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One of the best known causes of dissipation in ac-driven quantum systems stems from photon absorption
causing transitions between levels. Dissipation can also be caused by the retarded response to the time-dependent
excitation, and in general gives insight into the system’s relaxation times and mechanisms. Here we address the
dissipation in a mesoscopic normal wire with superconducting contacts, that sustains a dissipationless supercurrent
at zero frequency and that may therefore naively be expected to remain dissipationless at a frequency lower than
the superconducting gap. We probe the high-frequency linear response of such a normal metal/superconductor
(NS) ring to a time-dependent flux by coupling it to a highly sensitive multimode microwave resonator. Far from
being the simple, dissipationless derivative of the supercurrent-versus-phase relation, the ring’s ac susceptibility
also displays a dissipative component whose phase dependence is a signature of the dynamical processes occurring
within the Andreev spectrum. We show how dissipation is driven by the competition between two mechanisms.
The first is the relaxation of the Andreev level distribution function, while the second corresponds to microwave-
induced transitions within the spectrum. Depending on the relative strength of those contributions, dissipation
can be maximal at π , a phase at which the proximity-induced minigap closes, or can be maximal near π/2, a
phase at which the dc supercurrent is maximal. We also find that the dissipative response paradoxically increases
at low temperature and can even exceed the normal-state conductance. The results are successfully confronted
with theoretical predictions of the Kubo linear response and time-dependent Usadel equations, derived from the
Bogoliubov–de Gennes Hamiltonian describing the SNS junction. These experiments thus demonstrate the power
of the ac susceptibility measurement of individual hybrid mesoscopic systems in probing in a controlled way the
quantum dynamics of Andreev bound states. By spanning different physical regimes, our experiments provide
unique access to inelastic scattering and spectroscopy of an isolated quantum coherent system, and reveal the
associated relaxation times. This technique should be a tool of choice to investigate topological superconductivity
and detect the topological protection of edge states.

DOI: 10.1103/PhysRevB.97.184505

I. INTRODUCTION

Phase-coherent rings threaded by an Aharonov-Bohm flux
are known to exhibit nondissipative, persistent currents. This
is true of both nonsuperconducting (normal) mesoscopic rings
[1–4] and hybrid normal metal–superconductor (NS) rings
[5,6]. In both cases the thermodynamic nondissipative current
results from the phase sensitivity of the system’s eigenenergies.
The profound analogy between the two systems has been noted
since the early predictions of persistent currents in normal rings
[7]. It stems from phase-dependent boundary conditions that
induce a phase-dependent spectrum. The phase ϕ is linked to
the Aharonov-Bohm flux � via ϕ = −2π �

�0
, where �0 is the

normal flux quantum h/e in the case of a pure normal ring, and
is the superconducting flux quantum h/2e in the case of an NS
hybrid ring. The current-phase relation at equilibrium has been
measured by applying a static flux, corresponding to a dc phase
bias [2,3,6,8,9]. In contrast, the investigation of the dynamics
of these systems is a more recent experimental and theoretical
endeavor [10–15]. The tool of choice is the measurement of
the magnetic susceptibility χ = δIac/δ�ac which relates the
current response δIac to a time-dependent ac flux excitation
δ�ac exp −iωt .

The onset of dissipation in a phase-driven system, measured
by the real part G of its admittance Y = χ/iω, is still an open

question. There have been two principal theoretical approaches
to the problem of the conductance of a phase-coherent sample.
The first is the Kubo approach derived from the calculation of
the linear response of a conductor to an ac electromagnetic
field. In this approach, irreversibility is brought about by
coupling the electronic system to a thermal reservoir with a
large number of degrees of freedom (e.g., a phonon bath).
The second is the Landauer-Büttiker approach in which the
conductance of a mesoscopic system connected to electron
reservoirs is equal to the transmission coefficient. The equiv-
alence between these two definitions of the conductance has
been demonstrated [16] in the case of a voltage-biased system
with a continuous spectrum. In that case the conductance is
proportional to the elastic scattering time with small quantum
corrections related to the phase coherence time. However it
has been shown that this equivalence is not valid anymore in
a discrete spectrum system [17]. What happens then when an
electronic system is isolated from incoherent reservoirs, either
with the use of a ring without contacts or via superconducting
contacts?

Landauer and Büttiker addressed this basic question in a
pioneering work [18,19] considering a loop geometry. They
predicted that the response to an ac flux should contain a dissi-
pative component of admittance due to the delayed relaxation
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FIG. 1. Typical Andreev spectrum of a long SNS junction in the
diffusive regime. Note the phase dependence and the 2π periodicity
of the spectrum, and the opening of the minigap. Spectrum is
from [14].

of populations back to the instantaneous equilibrium value.
This flux-dependent ac conductance G(�) is proportional to
the inelastic scattering time, contrary to the Drude conductance
of a connected system that is related to the elastic scattering
time.

This prediction, made in the context of mesoscopic normal
metallic rings, could not be observed experimentally even
in 105 rings [20,21] due to the smallness of the persistent
current in normal diffusive mesoscopic rings. In the present
paper we focus on the case of a single hybrid NS ring,
where this fundamental difference between voltage biasing
with reservoirs and flux biasing in a ring geometry persists in
the limit of systems with a continuous spectrum. The signature
of this phase-dependent dissipation is much greater thanks
to the spectral correlations borne from the superconducting
boundary conditions. This allows us to reveal the full phase
and frequency dependence explored in this article.

In addition to addressing the basic question of the conduc-
tance of an isolated electronic system, our work sheds new light
on the physics of a large number of Andreev bound states,
microscopic degrees of freedom of Josephson junctions that
can be used to perform quantum computation [22–24].

Due to the energy gap � in the superconducting electrodes,
a low-energy electron (hole) is retro-reflected into a hole
(electron) at the interface between the N and S metals in a
process called Andreev reflection. This process leads to the
emergence of Andreev bound states (ABSs), superpositions
of electron and hole states confined in the N part of the
junction at energies below the superconducting gap. These
states were observed by spectroscopy experiments [25–28]
in junctions with few channels. They are phase-dependent
and carry the Josephson supercurrent IJ (ϕ) = ∑

fn(ϕ)in(ϕ)
where fn is the Fermi distribution function at energy εn(ϕ)
and the state of energy εn carries a current in = − 2π

�0
∂εn/∂ϕ.

More specifically, we focus on the so-called long diffusive
junction limit where the length l of the junction is greater
than the superconducting coherence length in the normal metal
ξ = √

h̄D/�, with D the diffusion coefficient in the normal
metal. The Andreev spectrum exhibits a phase-dependent
minigap as shown in Fig. 1. The minigap only depends on
the properties of the normal metal since its amplitude at ϕ = 0

is Eg = 3.1ETh, where the Thouless energy ETh = h̄/τD is the
energy associated with the diffusion time τD = l2/D [29–31].
As measured by tunnel spectroscopy [32], in the continuous
spectrum limit, the minigap closes at ϕ = π and reads

Eg(ϕ) = Eg| cos(ϕ/2)|. (1)

We are interested in probing the system close to its
thermodynamic equilibrium. We have therefore designed a
linear response experiment in which one measures both the
nondissipative χ ′ and dissipative χ ′′ current response functions
of an NS ring [11,12]. We measure this response by inductively
coupling an NS ring to a multimode superconducting resonator,
thereby implementing both an ac phase bias and an ac current
detection at the resonator’s eigenfrequencies.

