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Imaging phase slip dynamics in micron-size superconducting rings

Hryhoriy Polshyn and Tyler R. Naibert
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

Raffi Budakian*

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
Department of Physics, University of Waterloo, Waterloo, ON, Canada N2L3G1;

Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada N2L3G1;
Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada N2L2Y5;

and Canadian Institute for Advanced Research, Toronto, ON, Canada M5G1Z8

(Received 29 April 2017; revised manuscript received 2 April 2018; published 8 May 2018)

We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply
connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a
silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We
find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the
cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring
causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes
in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein
small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise
to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate
the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we
compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting
structures.
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I. INTRODUCTION

The single-valuedness of the superconducting wave func-
tion gives rise to a host of novel macroscopic phenomena, the
most striking being fluxoid quantization in multiply connected
devices and quantized vortices in bulk samples and films [1].
The topological nature of fluxoid states makes them robust to
small perturbations and endows superconducting rings with the
distinct ability to support metastable dissipationless currents.
The behavior of the superconducting phase in multiply con-
nected geometries is at the heart of devices of great practical
importance, such as superconducting quantum interference
devices (SQUIDs) and flux qubits. New techniques capable
of probing and controlling the dynamics of fluxoid states are
of great practical and fundamental interest.

A number of experimental techniques have been applied
to study the physics of fluxoid states in superconducting
rings, including transport measurements [2,3], Hall micro-
magnetometry [4,5], scanning Hall probe microscopy [6],
SQUID magnetometry [7–9], scanning SQUID microscopy
[10–13], calorimetry [14], and cantilever torque magnetometry
[15,16]. Fewer studies have focused on investigating fluxoid
dynamics and phase slip rates [8–10,17]. Theoretical studies
have addressed fluxoid dynamics as a function of ring geometry
and magnetic field [18–21].
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Here, we present a scanning probe technique for measuring
the dynamics of fluxoid transitions in multiply connected
planar superconducting structures. In these studies, a micron-
size magnetic particle is attached to the tip of an ultrasoft silicon
cantilever and scanned over a surface containing an array
of lithographically patterned micron-size aluminum rings.
During the scan, the cantilever is resonantly driven to a small
fixed amplitude using a piezoelectric transducer. When the
magnetic tip is positioned over an individual ring near the
superconducting transition temperature Tc, large variations
in the frequency and dissipation of the cantilever can be
observed at locations where the tip applies a half-integer
number of flux quanta through the ring. The modification
to the mechanical properties of the cantilever is caused by
the correlated dynamics between the resonant motion of the
magnetic tip and thermally activated phase slips (TAPS) in
the ring. We show that this interaction can be modeled as
a classical stochastic resonance (SR) process [22], wherein
the frequency and dissipation of the mechanical oscillator
are strongly modified when the average fluctuation frequency
of TAPS approaches the mechanical resonance frequency of
the cantilever. A comparison of the relative frequency and
dissipation shift provides a direct means of determining the
average rate of the TAPS occurring in the ring.

The method introduced in this work is conceptually similar
to single-electron electrostatic force microscopy (e-EFM)
[23–28], in which a similar dynamical effect emerges from
the capacitive coupling between the cantilever and a single
electron on a quantum dot. In our case, the effect results from
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FIG. 1. (a) Schematic of the experimental setup showing the cantilever positioned over an Al ring. The top inset shows an SEM micrograph
of the FIB-shaped SmCo5 magnetic particle attached to the tip of the cantilever. The magnetic moment of the particle is oriented perpendicular
to the surface, in the z direction, and produces a highly inhomogeneous magnetic field in its vicinity (illustrated as the disk-shaped region near
the tip). The bottom inset displays an SEM micrograph of Ring 1. (b)–(d) The �0-MFM images show the frequency shift of the cantilever.
Dark circular contours correspond to transitions between fluxoid states. In the regions between successive transitions, the winding number n of
the ring changes by 1. The images were obtained with a fixed tip-surface separation distance, indicated in the bottom-left-hand corner of each
panel. The double arrows in (b) indicate the oscillation direction of the cantilever. Changes in the frequency and dissipation of the cantilever
across the n = 3 to 4 transition, indicated by the red line segment in (d), are presented in detail in Fig. 3. (e) Cross section of the magnetic field
distribution on the sample surface for various tip-surface heights. The field distributions are estimated from the pattern of fluxoid transitions
observed in (b)–(d). All scale bars correspond to 1 μm.

the interaction of cantilever with the motion of “vortices” in
a superconducting structure. By analogy, we have termed our
technique �0-MFM.

In principle, �0-MFM can be used to study fluxoid dy-
namics in any multiply connected superconducting structure
capable of hosting a discrete spectrum of fluxoid states. In
this work, we apply �0-MFM to study fluctuations in thin
superconducting rings, because the structure of fluxoid states
in thin-wall superconducting rings provides a simple frame-
work for demonstrating the concepts behind the technique.
Furthermore, fluxoid fluctuations in these devices are well-
described by the Langer-Ambegaokar-McCumber-Halperin
(LAMH) theory for TAPS [29,30], and they can be compared
directly to the experimentally derived fluctuation rates.

The paper is organized into the following sections: In Sec. II,
we discuss the details of the experimental setup. In Sec. III,
we demonstrate the dynamical phenomenon that underlies
�0-MFM, and we present a model that considers the dynamics

of driven fluxoid transitions and their interaction with the
cantilever. We use the model to extract the average fluxoid
transition rate, and we compare it to the LAMH theory. Finally,
we present data for a superconducting ring containing a weak
link, and we study the phase slip dynamics across the weak
link in response to the local fields generated by the magnetic
tip. In Sec. IV, we present a summary of the technique and
concluding remarks.

II. EXPERIMENTAL SETUP

The key component of the setup is an ultrasoft silicon can-
tilever with a magnetic particle attached to the tip [Fig. 1(a)].
The cantilever is fabricated from single-crystal silicon with
the following dimensions: 80 μm long, 3 μm wide, and
100 nm thick. The motion of the cantilever is measured by
focusing 1510 nm wavelength light from a fiber optic laser
interferometer onto the 10 μm×10 μm paddle fabricated near
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the tip of the cantilever. For the measurements presented in Sec.
III A, the cantilever had a spring constant of k = 1.8×10−4

N/m, a resonance frequency ω0/2π � 7675 Hz, and a quality
factor Q � 31 800 at 4 K. The measurements in Sec. III D were
performed using a cantilever for which k = 2.3×10−4 N/m,
ω0/2π � 7351 Hz, and Q � 30 000.

