [56,67] or via the Josephson effect [65], could
now have a different value for the two-impurity setup. With
predictions for transport properties of a coupled box device at
hand, measurements of the conductance between a given pair
of leads, e.g., as a function of temperature or bias voltage, can
then yield precious insights about nonlocality effects due to
MZMs. Most importantly, by decoupling (or adding) another
lead distinct from the pair of leads defining the conductance
measurement, one expects a drastic effect on the conductance
value [53,56]. Transport measurements could thereby establish
that Majorana physics really is behind the device functionality.

In order to address transport and Kondo physics in coupled
Majorana box devices in a comprehensive way, we start in
Sec. II by describing a theoretical framework suitable for
tackling such problems. In particular, we show that Abelian
bosonization [70] in combination with the Klein-Majorana
fusion approach of Refs. [54,55] allows for a highly versatile
formulation of the theory. In Sec. III, we present a detailed
study of the weak-coupling regime by means of a one-loop
renormalization group (RG) analysis. Loosely speaking, the
weak-coupling regime is realized at energies above a suit-
ably defined Kondo scale. We find that the system generally
flows towards strong coupling, where in marked contrast
to the single-impurity TKE [54,55], an effectively bosonic
description no longer applies. In general, one has to take
into account additional nonconserved local fermion parities
which can be represented by sets of Pauli operators. Such
spinlike variables are shown to play a crucial role for an
understanding of transport in basically all coupled Majorana
box devices. In Sec. III, we also provide an explicit RG
analysis for three device examples of current experimental
interest, including the ‘loop qubit’ device proposed in Ref. [19].
Next, in Sec. IV, we turn towards the strong-coupling regime
approached at very low energy scales. By focusing on the most
relevant degrees of freedom, which can be identified from the
weak-coupling RG flow and by employing quantum Brownian
motion arguments [74,75], we derive and study the effective
low-energy theory corresponding to this regime. Employ-
ing also Emery-Kivelson-type transformations [70,79–83],
Sec. IV provides a nonperturbative strong-coupling analysis
for all three examples studied in Sec. III from the weak-
coupling perspective. In Sec. V, we present the exact solution
for quantum transport in a simple two-box device at a Toulouse
point which exhibits two-channel Kondo physics. Finally, we
offer some conclusions in Sec. VI. Technical details have been
delegated to several appendices, and we put h̄ = kB = 1 and
the density of states in the leads ν = 1 throughout.

In most chapters below, we include general sections in-
troducing broadly applicable concepts and ideas of how to
tackle transport in coupled Majorana boxes, followed by select
simple examples that are of current interest. To follow the
general discussion, the interested reader may find it useful to
seek clarity about concrete applications in one or two of these
examples and to revisit the general discussion once those are
understood.

II. MODEL AND LOW-ENERGY APPROACH

The central goal of this paper is to understand the low-
energy physics of multiterminal junctions defined by a set of

FIG. 1. Example for a device with two Majorana boxes (a,b)
connected by a single tunnel bridge (violet). Each box is subject
to a charging energy EC and hosts four MZMs with corresponding
Majorana operators γja/b

(filled red circles). Both boxes are con-
nected to several normal leads, with corresponding fermion operators
ψja/b

(x) (indicated in gray), via lead-MZM tunnel links (violet). For
box a/b, we have Ma/b simple lead-MZM tunnel contacts. Simple
contacts are characterized by an only pairwise coupling between a
lead fermion operator �ja

= ψja
(0) and a MZM operator γka

, see
Eq. (3), without couplings to other leads or MZMs. For the shown
case with Ma = Mb = 2, the only nonsimple contact corresponds to
lead fermion ψla .

noninteracting normal-conducting leads with pointlike tunnel
contacts to a general coupled Majorana box device. A concrete
example for such a setup is shown in Fig. 1. We start in Sec. II A
by describing the basic model employed here and the physical
assumptions behind it. For pointlike lead-MBS tunnel contacts,
it is well known that noninteracting leads can be modeled
as effectively 1D spinless leads [1,70,71]. Subsequently, in
Sec. II B we express these 1D lead fermions in terms of Abelian
bosonization [70], which offers a convenient route to access
the important low-energy modes. Tunneling processes are then
analyzed in Sec. II C. Finally, in Sec. II D, we focus on Coulomb
valley conditions and describe the effective low-energy theory
projected to the charge ground state of each Majorana box in
the system.

A. Model

Let us start with the description of a single Majorana box,
which for the moment is assumed decoupled from all other
boxes and from all leads. For concrete layout proposals, see
Refs. [18,19]. Following the discussion in Refs. [53–56], on
energy scales well below the proximity-induced topological
superconducting gap �, we can neglect above-gap quasipar-
ticle excitations. In addition, throughout this paper, we will
assume that all MBSs on a given box are located far away
from each other and therefore can be viewed as MZMs. (For a
discussion of hybridization effects between MBSs on a given
box, see Ref. [57].) Under these conditions, we only need to
take into account Cooper pairs and MZMs, where Majorana op-
erators are self-adjoint, γj = γ

†
j , and obey the Clifford algebra

{γj ,γk} = 2δjk [1–5]. We now take into account the box charg-
ing energy EC , where EC ≈ 1 meV for typical experimental
realizations [29]. This energy scale plays a central role for all
coupled box devices studied below. In particular, it facilitates
phase-coherent electron transport, which in turn generates
nontrivial correlations between different boxes and/or leads.
This basic mechanism is also behind many recently proposed
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quantum information processing schemes for Majorana qubits
and Majorana code networks [13–21].

Under the above conditions, the Hamiltonian of an isolated
box is solely due to Coulomb charging,

Hbox = EC(Q̂ − ng)2, (1)

where the dimensionless parameter ng is controlled by back-
gate voltages. We assume the same value of EC for all boxes
below since different charging energies do not cause qualitative
changes as long as they remain sufficiently large. The operator
Q̂ has integer eigenvalues Q and describes the total charge
on the box in units of the elementary charge e. In general,
Q̂ receives contributions both from Cooper pairs and from
the MZM sector. However, it is most convenient to adopt
a gauge where the Majorana operators do not carry charge
but instead are accompanied by e±iϕ operators whenever the
box charge changes by one unit, Q → Q ± 1 [45]. By this
choice, ϕ is the phase operator conjugate to Q̂, i.e., [ϕ,Q̂] = i.
For each Majorana box, the charge dynamics is therefore
captured by a dual pair of local bosonic fields. For illustrative
purposes, we consider boxes harboring four MZMs below. The
generalization of our approach to an arbitrary even number of
MZMs for a given box is straightforward.

Next we include the effects of a single MZM-MZM tunnel
link connecting two Majorana boxes a/b, cf. Fig. 1, via the
tunneling Hamiltonian [45,46]

Ht = tjakb
γja

γkb
ei(ϕa−ϕb) + H.c. (2)

with the MZM operators γja
and γkb

. The index ja (kb)
here means that we label MZMs belonging to box a (b),
cf. Fig. 1, and the e±iϕa,b operators describe the transfer of
charge in a tunneling event. Physically, the ei(ϕa−ϕb) factor in
Eq. (2) amounts to the formation of a charge dipole between
both boxes. Finally, tjakb

is a microscopic tunnel amplitude
connecting the respective MZMs, e.g., through an intermediate
nontopological nanowire segment.

For pointlike lead-MZM tunnel contacts, we can now
describe each noninteracting lead by a 1D spinless fermion
operator ψja,R/L(x) [1,70,71], where the index ja indicates
that the lead is tunnel coupled to box a. Choosing x = 0 as the
tunnel-contact point, right- and left-moving (R/L) fermions
are defined for x < 0, with the open boundary conditions
ψja,L(0) = ψja,R(0). By a standard unfolding transforma-
tion [70], we may switch to chiral (right-moving) fermions,
ψja

(x), by writing ψja
(x) = ψja,R(x) for x < 0 and ψja

(x) =
ψja,L(−x) for x > 0. The lead-MZM contact is then described
by the tunneling Hamiltonian

Hλ = λjaka
�

†
ja

γka
e−iϕa + H.c., (3)

where λjaka
again is a microscopic tunneling amplitude and we

employ the shorthand notation �ja
= ψja

(0).
All tunnel couplings will be assumed so weak that they

can neither create above-gap quasiparticle excitations nor
destroy the integrity of MBSs. We thus require that the energy
scales associated with the amplitudes tjakb

and λjaka
are small

compared to both � and EC . Moreover, we note that physical
tunnel contacts extend only over short distances within the
coupled box device. The only exception to this rule are long-

ranged pairwise cotunneling events generated via charging
effects, see Sec. II D below.

Finally, the Hamiltonian of decoupled lead no. j is given
by

Hleads = −ivF

∫ ∞

−∞
dx ψ

†
j ∂xψj , (4)

where we assume the same Fermi velocity vF for all leads and
write j = ja for notational simplicity. Differences in Fermi
velocities are not important and can be taken into account by
renormalizing the above tunneling amplitudes.

B. Abelian bosonization

So far we have considered a fermionic description of
the leads. By inspecting the tunneling Hamiltonians (2) and
(3), we observe that it will also be useful to switch to a
bosonized description for the leads. As for the Majorana
box above, fermionic (statistical) and bosonic (charge/phase)
lead variables are thereby explicitly separated. While the
lead Hamiltonian (4) admits a purely bosonic description,
see Eq. (7) below, fermionic aspects do appear in tunneling
operators connecting the respective lead to MZMs or to other
leads. In terms of right and left movers, Abelian bosonization
states the correspondence [70]

ψ
†
j,R/L(x) = κj√

α
ei[φj (x)±θj (x)] (5)

with a short-distance cutoff length α. The dual boson fields
φj and θj obey the algebra [φj (x ′),∂xθk(x)] = iπδ(x − x ′)δjk ,
and κj denotes a Klein factor ensuring anticommutation
relations with all other lead fermions and all MZM operators.
Following Refs. [54,55], we use a Majorana fermion repre-
sentation for Klein factors, i.e., κ

†
j = κj and {κj ,κk} = 2δjk .

Noting that the open boundary conditions for lead fermions
translate to θj (0) = 0, and using the shorthand notation

�j = φj (0), �′
j = ∂xθj (0), (6)

the lead fermion operator in Eq. (3) takes the form �
†
j =

α−1/2κj e
i�j . Similarly, the electron density operator near the

tunnel contact is proportional to �′
j .

The lead Hamiltonian (4) is given by [70]

Hleads = vF

2π

∫ 0

−∞
dx[(∂xφj )2 + (∂xθj )2]. (7)

For a description of tunneling processes, however, Klein factors
play a crucial role. Using bosonized expressions, each tunnel-
ing event is factorized into a charge-neutral fermion-bilinear
part encoding the fermionic statistics and a part describing
the bosonic charge (or phase) dynamics. Explicitly, for the
lead-MZM tunneling Hamiltonian in Eq. (3), we obtain

Hλ = λjaka
κja

γka
ei(�ja −ϕa ) + H.c., (8)

where a factor 1/
√

α has been absorbed in λjaka
. We notice

that Eq. (8) contains a local fermion parity operator iκja
γka

with eigenvalues ±1 corresponding to the occupation number
of the fermion mode built from κja

and γka
.
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FIG. 2. Simple vs nonsimple lead-MZM tunnel junctions, see
Sec. II C. Filled red circles correspond to MZMs γka

and open red
circles to Klein-Majorana operatorsκja

within a bosonized description
of lead fermions, see Eq. (5). (a) Simple contact, cf. Eq. (8).
(b) Nonsimple contact between two MZMs and one lead, cf. Eq. (11).
(c) Nonsimple contact between one MZM and two leads, cf. Eq. (12).

C. Simple vs nonsimple contacts

It is convenient for the subsequent discussion to introduce
the notion of a simple lead-MZM contact, and generally
that of a simple tunnel junction. For a simple contact, see
Fig. 2(a), we require that the tunnel-coupled Majorana (γka

)
and lead (�ja

) fermions have no additional tunnel couplings
to other (Majorana or lead) fermions. All lead-MZM junctions
beyond the pairwise tunnel contact in Fig. 2(a) are referred
to as nonsimple. Two examples of such nonsimple lead-MZM
contacts are shown in Figs. 2(b) and 2(c), see also Ref. [84]. A
nonsimple junction also occurs when a lead-contacted MZM is
in addition tunnel coupled to another MZM on an adjacent box,
see Fig. 1. Similarly one may refer to nonsimple MZM-MZM
junctions if several MZMs on distinct boxes are coupled to
each other.

For systems with only simple contacts, we can then proceed
in a straightforward manner by employing the Klein-Majorana
fusion approach put forward in Refs. [54,55]. To that end, we
observe that in such systems, each local fermion parity built
from a Klein-Majorana operator κja

and a MZM operator γka

forming the respective tunnel contact, cf. Fig. 2(a), will be
separately conserved, iκja

γka
= ±1. Similarly, all local pari-

ties associated with MZM-MZM tunnel links are conserved,
iγja

γkb
= ±1. The above observations imply that the fermionic

sector of the theory is trivially solvable so long as all local
fermion parities remain conserved. A coupled Majorana box
system with only simple contacts can thus be reduced to a
purely bosonic theory, which is generally much simpler to
analyze than the original fermionic version.

In this paper, we address situations where some of the
above local fermion parities are not conserved anymore. This
may happen if unintentional parity-breaking mechanisms are
present, e.g., when a conventional midgap Andreev state is
accidentally centered near a lead-contacted MBS and thereby
activates quasiparticle poisoning mechanisms [63]. We instead
will focus on intentional parity-breaking effects due to non-
simple tunnel contacts. Such cases pertain to many Majorana
box transport setups and quantum-information processing
applications. In fact, local parity conservation implies that for
systems with only simple contacts, MZMs cannot reveal their
underlying fermionic statistics since different measurement

bases are not accessible. With the above motivation, we now
inspect several generic scenarios.