We find that at low frequency the nondissipative current
response χ ′ corresponds, as expected, to the phase derivative
of the supercurrent flowing through the ring, thus revealing
the current-phase relation. A more striking finding is the
existence of a dissipative response χ ′′, revealing that the
supercurrent exhibits thermal noise, as discussed in [12]. In
that paper we analyzed the low-frequency, high-temperature
dissipation induced by the thermal relaxation of the population
of the Andreev levels and a good agreement was found with
theoretical predictions obtained by solving the time-dependent
Keldysh-Usadel equations [13,33]. Time-dependent Usadel
equations [13,33,34] as well as numerical simulations [14] also
predict another dissipation mechanism related to microwave-
induced transitions within the Andreev spectrum. This second
contribution, dominant at high frequency and low temperature,
shows up as an absorption peak at π , increasing as one goes
deeper into the quantum regime (h̄ω > Eg > kBT ). Even if
some indications of this second type of dissipation were found
in [13] in the low-temperature regime, the experiments were
difficult to analyze because of screening effects.

In this paper we present a complete quantitative analysis
of experimental data over a wide frequency and temperature
range on two different samples and we show how dissipation
moves from one type to the other, in good agreement with these
numerical and theoretical results [14,34].

The paper is organized as follows: In the first section we
describe the experimental setup used to probe the dynamics
of Andreev bound states over a wide frequency range. In the
second section we give an overview of our experimental results.
The complete analysis is presented in the third section.

II. EXPERIMENTAL SETUP

The experiment consists of inductively coupling an NS
ring to a multimode λ/4 strip-line superconducting resonator
operating between 190 MHz and 16 GHz. The aim is to
determine the complex magnetic susceptibility χ (ϕ,ω,T ) =
χ ′(ϕ,ω,T ) + iχ ′′(ϕ,ω,T ) of the ring which relates the ac
current response I (ϕ,ω,T ) to the ac flux through the loop
δφac exp −iωt in the linear response regime. The frequency ω

is restricted to the successive resonances of the resonator ωn.
The dc superconducting phase difference ϕ at the boundaries
of the N wire is imposed by a magnetic flux � created by a
magnetic field perpendicular to the ring plane. The ac flux
is generated by the ac current in the resonator. A similar
technique based on single-mode resonators was already used
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FIG. 2. Schematic representation of the NS ring inserted in the
resonator. The resonator has an inductance Lr . Lc and LN are
respectively the coupling inductance and geometrical inductance of
the normal wire, the total geometrical inductance of the NS ring being
Ll = Lc + LN . G(�) = χ ′′(�)/ω is the dissipative component of the
admittance of the NS ring; χ ′(�)/ω is its nondissipative part.

for the investigation of short Josephson junctions embedded in
superconducting rings [35–37]. More related to the present
work, the impedance of an array of SNS dc SQUIDS was
measured using a superconducting multimode resonator [38].
This work focused on the temperature dependence of the effec-
tive inductive and resistive components of the SNS SQUIDs
whereas our work focuses instead on the phase dependence
which bears most of the signature of the dynamics of Andreev
states [14,34].

A. Principle of the experiment

The magnetic susceptibility of the NS ring χ modifies the
inductance Lr of the resonator and thus the eigenfrequencies
ωn = (2n + 1)

√
1/LrC and quality factors Qn. The induced

variations of resonance frequency and quality factor are related
to the variations of the real and imaginary components �L′

r

and �L′′
r of Lr according to �ωn

ωn
= −�L′

r

2Lr
and �( 1

Qn
) = �L′′

r

Lr
.

This leads to the following relations between the measured
susceptibility χm = χ ′

m + iχ ′′
m and the perturbation of the

resonator’s eigenmodes �ωn and �( 1
Qn

):

χ ′
m = −2

Lr

L2
c

�ωn

ωn

, (2)

χ ′′
m = Lr

L2
c

�

(
1

Qn

)
. (3)

Lc is the coupling inductance which is the part of the loop in
parallel with the SNS junction; see Fig. 2. Due to screening of
the applied flux by the finite geometrical inductance of the loop
Ll = Lc + LN , complex susceptibilities χ and χm are related
through χm = χ/(1 − Llχ ). The measured susceptibilities χ ′

m

and χ ′′
m are therefore related to the intrinsic susceptibilities χ ′

and χ ′′ according to

χ ′
m = χ ′

(1 − Llχ ′)
+ Llχ

′′2

(1 − Llχ ′)2 + (Llχ ′′)2
, (4)

χ ′′
m = χ ′′

(1 − Llχ ′)2 + (Llχ ′′)2
. (5)

When both Llχ
′ � 1 and Llχ

′′ � 1, these flux-screening
corrections are negligible, so that χ ′

m = χ ′ and χ ′′
m = χ ′′.

Outside of this regime [11,39], screening leads to a dc flux
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FIG. 3. The linear response is measured by inserting an NS ring
in a resonator. Left: An NS ring is inserted in the middle of a
λ/4 multimode resonator. A FIB-deposited W wire ensures a good
connection between the ring and the resonator. The inset shows a
close-up view of sample A. Right: Micrograph of sample B.

rescaling and to hysteresis at low temperature when the
parameter β(T ) = LlχJ (T ) � 1. We have investigated a range
of parameters where both Llχ

′ and Llχ
′′ are smaller than 1

but not necessary very small. In the latter case, these screening
corrections must be properly taken into account in order to
compare our results to theoretical predictions. We also note
that the analysis of the dissipative response is more delicate
than the nondissipative one since χ ′′ is mixed with χ ′ within
first order of Llχ

′.
These screening effects have led us to design samples of

different sizes which enable the exploration of both regimes
of low temperature and high frequency as well as the opposite
regime of high temperature and low frequency. Experimentally
we have no access to the phase-independent components of
χm which would require a very accurate comparison of the
resonances with and without the sample. We measure instead
accurately the phase dependence of χ ′

m and χ ′′
m. Screening

corrections on the phase-dependent component of χ ′′ increase
drastically with frequency even at high temperature for which
Llχ

′ � 1. As discussed in the following, this leads to a
dependence in the measured dissipative response entirely due
to screening denoted χ ′′

s . We will show that we can take
advantage of this spurious phase dependence to determine the
phase-independent value of χ ′′ which cannot be determined
otherwise.