The cantilever is positioned vertically with respect to the
surface in the pendulum geometry, and the tip oscillates in
the x direction. The magnetic tip is fabricated by gluing a
micron-size SmCo5 particle to the tip of the cantilever and
shaping it by focused ion beam milling [Fig. 1(a) (top inset)].
During the gluing process, an external magnetic field is applied
to the SmCo5 particle to ensure that the magnetic moment of
the particle is aligned parallel to the axis of the cantilever.

Arrays of aluminum rings were fabricated by electron-beam
lithography and liftoff of 5-nm-thick (45-nm-thick) Ti (Al)
films deposited on silicon substrates by electron beam evap-
oration. The substrate containing the patterned devices is
mounted onto a three-axis nanopositioner and a scanner that
control the relative position of the cantilever with respect to
the surface. The assembly is placed in a high vacuum chamber
that is inside of a continuous-flow 3He refrigerator. The sample
temperature is controlled using a resistive heater and measured
using a calibrated ruthenium oxide thermometer, which are
both mounted close to the sample. During measurement, the
sample temperature can be continuously varied from 340 mK
to 4 K with 0.3 mK precision.

We have studied more than 10 rings using 4 different
magnetic tips. Here, we report measurements taken on two
of these rings. Ring 1 had a radius of R = 1.40 μm and a
uniform wall width of w = 212 nm [Fig. 1(a) (bottom inset)].
Ring 2 had R = 2.38 μm, w = 200 nm, and a 1.22-μm-long
constriction, having a minimum width of 60 nm [Fig. 6(a)]. The
critical temperature and coherence length of these two devices
were as follows: Ring 1: Tc = 1.163 K, ξ (0) = 108 nm; and
Ring 2: Tc = 1.325 K, ξ (0) = 104 nm. In Appendix A, we
discuss our procedure for determining the Tc and ξ (0) for the
patterned devices.

Force measurements are performed in the frequency detec-
tion mode [31], in which the cantilever is resonantly excited
by driving it inside a feedback loop. In our setup, a small
piezoelectric transducer is used to apply the feedback signal to
the cantilever. The cantilever frequency is monitored using a
phase-locked loop circuit. An automatic gain control circuit
is used to maintain the desired oscillation amplitude and
to monitor the dissipation of the cantilever. Images of the
cantilever frequency and dissipation are measured by exciting
the cantilever to a fixed amplitude between 2.5 and 10 nm and
scanning it in the xy plane, with the tip positioned at a fixed
height above the surface of the sample.

III. RESULTS AND DISCUSSION

A. �0-MFM imaging of a superconducting ring

For the superconducting order parameter to remain single-
valued, the phase of the order parameter must change in integer
units of 2π around any closed path inside the superconductor.
For a ring geometry, this requirement ensures that the fluxoid,
given by �′ = � + (m/e)

∮
vs · ds = n�0, only takes on in-

teger values n of the flux quantum �0 = h/2e. Here, vs is the
superfluid velocity, � = ∮

A · ds is the total magnetic flux,
and m and e are the electron mass and charge, respectively.
For the present work, the wall thickness of the rings is smaller
than both the superconducting penetration depth (λ ∼ 1 μm)
and the coherence length (ξ ∼ 0.5 μm). Near Tc, magnetic
screening is negligible and the ring behaves effectively as a
one-dimensional (1D) superconductor, with the supercurrent
velocity given by vs = h̄(n − φ)/2mR, whereR is the radius of
the ring, and φ = �/�0. By minimizing the Ginzburg-Landau
free energy of the ring, we find the free energy of the fluxoid
states:

Fn(φ) = −Fc

(
1 − ξ 2

R2
(φ − n)2

)2

, (1)

where Fc = V B2
c /2μ0 is the superconducting condensation

energy of the ring, Bc = �0/(2
√

2πξλ) is the thermodynamic
critical field, V = 2πRwd is the volume of the ring, and d is
the thickness of the film. The supercurrent in the ring is found
from Eq. (1) using I = −(1/�0) ∂F/∂φ:

In(φ) � −I0(φ − n)

(
1 − ξ 2

R2
(φ − n)2

)
,

where I0 = �0

2πμ0λ2

wd

R
. (2)

We note that since for rings in the present work 2πR � ξ ,
the pair breaking effects are relatively small. Hence Fn(φ) and
In(φ) are close to quadratic and linear functions of the applied
flux [Fig. 2].

Close to Tc, where fluxoid transitions become reversible,
the transition between states having winding numbers n and
n + 1 occurs at half-integer values of the flux quantum φ =
n + 1/2. For thin-walled superconducting rings, the fluxoid
transitions occur via phase slips [29,32]. The metastability of
these transitions is related to the height of energy barrier 	F

connecting two adjacent fluxoid states [Fig. 2(a)]. Near Tc, the
energy barrier becomes sufficiently small and the probability
of thermally activated phase slips becomes significant. In
the vicinity of φ = n + 1/2, where the separation between
adjacent fluxoid states is |Fn+1 − Fn| � kBT , thermally ac-
tivated fluxoid transitions exhibit telegraph-noise behavior
[8,10]. At lower temperatures, the height of the energy barrier
increases so that 	F � kBT and TAPS are exponentially
suppressed. In this regime, the fluxoid states of the ring exhibit
metastability. Thus, the qualitative behavior of the fluxoid
transitions changes from being reversible near Tc to being
irreversible and hysteretic at low temperature.

The equilibrium fluxoid state of the ring depends on the
applied flux, and hence on the relative position of the magnetic
tip and the superconducting ring. Scans of superconducting
rings taken at temperatures sufficiently close to Tc exhibit sharp
concentric circular contours in the frequency of the cantilever,
corresponding to tip positions where the cantilever frequency
dips below the native resonance frequency [Figs. 1(b)–1(d)].
If the temperature is lowered sufficiently, the states become
metastable and the sharp dips in frequency are replaced by
much smaller discontinuous jumps. The transition between the
low- and high-temperature regimes is presented in Appendix B.
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FIG. 2. Energy, occupation probability, and supercurrent corre-
sponding to the n = 0 to 2 fluxoid states. (a) Schematic of fluxoid
state energies: solid lines represent energies of the fluxoid states.
The dashed lines represent the energy barriers between adjacent
fluxoid states. (b) Equilibrium occupation probability for different
fluxoid states. (c) The solid lines represent the piecewise-continuous
circulating current corresponding to a particular fluxoid state. The
dashed line represents the thermal average of the current. Vertical
blue bands on all panels mark the regions where the energy separation
between the states is of the order �kBT .

The locations of these features in the images are consistent with
tip locations where 	n = 1.