1. Charge degenerate boxes

Our first example for parity-breaking mechanisms is tied
to fluctuating charge states on a given box, e.g., because the
gate parameter ng in Eq. (1) is tuned close to a half-integer
value. This case has also been studied in the context of
the single-impurity TKE [64,68,69]. In general, a large box
charging energy EC will admit at most a few low-energy charge
states. As a consequence, charging effects also constrain the
box fermion parity which can be written as the product of
MZM operators on the box. For the four-MZM box [53], we
have Pbox = γ1γ2γ3γ4.

For ng close to a half-integer value and/or for strong lead-
MZM tunnel couplings, the box charge can fluctuate strongly.
Retaining only the nearly degenerate lowest-energy charge
states |Q〉a and |Q + 1〉a on box no. a, where the integer
Q is chosen such that Q < ng < Q + 1, it is convenient to
introduce a corresponding spin-1/2 operator Sa . With S±,a =
Sx,a ± iSy,a , it has the components [45]

Sz,a = (|Q + 1〉a − |Q〉a)/2,

S+,a = S
†
−,a = eiϕa = |Q + 1〉a 〈Q|a . (9)

Projecting Eqs. (1), (2), and (8) to the Hilbert subspace spanned
by |Q〉a and |Q + 1〉a , the Hamiltonian schematically takes the
form [64,69]

Hdeg = �EaSz,a +
∑
ja,kb

(
tjakb

γja
γkb

S+,ae
−iϕb + H.c.

)

+
∑
ja,ka

(
λjaka

γja
κka

S+,ae
−i�ka + H.c.

)
, (10)

where the energy �Ea is controlled by the detuning of ng away
from half integers and we use the definition in Eq. (6). While
Hdeg in Eq. (10) allows Pbox to fluctuate, such fluctuations are
perfectly correlated with charge hopping processes on and off
the box: The MZM operator γja

is always accompanied byS±,a ,
see Eq. (10). As long as the system only has simple lead-MZM
contacts, one therefore arrives at a purely bosonic description
again. In fact, while details of the single-impurity TKE such
as the value of the Kondo temperature depend on the backgate
parameter, the low-energy behavior is basically independent of
ng [64,69]. By implementing an entangled lead-MZM fermion
basis, the Klein-Majorana fusion approach is thus highly useful
also for charge-degenerate Majorana box devices. We will see
that this conclusion applies even in a much wider sense.

2. Nonsimple contacts

Next we consider device layouts with at least one non-
simple contact where in- or out-tunneling of charge from the
box can take place either via different MZMs on the box
[Fig. 2(b)] or through different leads [Fig. 2(c)]. The presence
of such contacts has important consequences on low-energy
quantum transport in coupled Majorana box junctions since
the corresponding local fermion parities defined above are not
conserved anymore. In particular, after a sequence of tunneling
events, some of these parities may have been flipped along with
a charge transfer between different leads. Similar processes
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have been discussed in Refs. [61,63] and are known to affect
transport properties.

To make progress, it is useful to identify subsets of (MZM
and Klein factor) Majorana operators with conserved overall
parity. Such a subset must contain an even number m of
Majorana operators, where the corresponding Majorana bi-
linears generate a spin operator with symmetry group SO(m)
[53–55,57]. For both cases in Figs. 2(b) and 2(c), three
Majorana operators are coupled together at the junction. Taking
into account a dummy Majorana mode not shown in Fig. 2, the
parity associated with these Majorana states is conserved. As a
consequence, the Majorana bilinears resulting from this subset
can equivalently be described by Pauli operators σx,y,z as we
discuss next.

As a first example, consider the situation in Fig. 2(b), where
two Majorana operators (γx,γy) on the same box (with phase
ϕ conjugate to Q̂) are tunnel coupled with amplitudes λx,y to
a single lead. The latter is described by the fermion operator
�† ∼ κei�. Including for completeness also a finite overlap
integral between the MBSs (hz), the tunneling Hamiltonian
(3) for such a junction takes the form

H2,1 = (λxσx + λyσy)ei(�−ϕ) + H.c. + hzσz,

σx,y = iκγx,y, σz = iγyγx. (11)

For a specific phase relation between λx and λy , the same
model describes quasiparticle poisoning effects for the single-
impurity TKE [63]. As shown in Ref. [63], in the presence
of additional leads, the RG flow will generate an additional
hybridization term ∼σz�

′ between a Pauli operator and the
boundary fermion density. In Sec. III D, we will discuss how
this finding generalizes to arbitrary complex λx,y .

Next we turn to the alternative setup shown in Fig. 2(c),
where one MZM (γ ) is tunnel coupled to two leads with
amplitudes λx,y , cf. Ref. [84] for the corresponding EC = 0
case. The respective lead fermions are now written as �

†
x,y ∼

κx,ye
i�x,y . From Eq. (3), the tunneling Hamiltonian is then

given by

H1,2 = (λxσxe
i�x + λyσye

i�y )e−iϕ + H.c., (12)

where σx,y = iγ κx,y . Note that there is no hzσz contribution
with σz = iκyκx . Direct lead-lead tunneling processes (if
present) would produce different terms.

We also observe that as long as an arbitrary coupled box
system does not admit tunneling paths forming closed loops, all
relative phases between tunneling amplitudes can be absorbed
by suitable shifts of lead boson fields and thus do not affect the
physics. Here closed loop configurations in Hilbert space may
arise from ring exchange processes involving several boxes,
for instance, a plaquette operator in Majorana code networks
[13]. A closed loop is also found for a lead coupled to several
MZMs on the same box, see Fig. 2(b). As a consequence, while
the relative phase between λx and λy can be gauged away for
the case shown in Fig. 2(c), this is not possible for the setup in
Fig. 2(b) anymore.

As a more complicated example for a system with nonsim-
ple contacts, we next consider the two-box setup in Fig. 3.
Similar setups arise in basic Majorana qubit and multibox
measurements [18,19] and in the context of stabilizer codes
[13,14]. Here the left/right (a = L/R) box is connected to an

FIG. 3. Two-box setup with a single tunnel bridge connecting
the two boxes. Two central leads with boson fields �l,r = φl,r (0) are
tunnel coupled to the respective MZMs, see Eq. (13). Because of
the presence of the MZM-MZM link, those lead-MZM contacts are
nonsimple. In addition, ML/R leads are attached to the left/right box
via simple contacts, where the shown example is for ML = 3 and
MR = 2. For an explanation of symbols, see Figs. 1 and 2.

arbitrary number ML/R of normal leads via simple lead-MZM
contacts. Figure 3 shows the case ML = 3 and MR = 2. In
addition, two central leads with the respective fermion operator
�

†
l/r ∼ κl/re

i�l/r are connected to the left/right box through
nonsimple contacts to the respective MZM operator γl/r (with
tunneling amplitude λl/r ). The contacts are nonsimple because
γl and γr are tunnel coupled by an amplitude tLR . With the box
phase operators ϕL/R , the corresponding central part of the
coupled device is described by the Hamiltonian

Hc = tLRσze
i(ϕL−ϕR ) + λlσxe

i(ϕL−�l )

+ λrσxe
i(ϕR−�r ) + H.c., (13)

where we define σz = iγlγr and σx = iγlκl . Note that we
can also write σx ∼ iγrκr since the central junction parity
γlγrκlκr = ±1 is conserved. The appearance of different Pauli
operators in Eq. (13) suggests that for λl/r 
= 0, the two-box
setup in Fig. 3 is more difficult to analyze than a purely bosonic
counterpart with only simple contacts, e.g., without the central
leads in Fig. 3.

D. Quantized box charge and cotunneling operators

Our subsequent discussion will mainly focus on systems
where all Majorana boxes are operated at near-integer ng , i.e.,
the charge on each box has a quantized ground-state value. As
discussed in Sec. II C, while near-degenerate box charge states
(with ng close to half-integer values) can change details of
the TKE [64,69], they do not involve additional nonconserved
fermion parity degrees of freedom (here represented by Pauli
operators). For weak tunneling amplitudes (cf. Sec. II A) and
nearly integer ng on all boxes, the system is described by
cotunneling amplitudes connecting in principle any pair of
leads in the system via phase-coherent second- or higher-
order charge tunneling processes. To obtain the corresponding
cotunneling amplitudes in a systematic way, we have employed
a Schrieffer-Wolff transformation to project the full theory to
the quantized charge ground-state sector of all boxes, see also
Refs. [13,14].

The projected cotunneling Hamiltonian will now contain
qualitatively different terms. First, there are purely bosonic
cotunneling contributions. Such processes do not involve Pauli
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operators representing nonconserved fermion parities and have
the schematic form

Hbos = Jjakb
ei(�ja −�kb

) + H.c.,

Jjakb
�

λjaj ′
a
λ∗

kbk
′
b

EC

∏
〈l,l′〉

tll′

EC

. (14)

The cotunneling amplitude Jjakb
contains the initial and final

lead-MZM couplings λjaj ′
a

and λ∗
kbk

′
b

for charge tunneling
to/from lead ja/kb via box a/b, see Eqs. (3) and (8). (Here,
a = b is possible.) As a result of the projection to the charge
ground-state sector, the e±iϕa/b terms are not present anymore
in Eq. (14) and become effectively replaced by 1/EC factors in
the cotunneling amplitude, see Ref. [14]. In order to obtain a
contribution for lead pairs attached to different boxes (a 
= b),
a sequence of intermediate MZM-MZM tunneling events with
respective amplitudes tll′ , cf. Eq. (2), is necessary. In order
to contribute to Eq. (14), however, such MZM-MZM links
must have conserved local parities. We also note that since for
each additional tunneling event, the contribution to Jjakb

gets
suppressed by a factor |tll′ |/EC 
 1, the shortest tunneling
path(s) between a chosen pair of leads will dominate.

Next, in contrast to the purely bosonic case in Eq. (14), we
consider what happens if the tunneling path connecting leads
ja and kb involves a string of Pauli operators σm = σm

x,y,z. Here
σm describes the nonconserved local fermion parity at the mth
nonsimple link along the path. For a string of n � 1 Pauli
operators (m = 1, . . . ,n), the projected Hamiltonian has the
schematic form

Hnbos = J
(σ 1,...,σ n)
jakb

σ 1 · · · σnei(�ja −�kb
) + H.c., (15)

where J
({σ })
jakb

is a cotunneling amplitude as in Eq. (14) and the
superscript serves to remind us that this amplitude applies to
a specific tunneling path involving the corresponding Pauli
operator string. Concrete examples for this notation will be
given in Sec. III and in Appendix A. We note that with the
conventions J

({σ })
jakb

→ Jjakb
and σ 1 · · · σn → 1 for n = 0, i.e.,

in the absence of nonsimple links, Eq. (14) constitutes just a
special case of Eq. (15).

We close this section by addressing additional complexities
in tunneling at a nonsimple junction that comprises multiple
Pauli operators of the same set σx,y,z. For example, at non-
simple contacts in Figs. 2(b) and 2(c), elemental tunneling
events may involve anticommuting Pauli operators σx and σy .
The corresponding path contribution now exhibits an extra
suppression factor ∼|�ng|, where �ng is the detuning of the
backgate parameter ng away from integer values. This suppres-
sion arises from the destructive interference between tunneling
events with different time ordering [13,14]. In particular, if the
box is tuned precisely to a Coulomb valley center, �ng = 0,
such paths give no contribution at all. For finite �ng , both Pauli
operators effectively combine to the third Pauli operator, e.g.,
σxσy = iσz. With this change and including the |�ng| factor,
the cotunneling contribution is then again given by Eq. (15).

Further, in coupled box devices allowing for closed loops,
see Sec. II C and Fig. 2(b), elemental tunneling events that
connect to distinct MZMs may lead to the same charge transfer.
Therefore several distinct paths with different Pauli operator
content can contribute to a given cotunneling term ∼ei(�ja −�kb

).

Such effects have been exploited, for instance, for Majorana
box qubit readout and manipulation schemes [13,14,18,19].
Below we do not consider cases with interfering paths, or if
present, as for the loop qubit device in Sec. III D and IV E, we
explicitly separate them.

III. RENORMALIZATION GROUP ANALYSIS

Using the composition rules for cotunneling Hamiltonians
in Sec. II D, we next turn to the derivation and analysis
of the one-loop RG equations. We study general coupled
Majorana box devices under Coulomb valley conditions, where
nonconserved local fermion parities are described by Pauli
operators σm = σm

x,y,z at the mth link. In Sec. III A, we explain
how RG equations for systems of this type can be constructed
by using the standard operator product expansion (OPE)
technique [70,71]. Subsequently we will study these equations
for three device examples in order to illustrate typical effects
caused by nonconserved local fermion parities.

A. RG equations: Construction principles

Let us consider the perturbative expansion of the partition
function in powers of the cotunneling contributions to the
Hamiltonian H , see Eq. (15). The RG approach [71] studies
how cotunneling amplitudes are renormalized, and whether
new couplings are generated, upon reducing the effective lead
bandwidth D from its initial value, D(� = 0) � min{EC,�}.
Writing D(�) = D(0)e−�, the RG equations describe the
physics on lower and lower energy scales with increasing
flow parameter �. We show below that always at least a few
cotunneling amplitudes will flow towards strong coupling.
Since perturbation theory then breaks down at sufficiently
low energy scales, the RG approach can only describe the
weak-coupling regime. The physics in the strong-coupling
regime will be addressed in Secs. IV and V.