B. Sample fabrication

The linear response is measured by inserting an NS ring in
a resonator (see Fig. 3). The resonator consists of two parallel
superconducting Nb meander lines (1 μm thick, 2 μm wide,
20 cm long, and 4 μm apart) patterned on a sapphire substrate.
The NS ring connects the two lines at one end of the resonator,
turning it into a λ/4 line with a fundamental frequency of
190 MHz, and harmonics 380 MHz apart. One of these lines
is weakly coupled to a RF generator via a small on-chip
capacitance whose value is adjusted in order to preserve the
high Q of the resonances (on the order of 10 000); the other one
is grounded. The high-Q factors enable detection of variations
as small as 10−8, thus providing very accurate ac impedance
measurements of mesoscopic objects. To make the NS rings,
an Au wire is first fabricated by e-beam lithography and
deposition of high-purity gold 99.9999% (sample A), 99.999%
(sample B). Since sapphire is an insulating substrate, we get
rid of charging effects using a conducting espacer (300Z from
Showa Denko Europe GmbH) over the usual PMMA/MAA
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resist. The S part is deposited in a second alignment step by
sputtering of a Pd/Nb bilayer (6 nm Pd, 100 nm Nb). The
ring is connected to the Nb resonator in a subsequent step,
using ion-beam assisted deposition of a tungsten wire in a
focused ion beam (FIB) microscope. This process creates a
good superconducting contact between the resonator and the
Pd/Nb part of the ring. The 6-nm-thick Pd buffer layer ensures
a good transparency at the NS interface, as demonstrated by the
amplitude of the normal-state conductance and critical current
measured with dc transport measurements on control SNS
junctions which have the same geometric properties and are
fabricated simultaneously. Sample A has a critical current and
loop inductance which are much larger than those of sample
B. It is adequate for the investigation of the high-temperature
and low-frequency regimes but not the low-temperature and
high-frequency regimes because of screening effects. In con-
trast sample B has a much smaller critical current and loop
inductance and thus has negligible screening effects. This
sample is therefore more adapted for the high-frequency and
low-temperature regimes. For sample A, the Au wire is 0.3 μm
wide, 50 nm thick, and with a 1-μm-long part that is not
covered with Pd/Nb. The normal-state resistance measured on
a co-evaporated control sample is 1 �. The loop inductance is
estimated to be Ll = 10 ± 1 pH. The Au wire in sample B is 70
nm wide, 30 nm thick, and 1.5 μm long. The estimated normal-
state resistance is 10 �; the loop inductance is 3 ± 0.3 pH.

III. OVERVIEW OF THE EXPERIMENTAL RESPONSE

As shown in Figs. 4 and 5 we find a rich evolution of the
phase dependence χm(ϕ) with temperature and frequency. At
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FIG. 4. Evolution of the experimental response with frequency
at high temperature. Nondissipative χ ′

m (top) and dissipative χ ′′
m

(bottom) response at several frequencies and T = 1.2 K. Note that
the amplitude between 0 and π of χ ′

m does not depend on frequency
whereas its harmonic contents do. For the sake of clarity, χ ′′

m(2 GHz)
and χ ′′

m(2.8 GHz) have been arbitrarily offset.

the lowest accessible frequency (f0 = 190 MHz) and high
temperature (T = 1.2 K � 17ETh), the nondissipative com-
ponent of χm measured on sample A displays a cosine phase
dependence which is the derivative of the usual Josephson
current-phase dependence, sinusoidal for T � Eg(ϕ = 0) [9]
with a decreasing amplitude as the temperature increases. The
signal becomes highly nonsinusoidal at high frequency with a
local maximum around ϕ = 0 and a sharper phase dependence
around π . This is a sign of a great harmonic content with in
particular an important contribution of the second harmonic.
These data show in particular that the phase dependence of the
kinetic inductance of an SNS junction Lk = 1/χ ′ increases
with frequency with also a surprising increase of LK with
φ close to φ = 0. Correlatively, the dissipative component
χ ′′

m(ϕ) strongly depends on frequency. The second harmonic
clearly dominates at low frequency and displays a sharp dip at
π . At high frequency instead, this phase dependence evolves
with the emergence a sharp peak at π . The amplitude of this
dissipation peak increases at low temperature as shown on
Fig. 5. These data are the signature of large nonadiabatic
contributions to the phase-dependent response of NS rings
which will be analyzed in detail in the following. On sample
A, one needs to consider screening corrections distorting the
phase dependence of χ ′

m and χ ′′
m at low temperature as will be

discussed in the next section. In contrast these corrections are
negligible on sample B for which one can safely assume that
χ = χm over the whole temperature and frequency range inves-
tigated. Data shown in Fig. 5 at 15.5 GHz show similar phase
dependence for χ ′ and χ ′′ with peaks at π increasing at low
temperature.

IV. ANALYSIS

In the following we compare these results with theoretical
expectations based on the linear response calculation relating
the susceptibility to the phase-dependent Andreev eigenstates
derived from the diagonalization of the Bogoliubov–de Gennes
Hamiltonian of a diffusive SNS junction [12,14] according to

χ (ω,ϕ,T ) = ∂IJ

∂ϕ
−

∑
n

i2
n

∂fn

∂εn

iω

τ−1
in − iω

−
∑

n,m�=n

|Jnm|2

×fn − fm

εn − εm

ih̄ω

i(εn − εm) − ih̄ω + h̄γND
. (6)

Jnm is the matrix element of the current operator between the
Andreev eigenstates |n〉 and |m〉 of energies εn(ϕ) and εm(ϕ);
fn is the Fermi Dirac function at energy εn.

The first term is the zero-frequency susceptibility of the ring,
χ (ω = 0) = ∂IJ /∂ϕ. We call it the Josephson contribution
χJ . The second and third terms only exist at finite frequency
and describe the nonadiabatic, dynamical responses due re-
spectively to the relaxation of the populations χD and to the
transitions between the levels induced by microwave photon
emission or absorption χND. The quantities 1/τin and γND are
respectively the diagonal and nondiagonal relaxation rates of
the system determined by its interaction with its thermody-
namic environment. These are phenomenological parameters
which are assumed to be phase-independent. Whereas χD and
χND do not depend on γND in the continuous spectrum limit,
they explicitly depend on γD . We indeed show in the following
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FIG. 5. Evolution of the measured response with temperature. Evolution of χ ′
m(ϕ) (top) and χ ′′

m(ϕ) (bottom) with temperature. Sample
A: f1 = 560 MHz < ETh/h (left) and f5 = 2 GHz � ETh/h (right). Sample B: f = 15.5 GHz. Curves have been shifted vertically so that
χ ′

m(ϕ = π ) + χ ′
m(ϕ = 0) = 0 and χ ′′

m(ϕ = 0) = 0. In both cases the calibration of the susceptibility is computed from the perturbation of the
resonances using expressions (2) and (3).

how to extract τin from the measurements of χD . It is probably
incorrect to neglect the phase dependence of τin in the limit
where temperature is below the minigap; we however only
measured τin outside of this limit.