In Sec. III B, we show that the frequency dips seen at higher
temperatures are caused by a dynamical effect, in which small
oscillations of the cantilever, in the presence of TAPS, drive
transitions between the two lowest-energy fluxoid states near
values of the applied flux that make the energies of the two
lowest-energy fluxoid states degenerate. This effect leads to
a synchronization of the fluxoid transitions with the motion
of the cantilever (at least in a statistical sense). The result-
ing interaction of the micromagnet with the synchronously
switching supercurrent gives rise to a position-dependent force,
which modifies the resonance frequency and dissipation of the
cantilever. Stationary or quasistatic currents in the ring also
produce a frequency shift, however this contribution is often
much less than the dynamical one. In particular, near Tc we find
that the dynamical contribution (	f ∼ 5 Hz) is much larger
than the static contribution (	f ∼ 0.2 Hz) and dominates the
overall frequency shift.

The dynamical frequency shift maps tip locations to val-
ues of the applied flux corresponding to the equilibrium
transitions between the lowest-lying fluxoid states. For a
thin-walled ring, the dark contours seen in the frequency
shift image [Figs. 1(b)–1(d)] correspond to positions where

φ = n + 1/2. We note that the dips in frequency are highly
spatially localized. This feature allows them to be easily
distinguished.

Figures 1(b)–1(d) show measurements of Ring 1 taken at
T = 1.1425 K for several different tip-surface separations. The
concentric circular patterns observed in these images reflect
the fact that the tip-induced magnetic flux through the ring
depends primarily on the distance of the tip from the center
of the ring. The eccentricity of the contours is caused by
a slight tilt of the magnetic moment of the SmCo5 particle
with respect to the surface normal (see Appendix C). We note
that the contours begin to fade, and eventually they disappear
completely along the line parallel to the y direction [horizontal
direction in Figs. 1(b)–1(d)] and passing through the center
of the ring. In this region of the scan, ∂φ/∂x = 0, and small
oscillations of the tip in the x direction do not produce a
modulation of the magnetic flux. The regions between the
circles correspond to fluxoid states with different winding
numbers. By taking the transition that is farthest from the center
of the ring to be the n = 0 to 1 transition, we can enumerate all
of the other observed transitions. As the tip-surface separation
increases, the field on the surface becomes weaker, and fewer
transitions are observed. For a tip-surface separation of 800
nm, the maximum winding number that the tip induces in the
ring is nmax = 8, while for 1000 nm the maximum number is
nmax = 6, and for 1200 nm the maximum number is nmax = 5.

The spatial map of the fluxoid transitions can be used to
estimate the z component of the magnetic field distribution
produced by the magnetic tip on the surface. To build a model
of the magnetic particle, we first measure the total magnetic
moment of the particle by cantilever torque magnetometry
[33], and the dimensions of the particle from the scanning
electron microscope (SEM) images of the tip. We then calculate
an image of the flux generated by the particle through the ring,
assuming a uniformly magnetized tip having the measured
dimensions, and we compare it to the data image of the
observed transitions for a given tip height. To arrive at a
more realistic model of the tip, we vary the parameters of the
model, including the magnitude, orientation, and distribution
of the tip moment, and we match the calculated pattern of
fluxoid transitions to those measured from experiment. The
comparison between the calculated frequency shift image and
the data is presented and discussed in Appendix C. Estimates
of the field profile are shown in Fig. 1(e).

To study the temperature dependence of the dynamical
signal, we took a series of short line scans across the n = 3
to 4 transition [marked by a red line segment in Fig. 1(d)]
at different temperatures. Figure 3(a) shows the cantilever
frequency and dissipation shifts for the indicated temperatures.
The baseline values of the cantilever frequency and dissipation
were subtracted from the respective data sets to isolate the
shift caused by the fluxoid dynamics. To convert the cantilever
position to flux [horizontal axis in Fig. 3(a)], we obtained
an estimate of the conversion factor ∂φ/∂x = 1.82 μm−1

from the spacing of the fluxoid transitions near the region
of interest. The data plotted in Fig. 3(b) represent the peak
frequency and dissipation shifts measured from the line scans
shown in Fig. 3(a) as a function of temperature. The line scans
were measured using a tip oscillation amplitude of 3.4 nm,
corresponding to a flux modulation amplitude of 6.3m�0. The
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FIG. 3. Temperature dependence of the signal for the n = 3 to 4
transition at the location indicated in Fig. 1(d). (a) Line scans across
the transition region were obtained at the temperatures indicated
in each panel. (b) Plot of the peak frequency (solid circles) and
dissipation shift (open circles) as a function of temperature. Solid
lines in (a) and (b) represent the curves calculated using the stochastic
resonance model for TAPS (see Sec. III C). The shaded region in (b)
marks the temperature range for which the relaxation rate νr was
determined.

flux modulation amplitude was chosen to be much smaller
than the width of the transition region, which, based on the
data in Fig. 3(a), is about 36m�0. The temperature evolution
of the frequency and dissipation peak heights is shown in
Fig. 3(b). Below 1.135 K, the fluxoid states are metastable and
the peaks due to the dynamical effect vanish. For the range
of temperatures between 1.135 and 1.142 K, a rapid increase
in dissipation and a decrease in frequency are observed. The
height of the dissipation peak reaches its maximum value at
1.1387 K, which is 24 mK below Tc. In addition, the height of
the dissipation peak decreases and completely disappears by
1.1445 K, while the frequency peak persists up to Tc.

To gain a qualitative understanding of the temperature
dependence observed in Fig. 3(b), it is helpful to consider the
ratio of the fluxoid transition relaxation rate νr to the cantilever
frequency ω0. At low temperatures, where νr/ω0 � 1, the
dynamical effect disappears because the height of the energy
barrier becomes large, and the tip-induced flux modulation is
insufficient to drive fluxoid transitions. In the high-temperature
regime near Tc, the energy barrier decreases significantly,
so that the equilibrium fluxoid occupation tracks the flux

modulation. In this regime, νr/ω0 � 1 and the dynamical
force is in phase with the cantilever motion, which shifts the
cantilever frequency but does not change its dissipation. In the
intermediate regime where νr ∼ ω0, a time lag can develop
between the equilibrium fluxoid occupation and the cantilever
position. The resulting force has components that are in phase
and 90◦ out of phase with respect to the cantilever motion,
which shifts both the cantilever frequency and dissipation. This
dynamical coupling between the cantilever and the fluctuating
currents in the superconducting ring can be described in the
framework of the SR model [22].