In order to obtain RG equations via the OPE approach, one
considers arbitrary pairs of cotunneling operators contributing
toH . For two operators acting at almost coinciding (imaginary)
times τ and τ ′, the result of such a contraction must be
equivalent to a linear combination of all possible operators at
time (τ + τ ′)/2, where the respective expansion coefficients
directly determine the one-loop RG equations [70,71]. We
thus have to analyze contractions of cotunneling operator
pairs. Denoting the corresponding amplitudes by J

({σ })
jm and

J
({σ ′})
mk , their contraction renormalizes the tunneling amplitude

J
({σ ′′})
jk , where the Pauli string {σ ′′} follows by multiplication

of both operator strings. This composite tunneling amplitude
thus connects leads j and k by a tunneling path touching lead m

and back. The RG equations now depend on whether the Pauli
strings σ 1 · · · σn and σ 1′ · · · σn′

commute or anticommute.

1. Commuting Pauli strings

For commuting Pauli strings, the OPE approach yields the
general RG equations (lead density of states ν = 1)

dJ
({σ ′′})
jk

d�
=

∑
m
=(j,k)

J
({σ })
jm J

(σ ′)
mk . (16)
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This result is simple to understand if both Pauli strings do
not share overlapping Pauli operators at all. The composite
tunneling path is then obtained by simply stitching together
both paths, and the Pauli string {σ ′′} corresponds to the
product of the strings {σ } and {σ ′}. Moreover, if identical
Pauli operators appear in both strings, say, σm

x and σm′=m
x , they

effectively square to unity and thus drop out in the string {σ ′′}.
Let us now discuss Eq. (16) in more detail for different cases
of interest.

To that end, it is very convenient to introduce the concept of
bosonic subsectors (or simply subsectors). A bosonic subsector
B refers to a group of M leads (with index j ∈ B) which
are coupled to each other through purely bosonic cotunneling
processes, and hence undergo purely bosonic interactions
within the subsector, cf. Eq. (14). For example, this happens
for simply-coupled leads that are attached to the same box. If
two leads cannot be connected via purely bosonic cotunneling
processes, i.e., if a Pauli string is involved, they must belong to
distinct subsectors. In particular, a lead with a nonsimple lead-
MZM contact generally defines its own subsector with M =
|B| = 1. According to this definition, all leads in a general
Majorana network uniquely belong to one of its corresponding
subsectors.

We start with the case of M leads attached to a given
box via simple lead-MZM contacts, thus forming a subsector
B. In the simplest case, the Hamiltonian describing purely
bosonic cotunneling processes within this subsector follows
from Eq. (14) by summing over all tunneling paths connecting
lead j 
= k (with j,k ∈ B). Such processes have amplitude Jjk

and couple different leads only via the lead boson fields �j

and �k . Adapting Eq. (16) to this purely bosonic problem,
we reproduce the RG equations for the single-impurity TKE
[53–57],

dJjk

d�
=

∑
m∈B,m
=(j,k)

JjmJmk. (17)

For M � 3, these couplings automatically scale towards
isotropy, Jjk(�) → (1 − δjk)J (�), see Refs. [53,56] for a de-
tailed discussion. The RG equation for the isotropic coupling
J is then given by dJ/d� = (M − 2)J 2. The isotropic part is
thus marginally relevant and flows towards strong coupling.
Deviations from isotropy, on the other hand, are RG irrelevant
and can be neglected at low energy scales. The TKE thus fea-
tures an in-built flow to isotropy. The strong-coupling regime is
reached at energy scales below the Kondo temperature [53–55]

TK � De−1/[(M−2)νJ ], (18)

where D is the (bare) bandwidth of the leads, and for com-
pleteness we reinserted the lead density of states ν.

Apart from the purely bosonic processes behind Eq. (17),
cotunneling events also can kick the system out of a bosonic
subsector B1 into a distinct subsector B2, which may belong
to the same or to another box. By definition, such processes
involve a string σ 1 · · · σn of n � 1 Pauli operators. The
corresponding Hamiltonian reads, cf. Eq. (15),

Hnbos =
∑
j∈B1

∑
k∈B2

J
({σ })
jk σ 1 · · · σnei(�j −�k ) + H.c. (19)

In Appendix A, we illustrate several examples for tunneling
processes contributing to Eq. (19) in a rather advanced device
with four boxes. These examples also serve to show the general
applicability and versatility of our formalism for arbitrary
coupled box devices.

We now study how the RG equations in Eq. (17) for purely
bosonic couplings Jjk with j 
= k ∈ B will be modified by the
intersubsector cotunneling processes in Eq. (19). In general,
such an excursion from lead j ∈ B to some other subsector B2

must involve a Pauli string σ 1 · · · σn with n � 1. In order to
contribute to the RG flow of our purely bosonic coupling Jjk ,
however, the tunneling path must now return to lead k ∈ B via
the same Pauli operator string. As a result, for coupled-box
networks, the RG equations for the TKE in Eq. (17) receive an
additional contribution,

dJjk

d�
=

∑
m∈B,m
=(j,k)

JjmJmk +
∑
m/∈B

J
({σ })
jm J

({σ })
mk . (20)

Similarly, see also Appendix A for additional details, we obtain
the RG equations for the cotunneling amplitudes J

({σ })
jk , with

leads j ∈ B1 and k ∈ B2 belonging to different subsectors,
from the general equations (16),

dJ
({σ })
jk

d�
=

∑
m∈B2,m
=k

J
({σ })
jm Jmk +

∑
m∈B1,m
=j

JjmJ
({σ })
mk . (21)

The first (second) term comprises an intersector transition
followed by an intrasector tunneling in B2 (B1). We note
that on top of the terms in Eq. (21), higher-order tunneling
excursions via distinct subsectors B′ 
= B1,2 may generate
additional contributions, see Appendix A. For the applications
below, such complications are absent.

2. Anticommuting Pauli strings

Next we discuss the case of anticommuting Pauli strings {σ }
and {σ ′}. Using the relation Tτ σx(τ )σy(τ ′) = iσz(τ )sgn(τ −
τ ′) for τ → τ ′ (and cyclic permutations thereof), with the
time-ordering operator Tτ , we first observe that contributions
with different time ordering will interfere destructively. As
a consequence, we find that there will be no additional
contributions to the RG equations (20) and (21) from such
tunneling events.

However, other types of RG terms can be generated in
systems allowing for closed loops, where subsectors can be
connected through distinct tunneling paths with different Pauli
strings. To that end, let us pick a tunneling path which starts
at lead j ∈ B, makes an excursion to a lead in some other
subsector, l /∈ B, and phase-coherently returns back to lead
j . To illustrate the principle, we here focus on the simplest
scenario, where the Pauli strings {σ ′} and {σ } for back-and-
forth tunneling, respectively, are identical except at one link
(m). At this link, we have anticommuting Pauli operators,
say, σm

x and σm
y . Contracting both cotunneling operators now

schematically yields

J
(...σm

x ...)
j l (· · · σm

x · · · )τ J
(...σm

y ...)
lj (· · · σm

y · · · )τ ′

∼ J
(...σm

x ...)
j l J

(...σm
y ...)

lj iσm
z (τ )sgn(τ − τ ′), (22)
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where all other Pauli operators apart from σm
x,y square out.

Expanding also the e±i�j factors appearing in all cotunneling
operators to lowest order in τ − τ ′, we encounter another
sgn(τ − τ ′) factor and therefore a finite contribution to the RG
equations. Using the lead densities near the respective contacts,
�′

j (τ ) = ∂xθj (x = 0,τ ) = −i∂τφj (x = 0,τ ), see Eq. (6), we
then obtain a new contribution generated by such contractions,

Hhyb =
∑

j

�jσ
m
z �′

j , (23)

describing a hybridization between σm
z and the lead fermion

densities �′
j . (Of course, depending on the application, the

coupling in Eq. (23) may involve other or even multiple Pauli
operators.) We note that similar terms also appear in the context
of charge Kondo effects [70,79,83].

From Eq. (22), the RG flow of the coupling constants in
Eq. (23) is then governed by

d�j

d�
∼

∑
l /∈B

J
(...σm

x ...)
j l J

(...σm
y ...)

lj + H.c. (24)

Hybridization couplings thus will be dynamically created
during the RG flow even for vanishing bare coupling, i.e., for
�j (� = 0) = 0. We remark in passing that �j (0) 
= 0 could
arise from in- and out-tunneling events at a lead contacting
several MZMs, cf. Fig. 2(b). The �j are real-valued couplings
which are effectively controlled by the sine or cosine of the
loop phase

ϕ
loop
j = arg

(∑
l /∈B

J
(...σm

x ...)
j l J

(...σm
y ...)

lj

)
. (25)

Importantly, the hybridizations in turn feed back into the RG
equations (21) for cotunneling amplitudes. In fact, we find that
Eq. (21) receives the additional contributions

dJ
(...σm

x/y ...)
j l

d�
∼ (�l − �j )J

(...σm
y/x ...)

j l . (26)

For the loop qubit example studied below, see Secs. III D and
IV E, such RG feedback effects turn out to be crucial.

3. Summary

The above rules show that RG equations for a general cou-
pled Majorana box system can be determined by contracting
pairs of tunneling operators. Commuting tunneling operators
generate new composite tunneling operators and/or renormal-
ize existing couplings, see Eqs. (20) and (21). Contractions of
noncommuting operators, on the other hand, do not contribute
to the latter RG equations. However, in systems with tunneling
paths forming closed loops, hybridization terms between Pauli
operators and lead fermion densities will be generated. Such
terms will in turn feed back into the RG equations for the
cotunneling amplitudes. Next we apply the above RG analysis
to several examples of practical interest.

B. Two-box device

Let us begin by studying a two-box device as shown in
Fig. 3. We first observe that such a system does not admit tun-
neling paths forming closed loops, and thus the RG equations

do not involve the hybridizations in Eq. (23). Using Hleads in
Eq. (7) and taking into account the central junction described
by Eq. (13), the Hamiltonian H = Hleads + HL + HR + HLR

is obtained by a Schrieffer-Wolff transformation to the ground-
state charge sector of both boxes, see Sec. II D. In particular,
cotunneling processes involving only boson fields connected
to the left/right (L/R) box are contained in

HL/R = −
∑

j,k∈BL/R,j 
=k

(JL/R)jk cos(�j − �k)

−
∑

j∈BL/R

(JX)l/r,j σx cos(�l/r − �j ), (27)

where BL/R denotes bosonic subsectors with ML/R leads
connected to the respective box via simple lead-MZM contacts.
(For the example in Fig. 3, ML = 3 and MR = 2.) The central
leads in Fig. 3, with boson fields �l/r , are coupled to the L/R

box via nonsimple contacts, where nonconserved local fermion
parities are encoded by the Pauli operators σx,y,z, see Eq. (13).
Interbox cotunneling processes are contained in

HLR = −
∑
j∈BL

(JY )rj σy cos(�r − �j )

−
∑
k∈BR

(JY )lk σy cos(�l − �k)

+
∑

j∈BL,k∈BR

(JZ)jk σz sin(�j − �k). (28)

The JL/R amplitudes in Eq. (27) are purely bosonic intrasector
couplings as in Sec. III A. The JX (resp., JY ) cotunneling
amplitudes connect leads within bosonic subsector BL/R to
the central lead on the same (resp., other) box, involving the
Pauli string σx (resp., σy). Finally, the JZ amplitudes link
the bosonic subsectors BL and BR by interbox tunneling via
the Pauli string σz.

In total, we thus have seven coupling families:
JL/R,JX,l/r ,JY,r/ l , and JZ . The respective coupling
matrix elements depend on microscopic lead-MZM
(λj ) and MZM-MZM (tLR) tunneling amplitudes, cf.
Eq. (13). Schematically, (JL/R/X)jk ∼ λjλ

∗
k/EC and

(JY/Z)jk ∼ λjλ
∗
ktLR/E2

C . Since one can gauge away complex
phases of tunneling amplitudes for systems without closed
loops, all these cotunneling amplitudes can be chosen real
positive. Within each coupling family, we thus arrive at a real
symmetric matrix.

The RG equations then follow from Eqs. (20) and (21). For
j,k ∈ BL, we find

d(JL)jk

d�
=

∑
m∈BL,m
=(j,k)

(JL)jm(JL)mk + (JX)lj (JX)lk

+ (JY )rj (JY )rk +
∑
m∈BR

(JZ)jm(JZ)mk. (29)

Furthermore, with j ∈ BL, we get

d(JX/Y )l/r,j

d�
=

∑
m∈BL,m
=j

(JX/Y )l/r,m(JL)mj , (30)
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while for j ∈ BL and k ∈ BR ,

d(JZ)jk

d�
=

∑
m∈BL,m
=j

(JL)jm(JZ)mk

+
∑

m∈BR,m
=k

(JZ)jm(JR)mk. (31)

The corresponding RG equations for the JR , JX,r , and JY,l

couplings follow by exchanging left/right labels.
The above RG equations can be simplified considerably by

observing that different coupling families effectively become
isotropic at low energy scales. For small-to-moderate bare
anisotropies of the respective coupling matrices, such an
isotropization can already be established within the weak-
coupling regime accessible to the RG approach. For the single-
box TKE case with M � 3 leads, this mechanism has been
detailed in Refs. [53–56]. As shown in Appendix B by a
numerical solution of the full RG equations (29)–(31), the
isotropization mechanism also applies for the two-box device
in Fig. 3 with MR = 2. By a similar analysis, we have verified
that isotropization applies for all other examples where we
invoke it below. This finding can be rationalized by noting
that for any M � 2, couplings to leads in this sector feed
back into the RG flow of each other if they belong to the
same family. As a consequence, different coupling families are
effectively described by specifying only their mean (average)
values, (JL)jk → JL and so on, see Eq. (B1) in Appendix B.
Anisotropies within a given coupling family are RG irrelevant
and thus can be neglected at low energies. In fact, we expect
the above conclusions to apply for general coupled Majorana
box systems.