Dissipation is described by the imaginary components of the
diagonal and nondiagonal susceptibilities χ ′′

D and χ ′′
ND. Their

different phase dependencies reveal their different physical
origins as sketched in Fig. 6. χ ′′

D is proportional to the square
of the single level current and must be zero at phases that
are multiples of π . In contrast, χ ′′

ND(ϕ) is determined by the
interplay of the phase-dependent nondiagonal elements of the
current operator, the occupation of the levels, and the presence
of the minigap in the density of states. Its phase dependence
therefore strongly depends on the relative amplitude of h̄ω,
kBT , and Eg . In addition, χ ′′

ND(ϕ) has a phase-independent
part that is expected to ultimately give the normal conductance
when no trace of coherence is left. In the regime of high
temperature and low frequency the nondiagonal elements of the
current operator lead to a phase dependence of χ ′′

ND(ϕ) opposite
to χ ′′

D(ϕ) whereas at low temperature dissipation is depressed
except at π due to the minigap, leading to a dissipation peak at
π in the phase-dependent part of the dissipation. These phase
and frequency dependencies are discussed in more detail in
Appendix A. The analysis of our experimental results reveals
these contributions and the physical mechanisms underpinning
them. We first discuss data on sample A that reveal the adiabatic
response as well as the dynamic response in the low-frequency
and high-temperature regime. We also determine the phase-
independent contribution to the conductance that is revealed
through flux-screening effects. In contrast, data on sample B
(for which screening corrections are negligible) show unam-
biguously a dissipation peak at π related to the presence of the
minigap.

Notations. We use the following notations: δϕ1−ϕ2ξ =
ξ (ϕ1) − ξ (ϕ2) and δξ is the maximum absolute amplitude of
the phase dependence of ξ which stands for χ ′, χ ′′, χm, or χ ′′

m.

A. Adiabatic response χJ

For frequencies such that ω � γD � γND, the diagonal and
nondiagonal contributions are negligible, so χ ′(ϕ) = χJ (ϕ)
yields the phase derivative of the current-phase relation at
equilibrium. The phase dependence of χ ′ is obtained from
χ ′

m(ϕ) after correction of the self-inductance effects via

δϕ−0χ
′
m = χ ′

m(ϕ) − χ ′
m(0) = χ ′(ϕ)

1 − Llχ ′(ϕ)
− χ ′(0)

1 − Llχ ′(0)

(7)

using that χ ′(π ) = −χ ′(0) = χJ (π ).
For the lowest eigenfrequency of the resonator, see Fig. 7,

χ ′(ϕ) is well described by a cosine and its amplitude is simply
related to the critical current by δπ−0χ

′ = 4π
�0

Ic = 2χJ (π ).
Noting that χ ′

D does not modify δπ−0χ
′, we find (see Fig. 7)

that this relation between the amplitude of χ ′ and Ic holds in
the whole temperature range investigated where kBT � ETh.
δπ−0χ

′(T ) follows the expected exponential decay of the
Josephson critical current Ic(T ) = IJ (0) exp(−kBT /3.6ETh)
[40]. Fitting this dependence yields ETh/kB = 71 ± 2 mK.
These results agree with the temperature dependence of the
switching current of a current-biased control junction that
has similar geometrical characteristics. The analysis of the
amplitude of δπ−0χ

′ in the low-frequency regime thus allows
us to perfectly characterize the junction and yields the total
minigap width 2Eg(0)/h = 9 GHz and the corresponding
diffusion time across the junction τD = 0.1 ns.

B. Main contribution at low frequency and high temperature:
Relaxation of the populations of Andreev states

In this paragraph we focus on the diagonal susceptibility
which is due to the Debye-like relaxation of the occupation
of the Andreev levels driven out of equilibrium by the ac
phase excitation [33]. This is the first nonadiabatic contribution
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FIG. 6. Schematic frequency evolution of the response. Top row:
Simple schematic sketch of the physical mechanisms at the origin of
the finite-frequency response. Left: Adiabatic response χJ . Middle:
Relaxation of populations driven out of equilibrium by the finite-
frequency phase biasing, leading to χ ′′

D . Right: Microwave-induced
transitions across the minigap, leading to χ ′′

ND. Middle row: Phase
dependence of each contribution. χJ is a cosine when the equilibrium
current-phase relation is purely sinusoidal; χD has almost half the
periodicity of χJ . The phase dependence of χ ′′

ND depends on the tem-
perature and frequency. At low temperature and high frequency, χ ′′

ND

follows the minigap whereas at low frequency and high temperature
χ ′′

ND has a phase dependence opposite to the one of χ ′′
D . Bottom two

panels: Schematic frequency dependence of each contribution for
the nondissipative (top) and dissipative (bottom) responses. At low
frequency, χ ′′

ND is negligible and χ ′′ is dominated by χ ′′
D for ωτin ∼ 1.

At high frequency χ ′′ is dominated by χ ′′
ND.

observed at moderate frequencies when frequency is of the
order of the relaxation time of the phase-dependent populations
τin. According to expression (6), frequency and phase depen-
dence simply factorize. The frequency dependence is described
by the simple Debye relaxation law in ωτin/(1 − iωτin) and the
phase dependence of χD is therefore identical for both its real
and imaginary components.

At these frequencies that are low enough that the nondi-
agonal contribution to χ ′ stays negligible, the most reliable
way to access this phase dependence at temperatures above
the Thouless energy is to subtract the adiabatic response to the
susceptibility: χ ′

D(ϕ) = χ ′(ϕ) − χJ (ϕ) [see Fig. 8(a)] where
χJ (ϕ) is a simple cosine.

The experimental determination of χ ′′
D(ϕ) is more delicate

and needs to be restricted to the range of temperature and
frequency where both screening χ ′′

s and χ ′′
ND contributions are

negligible. An example is shown in Fig. 8 at high temperature
(T = 1.2 K) and low frequency (f = 560 MHz) where the
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FIG. 7. Characterization of the ring at low frequency. Upper
panel: Phase dependence of the measured nondissipative response χ ′

m

at 190 MHz and several temperatures. At low frequency, the amplitude
of χ ′

m is directly proportional to the ring’s critical current: δπ−0χ
′ =

4πIc/�0. Lower panel: Temperature dependence in semilog scale of
the amplitude of the nondissipative response of the ring at 560 MHz,
δχ ′(f = 560 MHz) (open circles), and of the control sample using
that δχ ′ = 4πIc/�0 (filled circles) along with its fit (solid line).
ETh = 71 mK is found.

measured signal χ ′′
m is clearly dominated by χ ′′

D(ϕ). Indeed
the phase dependence exhibits the characteristic shape of∑

∂f/∂εn, typical of the relaxation of Andreev level occu-
pations. It is zero at 0 and π as expected for the square of
the single-level current with a sharp dip at π coming from
the contribution of the Andreev levels close to the minigap
[12]. We compare successfully this flux dependence with the
Lempitski function FU (ϕ) [41] corresponding to the time-
dependent Usadel equations (see Appendix A and [13]). We
also observed that this shape of χ ′

D(ϕ) is independent of
temperature [12] for kBT � Eg . The frequency dependencies
of δχ ′

D are shown in Fig. 8 for different temperatures. They can

be fitted by the expected (ωτin)2

1+(ωτin)2 which enables us to determine
the characteristic time τin(T ).