B. Cantilever-driven fluxoid transitions
in a superconducting ring

A quantitative description of the experimentally observed
dynamical effects requires a model of the coupling between the
cantilever motion and the fluxoid dynamics in the supercon-
ducting ring. For this analysis, it is sufficient to consider a range
of energies of order kBT in the neighborhood of the crossing
point between states n and n + 1, i.e., |Fn+1(φ) − Fn(φ)| �
kBT , where both fluxoid states have a substantial probability of
being occupied [Fig. 4(a)]. We will assume that the temperature
is sufficiently close to Tc so that the energy barrier 	F between
states n and n + 1 permits thermally activated transitions, but
far enough from Tc so that the probability of occupying all
other states is negligible. In this regime, the superconducting
fluctuations are governed by the dynamics of the two lowest-
energy fluxoid states of the ring. Thus, the supercurrent I (t)
circulating the ring has a two-level stochastic component. The
probability to find the ring in state n, when it is in thermal
equilibrium and the cantilever is stationary, is given by

P eq
n (φ) = 1

1 + exp{−[Fn+1(φ) − Fn(φ)]/kBT } . (3)

The dynamics of the probability Pn(t) is determined by the
relaxation rate νr :

dPn/dt = −νrPn + �n+1,n, (4)

νr = �n,n+1 + �n+1,n. (5)

Here, �n,n+1 and �n+1,n are the transition rates n → n + 1
and n + 1 → n, respectively. It is worth noting that at φ =
n + 1/2, �n,n+1 = �n+1,n and νr = 2�n,n+1.

The force produced by the supercurrent I (t) on the can-
tilever can be expressed as ζ (t) = κ(rtip)I (t), where κ(rtip)
represents the coupling, which depends of the relative position
of the tip and the ring. The equation of motion for the cantilever
becomes

ẍ + 2γ0ẋ + ω2
0x = ω2

0

k
[f (t) + ζ (t,x)], (6)

where x is the displacement of the tip from its equilibrium
position, γ0 is the unmodified dissipation of the cantilever, and
f (t) is the force applied by the feedback controller, which
resonantly excites the cantilever to a fixed amplitude x0.

The periodic motion of the cantilever tip with amplitude
x0 generates a small modulation of the flux through the ring
with amplitude δφ = (dφ/dx) x0. Small oscillations of flux
modulate the energies of the fluxoid states Fn(φ) and Fn+1(φ),
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FIG. 4. Stochastic resonance of TAPSs. (a) Energy diagram show-
ing the region near the n ↔ n + 1 fluxoid transition. The width of
the gray vertical band represents the extent of the flux modulation
due to the cantilever oscillation. The area shaded blue represents
the range of flux values where the corresponding difference in
energy between adjacent fluxoid states is �kBT . (b) Schematic
diagram showing the modulation of the fluxoid energies caused by the
cantilever motion. (c)–(e) Calculated curves showing the equilibrium
P eq

n (solid black) and the nonequilibrium (instantaneous) Pn (red)
fluxoid occupation for three different values of νr/ω0 for one complete
cycle of the cantilever motion. (c) The slow relaxation rate prevents
Pn from tracking the thermal equilibrium state–weak response.
(d) SR condition: synchronization occurs between the fluxoid dynam-
ics and the cantilever motion. The resulting phase lag produces both
an in-phase and 90◦ out-of-phase response. (e) The fast relaxation
rate allows Pn to track P eq

n —the response is mostly in-phase with the
cantilever motion. (f) Plot of ν2

r /(ν2
r + ω2

0) (solid) andω0 νr/(ν2
r + ω2

0)
(dashed) that determine the relative strength of in-phase and out-of-
phase components of the response.

along with the transition rates �n,n+1 and �n+1,n as shown
in Fig. 4(b). In the presence of thermal fluctuations, ζ (t)
and x(t) are statistically correlated. The correlation between
the force experienced by the cantilever and its position can
strongly modify the frequency and dissipation of the oscillator,
especially for the case in which the relaxation rate νr matches

the cantilever frequency ω0. This phenomenon is generally
referred to as stochastic resonance [22].

If ζ (t,x) is sufficiently small, then the motion of the can-
tilever can be represented as a sum of two components: x(t) =
x0e

iωt + xs(t). The first term represents the coherent response
at the resonance frequency ω produced by the feedback control,
and the second term represents the stochastic part of the
motion, with the time-averaged quantity 〈x̂s(ω)〉 = 0, where
x̂s(ω) is the Fourier component of the stochastic displacement
at the cantilever frequency. We are interested in the effect
of the fluctuating force on the frequency and dissipation of
the cantilever. In particular, we consider the time-averaged
quantities 	ω ≡ 〈ω − ω0〉 and 	γ ≡ 〈γ − γ0〉, which are
calculated by Fourier transforming Eq. (6),

	ω � −ω0

2

Re〈ζ̂ (ω)〉
kx0

, 	γ = −ω0

2

Im〈ζ̂ (ω)〉
kx0

. (7)

If the stochastic force due to fluctuating current is weak, i.e.,
|ζ (t,x)| � kx0, then we expect |xs(t)| � x0, and we approx-
imate x(t) � x0e

iωt in obtaining 〈ζ̂ (ω)〉. This approximation
allows us to effectively decouple the cantilever dynamics from
the dynamics of the phase slips, which greatly simplifies the
analysis.

If the flux modulation is sufficiently small such that
(dP

eq
n /dφ)δφ � 1, the resulting modulation of Pn(t) is linear

in δφ, with

Pn(t) � P eq
n (φ0) + δP ei(ωt−θ), (8)

δP = dP
eq
n

dφ
δφ cos θ, (9)

θ = arctan

(
ω

νr

)
. (10)

Figures 4(c)–4(e) show the dynamics of Pn(t) for one complete
cycle of the cantilever motion, calculated using Eqs. (8)–(10)
for three different values of νr/ω0.

To find 	ω and 	γ , we consider the ensemble-
averaged current: 〈I (t)〉 = In(φ)Pn(t) + In+1(φ)[1 − Pn(t)].
Using Eq. (2), we find that 〈I (t)〉 = −	IPn(t) − In+1[φ(t)],
where 	I (φ) = In+1(φ) − In(φ). The first term in 〈I (t)〉 de-
scribes the contribution to the current from the thermally
activated transitions between the two states, and the second
term represents the flux dependence of the current in each state.
Here, we consider only the first term, since the second term is
not relevant to the effect of interest. The resulting expression
for the average stochastic force is 〈ζ (t)〉 = −κ(rtip)	IPn(t),
and the Fourier component of the statistically synchronized
stochastic force due to the cantilever-driven phase slips is
〈ζ̂ (ω)〉 = −κ(rtip)	IδPe−iθ . By combining this expression
with Eq. (7), we find the following expressions for the changes
in frequency and dissipation:

	ω � ω0

2
α β

ν2
r

ν2
r + ω2

0

, (11)