The two-box problem in Fig. 3 is then described by seven
running couplings, where Eqs. (29)–(31) yield the isotropized
RG equations

dJL

d�
= (ML − 2)J 2

L + MRJ 2
Z + J 2

X,l + J 2
Y,r ,

dJX,l

d�
= (ML − 1)JX,lJL,

dJY,r

d�
= (MR − 1)JY,rJL,

dJZ

d�
= [(ML − 1)JL + (MR − 1)JR]JZ, (32)

and related equations for JR , JX,r , and JY,l . Let us briefly check
Eq. (32) for two limiting cases:

(i) For vanishing MZM-MZM coupling, tLR → 0, both
boxes are decoupled. We thus have JZ = JY,r/l = 0, and
σx = ±1 is conserved. The above equations then reduce to
a decoupled pair of single-impurity TKE systems, cf. Eq. (17),
where ML + 1 and MR + 1 leads are attached to the left/right
box: For tLR = 0, the central leads l and r in Fig. 3 join the
respective bosonic subsector BL/R .

(ii) In the absence of both central leads, we have JX,l/r =
JY,r/l = 0 and σz = ± is conserved. In that case, we recover
the RG equations for the single-impurity TKE again. However,
since both boxes are now connected by tLR 
= 0, we encounter
the equations for a single Kondo impurity with ML + MR

attached leads. At low energies, both boxes are thus fused
together by the MZM-MZM link and thereby form a single
enlarged Majorana box that subsequently exhibits a global
TKE with symmetry group SO2(ML + MR).

For generic initial values of the isotropized cotunneling
amplitudes, we have numerically solved the RG equations
(32). Our analysis shows that the system will flow towards
strong coupling with competing separate (intrabox) and global
(interbox) TKEs. This scenario is reminiscent of the classic
two-impurity Kondo problem [76–78] and indicates that a
strong-coupling analysis is needed in order to determine the
ground state, see Sec. IV C.

C. MZM coupled to multiple leads

An interesting limit of the two-box RG equations (32)
concerns the physics of a single MZM coupled to several leads,
see Fig. 2(c) and Eq. (12). To this end, one may consider a
situation where the left (resp., right) box has M ≡ ML (resp.,
MR = 1) leads with simple lead-MZM contacts. These leads
are described by the boson fields �j∈BL

(resp., �z). We then
note that the MZM γl on the left box, which is tunnel coupled
to the central lead �x ≡ �l in Fig. 3, effectively also couples to
the two leads connected to the right box via the MZM-MZM
tunnel bridge. Let us write �y ≡ �r for the corresponding
central lead and use isotropic couplings for different coupling
families, see Sec. III B, where isotropization holds for M � 2.
Retaining for the moment only the four couplings

J = JL, Jx = JX,l, Jy = JY,r , Jz = JZ, (33)

the low-energy Hamiltonian is H = Hleads + Hb, with the
boundary term

Hb = −J
∑

j,k∈BL,j 
=k

cos(�j − �k)

−
∑

α=x,y,z

Jασα

∑
j∈BL

cos(�j − �α). (34)

The Jα in Eq. (33) thus characterize our lead-MZM multijunc-
tion. We emphasize that the right box in the above setup is
not necessary for observing the physics below, and one could
simply couple the leads corresponding to the fields �x,y,z

directly to γl . Its inclusion here only allows us to take over
results from Sec. III B.

In fact, the corresponding RG equations can now be read
off from Eq. (32),

dJ

d�
= (M − 2)J 2 +

∑
α

J 2
α ,

dJα

d�
= (M − 1)JJα. (35)

Cotunneling processes between the three leads �x,y,z are not
contained in Eq. (34) and arise due to the three remaining
couplings JR , JX,r , and JY,l beyond those in Eq. (33). Such
terms generate the additional contribution H ′

b ∼ σz cos(�x −
�y) plus cyclic permutations. From the analysis in Sec. II D, we
find H ′

b = 0 under Coulomb valley center conditions, i.e., for
�ng = 0. In any case, such couplings are neither RG relevant,
in contrast to those in Eq. (33), nor do they enter the flow of
other couplings in Eq. (35). We can thus safely drop them in
what follows.

Let us then discuss the RG flow generated by Eq. (35). First,
we observe that ratios of different Jα couplings are conserved,
dJx/dJy = Jx(0)/Jy(0) and dJy/dJz = Jy(0)/Jz(0). All Jα

therefore flow towards strong coupling together with those ra-
tios being invariant. Second, for M � 3, the TKE-like coupling
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FIG. 4. Loop qubit device contacted by normal leads. This device
has been suggested in Fig. 14 of Ref. [19] for interferometric Majorana
qubit measurements and manipulations, see also Refs. [13,14,18].
Two long topological superconductor (TS) wires with a superconduct-
ing (SC) bridge define a Majorana box with four MZMs, where the
loop phase ϕ0 can be controlled by a magnetic flux. The normal leads
attached to the box correspond to boson fields �1,2,c. The central lead
(�c) couples to two MZMs as in Fig. 2(b), where the nonconserved
fermion parity is encoded by Pauli operators σx,y,z. For an explanation
of symbols, see Figs. 1 and 2.

J outgrows the Jα since they all feed back into the RG flow of
J . In contrast, for M = 2, we observe that J does not benefit
from the self-enhanced TKE-like RG flow, cf. Eq. (17), and
therefore will not automatically dominate anymore. In fact,
for M = 2, Eq. (35) becomes a multicomponent version of the
celebrated Kosterlitz-Thouless equations [71], where the RG
flow of J is directly induced by the Jα flow and vice versa.
In our strong-coupling analysis of this setup, see Sec. IV D,
we will focus on the most interesting case M = 2. Further
transport properties for this system are discussed in Sec. V.

D. Loop qubit

As a final example for the RG analysis, we here consider
the loop qubit device shown in Fig. 4. This device has a
single Majorana box containing M = 2 leads with simple
contacts, and a nonsimple contact coupling two MZMs to a
central lead (with boson field �c), see Sec. II C, in particular
Eq. (11) and Fig. 2(b). Importantly, such a device provides
the simplest possibility for tunneling paths forming closed
loops. It has been suggested as Majorana qubit realization [19],
where the relative phase ϕ0 between the tunneling amplitudes
connecting the central lead with the respective MZM can be
changed by a magnetic flux. We note that ϕ0 corresponds to
the loop phase between different tunneling paths in Eq. (25).
By contacting the box with leads as shown in Fig. 4, nontrivial
interferometric conductance measurements can be performed.
In particular, a measurement of the linear conductance between
the central lead and one of the outer leads (�1,2 in Fig. 4) could
determine the eigenvalue of the Pauli operator σz related to the
nonconserved fermion parity of the junction [18,19].

The nonsimple junction is described by H2,1 in Eq. (11) with
� → �c and hz → 0. We do not include a direct MZM-MZM
coupling, but MZMs instead hybridize with the fermion density
at the central contact, see below. With σ± = (σx ± iσy)/2, we
thus have

H2,1 = (λ+σ+ + λ−σ−)ei(ϕ−�c) + H.c.,
(36)

λ± = λx ∓ iλye
iϕ0 ,

where we use a gauge where ϕ0 appears at the σy link in Fig. 4
and the tunneling amplitudes λx,y are real valued. Interestingly,
for ϕ0 = π/2, the same model describes quasiparticle poison-
ing effects for the TKE [63].

As the next step, we implement the projection to the
ground-state charge of the box, see Sec. II D. Following the
corresponding steps in Ref. [63] but allowing for arbitrary loop
phase ϕ0, we then get the Hamiltonian H = Hleads + Hb. For
M leads (labeled by j ∈ B) with simple contacts to the box,
where M = 2 in Fig. 4,

Hb = −J
∑

j,k∈B,j 
=k

cos(�j − �k) −
∑
j∈B

�̃σz�
′
j − �cσz�

′
c

− 1√
2

∑
j∈B

[(L+σ+ + L−σ−)ei(�j −�c) + H.c.], (37)

where we assume isotropic couplings. With a tunnel coupling
λ̃ for the simple lead-MZM contacts, the complex-valued
cotunneling amplitudes between the central and the outer leads
are contained in L± = √

2λ̃λ±/EC , see Eq. (36). In contrast,
the TKE-like coupling J describes cotunneling between leads
within subsectorB. Because of the existence of tunneling paths
forming closed loops, Eq. (37) also contains hybridization
terms of the form in Eq. (23). The bare (initial) values for these
couplings are �̃ = 0 and �c � (λxλy/EC) sin ϕ0. During the
RG flow, both �̃ and �c grow and approach strong coupling.

We next exploit current conservation, 〈�′
c〉 + ∑

j 〈�′
j 〉 =

0, which follows from gauge invariance under a simultaneous
shift of all boson fields �j,c. This relation allows us to further
reduce the number of parameters by trading off hybridizations
at the outer leads versus an enhanced hybridization between
the central lead and σz. With � = 2(�c − �̃), we then obtain
the RG equations, cf. Ref. [63],

dJ

d�
= (M − 2)J 2 + |L+|2 + |L−|2,

dL±
d�

= [(M − 1)J ± �]L±,

d�

d�
= (M + 1)(|L+|2 − |L−|2). (38)

The most interesting prediction of these equations is the onset
of helicity [63], i.e., a nontrivial flow of the couplings L±. To
this end, it is instructive to relate the RG flow of the above
couplings with that of the loop phase ϕ0. We first observe that
with λ± in Eq. (36),

|L+(�)|2 + |L−(�)|2 ∼ λ2
x + λ2

y,

|L+(�)|2 − |L−(�)|2 ∼ λxλy sin ϕ0. (39)

This implies that while the TKE-like coupling J grows and
stays independent of ϕ0, the hybridization �, with initial
value �(� = 0) ∼ sin ϕ0, keeps the same dependence on ϕ0

throughout the RG flow. Moreover, the complex phases of
the couplings L± are invariant during the RG flow since the
prefactor for their self-renormalization in Eq. (38) is real. Using
L± ∼ λ±, the running loop phase is then defined by

ϕ0(�) = arg[i(L+ − L−)/(L+ + L−)]�. (40)
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FIG. 5. RG flow of the loop phase ϕ0(�) obtained by numerical
integration of a fully anisotropic version [63] of the RG equations (38).
At � = �∗, the RG approach breaks down due to divergent couplings.
We show results for �∗ − � vs ϕ0 on a semilogarithmic scale. While
this plot was generated for a specific randomly chosen set of initial
parameters, with different ϕ0(0), we have checked that the qualitative
features of the RG flow are insensitive to this choice. We identify
two stable fixed points with ϕ0 = ϕ± = ±π/2 (blue vertical lines),
where the hybridization is maximized, �(�) ∼ sin ϕ0(�). In contrast,
ϕ0 = 0 mod π (red vertical line) are unstable fixed points with � = 0.
The gauge symmetry of the system under the exchange L+ ↔ L−,
σ+ ↔ σ−, and σz → −σz, cf. Eqs. (37) and (38), is apparent in the
symmetry of the RG flow under ϕ0 → −ϕ0.

Note that ϕ0(�) will in general change during the RG flow
because it depends on both the complex phases and the absolute
values of L±. In particular, we observe that for bare loop phases
withϕ0(0) ∈ (0,π ), we will also have |L+(0)| > |L−(0)|, while
for ϕ0(0) ∈ (−π,0), we instead find |L−(0)| > |L+(0)|. The
RG equations (38) thus predict a flow of the bigger coupling
L± to strong coupling, along with growing J and �, while the
opposite coupling L∓ is dynamically suppressed.

In Fig. 5, we show typical results for the RG flow of
ϕ0 obtained by numerical integration of a fully anisotropic
version of Eq. (38). The numerical results perfectly recover
the qualitative behavior discussed above. We note that these
calculations have also confirmed that all couplings indeed
become isotropic during the RG flow. In physical terms, the
limiting cases of the RG flow in Fig. 5 correspond to phase
pinning at low energies, with the stable asymptotic value
ϕ± = ±π/2 as L± outgrows L∓, cf. Eq. (40). These two values
correspond to the helical fixed points found in Ref. [63].

Instead, for ϕ0 = 0 or ϕ0 = π , the RG flow of the hybridiza-
tion, �(�) ∼ sin ϕ0(�) = 0, is fully blocked. Remarkably, in
terms of Jx = (L+ + L−)/2 and Jy = −i(L+ − L−)/2, we
now recover the RG equations (35) for the fundamentally
different problem of a single MZM coupled to two leads. These
flow equations (with Jz = 0) imply a flow to strong coupling of
J and Jx,y , with fixed ratio Jx/Jy , see Sec. III C. We will return
to the loop qubit device in our discussion of the strong-coupling
limit in Sec. IV E.

IV. STRONG-COUPLING REGIME

In Sec. III we have seen that, in general, the systems studied
here will approach the strong-coupling regime. At very low
energies, in particular for an understanding of the ground state,
one therefore has to go beyond the RG approach. In this section,
we extend concepts developed for a strong-coupling solution
of the TKE via Abelian bosonization [54–58,67] to our more
general setting. Such strategies can lead to additional insights
and even allow for analytical solutions in not too complicated
setups.

The arguments in Sec. III imply that at low energy scales,
we need to keep only isotropic cotunneling amplitudes within
and in between subsectors. In fact, if a subsector contains more
than one lead, the center-of-mass field will be the only linear
combination that is not pinned in the ground state. To access
the ground state, we thus need to study the combined dynamics
of these center-of-mass fields and the Pauli operator strings in
the system. In this way, the complexity of the problem can be
drastically reduced and the physics becomes more transparent,
see Sec. IV A. A second key ingredient of our strong-coupling
approach is tied to the possibility of decoupling certain linear
combinations of boson fields via unitary transformations, see
Sec. IV B. We illustrate this strategy in Secs. IV C–IV E for
the three applications discussed from the RG viewpoint in
Secs. III B–III D.