We find values of τin varying between 0.1 and 0.4 ns
like 1/T [42]. This temperature dependence is similar to the
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FIG. 8. Diagonal contribution to χ ′ and χ ′′. (a) Phase dependence at T = 1.2 K and 560 MHz of the adiabatic response χJ and the
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m and the screening contribution χ ′′
s (bottom panel). We note that

screening effects are negligible on χ ′ and therefore χ ′
m � χ ′ at this temperature. (b) At high temperature and for f � ETh/h, experimental

χ ′
D = χ ′ − χJ and χ ′′ = χ ′′

m − χ ′′
s are found to be in very good agreement (within a factor 2) with theoretical prediction of Usadel equations

given by the Lempitski function FU (solid lines). Theoretical predictions have been multiplied by an arbitrary factor so that their amplitude
matches the experimental ones. (c) Frequency dependence of −δχ ′

D: the maximum of −χ ′
D(ϕ) at different temperatures (symbols) compared

to the theoretical prediction (see main text). (d) Temperature dependence of τin independently determined from the frequency dependence of
−δχ ′

D (triangles) and from the ratio δχ ′
D/(ωδχ ′′

D) at 560 MHz (squares) along with a T −1 law (solid line).

predicted T variation of the phase coherence time in a short
diffusive wire when it is limited by electron-electron inelastic
scattering [43–46] which reads 1/τee = kBT /h̄g where g is the
dimensionless conductance on the order of 104 for our wire.
This yields 1/τee in the 106 s−1 range, which is more than 2
orders of magnitude too small to reproduce our experimental
results shown in Fig. 8. This result points towards a different
mechanism, possibly due to the thin Pd layer at the interface
between Nb and Au yielding low-energy subgap excitations
as shown in tunneling experiments on Nb/Pd bilayer samples
very similar to ours [47].

We now return to the temperature dependence of χ ′
D resp.

χ ′′
D shown in Fig. 9 at fixed frequency. It follows the expected

T −1 ω2τ 2
in

1+ω2τ 2
in

(resp. T −1 ωτin

1+ω2τ 2
in

). The 1/T prefactor comes from
the energy derivative of the Fermi distribution at T � Eg .
Interestingly, this temperature dependence is much slower than
the exponential decrease of the supercurrent. This result agrees
with the predictions of Zhou and Spivak on the conductance
of an SNS junction [33]. We note that a similar temperature
dependence was also found for the fractional Shapiro steps also
due to this relaxation of the population of the Andreev states
[48–50].

C. Main contribution at high frequency and low temperature:
Microwave-induced transitions between Andreev states

The aim of the following paragraphs is to analyze the
dissipation when frequency becomes larger than 1/2πτin and
the contribution of induced transitions within the Andreev
spectrum, χND, become important. The analysis of χ ′

ND is in-
volved (see Appendix A) and we therefore focus on χ ′′

ND. It can
be noted however that χ ′

m is almost temperature-independent
up to 700 mK at 15.5 GHz (see Fig. 5) which shows that χ ′

ND is
depressed at high frequency and low temperature and becomes
much smaller than χJ . The amplitude of χJ is estimated to be
on the order of 55 μA/�0 at T � ETh for sample B.

We consider separately the high- and low-temperature
regimes compared to the minigap which were respectively
explored in sample A and sample B. On sample A, screening
corrections are important and strongly distort the measured
phase dependence. However these distortions can be exploited
to determine the phase-independent component of χ ′′. This is
done by the determination of χ ′′(π ) which is not simply equal
to ωGN but is found to vary with temperature in agreement with
the predictions of [14,34]. The opposite regime of low temper-
ature was explored using sample B and reveals the signature of
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FIG. 9. Evolution of the diagonal contribution with temperature. Top: −χ ′
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D)
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in
) (solid lines).

ω2τ2
in

1+ω2τ2
in

and
ωτin

1+ω2τ2
in

are determined using the T −1 fit of the experimental τin(T ) (Fig. 8).

the minigap. The very small amplitude of the signals measured
did not allow us to explore the high-temperature regime on this
second sample.

1. Temperature above the minigap: Competition between
χ ′′

D and χ ′′
ND

We show that in this regime explored on sample A, not only
the phase dependence of the nondiagonal contribution χ ′′

ND but
also the absolute amplitude of χ ′′(π ) can be revealed. We start
from expression (5) relating the measured χ ′′

m to χ ′ and χ ′′ in
the limit where χ ′′ � χ ′:

χ ′′
m = χ ′′

(1 − Llχ ′)2
. (8)

This equation shows that even a constant (phase-independent)
χ ′′ = χ ′′

c will display a phase dependence given by χ ′′
s (ϕ) =

χ ′′
c /[1 − Llχ

′(ϕ)]2 as shown in Fig. 10. This screening contri-
bution needs to be determined in order to deduce the intrinsic
χ ′′(ϕ). The protocol is described in detail in Appendix B.
χ ′′(π ) is extracted from the ratio Rm = δπ−0χ

′′
m/δπ−0χ

′
m. It

is interesting that we could take advantage of screening to
determine the absolute value of χ ′′ at ϕ = π and therefore
the phase-independent component of χ ′′ which cannot be
determined otherwise. Since the minigap closes at ϕ = π , with
a density of states similar to the one of a normal metal, it

could be expected that χ ′′(π ) would be given by ωGN and
independent of temperature. As shown in Fig. 10, we find
instead that χ ′′(π ) increases above GN at low temperature.
Within our experimental uncertainty, the value of G(π ) above
1 K is similar to the normal-state conductance of the con-
trol sample GN = 0.9 ± 0.2 S and G(π,T ) = χ ′′(π,T )/ω ∝
T −1G(π ). This important increase of G(π ) up to values much
larger than GN at low temperatures is surprising. It is in
qualitative agreement with recent predictions [13,14,34]. We
understand this effect as being related to phase-dependent
correlations in the Andreev spectrum extending to energy
scales much larger than the minigap (see Appendix A) with
a special contribution of matrix elements |J−n,n|2 coupling
electron-hole symmetric Andreev levels. Moreover it can be
argued that this increase in dissipation should be taken into
account when considering the Joule power dissipated by a
junction to determine the temperature at which hysteresis in
the I-V characteristic appears as done in [51,52]

This determination of χ ′′(π,T ) is essential to reconstruct
the intrinsic phase dependence of χ ′′ from χ ′′

m(ϕ) according to

χ ′′(ϕ) = [1 − β(ϕ)]2

{
χ ′′

m(ϕ) − χ ′′
m(π ) + χ ′′(π )

[1 − χ ′(π )Ll]2

}
,

(9)

where β(ϕ) = Llχ
′(ϕ).
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The resulting phase dependencies of χ ′′ are shown in
Fig. 11 for different frequencies and temperatures. One can
see the crossover between the low-frequency regime where χ ′′

D

(characterized by a minimum of dissipation at π ) is dominant
and the high-frequency regime, ωτin � 1, where χ ′′

D becomes
negligible compared to χ ′′

ND, and the phase-dependent part
of the dissipation starts to peak at π with a peak amplitude
increasing with frequency. This evolution in the phase de-
pendence reflects the competition between the contribution
of the diagonal elements of the current operator (minimum
at π due to the cancellation of single level currents) and the
contribution of the nondiagonal matrix elements of the current
operator which, in contrast, are maximum at π where Andreev
levels anticross. In this range of temperature, T � ETh, the
contribution of the phase-dependent minigap is still negligible
and the phase dependence of χ ′′

ND is essentially determined by
the |Jnm|2 and is opposite in sign to the phase dependence of
χD (see Appendix A).