	γ = −ω0

2
α β

ω0 νr

ν2
r + ω2

0

, (12)
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where

α = κ(rtip)

k

dφ

dx
, β = 	I (φ)

dP
eq
n

dφ
. (13)

Notice that α depends only on the parameters of the
cantilever and its position with respect to the ring. We find that
the dissipation shift vanishes for both νr � ω0 and νr � ω0,
and it becomes maximum for νr ∼ ω0 [Fig. 4(f)]. On the
other hand, the frequency shift is small for νr � ω0, in-
creases rapidly with νr for νr ∼ ω0, and gradually decreases
when νr > ω0 because of the temperature dependence of β

[see Eq. (D4)]. The width of the frequency dips and dissipation
peaks depends on the range of flux values for which dP eq/dφ

is sufficiently large.
By constructing the ratio 	ω/	γ using Eqs. (11) and (12),

we find a simple expression that involves only the average
fluctuation rate in terms of the cantilever frequency:

νr

ω0
= 	ω

	γ
. (14)

It is worth emphasizing that, while the expressions for 	ω and
	γ are each functions of position and temperature, the ratio
	ω/	γ in the linear SR regime only depends on the phase
slip rate. Thus, the ratio provides a robust and convenient way
to measure νr without any prior knowledge of α and β.

C. Phase slip rate measurements

To be in the linear SR regime, two conditions must be sat-
isfied: (i) the oscillation amplitude of the cantilever should be
sufficiently small, i.e., (dP

eq
n /dφ)(dφ/dx)x0 � 1, so that the

modulation of the occupation probability of the fluxoid states
is small; (ii) the stochastic force acting on the cantilever should
be a weak perturbation, i.e., |ζ (t,x)| � kx0. For data shown
in Fig. 3, the first condition is satisfied since the oscillation
amplitude of the cantilever is much smaller than the observed
width of the frequency and dissipation peaks. We assume
that the second condition is met since the observed frequency
shifts do not exceed 1% of the native resonant frequency of
the cantilever. Near φ = n + 1/2 and using Eq. (14), we can
directly determine the fluxoid transition rate νr . Figure 5 shows
a plot of νr calculated using the data between 1.1372 and
1.1445 K [shaded region in Fig. 3(b)] and Eq. (14). For this
range of temperatures, νr increases nearly exponentially from
0.16ω0 to 224ω0, or from 7.7×103 to 10.8×106 s−1, and it can
be approximated by

ln(νr/ω0) = t̃ 1107 − t̃2 27×103, (15)

where t̃ = T − 1.138 75 K.
The height of the phase slip energy barrier 	F can be

determined from the measured νr . The rate of TAPS is given by

�(T ) = � exp(−	F/kBT ), (16)

where � is an attempt frequency. At φ = n + 1/2,
�n,n+1 = �n+1,n = � and νr = 2�. We use the result obtained
by McCumber and Halperin (MH) [30] to determine the
attempt frequency �:

� = (2πR/ξ )(	F/kBT )0.5/τ, (17)

where τ = πh̄/8kB(Tc − T ). Using Eqs. (16) and (17)
and the temperature dependence for the coherence length

FIG. 5. Left axis: νr/ω0 determined from the data shown in
Fig. 3(b). Right axis: Phase slip energy barrier 	F derived from
νr . Solid circles correspond to 	F derived using the McCumber-
Halperin expression for attempt frequency �; solid triangles corre-
spond to constant � = 3×1011 s−1.

ξ = ξ (0)(1 − T/Tc)−1/2 [for the measurement of ξ (0), see
Appendix A], we calculate the temperature dependence of 	F

(Fig. 5). While Eq. (17) is crucial for calculating the absolute
value of �, its effect on the temperature dependence of �(T )
is small. For the temperature range shown in Fig. 5, � changes
only from 4.5×1011 to 2×1011 s−1, while νr changes by three
orders of magnitude. If the value of 	F is calculated assuming
a constant value of � = 3×1011 s−1 in this temperature range,
the resulting 	F deviates by less than 3% from the value
calculated from MH theory [Eq. (17)], as shown in Fig. 5.

As described in detail in Appendix D, from the SR
model [Eqs. (11) and (12)] together with the measured νr (T )
[Eq. (15)] and the estimate of α, we find β(T ) and also an
estimate for λ(T ) = 164/

√
(1 − t) nm. The estimated values

of λ(0) and α, together with the measured νr (T ), allow us
to reproduce both the temperature dependence of 	ω(T ) and
	γ (T ) at φ = n + 1/2 [Fig. 3(b)], as well as the shape of
	ω(φ) and 	γ (φ) peaks as a function of the magnetic field
[Fig. 3(a)] (see Appendix D).

It is instructive to compare the determined phase slip barrier
height 	F to the value, predicted by the theory developed by
Langer and Ambegaokar (LA). The energy barrier for phase
slips in a 1D wire is 	F = (8

√
2/3)ξwd B2

c /2μ0 [29]. This
result has been generalized for thin-walled superconducting
rings [9]. For rings whose circumference is large with respect
to the coherence length (ξ/2πR ≈ 0.09 for Ring 1), the saddle-
point free energy Fbarrier for the n → n + 1 transition near
φ ≈ n + 0.5 is [9,13]

Fbarrier � −Fc + 8
√

2

3

B2
c

2μ0
ξwd, (18)

and the corresponding barrier height is

	F = Fbarrier − Fn(φ)

� 8
√

2

3

B2
c

2μ0
ξwd − Fc

[
2ξ 2

R2
(φ − n)2 − ξ 4

R4
(φ − n)4

]
.

(19)
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We find that 	F calculated from Eq. (19) using a previously
determined value of penetration depth λ(0) � 164 nm (see
Appendix D) is significantly higher than the value determined
from the measured νr and MH theory. For example, at 1.141 K,
the value of 	F predicted using LA theory is 24.2kBT , in
contrast to 14kBT derived from νr (see Fig. 5). We note that
this change in 	F corresponds to only an 11% change in the
saddle-point energy Fbarrier with respect to Fc [Eq. (18)]. There
could be two reasons that cause the phase slip energy barrier
to be lower than the value predicted by Eq. (19). First, the film
surface roughness could lower the barrier height. Second, the
magnetic field produced by the tip might decrease the phase
slip barrier. The peak value of the magnetic field under the tip is
about 2.5 mT, which is comparable to the 8 mT homogeneous
magnetic field that destroys the superconductivity in the ring
at 1.14 K [see Fig. 8(b) and the discussion in Appendix A].
However, a detailed theoretical analysis of this effect is beyond
the scope of this paper.