A. Reduction of bosonic subsectors

Our first step in the construction of the strong-coupling
theory is the reduction of every bosonic subsector B to the
corresponding center-of-mass field,

φ0(x,τ ) = g0

∑
j∈B

φj (x,τ ), g0 = 1√
M

, (41)

where �0 = φ0(x = 0). For M = 1, the field �0 then just
coincides with the single boson field in the respective subsector
(with g0 = 1), but Eq. (41) implies a reduction of complexity
for M = |B| � 2. The usefulness of Eq. (41) follows from
previous Abelian bosonization studies of the strong-coupling
TKE [54,55,64,67,69] and from our arguments in Sec. III. In
fact, for M � 2, couplings within B grow strong, and for M �
3 also become isotropic. (However, isotropy is not necessary
for our discussion below.) In detail, following Refs. [54–56],
we introduce reduced boson fields, �̃j∈B = �j − g0�0, with
the constraint

∑
j �̃j = 0. Next, we recall that intrasubsector

cotunneling amplitudes Jjk (with j,k ∈ B) can be chosen real
positive upon absorbing tunnel phases into lead phase fields.
We hence obtain the Hamiltonian for the subsector as

HB = −
∑

j,k∈B,j 
=k

Jjk cos(�̃j − �̃k). (42)

At strong coupling, the low-energy physics in B exhibits an
analogy to the quantum Brownian motion of a particle with
coordinates �̃j in the (M − 1)-dimensional lattice defined by
the potential HB [54–56,74,75]. The motion along the �0

direction is analogous to that of a free particle with linear
dispersion, inherited from the free boson theory in Sec. II B.
In particular, Eq. (42) does not introduce an energy cost
along this direction. The free field �0 thus dominates the
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low-energy physics. The leading irrelevant operators at the
strong-coupling fixed point then come from tunneling events
connecting neighboring lattice minima [74,75], corresponding
to quantum phase slips between static configurations {�̃j } ≡
{ϕ̃j } minimizing HB under the constraint

∑
j ϕ̃j = 0. Such

phase slips can be triggered by electron-hole pair excitations
(causing Ohmic dissipation) in the leads [54,55], or due to
an applied bias voltage [67]. In fact, scaling dimensions of
non-Fermi liquid corrections at the strong-coupling point can
be obtained by a geometric analysis of the lattice potential in
Eq. (42) [74,75].

Our main interest in this paper is not in effects caused
by such intrasubsector leading irrelevant operators. Instead,
we want to clarify how different center-of-mass boson fields
in a coupled box device interact among themselves and with
Pauli string operators. We thus assume that all reduced fields
in bosonic subsectors are pinned to their static quasiclassical
minima, and then express the dynamics of �j in terms of the
center-of-mass motion,

�j∈B(τ ) = ϕ̃j + g0�0(τ ). (43)

We note that Eq. (43) is appropriate for ground-state properties
but misses the leading irrelevant operators discussed above.
However, their effects are quite well understood and in any
case could be added a posteriori via perturbation theory. Let
us now consider the effects of the projection in Eq. (43) on
intersubsector coupling terms. Inserting Eq. (43) into Eq. (19),
for transitions between subsectors B1 and B2, we find the term

HB1,B2 =
∑
j∈B1

∑
k∈B2

J
({σ })
jk σ 1 · · · σnei(ϕ̃j −ϕ̃k )ei(g1�1−g2�2), (44)

where �1,2 denote the center-of-mass fields for subsectorsB1,2,
respectively, with g1,2 in Eq. (41).

Since in Eq. (42) we gauged away relative tunnel phases
between leads in each subsector, the J

({σ })
jk in Eq. (44) are real

positive up to a global intersector phase ϕ
({σ })
B1B2

. Defining an
effective tunneling amplitude between sectors B1 and B2 with
the corresponding Pauli string {σ },

J
({σ })
B1B2

= e
iϕ

({σ })
B1B2

∑
j∈B1

∑
k∈B2

J
({σ })
jk ei(ϕ̃j −ϕ̃k ), (45)

the intersector cotunneling Hamiltonian is given by

HB1B2 = J
({σ })
B1B2

σ 1 · · · σnei(g1�1−g2�2) + H.c. (46)

The full strong-coupling tunneling Hamiltonian follows by
summing over all subsector pairs. Several comments are now
in order:

(i) The above discussion also holds if one of the subsectors
B1,2 contains just a single lead, where Eq. (46) applies as soon
as the other subsector enters strong coupling.

(ii) Phase differences between individual ϕ̃j (or ϕ̃k) in
Eq. (45) are pinned by the potential terms in Eq. (42). Therefore
also the intersector differences ϕ̃j − ϕ̃k are fixed, and all
contributions to J

({σ })
B1B2

in Eq. (45) add up with a collective

intersector phase ϕ
({σ })
B1B2

.
(iii) Equation (46) implies a drastic reduction in the number

of boson fields at strong coupling. However, the parameter g0

in Eq. (41) implies that the collective fermionic lead obtained

from φ0 in general will represent an interacting fermion theory.
To see this, we note that g̃ = 1/g2

0 = M acts like a Luttinger
liquid parameter [67,72]. For M > 1, we thus have attractive
electron-electron interactions. We note in passing that RG
couplings between isotropized subsectors acquire the same
enhancement factor ∼M = g̃, see Sec. III and Ref. [67].

(iv) We may encounter multiple tunneling paths with dis-
tinct Pauli strings connecting both subsectors, in particular, for
systems with closed loops. The strong-coupling Hamiltonian
then contains a center-of-mass term as in Eq. (46) for each of
these nonequivalent tunneling paths. Their relative phase,

ϕloop = ϕ
({σ })
B1B2

− ϕ
({σ ′})
B1B2

, (47)

coincides with the loop phase in Eq. (25).
We emphasize that the strong-coupling projection of

bosonic subsectors to center-of-mass fields is not limited to
a specific setup. In particular, the same idea allows one to
elegantly discuss nonequilibrium effects due to applied bias
voltages in simply-coupled systems [67], see also Appendix
C. For the resulting effective models, similar to the discussion
in Sec. III A, our approach only depends on whether tunneling
paths between a pair of subsectors contain overall commuting
or anticommuting Pauli strings. For mutually commuting
operators, we arrive at RG equations as in Eqs. (20) and (21).
Now consider two tunneling operators with couplings J

({σ })
B1B2

and J
({σ ′})
B2B3

, which connect subsector B2 with subsectors B1 and
B3, respectively, cf. Appendix A. If the corresponding Pauli
strings anticommute, no RG contributions will be generated
for arbitrary couplings J

({σ ′′})
B1B3

between B1 and B3. However,
if two (or more) paths between a pair of subsectors contain
anticommuting Pauli strings, one obtains the hybridization and
feedback contributions discussed in Sec. III A.

B. Decoupling fields via hybridization terms

A second key ingredient concerns a decoupling of certain
linear combinations of boson fields from cotunneling operators
with Pauli strings. Such strategies go back to the work of
Emery and Kivelson (EK) [79] and are often used for Kondo
systems, see, e.g., Refs. [70,80,83]. In particular, they show
that the relevant low-energy degrees of freedom at strong
coupling usually differ from those at weak coupling. After
an orthogonal rotation of the original set of lead boson fields
{φj (x)} to a new set of boson fields {φα(x)}, which corresponds
to a highly nonlocal operation in terms of the underlying
fermions, one performs a unitary rotation involving Pauli
operators and the boundary phase fields �α = φα(0). One
can thereby trade off the coupling of some boson species
with a Pauli operator in favor of a hybridization term. These
generalized EK decoupling schemes can allow for exact results
at special parameter choices (Toulouse points) [70], where the
bare hybridization, cf. Sec. III, is precisely compensated by the
effects of the unitary transformation.

1. Center-of-mass (charge) field decoupling

We first discuss this strategy for systems with near-
degenerate box charge states described by a spin operator
Sa for box a, see Eq. (10) and Sec. II C. This idea was
discussed for the single-impurity TKE in Refs. [64,68,69].
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For our more general systems with Pauli operators and several
boson fields, our approach differs only in the type of fields
that are decoupled. While for one near-degenerate box, one
can decouple the center-of-mass (‘charge’) field [64,68,69],
for two (or more) coupled near-degenerate boxes, one should
first project to the combined lowest-energy charge state. For
example, in the notation of Eq. (10), we have

Hab � �EaS
a
z + �EbS

b
z +

∑
j,k

(tjkγjγkS+,aS−,b + H.c.),

(48)

with MZMs γj/k on box a/b, respectively. Note that the total
interbox tunneling amplitude, tab = ∑

j,k tjkγjγk , fluctuates as
it depends on the Majorana parities iγjγk = ±1. For nearly
charge-degenerate cases, we have |tab| � �Ea/b ∼ �ng,a/b,
and one can project onto the subspace spanned by the lowest-
energy total charge states, e.g., |0〉ab = |0a1b〉 and |1〉ab =
|1a0b〉 in the notation of Sec. II C.

Using this strategy, one arrives at a single (or conglomerate
of strongly coupled) box(es) attached only to leads on the
outside. With total-charge states described by a collective spin
variable S, one finds a general tunneling Hamiltonian as in
Eq. (10). Using the center-of-mass field �0 and reduced fields
�̃k as in Sec. IV A, we obtain the boundary term, see also
[64,69],

Hb =
∑
j,k

(λjkγjκkS+e
−i(�̃k+ 1√

M
�0) + H.c.) + �ESz, (49)

where �E ∼ �ng is the overall detuning energy between the
total charge states Sz = ±1/2. We now notice that an EK-type

unitary rotation, U = e
−i 1√

M
�0Sz , can decouple the center-of-

mass field �0. The tunneling Hamiltonian, H̃b = UHbU
†, is

then of the form

H̃b =
∑
j,k

(λjkγjκkS+e−i�̃k + H.c.) + (�E − ��′
0)Sz,

(50)

where the term ��′
0Sz comes from the transformation of

Hleads. Clearly, by tuning �E ∼ �ng , one could quench
the last (hybridization) term in Eq. (50). The reduced field
combinations �̃k do not change the box charge state anymore
due to the constraint

∑
k �̃k = 0. Rather these new fields

describe injection of a single electron from lead k, which is
then transmitted into all outer leads with the same probability.
Together with the isotropization of the λjk couplings, this
constitutes a hallmark for the TKE [64,69]. We therefore
expect TKE physics to be ubiquitous in systems of coupled
near-degenerate boxes.

2. Relative (spin) field decoupling

Following a similar strategy, we now give an example for
how to decouple relative (‘spin’) fields in the cotunneling
regime of charge-quantized coupled box systems. We focus on
the single-MZM two-lead junction described by the junction
Hamiltonian H1,2 in Eq. (12), see Fig. 2(c) and Sec. II C, where
the boson fields �x,y refer to the two leads coupled to a single
MZM.

We first switch to linear combinations of the lead bosons,
φc,s(x) = (φx(x) ± φy(x))/

√
2, and analogously for the con-

jugate θν fields. As shorthand, we will just write �c =
(�x + �y)/

√
2 and �s = (�x − �y)/

√
2, with the implicit

understanding that the transformation is also carried out in the
bulk. From Eq. (12), we then obtain

H1,2 = (λxσxe
i �s√

2 + λyσye
−i �s√

2 )ei( �c√
2
−ϕ) + H.c., (51)

where only the �s field couples in an essential manner to the
Pauli operators σx,y .

At this point, we apply the unitary transformation U =
eiσz�s/

√
2. Switching to σ± = (σx ± iσy)/2, the transformed

junction Hamiltonian, H̃1,2 = UH1,2U
†, is given by

H̃1,2 = [λx(σ+ + σ−e
√

2i�s ) − iλy(σ− + σ+e−√
2i�s )]

× e
i( �c√

2
−ϕ) + H.c. (52)

In addition, transformation of the lead Hamiltonian generates a
hybridization term (vF /

√
2)σz�

′
s . The λx/y terms now contain

rapidly oscillating phase exponentials of �s . In the spirit of the
rotating-wave approximation, we drop such highly irrelevant
tunneling operators. We then obtain the boundary Hamiltonian

H̃b = (λxσ+ − iλyσ−)ei( �c√
2
−ϕ) + H.c. + �σz�

′
s , (53)

where � includes a bare coupling value and the above vF /
√

2
term. The field �s has thus been decoupled at the cost of
an interaction between the lead density ∼�′

s and the Pauli
operator σz. However, at the special Toulouse point, � = 0,
the spin-field combination disappears completely. We note that
for the example discussed here, an equivalent decoupling can
also be achieved with a fermionic representation of the leads.
In the remainder of this section, see also Sec. V, we employ
the above ideas to study the strong-coupling regime for the
applications discussed from the weak-coupling RG perspective
in Secs. III B–III D.

C. Two-box device

For the two-box device in Fig. 3, see Sec. III B, according to
our strategy in Sec. IV A, we first identify the important boson
fields that should be kept in the strong-coupling analysis. There
are four such fields, namely the center-of-mass fields for the
left/right box, �L/R , with gL/R = 1/

√
ML/R in Eq. (41), and

the left/right central lead fields, �l/r , with gl/r = 1. We then
have five different intersector couplings: JZ,JX,l/r , and JY,r/l .
Since those effective couplings are obtained by summing over
individual leads, they include enhancement factors ∼ML,R , cf.
Sec. IV A. From the cotunneling Hamiltonian in Eqs. (27) and
(28), the effective strong-coupling theory follows as

Heff =
∑

ν=L,R,l,r

Hleads[φν,θν] − 1

2
(�b + �

†
b), (54)

with the boundary operator

�b = JX,lσxe
i(�l−gL�L) + JX,rσxe

i(�r−gR�R)

+ JY,lσye
i(�l−gR�R) + JY,rσye

i(�r−gL�L)

+ iJZσze
i(gL�L−gR�R). (55)
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For arbitrary device parameters, further analytical progress
is difficult even though always at least one of the charge/spin
combinations of the central lead fields, �c,s = (�l ± �r )/

√
2,

can be decoupled by an EK transformation, see Sec. IV B.
For instance, when studying transport between L/R leads,
a decoupling of �s is most sensible. In any case, numerical
approaches can provide another option to investigate the
physics encoded by Eq. (55), e.g., via quantum Monte Carlo
simulations [85] or the numerical renormalization group [59].