The amplitude of the phase-dependent modulation of δχ ′′
ND

also follows a 1/T law like χ ′′(π ) stemming from the temper-
ature dependence of the Fermi function differences fn − fm.
This 1/T dependence, similar to the temperature dependence
of χD in the same T range (T � Eg), is much slower than the
exponential T decay of the Josephson current, demonstrating
that the dynamical response is much more robust than the
critical current to temperature.

2. Low temperature and high frequency: Signature of the minigap

We now consider high-frequency data measured on sample
B. Since for this sample screening corrections are completely
negligible with β � 0.03, the measured response coincides
with the intrinsic one down to very low temperature compared
to the minigap. As shown for sample B of Fig. 5 and in Fig. 12
the phase dependence of χ ′′ displays a sharp dissipation peak
at π . The phase dependence of χ ′′(ϕ) is shown in Fig. 12
for different frequencies on the order of or larger than the
minigap of sample B estimated as 2Eg/h = 5 GHz. This
phase dependence as well as the amplitude of the dissipation

peaks at π are found to be only slightly frequency-dependent.
This result is in agreement with the expected saturation of
δπ−0χ

′′ at frequencies greater than the Thouless energy close
to the estimated value of 2GNEg/h̄; see Appendix A and
[14]. We find a saturation at δπ−0χ

′′ � 15 μA/�0 whereas
2GNEg/h̄ = 12 μA/�0.

The temperature dependence of δπ−0χ
′′ is shown in Fig. 12

for different frequencies above and below Eg . It varies as 1/T

and saturates at a temperature below 0.4 K for 15 and 16 GHz
whereas no clear saturation can be detected at 3 GHz. Our data
are compared with the theoretical expectation neglecting the
phase dependence of matrix elements of the current operator:

δπ−0χ
′′(T ) = GN

∫ +Eg

−Eg

[f (E + h̄ω) − f (E)]dE

= GNkBT

h̄

(
− ln

e
ω−Eg

T + 1

e
Eg+ω

T + 1
+Eg/kBT

)
. (10)

The temperature dependence of δπ−0χ
′′(T ) is strongly related

to the behavior of the Fermi function difference δ(T ,ω) =
f (E) − f (E + h̄ω). δ(T ,ω) exhibits an E/T dependence
at high temperature compared to h̄ω and saturates at low
temperature on the order of h̄ω/4 to a value equal to 4E/h̄ω.

In spite of this reasonable agreement between our data
and these predictions for the T dependence of δπ−0χ

′′(T ),
χ ′′ displays a phase dependence sharper than expected, for
all frequencies investigated above the minigap (see Fig. 12).
This suggests that the contribution of the phase dependence of
the squared matrix elements of the current operator still plays
a role even at rather large energy (h̄ω ∼ 3Eg). Including an
additional contribution due to the e-h symmetric transitions
with a phase dependence peaked at π gives a better agreement
(not shown) at the cost of introducing additional parameters.
This argument is supported by numerical simulations; compare
for instance χ ′′(15.3 GHz, 80 mK) with Fig. 7 in [14]. Such a
description requires a more quantitative analysis of the energy
correlations of the |Jnm|2 and is left for future studies.
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V. CONCLUSION

To summarize, we have followed the frequency-dependent
magnetic susceptibility of an NS ring from the adiabatic
regime, where the coherent response is simply the phase deriva-
tive of the current-phase relation, to the highly nonadiabatic
regime where dynamical effects lead to dissipation. When the
frequency is close to the inelastic scattering rate, the relaxation
of populations is the dominant dissipative process. This yields
a phase-dependent dissipative response proportional to the
inelastic time which is maximum around π/2. When the
frequency is high enough compared to the relaxation rate of
the populations 1/τin, dissipation is dominated by transitions
across the minigap. Dissipation is then related to the dynamics
of coherence (nondiagonal terms of the density matrix) but is
independent of their relaxation time in the limit of a continuous

10-1 2 5 100 2

 2 

 3 

 4 

 5 

 6 

 7 
 8 
 9 

 100

kBT / 

-0
’’(

T
 )/

 
-0

’’(
0)

3 GHz

16 GHz

0 0.5 1
 -0.2 

 0 

 0.2 

 0.4 

/2

 1
06  (

 1
/ Q

) 
 

’’

f = 15.3 GHz

f = 6 GHz

f = 3.1 GHz T=80mK

FIG. 12. Phase and temperature dependences of the dissipation at
T < Eg/kB . Left: Temperature dependence of δπ−0χ

′′ at 16 (squares),
15.3 (circles), and 6 GHz (diamonds); we note a saturation at
temperatures corresponding to 0.25h̄ω. The plain lines correspond
to equation (10) valid for h̄ω � Eg . Right: Phase dependence of
χ ′′

ND(ϕ) measured for sample B at 80 mK for different frequencies
below and above the minigap corresponding to 5 GHz in comparison
with the phase-dependent minigap (continuous line). The dissipation
peak reflects closing of the minigap but the overall phase dependence
has a shape which differs from the minigap, indicating a sizable
contribution of the phase dependence of nondiagonal matrix elements.

spectrum. Due to the closing of the minigap, this process leads
to an absorption peak at ϕ = π . In both cases dissipation
measured by the real part of the admittance reaches values
which are paradoxically much greater than the normal-state
conductance. We attribute this increase to enhanced transitions
between electron-hole symmetric states. The phase depen-
dencies of these two contributions contain different physics
summarized in Fig. 13. Whereas the diagonal contribution
is proportional to the square of the single-level current, the
nondiagonal contribution is sensitive to the phase-dependent
minigap at low temperature. At high temperature compared
to the minigap the phase dependence χ ′′(ϕ) is determined by
the matrix elements of the current operator between differ-
ent Andreev states. These experiments constitute therefore a
powerful tool for the investigation of the Andreev spectrum

Future work
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of an SNS junction. For instance, it could be used to explore
the dynamics of triplet coupling in SFS junctions [53]. We
also propose to apply this method to reveal breaking of spin
degeneracy, protected crossings, and topological superconduc-
tivity in Josephson junctions with large spin-orbit interactions
[54–58].
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APPENDIX A: OVERVIEW OF THEORETICAL
PREDICTIONS

Following previous work on the dynamics of persistent
currents in normal mesoscopic Aharonov-Bohm rings [17,59]
we developed a Kubo formula description of the linear response
of an NS ring to a time-dependent Aharonov-Bohm flux. In this
approach, χ splits naturally into three parts, χ = χJ + χD +
χND, as written in Eq. (6) and detailed in the following.

1. Josephson susceptibility χJ : Adiabatic response

In the adiabatic regime (ω → 0) the susceptibility stems
from the phase dependence of the ABS and does not depend
on frequency. It is purely nondissipative and is the derivative of
the Josephson supercurrent. At a temperature high enough to
suppress its higher harmonics (kBT � Eg) the current-phase
relation (CPR) of a long diffusive SNS junction is purely
sinusoidal [9,50] and the Josephson susceptibility reads

χJ = −2π

�0

∂IJ

∂ϕ
= −2πIc

�0
cos(ϕ), (A1)

where Ic(T ) at high temperature [40] can be approxi-
mated by Ic(T ) = IJ (0) exp(−kBT /3.6ETh) where the zero-
temperature Josephson current reads IJ (0) = gN10.8ETh/�0,
with gN = GNh/2e2 the dimensionless conductance.