D. Stochastic resonance imaging of the phase slip rate
in a ring containing a constriction

In this section, we demonstrate the ability to use the strong
magnetic fields produced near the magnetic tip to locally probe
the field dependence of the phase slip rate in a thin ring
containing a constriction. By combining the frequency and
dissipation shift images using Eq. (14), we construct an image
that shows the phase slip rate as a function of tip position. As
an example, we present a qualitative study of an aluminum
ring containing a constriction. An SEM image of the device is
shown in Fig. 6(a).

We use the frequency and dissipation shift images
[Figs. 6(b) and 6(c)] to construct an image of the phase slip
rate shown in Fig. 6(d). The color in Fig. 6(d) represents the
quantity 	ω/	γ , and the brightness represents the magnitude
of the signal,

√
	ω2 + 	γ 2. This representation is chosen to

emphasize only those parts of the image for which 	ω or 	γ

is sufficiently large, so as to minimize the error in the ratio
	ω/	γ . Red and blue correspond to tip positions for which
νr > ω0 and νr < ω0, respectively.

For these measurements, we needed the magnetic field
generated by the tip to be large enough to locally suppress
the superfluid density in the aluminum ring. To achieve the
necessary field, we attached a larger magnetic particle to the
cantilever and positioned the tip closer to the surface. A cross
section of the estimated tip field profile is shown in Fig. 6(e).
The peak magnetic field under the tip for this tip is ∼13 mT
(∼5× larger than the tip field realized for the measurements
on Ring 1). The full width at half-height of the field profile is
∼1.6 μm.

From the image in Fig. 6(d) we observe that the phase slip
rate is the lowest when the tip is positioned directly above
the constriction, higher when it is located over the ring far
away from the constriction, and the highest when it is posi-
tioned on the wider portion of the ring immediately adjacent
to the constriction. Figure 7 shows the temperature evolution of
the phase slip rate along the constriction. We observe that as the
temperature is increased, the regions next to the constriction
are the first to undergo SR at ∼1.26 K, followed by the portion
of the ring away from the constriction at ∼1.27 K, and lastly the

FIG. 6. Stochastic resonance imaging of a thin ring containing
a constriction. The stripes in the images correspond to individual
fluxoid transitions. (a) An SEM image of Ring 2. The ring has a
radius R = 2.38 μm, a width w = 200 nm, and a 1.22-μm-long
constriction, having a minimum width of 60 nm. (b) Frequency
shift 	ω. (c) Dissipation shift 	γ . (d) Phase slip rate νr . The solid
white lines indicate the outline of Ring 2. The dashed line marks the
rectangular region shown in Fig. 7. (e) Cross section of the magnetic
field distribution on the surface. Measurements were performed at
1.280 K for a tip-surface separation of 650 nm. All scale bars
are 1 μm.

constriction itself at ∼1.29 K. This finding indicates that the
tip field lowers the energy barrier most effectively when the tip
is positioned on either side of the constriction but not directly
over it. This somewhat counterintuitive finding highlights the
unique capability of �0-MFM to use the strong magnetic
fields produced by the tip to study the local properties of a

184501-8



IMAGING PHASE SLIP DYNAMICS IN MICRON-SIZE … PHYSICAL REVIEW B 97, 184501 (2018)

FIG. 7. Temperature evolution of νr taken for the rectangular
region indicated in Fig. 6(d). Measurements were performed at a
tip-surface separation of 550 nm.

micron-scale superconducting device. The effect is quite ro-
bust; similar behavior was observed on four different structures
containing constrictions using three different magnetic tips.

While a quantitative explanation of these observations
requires a numerical simulation of the Ginzburg-Landau equa-
tions and goes beyond the scope of this paper, the observed
field dependence of the phase slip rate can be qualitatively
understood from the following considerations. In the case of a
homogeneous wire, the energy barrier for a phase slip is of the
order of the energy needed to suppress the order parameter in a
length ∼ξ of the wire. When the magnetic tip is placed above
the wire, the magnetic field induces a whirlpool of current
in the superconducting region below the tip, which locally
suppresses the order parameter and consequently lowers the
energy barrier locally near the tip. The energy barrier for a
superconducting ring of variable cross section placed in an
inhomogeneous magnetic field is determined by its weakest

part, where a combination of the sample geometry and the
magnitude of the order parameter minimizes the energy barrier.

We find that the largest suppression of the energy barrier
is achieved when the tip is located adjacent to, but not
directly above, the constriction. While our measurements
cannot determine the exact location where the phase slip
occurs, the following scenario could explain the observed
behavior. Superconductivity in the wider section of the wire
is suppressed more strongly by the tip field because the critical
field for a wire of width w < λ scales inversely with the
width [see (A1)]. Therefore, there is a greater suppression
of the order parameter when the tip is positioned in the
regions adjacent to the constriction, rather than directly over the
constriction. The suppressed order parameter propagates into
the constriction over a distance ∼ ξ via a negative proximity
effect. Here, ξ (1.28K) � 560 nm is comparable to the length of
the constriction. The reduction of the order parameter together
with the smaller cross-sectional area of the constriction lowers
the barrier in this region further, thus increasing the phase slip
rate through the constriction.

IV. CONCLUSION

We have introduced a scanning probe technique, �0-MFM,
for studying phase slip dynamics in multiply connected super-
conducting structures. In �0-MFM, the dynamical interaction
between a magnetic particle attached to the cantilever and
the fluctuating currents in a superconducting device modifies
the frequency and dissipation of the cantilever. We find that
over a wide range of fluctuation frequencies, the interaction is
well described by a linear SR process. We further demonstrate
that the SR model can be used to extract the average rate of
TAPS in thin-wall superconducting rings. We find that the
measured phase slip rate is consistent with thermally activated
behavior, but the corresponding energy barrier is reduced
in comparison to the Langer-Ambegaokar prediction. Lastly,
we use a superconducting ring containing a constriction to
demonstrate that the strong magnetic field produced by the
magnetic particle may be used to probe the effects of a local
magnetic field on the energy barrier of the fluxoid states.

In summary, �0-MFM is a noncontact scanning probe
technique capable of mapping out fluxoid or vortex transitions
and characterizing their dynamics over a wide range of temper-
atures and magnetic fields. This technique could be a valuable
tool for investigating various superconducting structures, with
applications to fundamental science and technology.
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APPENDIX A: CRITICAL TEMPERATURE AND
COHERENCE LENGTH MEASUREMENTS

The critical temperature of the aluminum rings is deter-
mined by monitoring the resonant frequency shift as a function
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FIG. 8. Critical temperature and coherence length measurements.
(a) Frequency shift as a function of temperature for Ring 1. The
black line is a fit to the function 	f = 	f0[1 − (T/Tc)3]. (b) Tc

as a function of magnetic field applied perpendicular to the plane
of Ring 1. The solid line represents a fit to Eq. (A3). (c) Tc vs B

measurements for two rings with the same radius R = 0.9 μm but
different wall width w = 201 ± 8 and 111 ± 5 nm. The solid lines
represent fits to Eq. (A3).

of temperature. For these measurements, the magnetic particle
is placed at a fixed location above the wall of the ring. Data
obtained for Ring 1 are shown in Fig. 8(a). We confirmed that
the tip location did not significantly affect the value of Tc by
varying the tip-surface height.