We here instead focus on a simpler yet nontrivial two-box
setup which does allow for analytical progress. Such a device
is shown in Fig. 1, where in contrast to the case depicted
in Fig. 3, we now only have a single central lead (�l). The
strong-coupling Hamiltonian for this device follows directly
from Eqs. (54) and (55) by putting JX/Y,r = 0. The remaining
couplings are given by

Jx = JX,l, Jy = JY,l, Jz = JZ. (56)

We then perform an EK transformation with U = eiσz(�l−gR�R).
Following the steps in Sec. IV B, the transformed Hamiltonian,
H̃eff = Hleads + H̃b, contains the boundary term

H̃b = − 1
2 (�̃b + �̃

†
b) + �σz(�

′
l − gR�′

R),

�̃b = (Jxσ+ − iJzσz)e
−i(gL�L−gR�R) − iJyσ+. (57)

The hybridization parameter � = �0 − vF includes a bare
coupling �0, where vF is due to the EK transformation of
Hleads. Next, we perform an orthogonal rotation of the φL/R(x)
phase fields,

(
φ1

φ2

)
= 1

ḡ

(
gL −gR

gR gL

)(
φL

φR

)
, ḡ =

√
g2

L + g2
R, (58)

resulting in

H̃b = −1

2
((Jxσ+ − iJzσz)e

−iḡ�1 + H.c. + Jyσy)

+ �

ḡ
σz

(
ḡ�′

l + g2
R�′

1 + gRgL�′
2

)
. (59)

The setup with ML = MR = 2 in Fig. 1 now gives access
to an exact solution at the Toulouse point, � = 0, via the
refermionization approach [70]. Indeed, for ḡ = 1, which only
holds for ML = MR = 2, the operator e−iḡ�1 in Eq. (59) can
be expressed as fermion annihilation operator (up to a Klein
factor), and H̃eff thus reduces to a noninteracting fermion
theory for � = 0. In the remainder of this subsection, we thus
assume ML = MR = 2 as in Fig. 1, but for now still allow for
� 
= 0.

At this stage, we employ Eq. (5) backwards to obtain chiral
fermion operators ψν(x) associated with the respective boson
field φν with mode index ν = 1,2,l. Using �ν = ψν(0) and
recalling that �†

ν ∼ κνe
i�ν , see Eq. (5), Klein factors (κν) are

again represented as Majorana operators. In addition, we ex-
press Pauli operators as Majorana bilinears, σα=x,y,z = iγαγ0,
with the overall parity constraint γ0γxγyγz = 1. We now notice
(i) that κν=1 is the only Klein factor which explicitly appears in

H̃eff , and (ii) that iγ0κ1 = ±1 is conserved. Choosing iγ0κ1 =
−1, Eq. (59) yields

H̃b = Jxγx(�†
1 − �1) + i(Jxγy − Jzγz)(�

†
1 + �1)

− iJy

2
γzγx + i�γyγx : 2�

†
l �l + �

†
1�1 − �

†
2�2 : ,

(60)

where : : indicates normal-ordering and 1/
√

α factors from
the short-distance cutoff in Eq. (5) have been absorbed in Jx,z.
Clearly, in the Toulouse limit, we indeed have noninteracting
fermions. In the final step, we switch to chiral Majorana
fermions by writing

ψν(x) = [ξν(x) + iην(x)]/
√

2, (61)

where ξν(x) = ξ †
ν (x) and ην(x) = η†

ν(x) obey the algebra
{ξν(x),ην ′(x ′)} = δ(x − x ′)δνν ′ and so on [70]. The bulk Hamil-
tonian then takes the form

Hleads = − ivF

2

∑
ν

∫ ∞

−∞
dx(ξν∂xξν + ην∂xην), (62)

and the Toulouse Hamiltonian is given by

HToul = Hleads − i
√

2Jxγxη1(0)

+ i
√

2(Jxγy − Jzγz)ξ1(0) − iJy

2
γzγx. (63)

Interaction corrections come from the � term in Eq. (60),

H� = i
∑

ν=1,2,l

�νγyγxξν(0)ην(0), (64)

with couplings �ν ∼ �. The corrections are RG irrelevant.
In fact, for Jx,y,z 
= 0, they have scaling dimension dν=l,2 = 3
and dν=1 = 2, respectively. Finally, noting that �1 ∼ e−i�1 =
e−i(�L−�R )/

√
2, we observe that the central lead (�l) decouples

at the Toulouse point, i.e., no current will flow through this
lead. A detailed discussion of nonequilibrium transport for this
setup is given in Sec. V.

D. Single MZM coupled to multiple leads

Our next example is that of a single MZM coupled to two
or three leads, see Sec. III C. Recall that this case derives
from the two-box setting by taking M = ML leads connected
by simple lead-MZM contacts, while MR = 1 for the right
box (boson field �z). In addition, we have two central leads
(�x,y). With the effectively isotropic Hamiltonian in Eq. (34),
the construction of the strong-coupling theory then proceeds
precisely as in Sec. IV C. In fact, Heff follows directly by
setting MR = 1 in Eq. (55). Using the center-of-mass field
�L = gL

∑M
j=1 �j with gL = 1/

√
M , Eq. (54) holds with

�b =
∑

α=x,y,z

Jασαei(gL�L−�α ), (65)

where the couplings Jα have been specified in Eq. (33).
This strong-coupling Hamiltonian again represents an inter-

acting problem. However, for Jz = 0, analytical progress can
be made by using the charge/spin fields �c,s instead of �x,y . As

discussed in Sec. IV B, the EK transformation U = eiσz�s/
√

2

decouples �s from �b and generates a hybridization term
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from Hleads. Moreover, by an orthogonal rotation (φL,φc) →
(φa,φ0), cf. Eq. (58), we switch to the linear combinations

φa = 1

ga

(
gLφL − 1√

2
φc

)
,

φ0 = 1√
M + 2

⎛
⎝φx + φy +

M∑
j=1

φj

⎞
⎠, (66)

with the parameter

ga =
√

g2
L + 1/2 =

√
M + 2

2M
. (67)

The field φ0 is nothing but the total center-of-mass phase
field for all M + 2 leads, which decouples from the transport
problem. We hence obtain

H̃eff =
∑
ν=a,s

Hleads[φν,θν] − 1

2
(�̃b + �̃

†
b) + �sσz�

′
s ,

�̃b = (Jxσ+ + iJyσ−)eiga�a . (68)

This Hamiltonian describes collective charge transport be-
tween the M outer leads and the charge field �c = (�x +
�y)/

√
2, where the Pauli operators σx,y couple only to �a ,

cf. Eq. (66). We find �s = �0 − vF /
√

2 with the bare hy-
bridization �0.

In general, this is an interacting theory even at the Toulouse
point, �s = 0. Indeed, refermionization of the φa channel
implies attractive electron-electron interactions since g̃a =
1/g2

a > 1 for M > 2, see Eq. (67). The only exception to
this rule arises for M = 2, where ga = 1 and refermionization
obtains a noninteracting fermion theory for �s = 0. We thus
put M = 2 and refermionize the two remaining lead channels
ν = a,s as in Sec. IV C. In addition, we again write Pauli opera-
tors as bilinears of Majorana operators, σα=x,y,z = iγαγ0, with
γ0γxγyγz = 1. Using the fermion operator d = (γx + iγy)/2,
we thus have

σ+ = σ
†
− = idγ0, σz = 1 − 2d†d, (69)

and the tunneling operator �̃b in Eq. (68) has the form

�̃b = iγ0κa(Jxd + iJyd
†)�†

a, (70)

where the cutoff in Eq. (5) has been absorbed in Jx,y . Clearly,
the local parity iγ0κa is conserved. Choosing iγ0κa = +1, we
get the boundary contribution to H̃eff = Hleads + H̃b in the form

H̃b = −1

2
Jx(�†

ad + d†�a) − i

2
Jy(�†

ad
† − d�a)

−�s

(
2d†d − 1

)
: �†

s �s : (71)

Using J± = (Jy ± Jx)/2
√

2 and the chiral Majorana fermion
representation in Eq. (61), we can alternatively write

H̃b = iJ+ξa(0)γx + iJ−ηa(0)γy + �sγxγyξs(0)ηs(0). (72)

Remarkably, the just obtained effective strong-coupling
Hamiltonian H̃eff for the setup in Fig. 1 coincides with the
asymmetric two-channel Kondo model studied in detail in
Ref. [80]. Let us briefly summarize the corresponding physics.
First, in the channel-symmetric case, J− = 0, the system shows
non-Fermi liquid behavior at the Toulouse point, �s = 0.

The leading irrelevant operator ∼�s has scaling dimension
d = 3/2 which determines the power-law exponent of the
temperature- and/or voltage-dependent conductance [70]. For
J− 
= 0, on the other hand, the Toulouse Hamiltonian obtained
from Eq. (72) is a sum of two independent Majorana resonant
level models and thus exhibits Fermi liquid behavior at low
energy scales. Furthermore, at the Toulouse point but otherwise
for arbitrary J±, exact results for the full counting statistics of
nonequilibrium transport have been derived by Gogolin and
Komnik [81]. Their results immediately apply to the present
setting, see also Sec. V.

E. Loop qubit

Last we turn to the strong-coupling regime of the loop qubit
device depicted in Fig. 4. While a limiting case of the problem,
cf. Eq. (73) below, has already been addressed in Ref. [63], in
view of the present experimental interest in this device, we
here give a more complete picture. Following the strategy in
Sec. IV A, we first define a center-of-mass field for the M outer
leads, �L = gL

∑M
j=1 �j with gL = 1/

√
M . We also recall

that �c denotes the boson field for the central lead contacting
two MZMs on the box, see Fig. 4. Our weak-coupling analysis
in Sec. III D has then identified two qualitatively different
candidate strong-coupling fixed points.

The first type is stable and describes an RG flow to-
wards loop phase ϕ0 = ±π/2. Without loss of generality, we
choose ϕ0 = +π/2, where one has a strong complex-valued
cotunneling amplitude L+ and a vanishing amplitude L− in
Eq. (37). We then obtain the strong-coupling theory, Heff =
Hleads + Hϕ0=π/2, with

Hϕ0=π/2 = −J+σ+ei(gL�L−�c) + H.c. + �σz�
′
c, (73)

whereJ+ = ML+/
√

2 and� = 2(�c − �̃), see Sec. III D. For
M = 1, Ref. [63] found that this model can be mapped onto
a fully anisotropic single-channel Kondo model. For M � 2,
as we discuss below, the central lead �c instead dynamically
decouples from the outer leads which in turn develop a TKE
for M � 3.

The second fixed point, taken as ϕ0 = 0 without loss of
generality, is unstable with respect to phase variations δϕ0,
see Sec. III D. This fixed point is qualitatively different from
the first one, as it implies L+ = L− and � ∼ sin ϕ0 = 0. The
strong-coupling theory follows from Eqs. (36) and (37),

Hϕ0=0 = −(Jxσx + Jyσy)ei(gL�L−�c) + H.c. (74)

with Jx,y ∼ λx,y in Eq. (36). Next we use the local fermion
parity representation of Pauli operators, σx,y = iγx,yκ . Since
both Jx and Jy are real, with fixed ratio during the RG flow,
we can construct a new Majorana operator

γ = (Jxγx + Jyγy)/J, J =
√

J 2
x + J 2

y . (75)

The central contact thus couples to a single Majorana operator
γ only, since the relative tunneling phase between the lead and
the two original MZMs is zero (or π ). For other values of ϕ0,
such a reduction is not possible. However, the above reasoning
is not restricted to the cotunneling regime. The same steps also
apply for the tunneling Hamiltonian in Eq. (36), and hence we
expect this effect to always appear so long as ϕ0 = 0 mod π .
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Finally, we note that Eq. (74) has conserved fermion parity
iγ κ = ±1. Choosing iγ κ = 1, we obtain

Hϕ0=0 = −2J cos(gL�L − �c). (76)

Using the results of Ref. [67], where Eq. (76) also appears, we
thus have access to the full nonequilibrium transport character-
istics between the central lead and an arbitrary number M � 2
of outer leads.

The loop qubit device in Fig. 4 is likely most relevant as
a starting point to more complicated Majorana multijunctions
and networks. To guide such experimental tests, let us briefly
summarize how quantum transport is expected to depend on
the loop phase ϕ0. First, since experiments are performed at
small but finite temperature and bias, features of the unstable
fixed point should appear in a region around ϕ0 = 0 mod π

with small but nonzero hybridization. Now consider the case
M = 1. If ϕ0 ≈ 0, our theory predicts qualitatively the same
behavior as for a two-terminal mesoscopic Majorana wire
[45–47]. While transport for half-integer ng , i.e., at a charge-
degeneracy point, exhibits the quantized zero-temperature
conductance G0 = e2/h, transport in the cotunneling regime
will be strongly suppressed. Conversely, as one increases ϕ0,
the conductance should approach G0 largely independent of
ng . Tunneling of charges then is not due to charge-degenerate
states but rather caused by a Kondo resonance [63]. The latter
arises due to many-body screening of the spin-1/2 impurity ∼
(σx,σy,σz) built from three Majorana operators, two at the cen-
tral and one at the simply-coupled lead. Next we consider the
case M � 2, i.e., a multiterminal measurement of conductance
between the central lead and outer leads in Fig. 4. Starting again
with ϕ0 ≈ 0, the device should display the transport behavior
expected for the TKE [53–57,67], with fractional conductance
values at zero temperature and non-Fermi liquid power laws
in the temperature- and/or voltage-dependent conductance. In
the loop qubit device, a natural experiment includes probing
the finite-bias conductance through the central lead, which for
ϕ0 ≈ 0 should reveal the features discussed in Ref. [67]. For in-
creasing ϕ0, the ensuing hybridization � at the central (and all
other) leads will gap out the Majorana fermion pair involved in
σz = iγyγx . As a consequence, transport involving the central
lead will be blocked at temperatures and/or voltages below the
Kondo temperature TK of the box. We thus predict drastically
different low-energy conductance behavior depending on both
the loop phase ϕ0 and on the number of attached leads.