In the following we discuss the extra contributions to the
susceptibility when increasing frequency. Two characteristic
frequency scales emerge: the inverse relaxation time of the
populations τ−1

in and the inverse diffusion time τ−1
D , propor-

tional to the minigap Eg .

2. Diagonal susceptibility χD: Relaxation of ABS populations

We discuss here χD , called the diagonal contribution,
because it only involves the diagonal elements of the current
operator. It is the nonadiabatic contribution due to the thermal
relaxation of the populations fn of the Andreev levels with
the characteristic inelastic time τin. It is related to the phase
sensitivity of the spectrum and is therefore correlated to the
existence of nondissipative currents at equilibrium [18]. Note
that this contribution is specific to systems with a phase-

dependent spectrum [59] and is ignored in most derivations
of the Kubo formula. To first approximation it is proportional
to the sum over an energy range kBT around the Fermi energy
of the square of the single-level current i2

n . It can be recast
as the product of a phase-independent term by a frequency-
independent term

χD(ω,ϕ,T ) = A(ω,T )F (ϕ,T ) (A2)

with A(ω) = − iω

τ−1
in −iω

and F (ϕ,T ) = −∑
n i2

n
∂fn

∂εn
. At high

temperature compared toETh,F (ϕ,T ) decays as 1/T due to the
energy derivative of the Fermi distribution. F (ϕ,T ) was first
introduced by Lempitsky [41] to describe the I (V ) character-
istics of SNS junctions and was calculated numerically using
time-dependent Usadel equations by Virtanen et al. [13].

At high temperature compared to ETh, F (ϕ) can be approx-
imated by the following analytical form:

FU (ϕ) ∝ gN

kBT

E2
g

�2
0

{[−π + (π + ϕ)2π ] sin(ϕ)

−| sin(ϕ)| sin2(ϕ/2)/π}. (A3)

It is dominated by its second harmonics with in addition a
sharp linear singularity at odd multiples of π . This is due to the
dominant contribution of Andreev levels close to the minigap
whose flux dependence is singular as in a highly transmitting
superconducting single-channel point contact [60]. It is zero
at ϕ = π and ϕ = 0, since single-level currents go to zero at
those phases. It was recently shown that χD is very sensitive
to the presence of unavoided level crossings in systems with
spin-orbit interaction, and can be therefore useful to reveal
topological superconductivity [57].

3. Nondiagonal susceptibility χND: Microwave-induced
transitions

We now consider χND, the contribution that describes
microwave-induced transitions within the Andreev spectrum.
In the limit of a dense spectrum with level spacing δE �
h̄/τND, χ ′′

ND(ϕ) is independent of τND and reads

χ ′′
ND = −ω

∑
n,m�=n

|Jnm|2 fn − fm

εn − εm

δ(εn − εm − h̄ω), (A4)

which becomes in the continuous-spectrum limit

χ ′′
ND = −ω

∫ ∫
dεdε′n(ε,ϕ)n(ε′,ϕ)

×
[
|J (ϕ,ε,ε′)|2 f (ε) − f (ε′)

ε − ε′ δ(ε − ε′ − h̄ω)

]
, (A5)

where we have introduced the phase-dependent density of
states n(ε,ϕ) = n0[θ (ε − Eg(ϕ)) + θ (−ε − Eg(ϕ))] with θ

the Heaviside distribution. J (ϕ,ε,ε′) is the equivalent ofJnm(ϕ)
in the continuous limit.

We can distinguish two mechanisms involved in the phase
dependence of χND. One is related to the phase dependence
of the density of states whereas the second one is related
to the phase dependence of the nondiagonal elements of the
current operator Jnm(ϕ). When frequency is smaller than or
on the order of the minigap it is important to consider the
phase dependence of the matrix elements Jnm(ϕ) which is
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determined by selection rules. In the case of a long and diffusive
junction numerical simulations indicate that matrix elements
between electron-hole symmetric transitions are greater than
for nonsymmetric ones [14]; these selection rules are even
more stringent in ballistic systems or in the presence of
spin-orbit interaction since no transitions are possible between
Andreev states of opposite spin polarization [55,57].

a. Low temperature

Let us consider now the low-temperature regime such that
Eg(ϕ) � kBT . No transitions are possible for h̄ω < Eg(ϕ)
and dissipation drops in the corresponding range of phase. As
a result in the limit of zero temperature and zero frequency
dissipation is expected to be a delta peak at π . This peak
is found in the resolution of time-dependent Usadel equa-
tions [13,34] G(π ) = Y ′(π ) = χ ′′(π )/ω to increase at low
temperature approximately like GN (1 + AEg/kBT ), with A a
coefficient on the order of unity, and to saturate at temperatures
such that kBT � h̄ω. Numerical simulations in [14] show that
the main contribution to this dissipation peak at π comes from
Jn,−n nondiagonal matrix elements of the current operator
connecting electron-hole symmetric states whose energy is on
the order of the minigap. We attribute the increase of G(π,T )
at low temperature and low frequency to these enhanced
transitions.

In contrast at high frequency, when h̄ω � Eg(0) � kBT ,
χ ′′

ND is dominated by the high-energy contribution of Jnm which
are independent of phase and the phase-dependent absorption
is exclusively determined by the density of states. It is therefore
found to vary like

χ ′′
ND(ϕ,ω) =

(
ω − 2Eg(ϕ)

h̄

)
GN, (A6)

where we have used that 〈|Jnm|〉2n2(EF ) is the classical Drude
conductance GN = (2e2/h)gN of the normal wire (the average
〈|Jnm|〉 being taken on an energy scale much larger than the
superconducting gap but smaller than h̄/τe where τe is the
elastic scattering time). We find that at low temperature and
high frequency compared to Eg one can reveal the minigap
since δϕ−0χ

′′
ND(ϕ,ω) = −2GN

Eg(ϕ)
h̄

. It is independent of ω

and T .

b. High temperature

In the limit of temperatures higher than the minigap,
the phase dependence of the density of states can be ne-
glected and the phase dependence χ ′′

ND(ϕ) is then domi-
nated by the contributions

∑ |Jnm(ϕ)|2δ(εn − εm − h̄ω). One
can then write δϕ

∫
dωχ ′′

ND(ϕ,ω)/ω = δϕ

∑
n,m�=n |Jnm(ϕ)|2 =

δϕ{Tr(J 2) − ∑
n |Jnn(ϕ)|2}.

Moreover, since Tr(J 2) is phase-independent, the phase
dependencies of

∑
n�=m |Jnn|2 and

∑
n |Jnn|2 are exactly op-

posite from one another. Numerical simulations [14] and time-
dependent Usadel equations [34] indicate that for h̄ω � Eg �
kBT the phase dependence of χ ′′

ND is independent of frequency
and varies like δϕ−0χ

′′
ND = (−h̄ω/Eg)FU (ϕ).