The frequency shift is expected to be proportional to the
supercurrent in the ring. We found that the temperature
dependence 	f (T ) ∝ 1 − (T/Tc)3 provides excellent
agreement with the observed temperature dependence of
the frequency shift. Based on the onset of the frequency shift,
we determine the critical temperatures to be Tc = 1.163 K
(Ring 1) and Tc = 1.325 K (Ring 2). Rings 1 and 2 were
fabricated separately using two different evaporators for
Al film deposition. This explains the significant difference
between critical temperatures of the two rings.

The superconducting coherence length was determined
from the suppression of Tc with the magnetic field applied
perpendicular to the plane of the ring. The magnetic field
is generated using a superconducting solenoid magnet. The
critical field of a thin-wall ring, for magnetic fields applied
perpendicular to the plane of the ring, is analogous to the
parallel critical field of a thin film, provided that w � λ

(see p. 131 of [1]):

Bc‖ = 2
√

6Bc

λ

w
. (A1)

Equation (A1) holds for thin superconducting rings, because
the demagnetization effect vanishes at the second-order su-
perconducting transition where λ → ∞. By substituting Bc =
�0/(2

√
2πξλ) and ξ (T ) = ξ (0)/

√
1 − T/Tc, we find

Bc‖(T ) = Bc‖(0)
√

1 − T/Tc, (A2)

where Bc‖(0) =
√

3
π

�0
wξ (0) . Thus, the superconducting transi-

tion temperature is a quadratic function of an applied field,

Tc(B) = Tc(0)

[
1 − B2

B2
c‖(0)

]
. (A3)

This behavior is indeed observed in measurements [Fig. 8(b)].
The value of Bc‖(0) is found by fitting to Eq. (A3). Based on
this fit, the value of the superconducting coherence length is

ξ (0) =
√

3�0/[πwBc‖(0)]. (A4)

For Ring 1, we find ξ (0) = 108 nm. Similar measurements of
the coherence length gave ξ (0) = 104 nm for Ring 2.

As a control experiment for using Eqs. (A3) and (A4), we
measured the suppression of the transition temperature by a
magnetic field in two rings of the same radius R = 0.9 μm, but
different wall widths w = 201 ± 8 and 111 ± 5 nm [Fig. 8(c)].
These two rings were close to each other on the same chip. The
ring with wider walls shows higher critical fields, which is
consistent with Eq. (A1). The values of coherence length ξ (0),
derived from Eqs. (A3) and (A4), are 103 ± 5 and 95 ± 4 nm
for rings with wider and narrower walls, respectively. The two
values are in reasonable agreement with each other.

APPENDIX B: FLUXOID TRANSITIONS
AT LOWER TEMPERATURES

The field sweep curves obtained at lower temperatures
reveal fluxoid transitions with a period consistent with fluxoid
quantization (Fig. 9). With the cantilever positioned 600 nm
above the center of Ring 1, the shift in the resonant frequency
of the cantilever was recorded as a function of the external
magnetic field, applied using the superconducting magnet. The
data were obtained by cooling the sample in zero field and
sweeping the direction of the magnetic field in a closed cycle,
indicated by the arrows in Fig. 9. The jumps in frequency
correspond to individual fluxoid transitions, with a period
of 0.339 ± 0.001 mT. The measured period is in excellent
agreement with the calculated value of 0.336 mT for a ring
of radius R = 1.4 μm.
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FIG. 9. Field sweeps obtained for Ring 1, with the magnetic tip
positioned 600 nm above the center of the ring. The arrows indicate
the direction of the field sweep.

The large hysteresis observed at low temperature is a
consequence of the increased barrier height of the fluxoid
transitions, which prevents the small variations of the magnetic
flux caused by the cantilever oscillations from changing the
fluxoid state of the ring. Thus, the discrete frequency jumps
observed at low temperature originate from an interaction that
is different from the dynamical one discussed in the main paper.
At lower temperature, the current in the ring is independent
of the cantilever oscillation, and the frequency shift, caused
by oscillations of the magnetic tip in a static inhomogeneous
magnetic field Bring produced by the ring at the location of
the magnetic tip, is proportional to 	f ∝ (∂2Bring/∂x2)mtip,
where mtip is the magnetic moment of the tip [34]. Near Tc,
the dynamical interactions of TAPS and the cantilever emerge,
and the jumps in the cantilever frequency, corresponding to
discrete changes in the winding number, are replaced by sharp
dips resulting from the dynamical interaction of TAPS with the
cantilever.

Figure 10 shows the transition from the jumps in frequency
observed at lower temperatures to the dips in frequency caused
by the dynamical interactions observed near Tc. Line scans
were obtained at several temperatures along the diameter of
an aluminum ring with dimensions R = 0.95 μm, wall width
w = 100 nm, and critical temperature Tc = 1.32 K. As the data
reveal, the dynamical effect produces much stronger frequency
shifts than the one observed at low temperature.

APPENDIX C: ESTIMATE OF THE MAGNETIC
FIELD DISTRIBUTION PRODUCED

BY THE MAGNETIC PARTICLE

In this Appendix, we discuss the details for estimating the
magnetic field profile produced by the magnetic particle for the
measurements presented in Sec. III A. From the SEM images
of the tip, we modeled the geometry of the magnet particle as
the sum of a cube having dimensions (710×800×840) nm3

and a pillar with dimensions (290×290×1800) nm3. As a first
approximation, we assume a uniformly magnetized tip. We
determine the magnitude of the magnetic moment using can-
tilever torque magnetometry [33] to be mtip = 7.2×10−13 J/T.

FIG. 10. Frequency shift data showing the transition from discrete
fluxoid jumps to TAPS. The line scans were made along the diameter
of the ring, at a tip-surface separation of 1.35 μm. A line scan
taken above the superconducting transition was used to subtract the
frequency background. The traces are offset for clarity.