Finally, tuning the system to near half-integer ng is not
expected to qualitatively affect the above conclusions for M �
2, cf. Secs. II C and IV B. However, the Kondo temperature
is expected to strongly depend on ng [64,69]. Therefore,
while the approach to a universal conductance value in the
strong-coupling regime takes place independent of the loop
phase ϕ0 
= 0 and of the gate parameter ng , the finite-energy
behavior will depend on those parameters.

V. TRANSPORT IN A TWO-BOX DEVICE

In this section, we study nonequilibrium transport properties
for the two-box device in Fig. 1 by employing the strong-
coupling theory in Sec. IV C. We consider the system right at
the Toulouse point, with the noninteracting Hamiltonian HToul

in Eq. (63). The resulting physics is expected to be generic

since interaction corrections around the Toulouse point, see
Eq. (64), are RG irrelevant. For closely related models, an exact
solution for the full counting statistics of charge transport has
been described in Refs. [81,83]. In what follows, we adapt
those results to the setup in Fig. 1.

To that end, we first recall that at the Toulouse point, the
central lead ψl will dynamically decouple from the transport
problem, see Sec. IV C. However, a small residual current is
expected to flow through the central lead due to RG irrelevant
interaction corrections not considered below. We thus focus
on a transport configuration, where the ML = 2 (MR = 2)
leads attached via simple contacts to the left (right) box are
held at chemical potential +eV/2 (−eV/2). In particular,
there are no applied voltages between leads attached to the
same box. If the latter were present, quick equilibration of
leads at each box is expected due to the large intrasector
coupling. In contrast, the interbox coupling may be small and
equilibration is perturbed by the central nonsimple junction.
We then consider the outcome of a two-terminal measurement
of the fluctuating time-dependent current, I (t), flowing be-
tween individual pairs of leads on different sides. (The relation
to collective intersector transport is discussed below and in
Appendix C.) During a measurement time tm, the charge q =∫ tm

0 dt ′I (t ′)/e is transferred between the two leads, where the
full counting statistics of q follows from a cumulant generating
function χ (λ). In particular, by taking derivatives with respect
to the counting field λ, one obtains all cumulants from the rela-
tion 〈δnq〉 = (−i)n∂n

λ ln χ (λ = 0). Below we only discuss the
average current I and the current noise S, which are given by

I = e

tm
〈δq〉, S = 2e2

tm
〈δ2q〉. (77)

We next relate transport between individual leads attached
to the left and right box, respectively, to the transformed
fermion basis at strong coupling, cf. Sec. IV C. To this end,
observe that application of the operator �1 ∼ e−i(�L−�R )/

√
2

on an arbitrary system state amounts to transporting one
unit of charge between the left and right side. Recalling
the center-of-mass phases �L = (�L1 + �L2 )

√
2 and �R =

(�R1 + �R2 )
√

2 in terms of the physical leads L1,2 and R1,2,
per tunneling event, the charge transferred at each individual
lead hence is e∗ = e/2. One thus can include the counting field
by letting �1 → e+(−)iλ/4�1 on the forward (backward) time
branch of the Keldysh partition function for HToul [81]. Since
the projected theory in Eq. (63) contains only �1, the inclusion
of a counting field is relevant only for one out of the four
fermion species in the ensuing two-channel Kondo model [83].

After some algebra along the steps in Refs. [81,83], where
only the Green’s functions for the three impurity-Majorana
operators γx,y,z in Eq. (63) have to be updated, we obtain the
zero-temperature generating function,

ln χ (λ) = tm

2π

∫ eV/2

0
dω ln(1 + T (ω)[eiλ − 1]), (78)

with the frequency-dependent transparency

T (ω) =
(
�zω

2 − �xJ
2
y

)2

(
�2

x + ω2
)[(

ω2 − J 2
y

)2 + ω2(�x + �z)2
] . (79)
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We here define the energy scales �x,z ∼ J 2
x,z, where the

proportionality constant also takes into account the rescaling of
Jx,z due to the short-distance cutoff in Eq. (5), see Sec. IV C.
We mention in passing that the finite-temperature variant of
Eq. (78) can readily be expressed in terms of Eq. (79) as well,
cf. Refs. [81,83]. Let us then discuss the predictions of Eq. (78)
for the current-voltage characteristics and for shot noise in this
system.

A. No Majorana hybridization: Jy = 0

We start with the case Jy = 0, where the MZM operators γx

and γz are not hybridized. Defining the channel hybridizations

�1 = �x, �2 = �x + �z, (80)

Eq. (79) takes the simpler form

TJy=0(ω) = (�1 − �2)2ω2(
ω2 + �2

1

)(
ω2 + �2

2

) . (81)

Equation (81) gives the transparency of two competing Majo-
rana channels coupled by the respective channel hybridization
�1,2 to a single impurity and therefore describes the asymmet-
ric two-channel Kondo effect [80,83]. In fact, after a rotation
of the impurity-Majorana sector, HToul in Eq. (63) directly cor-
responds to the Hamiltonian in Eq. (72), with �1/2 = �−/+ ∼
J 2

−/+. The current-voltage characteristics readily follow from
Eqs. (77)–(81),

I = e

h

�2 − �1

�2 + �1

[
�2 tan−1

(
eV

2�2

)
− �1 tan−1

(
eV

2�1

)]
.

(82)

It is instructive to consider several limiting cases of Eq. (82).
First, the current (82) between the left and the right side

vanishes identically for the channel-symmetric case with
�2 − �1 = �z → 0. In fact, this result makes sense because
the dependence of �z on the microscopic tunnel amplitudes
implies that both boxes are decoupled in that limit,

√
�z ∼

Jz ∼ λLλRtLR/E2
C → 0.

Second, a related observation is that by increasing �x at a
fixed value of �z, the current in Eq. (82) will also decrease.
Indeed, for �x/�z → ∞, Eq. (80) implies that we effectively
come back to the limit �1 = �2 again, where the current van-
ishes. We note that in order to increase

√
�x ∼ Jx ∼ λLλl/EC

at fixed �z, the tunnel coupling λl between the left box and the
central lead has to increase. Although charge transfer at the
central contact is dynamically blocked, the coupling �x still
has profound effects on the system. In particular, for �x 
= 0,
the central junction is effectively driven out of resonance by
a misalignment of the spin direction ∼(σx,σy,σz) with respect
to the left-right transport direction ∼�z.

Finally, in the opposite limit �x/�z → 0, we instead ap-
proach the single-channel case with transparency

T�x=Jy=0(ω) = �2
z

ω2 + �2
z

, (83)

where we note that �1 = �x = 0 in Eq. (80) implies �2 =
�z. From Eq. (77), we obtain for (eV,�x) 
 �z the transport

observables

I = e

2h

[
eV − 2�x tan−1

(
eV

2�x

)]
,

S = 2e2

h

[
�x

2
tan−1

(
eV

2�x

)
− �2

x

(eV )2 + 4�2
x

eV

]
. (84)

Defining the backscattered current Ib = (e2/2h)V − I , we
see that for �x 
 eV 
 �z, the shot noise power is given
by S = 2e∗Ib with elementary charge e∗ = e/2. The shot
noise comes from the weakly coupled (�1) channel, while
the strongly coupled (�2) channel is fully transmitted (with
the two-channel Kondo value of the conductance, G = e2/2h)
and thus noiseless. Equation (84) yields the same fractional
Fano factor, F = S/2Ib = e∗/e = 1/2, as recently found in a
related two-channel charge Kondo system [83]. In our case,
a single additional Majorana operator enters the low-energy
theory for �x > 0, given by the Klein factor κl at the central
lead, see Fig. 1. In the Toulouse-point Hamiltonian HToul in
Eq. (63) it is represented by the Majorana operator γx . This
causes the backscattering processes in Eq. (84), described by
the fractional charge e∗ = e/2.

For �x → 0, we also can draw an interesting link to the
single-impurity TKE. Indeed, since the left and right boxes
are now joined by a strong coupling �z, this two-box setup
should be related to the TKE for a single large box with
M = ML + MR = 4 attached leads, cf. Sec. III B. Taking into
account results by Béri [67], we offer a detailed discussion
of this correspondence in Appendix C. The subsector-biased
case considered here, with applied voltage VL,R = ±V/2 for
all leads with j ∈ BL and k ∈ BR , respectively, is slightly
more involved than the one in Ref. [67]. For the two-terminal
conductance measurement in Eq. (84), we here find Gjk =
e2/2h between any pair of individual leads j and k. Instead,
for collective intersector transport, we show in Appendix C
that the left-right conductance is given by GLR = 2e2/h.
The latter arises by summing the current over all leads in
the respective subsectors, and it comprises cross-correlated
Andreev reflections involving the Cooper pair charge e∗

LR =
2e. The generation of these processes is detailed in Fig. 6
and Appendix C. We thus predict the appearance of different
effective charges due to hybridization with the central lead
(e∗ = e/2) and due to finite-energy corrections in collective
left-right intersector transport (e∗

LR = 2e).

B. Finite Majorana hybridization

Next we include the effects of a finite Majorana hybridiza-
tion Jy 
= 0. In order to obtain a qualitative understanding, we
first analyze the limit Jy � max(�x,z,eV ), where the impurity
term −i(Jy/2)γzγx in HToul implies the fixed parity iγzγx =
+1. Equation (63) can therefore be projected to a simpler
single-channel model, H ′

Toul = Hleads + i
√

2Jxγyξ1(0), where
a single MZM (γy) is coupled to a single chiral Majorana mode
(ξ1). The parity constraint iγzγx = +1 here effectively blocks
the other chiral Majorana channel ∼η1. Indeed, for Jy → ∞,
the general transparency expression in Eq. (79) reduces to the
single-channel result

TJy→∞(ω) = �2
x

ω2 + �2
x

, (85)
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(a)

(b)

FIG. 6. Cross-correlated Andreev reflections (AR) generated
from individual correlated AR processes in the two-box device
with Jy = 0 and �x → 0, see Sec. V A. (a) A single AR at the
top left lead, followed by the emission of charge e/2 into all four
leads, forms a correlated AR process as in the TKE [54–56]. Since
formation of charge dipoles between the left leads is suppressed by the
strong intrasector coupling, a nonequilibrium excitation is left behind.
(b) A sequence of two correlated ARs, one each at the top and
bottom left leads, comprises a cross-correlated AR. This allows for
the cotunneling of a Cooper pair by subsequent crossed ARs between
left (in) and right (out) leads. For further discussion, see the main text
and Appendix C.

but with active channel ∼�x instead of �z in Eq. (83). We
thus come back to single-channel results for conductance and
shot noise again, with �x as the only remaining parameter.
Left-right transport then takes place exclusively by cotunneling
via the central lead l in Fig. 1.

We next discuss the voltage dependence of the nonlinear
conductance G = I/V , which is plotted for typical parameters
in Fig. 7. The shown curves have been obtained by numerical
evaluation of Eqs. (77)–(79). First, the conductance for �1 =
Jy = 0 (black solid curve) illustrates the single-channel case
in Sec. V A, where Eq. (84) gives G = e2/2h for eV 
 �2, in
accordance with Fig. 7. Second, turning to �1 
 �2 but still
keepingJy = 0 (dashed green curve, with�1/�2 = 0.001), we

FIG. 7. Two-terminal conductance G = I/V vs voltage V be-
tween two leads attached to different boxes in the two-box device of
Fig. 1. The shown results hold at the Toulouse point, see Eq. (63),
and follow from Eqs. (77)–(79). For detailed discussion, see the main
text.

observe that the conductance vanishes at very low voltages but
recovers to a large value near e2/2h within the window �1 

eV 
 �2. Such a behavior is consistent with our analytical
result in Eq. (82), which describes the asymmetric two-channel
Kondo effect with two competing Majorana channels coupled
to an impurity.

The remaining two curves in Fig. 7 include the effects
of a finite Majorana hybridization Jy , which now can cause
antiresonances or resonances in the voltage dependence of
the conductance. First, for Jy � max(�1,2,eV ), cf. the red
dash-dotted curve for �1/�2 = 0.001 and Jy/�2 = 100, two
of the three impurity-Majorana operators γx,y,z are gapped out
by the large Jy . We thus observe single-channel physics of
the weaker channel, with coupling �1 = �x in Eq. (85). Next,
for �1 
 Jy 
 �2 (blue dotted curve, �1/�2 = 0.001 and
Jy/�2 = 0.1), after approaching the single-channel value at
eV � �2, the voltage dependence of the conductance reveals
an antiresonance for �1 � eV � Jy with subsequent recovery
at eV � �1. Here, in the low-bias regime, a combined channel
as in Eq. (85) is activated. Finally, for general nonzero cou-
plings �1,2 and Jy , we observe a complex interplay between the
asymmetric two-channel Kondo effect and impurity hybridiza-
tion phenomena. However, for our case with three coupled
impurity-Majorana operators, the low-frequency transparency
in Eq. (79) always approaches the unitary limit, T (ω →
0) = 1. This behavior can be rationalized by noting that at
sufficiently low energies, one (rotated) Majorana pair will
effectively be gapped out for Jy 
= 0. The remaining third
Majorana operator then remains free. This MZM provides a
single-channel transport resonance pinned to the Fermi level,
with the universal zero-bias conductance G = e2/2h.

We conclude that the device in Fig. 1 allows for a com-
plete solution of the nonequilibrium transport problem at
the Toulouse point. An interesting open question for future
research will be to address interaction corrections around this
point, which can easily be included in the full counting statistics
formalism used above [81,83].