4. Relations between dissipative and nondissipative
phase-dependent contributions

In the following we show that simple relations hold between
the dissipative and nondissipative contributions of δπ−0χ when
ω � τin. They can be obtained from Eq. (A5) for χ ′′

ND and the
following expression of χ ′:

δϕ−0χ
′ = −δϕ−0

∫ ∫
dεdε′n(ε,ϕ)n(ε′,ϕ)

×
[
|J (ϕ,ε,ε′)|2 f (ε) − f (ε′)

ε − ε′

]
. (A7)

The phase-dependent contribution δϕ−0|J (ϕ,ε,ε′)|2n
(ε,ϕ)n(ε′,ϕ) is approximated by g+(ε+/ε+

c ) × g−(ε−/ε−
c )

where g+ and g− are functions of ε+ = (ε + ε′)/2 and
ε− = (ε − ε′)/2. The correlation functions g+ and g− are
expected to oscillate and decay on energy scales ε+

c and ε−
c on

the order of Eg . Moreover in the limit where kBT � ε− one
can approximate in both integrals the function f (ε)−f (ε′)

ε− by a
square function centered on ε+ of width 4kBT which yields,
for h̄ω � Eg � kBT ,

δϕ−0χ
′′(ω) � ωGN

∫ 2kBT

0
g+(ε+/ε+

c )dε+,

δϕ−0χ
′ � GN/h̄

∫ ∞

0
g−(ε−/ε−

c )dε−
∫ 2kBT

0

×g+(ε+/ε+
c )dε+. (A8)

From these expressions it is possible to deduce a simple
general relation between δϕ−0χ

′′
ND and δϕ−0χ

′ = δϕ−0χJ valid
for ωτin � 1:

δϕ−0χ
′′
ND = (h̄ω/ε−

c )δϕ−0χ
′ � (h̄ω/Eg)δϕ−0χ

′(T ,ϕ). (A9)

In particular for ϕ = π we can use that δπ−0χ
′
D = 0 and

δπ−0χ
′ = δπ−0χJ ∝ exp(−kBT /1.16Eg). δπ−0χ

′′
ND is there-

fore expected to decrease exponentially with T like the
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FIG. 14. Evolution of the phase dependence of χ ′
m (top) and χ ′′

m

(bottom) with temperature at 5 GHz and 14 GHz measured on sample
A. Dips in χ ′

m at π are attributed to screening effects. Data in this
regime could not be corrected.

184505-12



COHERENCE-ENHANCED PHASE-DEPENDENT … PHYSICAL REVIEW B 97, 184505 (2018)

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

χ/
χ J

-1.0 -0.5 0.0 0.5 1.0

Φ/Φ0

χ ''
χ ''m

-0.75

-0.70

-0.65

-0.60

-0.55

χ/
χ J

-1.0 -0.5 0.0 0.5 1.0

Φ/Φ0

-1.0

-0.5

0.0

0.5

1.0

χ '
χ 'm

FIG. 15. Computed phase dependencies of χ ′
m and χ ′′

m assuming χ ′ = − cos ϕ + χD and χ ′′(ϕ) similar to Eg(ϕ). One sees that χ ′
m exhibits

a dip at π and that χ ′′
m is much larger than χ ′′ when mixing between χ ′ and χ ′′ contributions in χ ′

m and χ ′′
m [see Eqs. (4) and (5)] becomes

important.

Josephson current. For other values of ϕ, assuming that
ε−
c � Eg , this result yields the expected phase dependence of

δχ ′′
ND(ϕ) = −(ω/Eg)δχ ′

D(ϕ) = −(ω/Eg)FU (ϕ) in this range
of parameters, h̄ω � Eg � kBT , leading to a maximum of
δχ ′′

ND(ϕ) on the order of

δχ ′′
ND = [IJ (0)/�0](h̄ω/kBT ) = GNωEg/(kBT ), (A10)

i.e., much higher than δπ−0χ
′′
ND.

These relations between δϕ−0χ
′′
ND and δϕ−0χ

′ are useful for
the interpretation of our experimental data in the range of pa-
rameters where screening effects distort the phase dependence
of χ ′′

m. They can be understood as the Kramers-Kronig relation
between the dissipative and nondissipative components of the
phase-dependent susceptibility. Extrapolating this reasoning
to lower temperature and higher frequency, we expect that
the ratio δπ−0χ

′′
ND(ω)/δπ−0χ

′ will increase at low temperature
(in agreement with the experimental results on sample B;
see Fig. 5) but its calculation is complicated by logarithmic
singularities in χ ′, and is beyond the scope of this paper.

APPENDIX B: DETERMINATION OF THE ABSOLUTE
VALUE OF χ ′′(π )

We focus on the range of parameters such that Llχ
′′(ϕ) can

be neglected in Eq. (3) leading to simplified relations between
χm and χ :

χ ′
m(ϕ) = χ ′(ϕ)/[1 − Llχ

′(ϕ)],
(B1)

χ ′′
m(ϕ) = χ ′′(ϕ)/[1 − Llχ

′(ϕ)]2.

From these relations one can easily deduce the ratio Rm =
δπ−0χ

′′
m/δπ−0χ

′
m. This quantity is interesting since it does not

depend on the coupling coefficient L2
c between the measured

and intrinsic susceptibility which is not easy to estimate

accurately. It reads

Rm = 2χ ′′(π,T )Ll

1 − β2
+ δπ−0χ

′′

δπ−0χ ′
1 − β

1 + β
. (B2)

The first contribution to Rm is proportional to Ll and thus
is due to screening. The denominator contains a term in β2

which is negligible in the range of temperature we have in-
vestigated (β � 0.4). The second contribution is proportional
to the intrinsic ratio between δπ−0χ

′′ and δπ−0χ
′. Theoretical

predictions (see Appendix A) indicate that it is reasonable
to consider that χ ′′(0) = χ ′′(π ) when T > 2Eg; we therefore
assume δπ−0χ

′′ = 0. Under this assumption and within first
order in β Eq. (B2) yields

Rm = 2χ ′′(π,T )Ll. (B3)

Therefore we have shown how to deduce the value of
χ ′′(π,T ) = Rm(T )/2Ll shown in Fig. 10 from the measure-
ment of Rm(T ) and the estimation of Ll .

APPENDIX C: HIGH-FREQUENCY DATA ON SAMPLE A,
FOR WHICH SCREENING CORRECTIONS CANNOT BE

QUANTITATIVELY DETERMINED

For very high frequency (above 5 GHz) the screening
corrections quadratic in Llχ

′′ in Eqs. (2) and (3) cannot be
neglected on sample A and give rise to an important mixing
between the phase dependencies of χ ′(ϕ) and χ ′′(ϕ) at low
temperature and high frequency. This is illustrated where χ ′

m

exhibits a sharp split peak atπ as seen in Fig. 14. This intriguing
phase dependence can be shown to be due to the negative
term in expression (5) proportional to −χ ′′(ϕ)2 as illustrated
in Fig. 15. Correlatively χ ′′

m(ϕ) exhibits a very sharp increase
at π .
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