From this model of the tip, we calculate the positions of
the contours that correspond to a half-integer number of
flux quanta threading the ring, and we compare them to the
frequency shift images taken for tip-surface separations of
800, 1000, and 1200 nm. To achieve a good correspondence
between the calculated and measured frequency shift contours,
we vary the parameters of the model, e.g., the magnitude,
orientation, and distribution of the magnetic moment. The best
agreement (Fig. 11) is achieved by adjusting the magnetization

FIG. 11. Comparison of the fluxoid transitions calculated from
the 3D model of the tip (red) to the experimental data. The brown
circle represents the location of the ring. Calculated fluxoid states
are labeled with the phase winding numbers on the image taken at a
tip-surface separation of 1200 nm. All scale bars correspond to 1 μm.
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of the pillar to be 0.25× the magnetization of the cube,
and by making the total magnetic moment of the particle
be mtip = 4.7×10−13 J/T. The estimated magnetic moment
corresponds to ≈0.9 of the maximum magnetic moment for
this size particle, assuming the bulk magnetization of SmCo5 of
M = 0.84×106 A/m [35]. The reduction of the magnetization
in the pillar could be caused by ion damage during the FIB
micromachining of the particle.

To account for the asymmetry observed in the frequency
shift contours, we assume that the magnetic moment is tilted by
19◦ in the −y direction; the tip itself is tilted by 22◦ sideways in
the +y direction. The presence of multiple magnetic domains
in the SmCo5 particle might explain the large tilt angles
required to match the experimental data. The cross sections
of the field profiles are shown in Fig. 1(e).

The fluxoid transition contours measured in the experiment
were also matched by using an effective point dipole model of
the tip. While it is possible to achieve very good agreement for
data taken at a particular tip-surface height, the position of the
point dipole must be varied for scans at different tip-surface
separations. The estimates of the magnetic field with the
effective point dipole model, when compared to those from
the 3D model, give slightly broader distributions with ∼10%
lower peak magnetic fields under the tip. Hence, we suggest
10% as an upper bound on the error for the estimation of the tip
field. The source of error is a combination of the complicated
shape of the tip and the sparsity of the transition lines used
in matching to the model. The precision of the calibration
procedure could be improved in several ways: (i) using tips
that have a simpler geometry, e.g., a bar having a uniform
cross section; (ii) combining N scans, each taken by applying
a uniform magnetic field with magnitude Bl = l �0/(NπR2),
where l = {0,1, . . . ,N − 1}. This would increase the number
of transition lines on the scan by N times, and it would better
constrain the tip model.

APPENDIX D: ESTIMATE OF THE COUPLING BETWEEN
THE CANTILEVER AND THE SUPERCURRENT

IN THE RING

The coupling between the cantilever and the supercurrent
for a thin-wall ring κ(rtip) can be estimated by noticing that the
mechanical work −ζ δx needed to move the tip by a distance
δx is equal to the magnetic energy −Iδ�. Hence, we find
κ(rtip) = �0(dφ/dx). From Eq. (13), we obtain

α = (dφ/dx)2�0/k, (D1)

which gives an estimate α � 38 A−1.
Using Eq. (3) and the relationship I = −(1/�0)∂F/∂φ, we

can express β as

β = −�0 	I 2(φ)

4kBT
cosh−2

{−[Fn+1(φ) − Fn(φ)]

2kBT

}
. (D2)

At φ = n + 1/2 from (2) we obtain

	I = I0

(
1 − ξ 2

4R2

)
, (D3)

FIG. 12. Plot of I0(T ) derived from 	γ (empty circles) and 	ω

(solid circles). The solid line corresponds to the fit of I0 to the expected
temperature dependence I0(T ) ∝ 1 − T/Tc. The shaded region marks
the temperature range where νr (T ) was extracted from data; points at
other temperatures were calculated with extrapolated νr and were not
used for the fit.

and from Eqs. (D2)

β = − �0

4kBT

(
1 − ξ 2

4R2

)2

I 2
0 . (D4)

Using Eqs. (11) and (12) together with the measured νr (T )
[Eq. (15)] and the estimate of α [Eq. (D1)], we find β(T )
and hence I0(T ) [Eq. (D4)] from both 	ω and 	γ , as shown
in Fig. 12. For points outside the temperature range where
the relaxation rate was measured (marked by a gray band in
Fig. 12), νr (T ) was extrapolated using Eq. (15). By fitting I0(T )
to the expected temperature dependence I0(T ) ∝ λ(T )−2 =
λ(0)−2(1 − t), we found that

I0(T ) = 66(1 − t) μA, (D5)

which corresponds toλ(0) � 164 nm (Fig. 12). The data points,
for which νr was extrapolated, were not used for the fit. The
temperature dependences of 	ω(T ) and 	γ (T ) calculated at
φ = n + 1/2 using the SR model [Eqs. (11) and (12)] with
I0(T ) and νr (T ) given by (D5) and (15), respectively, are
plotted in Fig. 3(b) and describe the data well.

Comparison of the shape of the 	ω and 	γ peaks, shown
in Fig. 3(a), to the SR model requires β(φ) and νr (φ). Note
that for 	φ = φ − (n + 1/2) � 1,

	I (φ) � 	I |φ=n+1/2, (D6)

Fn+1(φ) − Fn(φ) � −�0	I	φ, (D7)

β(φ) � β|φ=n+1/2 cosh−2

{
�0	I	φ

2kBT

}
, (D8)

νr (φ) � νr |φ=n+1/2 cosh

{
�0	I	φ

2kBT

}
. (D9)

Here, Eq. (D8) is found by combining (D2) and (D7).
An approximation for νr (φ) [Eq. (D9)] is obtained from
Eqs. (5), (16), and (D7) in the assumption that the saddle-point

184501-12



IMAGING PHASE SLIP DYNAMICS IN MICRON-SIZE … PHYSICAL REVIEW B 97, 184501 (2018)

free energy Fbarrier(φ) that sets the phase slip barrier [see
Fig. 4(a)] is flat around 	φ = 0: ∂Fbarrier/∂φ = 0. Equa-
tions (D8), (D9), (D3), and (D4) enable us to express
β(φ,T ) and νr (φ,T ) in terms of I0(T ) and νr (T ) at
	φ = 0, which were determined earlier [(D5) and (15)].
The calculated 	ω(φ) and 	γ (φ) curves are shown in
Fig. 3(a) and are in good agreement with the experimental
data.

In our analysis thus far, we have neglected the contribution
to the flux from the self-inductance of the ring. We estimate

the self-inductance to be [36]

L � μ0R

[
ln

(
8R

w

)
− 1

2

]
= 6 pH. (D10)

From the signal strength, we estimated that
I0(T ) = (1 − T/Tc)×66 μA. We can see that the circulating
current has the largest value of 0.5	I = 0.6 μA at
T ≈ 1.14 K. The resulting correction to the applied flux
from the self-inductance term is 1.7×10−3�0, which is
sufficiently small so that we can neglect its contribution.
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