VI. CONCLUDING REMARKS

In this paper, we have studied quantum transport through
coupled Majorana box devices. Since Majorana boxes repre-
sent an attractive platform for realizing topological qubits,
coupled box devices are of present interest for quantum
information processing applications, see, e.g., Refs. [18,19].
When normal leads are tunnel coupled to such a system,
the spin-1/2 degrees of freedom representing Majorana box
qubits will be subject to Kondo screening via cotunneling
processes, culminating in the topological Kondo effect [53].
Consequently, when different boxes are connected, one en-
counters competing Kondo effects and related phenomena in
a non-Fermi-liquid setting.

For general systems of this type, we have introduced a
powerful and versatile theoretical framework for studying
the low-energy physics and quantum transport. Our theory
employs Abelian bosonization of the lead fermions together
with the Majorana-Klein fusion method of Refs. [54,55]. For a
single box, the resulting problem is purely bosonic and admits
an asymptotically exact solution for the corresponding non-
Fermi-liquid fixed point [54,55]. However, for coupled-box
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systems, we found that additional local sets of Pauli operators
due to nonconserved local fermion parities must be taken into
account. Despite the complexity of the resulting problem, it is
possible to make analytical progress. Approaching the physics
both from the weak-coupling side (see our RG analysis in
Sec. III) and in the strong-coupling regime (see our effective
low-energy theory for the most relevant collective degrees of
freedom in Sec. IV), a rich interplay between different types
of single- or multibox topological Kondo effects has been
encountered.

We have in detail examined the transport characteristics
of the three perhaps most basic devices where nonconserved
fermion parities play a central role. One of these includes
the loop qubit device suggested in Ref. [19]. Importantly, the
methods put forward in this paper also allow one to obtain non-
perturbative transport results in moderately complex setups.
This aspect should be especially valuable in view of the fact
that transport measurements could give clear and unambiguous
nonlocality signatures for Majorana states in such devices.
At the fundamental level, nonsimple lead-MZM junctions
cannot be described by purely 1D nonbranched networks
that admit a solution in terms of the Majorana-Klein fusion
approach, cf. Sec. II C. Therefore transport measurements in
our setups may reveal more profound signatures of Majorana
non-Abelian statistics when compared to the simple junction
setups considered in experiments so far. While a detailed
discussion of alternative non-Majorana transport scenarios,
e.g., for the loop qubit device in Fig. 4, is beyond the scope of
our paper, we hope that our predictions will soon be put to an
experimental test.
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APPENDIX A: EXAMPLES FOR RG CONTRIBUTIONS

We here give further details and examples for the general
RG equations in Sec. III A, which we illustrate for a device
with four coupled Majorana boxes, see Fig. 8. We start with
two examples for tunneling operators connecting leads in
different subsectors and therefore involving Pauli strings. Our
first example, with Pauli string length n = 1, comes from
lowest-order tunneling events connecting a lead ja ∈ Ba to
lead la (resp. rb) in Fig. 8, where the Pauli operator σ 1

x (resp.
σ 1

y ) appears in Eq. (19). Note that lead la (resp. rb) forms its
own bosonic subsector, see Sec. III A. As the second example,
again with n = 1, we could pick a tunneling path connecting
some lead ja ∈ Ba with a lead kb ∈ Bb in Fig. 8. In that case,
the Pauli operator σ 1

z appears in Eq. (19).
Next, we discuss the cotunneling amplitudes J

({σ })
jk appear-

ing in Eq. (20). Such amplitudes connect a lead j = jd ∈ Bd

in a bosonic subsector Bd to another lead k = kc /∈ Bd which
is not part of this subsector, cf. Eq. (19). Here, lead k could
be part of the bosonic subsector Bc in Fig. 8. For example,
taking short tunneling paths connecting leads jd and kc in Fig. 8

FIG. 8. Example for a coupled Majorana box device with four
boxes (a,b,c,d), with symbols as in Figs. 1 and 2. The bosonic
subsectors Ba,b,c,d contain Ma = Md = 2 and Mb = Mc = 1 leads
with simple lead-MZM contacts to the respective box. The device
has four MZM-MZM tunnel bridges and three pairs of central leads
[(la,rb), (lb,rc), and (lc,rd )] with nonsimple lead-MZM contacts. Each
central lead also forms its own subsector. Nonconserved local fermion
parities are encoded by Pauli operators σm=1,2,3

x,y,z . We also illustrate
how RG terms arise from contractions of cotunneling operators: (i)
For ja 
= ka ∈ Ba , the second term in Eq. (20) is due to contraction

of J
(σ 1

y )
jarb

and J
(σ 1

y )
rbka

(dashed dark blue line) which renormalizes Jjaka

(solid dark blue). (ii) For lead indices jd 
= md ∈ Bd , the contraction

of Jjdmd
and J

(σ 3
z )

mdkc
(dashed cyan) renormalizes the amplitude J

(σ 3
z )

jd kc

(solid cyan), cf. Eq. (21).

(cyan lines), the Pauli string reduces to σ 3
z . Alternatively, lead

k may correspond to a nonsimple lead-MZM contact. In Fig. 8,
such leads are referred to as central leads. Such a lead forms a
bosonic subsector B with M = |B| = 1 by itself. For example,
identifying lead k = rd (resp., k = lc) in Fig. 8, the Pauli string
reduces to the single Pauli operator σ 3

x (resp., σ 3
y ). In either

case, pairs of cotunneling operators will only contribute to the
RG flow of J

({σ })
jk if their contraction yields precisely the Pauli

string σ 1 · · · σn, see Fig. 8 (cyan lines).
The terms on the r.h.s. of Eq. (21) describe the renormal-

ization of intersector cotunneling amplitudes with j ∈ B1 and
k ∈ B2 due to the combination of an intersector tunneling with
intrasector transitions in either sector B1,2. On top of this, one
can have additional terms that involve intermediate excursions
into different sectors B 
= B1,2. Such terms have the schematic
form

dJ
({σ })
jk

d�
∼

∑
m/∈(B1,B2)

J
({σ ′})
jm J

({σ ′′})
mk , (A1)

which contribute only if the contraction of both Pauli strings
is consistent with (σ 1′ · · · σn′

)(σ 1′′ · · · σn′′
) ∼ σ 1 · · · σn. An

example for such a process is shown in Fig. 9 using the same
system as in Fig. 8. The contracted Pauli strings here share two
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FIG. 9. Illustration of additional contributions to the RG flow of
cotunneling amplitudes connecting lead ja ∈ Ba and lead lb beyond
those specified in Eq. (21), using the same device as in Fig. 8. By

contracting the two cotunneling operators with amplitudes J
(σ 1

y σ 2
z σ 3

z )
ja la

(dashed dark blue) and J
(σ 1

x σ 2
y σ 3

z )
la lb

(dashed cyan), the composite Pauli
string is given by (σ 1

y σ 2
z σ 3

z )(σ 1
x σ 2

y σ 3
z ) ∼ σ 1

z σ 2
x . This contraction con-

tributes to the RG flow of J
(σ 1

z σ 2
x )

ja lb
(green solid).

overlapping anticommuting Pauli operators and hence overall
are commuting.

APPENDIX B: RG FLOW FOR THE TWO-BOX EXAMPLE

We here discuss the isotropization of equivalent couplings
for the two-box device with ML = 3 and MR = 2 in Fig. 3,
see Sec. III B, where equivalence is meant with respect to the
Pauli operator content. In order to check whether the system
exhibits isotropization, we perform a numerical integration of
the RG equations and test how anisotropies present in the bare
(initial) couplings develop during the RG flow, cf. Ref. [63].
Using the couplings in Eqs. (27) and (28), we define average
couplings

JL = 1

ML(ML − 1)

∑
j 
=k∈BL

(JL)jk,

JX,l = 1

ML

∑
k∈BL

(JX)lk,

(B1)

JY,r = 1

ML

∑
k∈BL

(JY )rk,

JZ = 1

MLMR

∑
j∈BL,k∈BR

(JZ)jk,

and similarly for JR , JX,r , and JY,l . We then monitor the
anisotropy measures, �x(�), for all seven coupling families
(indexed by x), see Sec. III B. These measures are defined from

10−610−410−2
100102

1

0.5

0

FIG. 10. RG flow of the anisotropy measures �x , cf. Eq. (B2),
for different coupling families x in the two-box device of Fig. 3. The
weak-coupling RG approach breaks down at � = �∗, where couplings
start to diverge. We show �x vs �∗ − � on a logarithmic scale. All
coupling families become isotropic during the RG flow.

the standard deviation of the coupling family normalized by
the respective average value in Eq. (B1), see also [63],

�2
JL

= 1

ML(ML − 1)

∑
j,k∈BL,j 
=k

[(JL)jk − JL]2

J 2
L

, (B2)

and likewise for the other coupling families. Figure 10 shows
the results of a numerical solution of the RG equations (29)–
(31) with a random choice for the initial couplings, cf. Ref. [63].
We have checked that the qualitative behavior seen in Fig. 10 is
largely insensitive to the chosen random realization. Figure 10
shows that all anisotropies become gradually suppressed dur-
ing the RG flow, which implies effectively isotropic behavior
within each coupling family and thereby justifies Eq. (32).

APPENDIX C: BIASED LEADS IN SIMPLY-COUPLED
MAJORANA BOXES

We here relate our results for the biased two-box setting in
Sec. V with those of Béri [67], see also Fig. 6. We first note
that for a decoupled central lead in Fig. 1, in equilibrium we
should recover a single-impurity TKE of the combined island
withM = ML + MR leads. The distinction into different boxes
then becomes obsolete. Since Pauli strings are not involved
anymore, there is no a priori reason for a specific partitioning
of leads into subsectors. However, such a splitting follows from
the applied bias voltages in a transport measurement, where
leads in two subsectorsBa,b are biased relative to each other. In
Sec. V, we have considered the case Ma,b = ML,R = 2, while
Béri [67] investigated the case of just one biased lead (Ma = 1)
in an otherwise equilibrium M-terminal TKE, Mb = M − 1.
We next recall the strong-coupling Hamiltonian for this system,
see Sec. IV A,

Hab = −J cos(ga�a − gb�b) = −J cos(g�), (C1)
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with the collective intersector coupling J and the center-of-
mass phase fields �a,b, cf. Eq. (41), for leads in subsectors
Ba,b, where ga,b = 1/

√
Ma,b. Equation (C1) defines the linear

combination � with g =
√
g2

a + g2
b .

We can now obtain exact nonequilibrium results for charge
transport between Ba,b by following the steps in Ref. [67].
To arrive at a backscattering model from Eq. (C1), one first
expresses � = (�L + �R)/

√
2 in terms of left- and right-

moving chiral boson fields φL/R . One can then define the
backscattering interaction gbs = g2/2 [67], where Eq. (C1)
gives Hab = −J cos[

√
gbs(�L + �R)]. The fractional charge

e∗ governing elementary charge transfer processes between
subsectors in this non-Fermi-liquid system is given by the ratio
[67]

e∗

e
= 1

gbs
= 2MaMb

Ma + Mb

. (C2)

In particular, for Ma = 1 and Mb = M − 1, Eq. (C2) yields
the TKE result for a single biased lead, e∗

TKE = 2e(M − 1)/M ,
see Refs. [56,67]. For the symmetric case Ma = Mb = M/2,
Eq. (C2) instead gives e∗ = eM/2. For instance, putting M =
2, we confirm that transport is due to cotunneling of electrons
[45–47]. In our two-box setup with M = 4, Eq. (C2) instead
gives e∗

LR = 2e. Transport between the left and right side is
thus mediated by the cross-correlated Andreev reflection (AR)
of Cooper pairs, cf. Fig. 6, where one expects the conductance
GLR = 2e2/h. However, in Sec. V A, we found that a two-
terminal conductance measurement between a pair of individ-
ual leads j ∈ BL and k ∈ BR will give the two-channel Kondo
value Gjk = e2/2h. The conductance GLR instead follows
by summing over all participating leads, GLR = ∑

j,k Gjk =
2e2/h, representing a collective intersector conductance
measurement.

As illustrated in Fig. 6, one can further reconcile the
physics encoded by e∗ in Eq. (C2) with previous work on
the TKE [54–56,67]. A correlated AR process comprises an
AR at one lead (absorbing charge 2e) along with the equal-
probability emission of charge 2e/M into all M leads, without
net charge accumulation on the island. For a single biased
lead, this yields e∗

TKE above. Next we note that between leads
in a biased subsector Ba , charge dipoles are forbidden by
strong intrasector couplings. In order to return to an allowed
configuration, a total of Ma correlated AR events (one from
each lead in Ba) have to participate in transport. Counting after
this sequence, each lead in Ba has emitted charge

qa = 2e

[
M − 1

M
− (Ma − 1)

1

M

]
= 2e

Mb

M
, (C3)

with M − Ma = Mb. Similarly, we have qb = −2eMa/M

absorbed charges per lead in Bb, due to Ma split Cooper
pairs. The total, collective charge transported by an effective
low-energy process between the two subsectors then is e∗ =
Ma|qa| = Mb|qb|, as reported in Eq. (C2).

From the viewpoint of two-terminal transport between
individual leads j ∈ Ba and k ∈ Bb, cf. Sec. V, the total
outgoing (incoming) charge is democratically distributed into
(gathered from) all leads in the opposite sector. Therefore
only the effective charge e∗

jk = qa/Mb = −qb/Ma = 2e/M is
transferred directly from lead j to k. Again summing over
leads in the subsectors, one recovers e∗ = ∑

j,k e∗
jk . For our

M = 4 case at hand, in two-terminal transport we reproduce
the two-channel Kondo result in Sec. V A, e∗

jk = e/2, while
collective intersector transport involves Cooper pairs with
e∗
LR = 2e in Eq. (C2).
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